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Abstract: Glaucoma is a group of optic neuropathies characterized by a progressive degen-

eration of retina ganglion cells (RGCs) and their axons that precedes functional changes

detected on the visual field. The macular ganglion cell complex (GCC), available in

commercial Fourier-domain optical coherence tomography, allows the quantification of the

innermost retinal layers that are potentially involved in the glaucomatous damage, including

the retinal nerve fiber (RNFL), ganglion cell and inner plexiform layers. The average GCC

thickness and its related parameters represent a reliable biomarker in detecting preperimetric

glaucomatous damage. The most accurate GCC parameters are represented by average and

inferior GCC thicknesses, and they can be associated with progressive visual field loss.

Although the diagnostic accuracy increases with more severe glaucomatous damage and

higher signal strength values, it is not affected by increasing axial length, resulting in a more

accurate discrimination of glaucomatous damage in myopic eyes with respect to the tradi-

tional RNFL thickness. The analysis of the structure-function relationship revealed a good

agreement between the loss in retinal sensitivity and GCC thickness. The use of a 10-2°

visual field grid, adjusted for the anatomical RGCs displacement, describes more accurately

the relationship between RGCs thickness and visual field sensitivity loss.

Keywords: retinal ganglion cells, spectral-domain optical coherence tomography, standard

automated perimetry, retinal nerve fiber layer

Introduction
Glaucoma is a heterogenous group of progressive neurodegenerative optic neuro-

pathies characterized by the degeneration of retinal ganglion cells (RGC) and their

axons in addition to significant remodeling of the lamina cribrosa of the optic nerve

head.1,2

Standard automated perimetry (SAP) has been widely used to assess visual

function in glaucomatous eyes for staging and monitoring the disease

progression.3–7 However, it has been estimated that at least 25% to 35% of RGCs

must be lost before producing significant abnormalities on the visual field.8 Several

clinical studies confirmed that the decline in RGCs precedes functional changes

detected on SAP in glaucomatous eyes, confirming that a combination of structural

and functional tests might offer an optimal assessment of the neural damage and its

progression.9–13

Optical coherence tomography (OCT) allows for noninvasive imaging of glau-

comatous structural damage involving the optic nerve, peripapillary retinal nerve

fiber layer (RNFL) and the macular region. Of these, the quantification of circum-

papillary RNFL represents the most commonly used OCT parameter because it has
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been considered a useful method in assessing the structural

loss of RGCs in glaucoma.14–17 However, this method

analyzes only the axonal portion of the RGCs without

considering the cell bodies and dendrites, which are also

affected in glaucoma and reside in the ganglion cell layer

(GCL) and inner plexiform layer (IPL), respectively.18–20

In addition to the conventional peripapillary RNFL,

macular thickness can be affected in glaucomatous eyes,

suggesting that it may represent a surrogate indicator of

RGCs damage, given the prominent distribution of these

cells within the macular region.19,21–23 However, the indir-

ect estimation of RGCs with macular thickness was inac-

curate due to influence from the outer retinal layers, which

constitute approximately 65% to 70% of the total retinal

thickness and contribute to high variability and less dis-

criminant power.18

With the development of newer OCT, the automatized

segmentation of inner retinal layers has become possible.

Macular ganglion cell complex (GCC) includes all three

innermost retinal layers potentially involved in the glau-

comatous damage (RNFL, GCL and IPL); in addition, the

segmentation of the GCC thickness is traced from the

inner limiting membrane and the outer IPL boundary.18,24

The GCC thickness was confirmed to be superior to macu-

lar thickness in detecting glaucomatous eyes.18

The purpose of the present review is to provide an excur-

sus of the existing literature on the role of GCC in glauco-

matous disease, reporting how to interpret the GCC

parameters in the early diagnosis, progression and prognosis.

Macular Ganglion Cell Complex
Imaging
Topographic Distribution of RGCs in

Normal and Glaucomatous Retina
Ganglion cells peak density ranges between 31,600 and

37,800 cells/mm,2 and the highest cells density in

a horizontally oriented elliptical ring of 0.4–2 mm from

the foveal center, with approximately 50% of the RGCs

overall, is located within 4.5 mm of the foveal center.25

A topographical analysis of RGC in cadaveric glaucoma-

tous eyes also revealed that RGC density was 10 times

higher in the foveal region with respect to more peripheral

retina.8

The RGCs first appeared at 150–250 μm from the

foveal center, and the total displacement declined to zero

at the optic nerve head (approximately 3.4 mm nasal to the

foveal center) but was still detectable up to 4.5 mm

temporal to the foveal center. The Henle fiber layer length

is the most important contributor to the receptoral and

post-receptoral displacement and was found to be greater

than the one previously estimated.25–28

Different animal models of experimental glaucoma

have been developed to simulate glaucomatous optic

neuropathy. It has been confirmed that sustained intrao-

cular pressure elevation is accompanied by a progressive

RGCs loss associated with visual acuity and contrast

sensitivity decline.29–31 More importantly, as demon-

strated in adult rhesus macaques, the RNFL birefringence

declines prior to and more quickly than the RNFL thick-

ness, suggesting that RGCs cytoskeleton damage pre-

cedes RNFL thinning.32

In experimentally induced glaucoma, a selective loss of

large RGCs was demonstrated in the foveal region and the

midperipheral retina.33 The foveal region demonstrated

a loss of ganglion cells similar to other peripheral retinal

areas in experimentally induced glaucoma in monkeys.34

The greater susceptibility of the large RGCs to glaucoma-

tous damage was also confirmed in a similar experimental

model, analyzing three different degrees of glaucomatous

damage: mild (10–40% cell loss), moderate (40–60% cell

loss) and severe (60–90% cell loss). In this model, the

inferior retina appeared to be more affected than superior

areas.35 In human retina, greater susceptibility of the large

RGCs to glaucomatous damage was confirmed, but

although the inferior retina presented smaller RGCs cells,

no significant differences were found in the RGCs distri-

bution between hemifields.13

The RGC damage in experimentally induced ocular

hypertension in rodents was primarily sectorial in a “pie-

shaped” or “triangular” configuration, with selective damage

of the RGC cells and relative sparing of the non-RGC neu-

rons as presumed displaced amacrine cells. These triangular

sectors of RGC loss, localized preferentially on the dorsal

retina, were oriented with their base toward the peripheral

retina and their apex toward the optic disc.36,37

Quantification of GCC Using Optical

Coherence Tomography
With the introduction of Fourier-domain OCT technology,

several manufacturers proposed the evaluation of the gang-

lion cell layer using different protocols. Table 1 summarizes

spectral-domain (SD) commercially available OCT proto-

cols used to analyze macular ganglion cells.18,38–44
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The RTVue-100 software (Optovue, Inc., Fremont, CA)

acquires 26,000 A-scans per second with an axial resolution

of 5 μm in the tissue.18,38 The GCC is defined as the sum of

RNFL, GCL and IPL thickness measured from the inner

limiting membrane to the IPL boundaries (Figure 1). The

GCC scan pattern is centered 0.75 mm temporal to the fovea,

covering a square grid of 7 × 7 mm on the central macula and

consisting of 15 B-scans spaced 0.5 mm from one another.18

After the acquisition, the software automatically com-

putes three color-coded maps: a) a thickness map, color-

coded with cooler colors (blue and black), indicating more

severe GCC loss; b) a deviation map, which displays the

percentage of thickness loss with respect to the normative

database; and c) a significance map, which displays statis-

tically significant thickness changes from the normal.

Two pattern-based diagnostic indexes are also calcu-

lated by the analysis software. The focal loss volume

(FLV) indicates the average amount of focal GCC loss

divided by the map area. The global loss volume (GLV)

provides the sum of the negative fractional deviation.18,45

(Figure 2)

The pattern-based parameters (i.e., FLV and GLV) are

considered to have better diagnostic values than the mean

GCC loss, likely because a focal GCC loss can be over-

looked in eyes with above-average GCC thickness.18,45

Cirrus HD-OCT (Carl Zeiss Meditec, Inc., Dublin, CA)

achieves 27,000 A-scans per second with an axial image

resolution of 5 μm.46 The ganglion cell analysis algorithm

automatically delineates the outer boundary of the macular

RNFL and the IPL, obtaining the ganglion cell-inner plexi-

form layer (GCIPL).41

The Cirrus HD-OCTsoftware calculates the average, mini-

mum and sectoral GCIPL thickness (superotemporal, superior,

superonasal, inferonasal, inferior, inferotemporal);47 for

further details, see Table 1. The minimum GCIPL thickness

represents the lowest thickness over a single meridian crossing

the anulus. The software also provides a thickness map,

a color-coded topographicmapmatching a normative database

and a deviation map. Values within the normal range

(P = 5–95%) are depicted in green, borderline values

(1% < P < 5%) in yellow and values outside normal limits

(P < 1%) in red.41,47

The 3D OCT-2000 (Topcon, Inc., Tokyo, Japan) device

uses a scan speed of 50,000 A-scans per second with

a depth resolution of 6 μm. The macular inner retinal

layers analyzed by the software include GCC, GCL+IPL

Table 1 Overview of the Ganglion Cell Layer Imaging Performed by Different Spectral-Domain OCT Devices

Instrument Macular Scan Protocol Macular Thickness

Measurements

RTVue-100 (Optovue Inc.,

Fremont, CA)

7×7-mm square area consisting of a horizontal 7-mm line scan (467 A-lines) and 15

vertical 7-mm line scans (400 A-lines) spaced at 0.5-mm intervals, centered 0.75

−1 mm temporal to the fovea.

The GCC thickness is calculated within a 6-mm diameter circular macular area.

Ganglion cell complex

(GCC)

GCC= RNFL + GCL

+IPL layers

Cirrus HD-OCT (Carl Zeiss

Meditec, Inc., Dublin, CA)

Macular cube 200 × 200 protocol (6 × 6 mm square grid) containing 200 B-scans

(200 A-scan lines) or Macular Cube 512 × 128 protocol (128 B-scans, 512 A-scans

per B-scan). The macular thickness data are calculated on 14.13 mm2 elliptical

annulus area centered on the fovea.

Ganglion cell analysis

(GCA)

● Macular RNFL

● GCL+IPL

● GCC

RS-3000 SD-OCT (Nidek,

Gamagori, Aichi, Japan)

30° × 30° square area (~ 9 × 9 mm square area) consisting of a vertical B scan (512

A-scans) × 128 B-scans horizontally.

Macular GCC

● Superior/inferior (S/

I) semicircle map

● 8-sector map or

GCchart

Spectralis (Heidelberg Engineering,

Inc., Heidelberg, Germany)

30° × 25° volume scan consisting of 61 horizontal B scans (1024 A scans/line)

within the central 20°.

Retinal map- 8 x 8 grid composed by 64 sectors with colorimetric scale

Posterior pole

asymmetry analysis

(PPAA)

3D OCT (Topcon, Inc., Tokyo,

Japan)

Macular 3D raster scan composed by 512 × 128 A scans covering a cube of 6 × 6 ×

2 mm

● Macular RNFL

● GCL/IPL

● GCC

Abbreviations: RNFL, retinal nerve fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer.

Dovepress Scuderi et al

Eye and Brain 2020:12 submit your manuscript | www.dovepress.com

DovePress
35

http://www.dovepress.com
http://www.dovepress.com


(mGCL+) and macular RNFL; for further details, see

Table 1.48,49 The macular inner retinal layer analysis soft-

ware divides the macular square into a 6 x 6 grid contain-

ing 100 cells (0.6 x 0.6 mm each). The thickness

calculated in each cell is compared with a normative data-

base. Similar to the other color-coded maps, values within

the normal range are represented as green, borderline as

yellow and outside normal limits as red.48

Spectralis (Heidelberg Engineering, Inc., Heidelberg,

Germany) posterior pole asymmetry protocol (Table 1) cal-

culates the total retinal thickness in a central 8 x 8 grid, which

displays the asymmetry between the eyes and between the

superior and inferior hemispheres of each eye, using darker

cells to represent regions of greater asymmetry.43,44

Diagnostic Accuracy, Reproducibility
and Clinical Validation of Macular
Ganglion Cell Complex Analysis
The diagnostic accuracy of GCC is significantly influenced

by disease severity—with increasing accuracy in more

severe glaucomatous damage—whereas the optic disc size

does not influence the GCC parameters.50 Furthermore, scan

quality (i.e., signal strength index) was considered an addi-

tional factor that influences the diagnostic performance of

GCC parameters in glaucoma.51

The RTVue-100 device is widely used in clinical prac-

tice, demonstrating diagnostic performance similar to

other SD-OCT devices in identifying glaucomatous dis-

ease by using average peripapillary RNFL and GCC

thickness.38 The reproducibility of GCC measurements

with the RTVue-100 OCT has been demonstrated to be

superior to the previous Stratus OCT devices and is satis-

factory on both healthy and glaucomatous eyes with mod-

erate to severe damage.52

The GCIPL thickness parameters are also less influ-

enced by axial length or refractive errors, representing

a potential advantage in the Asian population, known to

exhibit a high prevalence of myopia.53 The inner retinal

layers measured by 3D-OCT demonstrated significant var-

iations with gender and age but had no significant relation-

ship with axial length.54

The presence of SD-OCT artifacts caused by segmen-

tation or acquisition errors can limit the diagnostic ability

of GCC analysis, and the segmentation artifacts were

considered the most frequent in both healthy and glaucoma

patients.39

Other factors might influence the interpretation of GCC

results; in particular, the epiretinal membrane can cause

errors in segmentation, but also retinal disorders and optic

neuropathies can alter the GCC thickness. However, these

conditions typically do not exhibit specific patterns of

GCC damage, but it is important to consider other poten-

tial confounding influencing factors when interpreting

GCC maps in glaucomatous eyes.55

Commercially available OCT devices have an integrated

normative database limited to individuals aged 18 years or

older, thus limiting their application in the pediatric

population.56–58 The evaluation of glaucomatous damage in

monitoring childhood glaucoma can be challenging in the

future,59,60 even though children with glaucoma demon-

strated decreased RNFL thickness and inner retina macular

layers.61,62 The GCL-IPL values were found to be thicker in

Figure 1 Ganglion cell complex (GCC) analysis and segmentation. (A) Thickness

map, automatically calculated using RTVue Fourier-domain optical coherence tomo-

graphy (FD-OCT); (B) Cross-sectional FD-OCT B-scan with segmentation of the

GCC. The inset (dotted square) depicts the three anatomical layers included in the

GCC analysis: nerve fiber layer (NFL), ganglion cell layer (GCL) and inner plexiform

layer (IPL). The traced boundaries for the GCC scan (white arrows) pass from the

inner limiting membrane and outer IPL.
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the pediatric population with respect to adults, confirming the

necessity of using a pediatric reference database to avoid

false estimation with the adult normative database.63,64

The Utility of Ganglion Cell
Complex in Early Diagnosis and
Glaucomatous Disease Progression
Macular Ganglion Cell Complex in

Preperimetric Glaucoma
In cadaveric eyes of glaucoma patients, it has been esti-

mated that 20% of RGCs loss corresponded to a 5 dB

decrease in sensitivity in the central 30 degrees, and like-

wise an RGCs loss of 40% was associated with a 10 dB

decrease in sensitivity.13 Macular GCC parameters are

theoretically superior over peripapillary RNFL parameters

in early diagnosis because it has been experimentally

demonstrated that the RGCs abnormalities precede the

axonal loss.32,45

The GCC thickness was significantly affected in eyes

with RNFL defects and normal SAP. In particular, the

superior GCC thickness presented predictive value similar

to that of peripapillary RNFL and optic nerve head (hor-

izontal cup: disc ratio).11,12

Figure 2 Quantification of ganglion cell complex (GCC) using Fourier-domain optical coherence tomography (FD-OCT) in the case of severe glaucomatous ganglion cell loss. Three

different colorimetric maps were automatically computed by the FD-OCT software (RTVue-100 software; Optovue, Inc., Fremont, CA). (A) Thickness map, displaying diffuse blue and

black colors indicating severe and diffuse loss of GCC thickness. The central black spot indicates the fovea where the ganglion cells are missing. (B) Deviation map, illustrating the

percentage of thickness loss with respect to the normative database. Black coloring indicates a GCC loss of 50% or greater. (C) Significance map, displaying the significant thickness

change variation from normal, where green represents values within the normal range (p-value 5–95%), yellow indicates borderline results (< 5%) and red represents results outside the

normal limits (< 1%); (D) Quantitative indexes calculated by the software, including average thickness, hemifield thicknesses (superior, inferior and intra-eye) and the two pattern-based

diagnostic indexes (i.e., focal loss volume [FLV] and global loss volume [GLV]); (E) Cross-sectional B-scan displays the segmentation used for GCC analysis.
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The most informative OCT parameters in differentiating

preperimetric glaucoma included GCC average thickness,

inferior quadrant RNFL thickness, inferior GCC thickness

and superior GCC thickness.11,65,66 Kim et al45 suggested

that GCC thickness appeared to be a better diagnostic bio-

marker for early glaucoma than did RNFL thickness.

Moreover, the OCT-derived macular GCC parameters

exhibited high sensitivity in differentiating glaucomatous

from normal eyes. In particular, the GLV predicted preperi-

metric glaucoma (odds ratio [OR]:1.74) and early glaucoma

(OR = 1.22), and the FLV demonstrated greater predictive

value in detecting advanced glaucoma (OR = 2.32).67 In

addition, Naghizadeh et al68 hypothesized that pattern-

derived GCC parameters (i.e., GLV and FLV) were better

able to detect early structural glaucomatous changes with

respect to other GCC parameters in addition to RNFL

thickness and optic nerve head analysis.

Comparing the ability of GCC in detecting early glau-

coma with respect to other OCT parameters, the area under

the curve (AUC) was significantly higher in the GCC-

related thicknesses than in the corresponding GCL/IPL or

RNFL thicknesses.69,70 Other studies reported similar

diagnostic ability of the GCC and GCL/IPL parameters

in discriminating early glaucomatous changes, comparable

with the peripapillary RNFL thickness.38,40

Sectorial GCC parameters with the highest AUCs for

discriminating between healthy and glaucomatous eyes using

Cirrus SD-OCT included infero-temporal, inferior and supero-

temporal sectors in addition to the average GCC.40

Furthermore, both minimal and inferior GCIPL thicknesses

demonstrated satisfactory AUC (> 0.80), supporting their

potential role as biomarkers for glaucoma screening.71

Likewise, macular parameters (GCL+IPL and GCC) and peri-

papillary RNFL obtained by 3D-OCT exhibited similar diag-

nostic accuracy in detecting preperimetric glaucoma.72

Regarding the posterior pole asymmetrical analysis

provided by the Spectralis software, a retinal thickness

asymmetry between hemifields occupying the nasal macu-

lar area has been demonstrated, suggesting a possible role

for diagnosing early glaucoma.44

By comparing different SD-OCT devices (RTVue,

Cirrus and 3D-OCT), the diagnostic performance of the

average GCC thickness in diagnosing early and all stages

of glaucoma was similar among the SD-OCT devices.

However, RTVue exhibited better AUC for the superior

hemifield GCC thickness with respect to either Cirrus and

3D-OCT, likely due to differences in the scanning

protocols.38

Recently, associations between localized functional

defects and GCC thickness have been reported in eyes

with ocular hypertension and glaucoma.73 Cluster-based

trend analysis of computerized visual field, using

a dedicated software (EyeSuite, Octopus perimetry, Haag-

Streit, Switzerland), allows for testing specific sectors

grouped along nerve fiber bundles.74 Eyes with a normal

visual field (VF) but abnormal GCC thickness exhibited

the best correspondence between cluster analysis VF and

GCC defects (100%). Although the purpose of this study

was to demonstrate the usefulness of VF cluster analysis in

discriminating early focal glaucomatous defects, it also

confirmed the ability of GCC to predict early-stage glau-

coma before the VF global indexes (mean defect, MD and

loss of variance, LV) are altered.73

Functional Correlates of GCC Loss in

Perimetric Glaucoma
The diagnostic ability of GCC in advanced glaucoma may

be inferior to RNFL parameters because only 50% of the

RGCs occupy the macular region.45 However, both RNFL

and GCC thickness demonstrated a similar ability to diag-

nose moderate and severe glaucoma, defined according to

the modified Hodapp-Anderson-Parrish grading scale.45,75

The best GCC parameters for detecting perimetric glau-

coma were average GCC thickness and inferior GCC

thickness.18,76,77

The regional assessment of the macular inner retinal

layer using 3D-OCT-2000 has been considered a better

indicator of paracentral scotoma than peripapillary RNFL

parameters.48

In glaucomatous eyes, either GCC or RNFL parameters

significantly correlated with retinal mean sensitivity, offer-

ing a structure-functional relationship. The GCC thickness

offered the best correlation with the retinal sensitivities

within the central 10° of the macula, whereas the RNFL

correlated with only the periphery of the central 10° after

adjusting for RGCs displacement.78

The most common SAP test protocol in glaucomatous

eyes included the 24-2 or 30-2 protocols of the Humphrey

Field Analyzer (Zeiss, Inc), in which the test points are

spaced 6° apart.79,80 However, given the RGCs bodies dis-

placement from their receptive fields in the macular region,

such VF test patterns failed to accurately demonstrate

a direct relationship between VF defects and RGCs damage

to the macula.79,81–83 In this regard, the use of a 10–2 test

with a 2° grid and considering the RGCs displacement
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demonstrated a better agreement between RGCs thinning

and VF damage.79,81–84

The RGCs damage most severely involved the inferior

retina (superior visual field), which projected to the macular

vulnerability zone located in the inferior quadrant of the

optic disc.79,81,84 Furthermore, a small centrocecal region of

the inferior macula and all the superior macula (inferior VF)

projected to the temporal quadrant, which was found to be

less vulnerable to glaucomatous damage.79,81 Beyond the

deep and localized damage involving the macular vulner-

ability zone, a diffuse and shallow defect can be identified

with a widespread loss of 10–2 sensitivity associated with

thinning of macular RGCs and RNFL.85

The quantitative structure-function relationship

between GCL/IPL thickness and visual sensitivity mark-

edly decreased by approximately outside 6° of the VF

(corresponding to ~7.2° on the retina), likely due to the

physiological thinning of the GCL/IPL layer in the more

peripheral regions of the macula.82

Predictive GCC Parameters of Visual

Field Progression
Advanced imaging for glaucoma study (AIGS) demon-

strated that the focal loss of GCC was the strongest single

predictor for VF progression (hazard ratio: 3.1), followed

by the focal loss of peripapillary RNFL. The combination

of GCC focal loss with age and central corneal thickness,

constituting a composite index called the “Glaucoma com-

posite progression index,” increased the predictive value

for disease progression. More interestingly, intraocular

pressure and VF parameters were not found to be signifi-

cant predictors in the multivariate model.10

In the most recent AIGS, the focal loss of RNFL and GCC

were both considered the strongest OCT predictors for glau-

coma progression, with superiority of the RNFL FLV index.

However, the detection of RNFL-FLV is not available in

current commercial devices, making the GCC-FLV the most

important predictor for glaucomatous disease. The VF pro-

gression was estimated using the MD and VF index, consider-

ing VF rapid progression an MD slope > −0.5 dB/year or VF

index >−1%/year.86 In addition, the inferior GCC thickness

was found to be significantly thinner in the fast progression

group with respect to slow progressors.87

Progressive structural changes in RNFL and GCC

thicknesses should be interpreted also considering the age-

related loss of RGCs, as previously reported.68,88–91 It has

been estimated that the mean age-related rate of GCL+IPL

loss was −0.318 μm/year, whereas the inner retina (i.e.,

from the inner RNFL boundary to the outer IPL boundary)

decreased by −0.245 μm/year. After accounting for age-

related changes, the rate of progression decreased from

50% to 14.7% for the GCL+IPL thickness and from 50%

to 20% for the inner retinal thickness.90 Medeiros et al92

estimated rates of RGCs loss in progressive glaucoma by

interpolating structural and functional parameters.

The percent rate of RCG loss was −4.4%/year in eyes

exhibiting faster RGC loss than the expected age-related

decline. The percentage of eyes with faster RGC loss was

higher (22.1%) than those progressing based on OCT

average thickness (14.6%) or VF (8.5%).

Specific Patterns of Macular
Ganglion Cell Complex Alterations
Macular GCC in Primary Open-Angle

Glaucoma and Normal Tension Glaucoma
Most studies conducted on macular GCC alterations in

glaucomatous eyes considered primary open-angle glau-

coma (POAG).10,68,93–95 The GCC thickness gradually

decreased, according to the severity of POAG, with widen-

ing preexisting defects.95,96

In addition, some reports aimed to identify GCC struc-

tural parameters potentially able to discriminate between

normal tension glaucoma (NTG) and POAG.24,97,98 The

hypothesis of a different pattern of macular GCC loss was

initially supported by the evidence of deeper and closer-to-

fixation scotomas in the NTG with respect to POAG.99

The peripapillary RNFL demonstrated strong correla-

tion with mGCC thickness in both early-stage NTG and

with a VF defect.98 Comparison of the NTG and POAG

groups revealed that the POAG group presented lower

parameters in both RFNL and macular GCC thickness

with respect to the NTG subgroup.97,100 More interest-

ingly, the GLV parameter was significantly higher in the

POAG subgroup. Considering these evidences together

identified that the GCC loss was more diffuse in the

POAG, with a more prominent difference than peripapil-

lary RNFL, and the mean GCC measurements and GLV

represented the most important parameters in discriminat-

ing between POAG and NTG.97

Recently, Edlinger et al101 reported data on structural

parameters in NTG and high-tension glaucoma with peri-

metric and preperimetric glaucoma. Eyes with high-

tension glaucoma presented a more pronounced loss in

thickness for all the parameters considered (peripapillary
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RNFL, and macular RNFL, GCL, IPL and GCC). Global

RNFL, macular inner temporal GCL, outer temporal GCC,

outer inferior RNFL and inner temporal IPL presented the

highest sensitivities for discriminating perimetric glau-

coma. Moreover, peripapillary RNFL and macular inner

temporal GCL, outer inferior GCC, outer inferior RNFL

and inner temporal IPL achieved the highest sensitivities

for preperimetric glaucoma.

Diagnostic Ability of GCC to Detect

Glaucoma in Highly Myopic Eyes
The diagnosis of glaucoma in highly myopic eyes can be

challenging considering the optic disc and retina are

deformed due to elongation of the eye.102 In addition,

myopia is considered a risk factor for the development of

glaucoma, but it remains controversial whether myopic

eyes progress more quickly than emmetropic eyes.103–108

Macular GCC thickness was reported to be comparable

or superior to the RNFL evaluation in the assessment of

glaucoma in highly myopic patients.53,109–112

The diagnostic parameters with the largest AUC for the

detection of glaucomatous eyes among myopic patients

was GLV (AUC: 0.957), which performed significantly

better than the cup/disc vertical (AUC = 0.844) and the

RNFL vertical (AUC = 0.826), as reported by Shoji et al53.

Furthermore, considering that the average GCC demon-

strated 0.968 specificity at 80% sensitivity, it has been

hypothesized that it could be considered one of the best

parameters for glaucoma detection in highly myopic eyes.

The diagnostic performances of GCC and peripapillary

RNFL in detecting glaucomatous damage in highly myo-

pic eyes were similar among the various OCT devices

(Cirrus, RTVue and 3D OCT).111

Other OCT parameters found to be effective in discri-

minating between normal and glaucomatous eyes were

inferior GCC thickness among highly myopic patients

and FLV in the non-myopic subgroup.110

Conclusion
Glaucoma is characterized by the progressive loss of

RGCs and their axons constituting the RNFL. The macular

region contains more than 50% of RGCs easily estimable

via commercially available OCT devices.

Experimental animal models demonstrated a loss of

RGCs occupying the foveal region, similar to other peripheral

retinal areas, further suggesting the importance of studying

this region in glaucomatous eyes. Such models demonstrated

also that the RGCs loss is nonuniformly distributed across the

retina, and thus, an understanding of the location and cellular

types susceptible to glaucomatous damage may help in devel-

oping more accurate biomarkers in human eyes.

A significant reduction of RGCs can be appreciated

before the VF defect becomes detectable. The GCC para-

meters (i.e., mean thickness, GLV, FLV, superior and

inferior thickness) are superior in discriminating early

glaucomatous changes compared with RNFL thickness,

since it has been experimentally demonstrated that the

RGC dysfunction occurs earlier than does RNFL thinning.

Macular GCC parameters can also be considered impor-

tant prognostic indicators in cases of non-glaucomatous RNFL

thinning characterizing, for instance, highly myopic eyes.

The diagnostic accuracy of GCC analysis increases

with disease severity, but it is also directly related to an

increase in signal strength values.

An additional point to consider when using GCC analysis

is the relationship between GCC thinning and VF damage.

Considering the anatomical RGCs displacement, the conven-

tional SAP protocol has resulted in inaccurately mapping the

macular glaucomatous damage. In this regard, the use of the

10–2 test appears to demonstrate greater structural-functional

agreement. Despite this, the derived parameter of focal GCC

loss (i.e., FLV) represents the strongest predictor of VF pro-

gression in glaucomatous eyes. In conclusion, the estimation

of glaucoma-induced RGCs loss by using GCC parameters

represents an ideal predictor in assessing early glaucoma and

offers a more accurate tracking of glaucoma progression.
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