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In the last decade, a new class of cyber-threats, known with the name of “Advanced Persistent Threat” (APT)

has emerged and is referred to as different organizations performing dangerous and effective attacks against

financial and politic entities, critical infrastructures, etc. In order to early identify APT related malware,

a semi-automatic approach for malware samples analysis is needed. Recently, a malware triage step for a

semi-automatic malware analysis architecture has been introduced. This step has the duty to early identify

incoming APT samples, among all the malware delivered per day in the cyber-space, to immediately dispatch

them to deeper analysis. In the paper, authors have built the knowledge base on known APTs obtained from

publicly available reports. For efficiency reasons, they rely on static malware features, extracted with negligible

delay, and use machine learning techniques for the identification. Unfortunately, the proposed solution has

the disadvantage of requiring a long training time and needs to be completely retrained each time new APT

samples or even a new APT class are discovered. In this paper, we move from multi-class classification to a

group of one-class classifiers, which significantly decreases runtime and allows higher modularity, while still

guaranteeing precision and accuracy over 90%.
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1 INTRODUCTION
Since the origin of the Internet, cyber-attacks have evolved in parallel with computer development,

changing ways and means of execution. From the first viruses and worms to the modern botnets

and rootkits, from the first singular and non-organized attacks to the advanced and well-crafted

persistent ones, all these kinds of vectors mutate their behavior by updating their “source” in line

with the new software and hardware technologies. During the last two decades, the number of

delivered malware exponentially increased: according to a survey conducted by Panda Security [21],

just in 2015, about 230.000 malware were delivered per day with an increase of 40% with respect to
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2014, kneeling different times the cybersecurity community. A recent analysis from McAfee [2]

showed that in the third quarter of 2018 more than 60 million newmalware samples were discovered.

In the mid-2000s, indeed, the black hat community evolved from adolescent hackers to organized

crime networks, fueling highly profitable identity theft schemes with massive loads of personal

data harvested from corporate and government networks. In recent times, in fact, a new powerful

and dangerous threat is on the rise, identified by the community as “Advanced Persistent Threat”

(APT). According to NIST Glossary of Key Information Security Terms
1
, APT is “an adversary that

possesses sophisticated levels of expertise and significant resources which allow it to create opportunities
to achieve its objectives by using multiple attack vectors (e.g., cyber, physical and deception)”. Hence
the APT name identifies the main peculiarities of the threat:

Advanced Criminal minds behind attacks utilize the full spectrum of computer intrusion tech-

nologies and techniques. While an individual attacker may not be classed as particularly

“advanced” (e.g. single-stage malware component found on the black market), their operators

typically access and develop more advanced tools as required.

Persistent Criminal operators give priority to a specific task, rather than opportunistically seeking

immediate financial gain. The attack is indeed conducted through continuous monitoring

and interaction in order to achieve the defined objectives. A “low-and-slow” approach is

usually more successful.

Threat The attack has a malicious nature. Malevolent attackers have a specific objective and are

skilled, motivated, organized and, of course, well funded.

Such advanced attacks are strongly targeted in order to overcome all the general defenses that the
target can apply. According to the FireEye studies [4], based on the huge amount of APT operations

they analyzed, APTs principally target big companies, critical infrastructure, and institutions, to

gain financial secrets, intellectual properties, national secrets, private personal information or

damage critical infrastructures by interrupting or decreasing their functionality. Despite different

targets and origin, it has been demonstrated that APTs perform attacks in a standard way, that

can be represented as an intrusion kill chain [7]. The attack starts with a Reconnaissance phase
in which the APT deeply studies the victim’s infrastructure, followed by the initial exploitation
phase, where those malicious organizations actually “enter” inside the victim systems. Given the

persistent appellation which characterizes APT, in the next phase APTs, establish persistence in the

host which provides attackers the possibility to install backdoors or other tools for following attack

stages. Lateral movement is actually accomplished to escalate privileges and hence being able to

elevate the capability in the system. Finally, in the exfiltration phase the real aim of the attack is

achieved. It is hence important to identify any malware used by APTs in any of these phases so that

other malware used in previous steps can be found and analyzed, and defenses can be improved

against future activities. In this paper we refer to the malware developed by Advanced Persistent

Threats as APT-related malware or APT-malware for the sake of simplifying the text.

1.1 Contribution
According to [7], defenders must implement countermeasures faster than adversaries evolve. It

is evident that there is a need for a prioritization mechanism to promptly identify samples that

deserve to be further analyzed by security analysts. Taking inspiration from the medical field, in

this paper we propose a Triage-based approach. Doctors are a limited resource, thus there is the

need to prioritize patients that require urgent care. Similarly, the number of security analysts is

very low, thus we need to prioritize malware, to avoid that they waste their time analyzing not

dangerous suspicious software. Malware developed by APTs are the most dangerous because they

1
http://nvlpubs.nist.gov/nistpubs/ir/2013/NIST.IR.7298r2.pdf
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apply a high level of sophistication, and they target important victims. However, the proposed

approach has the scope of only highlighting this class of malware. The full analysis is pursued at a

later stage by human analysts and specialized architecture components.

We privilege precision to accuracy, in fact, precision is necessary because the malware triage

should not prioritize non-APT malware (false positive), to not overload human analysts and/or

complex components with urgent but not necessary analyses. However, also, high accuracy is

desired, to correctly identify samples really belonging to some known APT classes (true positive).
We believe that this triage step is an important first step in a defense strategy, intending to automate

the identification process and reduce the analysis burden for human analysts. In fact, we propose

our approach as a module of a complex security architecture, like the one presented in [13]. Our

module tries to detect and identify as more malware developed by APTs as possible, prioritizing

them, and leaving the remaining ones to be analyzed by other components. In such a way we save

the time of analysts, being confident that the architecture is able to later identify the few undetected

APT-related malware with other deeper but slower tools, thus improving the general security of

the environment.

A security architecture including our proposed tool can hence be helpful to any critical infras-

tructure or company that can be target of an APT attack. We believe that adding it to the malware

analysis pipelines, that are already in place in industries, can heavily improve the workflow.

It is possible to directly use a classifier to identify APT-malware. It should output the APT class

the malware sample belongs to, or a “non-APT label”, in the case the sample is not associated to

any class. Unfortunately, such a solution presents a huge problem. In fact this, so called negative
class has a cardinality of several orders of magnitude bigger than the set of APT samples and there

is a large variety among its samples. Thus the result in terms of accuracy and precision are very

poor and for this reason in [11], authors proposed a Random Forest-based triage (RFT ) approach.
They trained their model on a knowledge base built upon a collection of ATPs’ related reports

publicly released by cyber-security firms. This solution works well and achieves great accuracy

and precision, but has the disadvantage of requiring a long training time and needs to be re-trained

each time new APT samples or even a new APT class are discovered.

To overcome such problems, in this paper we present several key improvements w.r.t. existing

literature:

• We propose a novel modular and lightweight malware triage framework, based on One-class
classificationwhich permits to train each classifier only on samples related to the relative class.

This permits to add new APT classifiers and modify a single classifier when new samples are

discovered, without affecting the whole triage framework;

• We design the malware triage framework on the Isolation Forest learning concept. Each

Isolation Forest is trained on the samples of a specific APT;

• Our training set is composed by more than 2000 samples belonging to 15 different APTs:

APT28, APT29, APT30, Carbanak, Desert Falcon, Hurricane Panda, Lazarus Group, Mirage,
Patchwork, Sandwork, Shiqiang, Transparent Tribe, Violin Panda, Volatile Cedar, Winnti Group;

• We introduce features dimensionality reduction through Linear Discriminant Analysis to de-

crease the computational time needed in the training phase, avoid the curse of dimensionality

problem, and increase the overall precision and accuracy for each class;

• We compare our work with the results obtained by RFT and show that our approach allows

fast, precise and also accurate identification of APTs malware, through an experimental

evaluation performed on a dataset composed by samples obtained by public APT reports. We

also test its performance on a non-APT dataset.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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1.2 Outline
The remaining part of the paper is divided into the following sections: Section 2 shows the state of

the art of the analysis of malware and Advanced Persistent Threats; Section 3 introduces the main

tools used in this paper; Section 4 explains in details the methodology behind our system; Section 5

presents experimental evaluations of our solution; finally Section 6 sums up the results of our work

and shows some directions for future activities.

2 RELATEDWORKS
The awareness around APT is increasing in the last years, becoming an important research topic

within the cybersecurity area. Important works have been done to deploy APT detection as well as

avoidance frameworks in order to identify compromised hosts. In [13], authors propose the design

of an architecture composed by various tangled phases that starts from the uninterrupted collection

of malware and reports from different sources, continues through different analysis components,

that work on single element (like static analysis tools) and group of elements (like classification

algorithms), and at the end stores all the information in a knowledge base that can be easily linked

to others to share different information. Inside such architecture, several malware analysis tools

can be used. The number of works carried out to identify and classify malware samples, even if not

focused on APT, is really huge, hence we here present a small subset of them, more related to our

work. In Section 2.1, we focus on malware analysis through machine learning techniques, while in

Section 2.2, we present works related to APT malware.

2.1 Malware identification
An important malware analysis technique is the BitShred framework [8], which extracts information

from the sample and, using feature hashing, creates a probabilistic data structure in order to large-

scale correlate samples.

Another fast and precise malware analysis framework is SigMal [9], a framework improving the

state-of-the-art of the previous systems based on the concept of malware similarity by leveraging

signal processing techniques to extract noise-resistant signatures from the samples. In [16], malware

triage has been deployed by machine learning classification using Artificial Neural Network. In

particular, the dataset used in the classification involves 3131 samples spread over 24 different

unique malware classes and the overall detection and classification accuracy is about 96%. Each

binary executable is represented as a greyscale image through GIST descriptors [20]; then neural

networks are used to derive and extract similar patterns among the various samples. In [1], Ahmadi

et al. propose a learning-based system using different malware characteristics to assign malware

samples to their corresponding families. Because of accurate and fast classification, they propose to

extract static features both from the binary hex view and the assembly one to exploit complementary

information by these two representations, without relying on other information derivable from

dynamic analysis of malware. Kong et al. [10] propose a framework for automated malware

classification based on the function call graph of the malware. First, they disassemble the single

sample building the relative function call graph. Then, discriminant malware distance is computed

on each pair of samples: they perform pairwise graph matching between the attributed function

call graphs of two malware instances in order to measure their structural similarity. In [19], Nari

and Ghorbani introduce a framework for automated classification of malware samples based on

their network behavior. IP addresses, port numbers, protocols and dependencies between network

activities are abstracted for further analysis.

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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2.2 APT detection
Many works about APT detection focus on the identification of indicators of suspicious activities,

like anomaly detection systems. In [5], authors propose an anomaly detection system for APTs

built around several security recorded logs. In particular, this white-list based approach, keeps track

of system events, their dependencies, and occurrences, learning the normal system behavior and

reporting all strange actions. Another interesting work is the framework proposed by Marchetti et

al. [17] that aims to detect, among all the hosts inside the company, the ones infected by APT to be

further analyzed in the future. In line with the idea of the previous works, Ussath et al. [26] develop

a Security Investigation Framework (SIF) that supports the analysis and the tracing of multi-stage

APTs. In particular, it leverages different information sources, in order to give a comprehensive

overview of the different stages of an attack.

In the previous malware triage work [11], authors aim to recognize malware developed by APTs,

but contrary to the other described works, they focus on the sample analysis instead of the malware

activity observed during the infection. The work achieves high precision and very high accuracy in

detecting the ownership of this kind of malware but suffers the problem highlighted in Section 1.

3 TOOLS
In this section, we introduce the main tools used in this paper. In particular, Section 3.1 presents

PEFrame, a static malware analysis tool we use for feature extraction. We then outline Random

Forest and Isolation Forest in Sections 3.2 and 3.3 respectively. Section 3.4 presents principles of

feature reduction.

3.1 PEFrame
PEFrame

2
is an open-source tool that performs static analysis on Portable Executable malware

and generic suspicious file. The Portable Executable format contains the information necessary for

the Windows OS loader to manage the wrapped executable code. It consists of the MS-DOS stub,

the PE file header, and the sections, and can provide an enormous amount of features, containing

relevant information for a malware analyst.

Thanks to PEFrame, we successfully extract more than 4000 features. We then leave classifiers

and Linear Discrimination Analysis the handling of this huge number (more details in 3.4). These

features can be roughly grouped in eight categories, here presented:

Optional Header (30 features) Every file has an optional header that provides information to

the loader. This header is optional in the sense that some files (specifically, object files) do not

have it. For image files, this header is required. An object file can have an optional header,

but generally, this header has no function in an object file except to increase its size. Features

are extracted from the optional header of the PE and contain information about the logical

layout of the PE file, such as the address of the entry point, the alignment of sections, and

the sizes of part of the file in memory.

MS-DOS Header (17 features) The MS-DOS executable-file header is composed by four distinct

parts: a collection of header information (such as the signature word, the file size, etc.), a

reserved section, a pointer to a Windows header (if one exists), and a stub program. MS-DOS

uses the stub program to display a message if Windows has not been loaded when the

user attempts to run a program. In this contest, we are interested in features related to the

execution of the file, including the number of bytes in the last page of the file, the number of

pages, or the starting address of the Relocation Table.

2
https://github.com/guelfoweb/peframe
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File Header (18 features) The Windows executable-file header contains information that the

loader requires for segmented executable files. This includes the linker version number, data

specified by the linker, data specified by the resource compiler, tables of segment data, and

tables of resource data. Moreover, the features related to this class highlight information

about timestamp and the CPU platform which the PE is intended for.

Obfuscated String Statistics (3 features) Binaries contain program messages stored as strings

that can be useful to understand their behavior. Classical tools like String extract byte

sequences that can be readable strings in order to find these messages. Malware authors

encode strings in their program to avoid extraction, in fact, even simple schemes can defeat

this kind of tool and complicate static and dynamic analysis. In addition to PEFrame, we use

functionalities of the FireEye Labs Obfuscated String Solver. (FLOSS3). It is an open-source

tool that automatically detects, extracts and decodes obfuscated strings, such as malicious

domains, IP addresses, suspicious file paths, etc., from Windows Portable Executable files

availing of advanced static analysis techniques. We leverage this tool to compute some

statistics, such as how many entry-points or relocations are present in the file.

Mutex (7 features) Mutex are objects commonly used to avoid simultaneous access to a resource,

like a variable. If different software checks for the same mutex, they can be linked. Our

features are boolean values that map the use of particular mutex identified in the training

data.

Packer (64 features) Packers are software that compress binaries, keeping them executable. Sim-

ilarly to the mutex related features, our features highlight if some particular packers are

recognized.

Imported API (3917 features) Each software imports functions from common libraries or exter-

nal files. The combination of imported functions can show similar behavior. We store this

information as a vector with a boolean value for each imported function, using the list of

functions present in the training set as a taxonomy.

Buckets (98 features) Similar size in functions and directories can be a proof of similarity in the

file structure and thus in the behavior. We observed that, usually, function size values range

from 0 to 1822 bytes, while directory size values range from 0 to 2638 kbytes. To track these

properties, both of them are subdivided into 49 buckets. Each bucket represents a range and

counts the elements whose size is in the range. To choose the different ranges we observe

the distribution of sizes and lengths in the training set, trying to form buckets that can better

characterize the various classes.

3.2 Random Forest classifier
A Random Forest [3] is a supervised classification tool that aggregates the results provided by a set

of Decision Trees through a Bootstrap aggregated (a.k.a. Bagging) technique.
In general, a Decision Tree [6] is a decision support tool that uses a tree-like graph as model

of decisions. In machine learning science, Decision tree learning concept uses decision trees as a

predictive model to go from observations about an object to a conclusion about the objects’ target

value, represented in the leaves of the tree.

Although single decision trees can be effective classifiers, increased accuracy often can be

achieved by combining the results of a collection of decision trees. As highlighted by the name,

a forest is generated by randomly ensembling different decision trees. The ensemble method for

Random Forest is focused on feature bagging concept, which has the advantage of significantly

decreasing the correlation between each decision tree and thus increasing, on average, its predictive

3
https://github.com/fireeye/flare-floss
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accuracy. Feature bagging works by randomly selecting a subset of the feature dimensions at each

split in the growth of the individual decision trees. Although this might sound counterproductive,

since it is often desired to include as many features as possible, it has the purposes of deliberately

avoiding on average very strong predictive features that lead to similar splits in trees, thereby

increasing correlation. If a particular feature is strong in predicting the response value, then it will

be selected for many trees.

To classify a new object from an input vector, the algorithm analyzes the input with all the trees

composing the forest. Each tree outputs a class label, and the forest gives as result the class having

the highest number of votes.

3.3 Isolation Forest classifier
In classification problems, there is the possibility to rely on one-class classification, where
samples used in training phase belong to the same class, and in the classification phase, we use

the classifier to distinguish between correct samples, i.e. samples probably related to the class, and

outliers, i.e. samples not belonging to the class used for training.

Isolation Forest [15] is a one-class classifier, which data structure is built on the same conceptual

principle of Random Forests. In particular, an Isolation Forest is still an ensemble of bootstrapped

decision trees where distinguishing features are selected by the protocol, but, instead of profiling

normal points, it shows all possible anomalies that are isolated with respect to themodels just created.

As stated by Liu et al. [15], anomalies are data patterns that have different data characteristics from

normal instances. An isolation forest is composed by several trees similar to binary search trees

and anomalies are identified when an anomaly score, based on the average path length in visiting

the isolation trees, exceeds a given threshold. Many existing model-based approaches to anomaly

detection construct a profile of normal instances, and hence isolate instances that do not conform

to the normal profile.

Technically speaking, the Isolation Forest algorithm isolates observations by randomly selecting

a feature and then randomly selects a split value between the minimum and maximum values

assumed by the selected feature. Hence, the algorithm first constructs the separation by creating

isolation trees or random decision trees; then, when they collectively produce shorter path lengths

for some particular points, they are highly likely to be anomalies. Based on the average path length

derived in the testing phase, it calculates the anomaly score for each sample. In the various online

tool libraries, it is possible to set a tolerance threshold that discriminates the given sample as

isolated or not according to the model: the higher it is, the more tolerant the Isolation Forest is with

anomalies. The implementation that we used is based on heights of trees as a metric for decisions,

as proposed in [15].

3.4 Principles of features reduction
When dealing with high-dimensional features space, it is actually infeasible to think that each

feature has the same “importance”. In particular, both redundant and irrelevant features exist. We

have performed an initial feature selection basing it on the importance value given by Random

Forest algorithm to the features described in Section 3.1 as a reference, discovering that only 264 of

them influence our data, less than the 300 ones used by RFT.
Moreover, feature reduction techniques can be hence used to reduce the dataset dimensionality

to facilitate the training process, decrease training and classification computational time, reduce

the variance among features, and avoid curse of dimensionality, i.e. with the increasing of the

dimensionality, space volume increases so fast that training data become sparse.

In this paper, for features reduction purposes, we rely on the Linear Discriminant Analysis
(LDA) technique, because of its simplicity. LDA is a generalization of Fisher’s linear discriminant [18],

Digit. Threat. Res. Pract., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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Table 1. Malware count per APT class.

Class Count
APT28 68

APT29 205

APT30 101

Carbanak 105

Desert Falcon 45

Hurricane Panda 315

Lazarus Group 58

Mirage 54

Patchwork 559

Sandwork 44

Shiqiang 31

Transparent Tribe 267

Violin Panda 23

Volatile Cedar 35

Winnti Group 176

Total 2086

a method used in statistics, pattern recognition and machine learning to project the original features

space in a smaller one through a linear combination of features. In practice, given the original

dimensionM of the features, it is possible to reduce the dimension to a chosen L by projecting into

the linear subspace HL maximizing inter-class variance after projection.

4 METHODOLOGY
In this section, we define the methodologies that lead us to define the proposed framework with high

performances. In particular, in Section 4.1, we explain the feature extraction process, in Sections 4.2

and 4.3, we respectively discuss the RFT multi-class methodology proposed by Laurenza et al. [11]

and the one-class classification approach through which we implement the malware triage.

4.1 Features Extraction
To compare the approaches, we rely on the data provided by dAPTaset [12]. It is a publicly avail-

able database
4
with different information about APTs activities, including various Indicators of

Compromise like malware hashes, network domains, and IP addresses. dAPTaset contains more

than nine thousand unique malware hashes. This number appears poor respect to the total amount

of malware in the world, However known APTs are a limited number and they usually developed a

small group of suspicious software. In fact, they usually tailor their malware to the specific victims,

without spreading their attacks in the wild. Moreover, we focus our work on windows executable

files, which are a subset of all the malware included in dAPTaset. We have searched such samples

in available public sources and, unfortunately, we came up with only 2086 samples related to 15

distinct groups (we have discarded APT groups which we retrieved less than 10 samples). Table 1

shows the distributions of these malware. Our approach should be validated also with a larger

dataset, we hope that in the future it will be possible to access to security firms exclusive binaries.

4
http://github.com/GiuseppeLaurenza/dAPTaset
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After having retrieved the malware samples, we process them with the PEFrame tool to extract

features from each binary. As highlighted in Section 3.1, for each analyzed executable, the extraction

tool provides us seven distinct features classes with more than 4000 characteristics.

4.2 Multi-class classification
RFT [11] creates a multi-class model to deal with APT classification. The authors explain that,

when training a multi-class classifier, all the output classes need to be also in the training set. Thus,

when dealing with APT-malware, this set must contain a class for each APT and also a class for all

the malware that are not APT-related. However, the group composed of the elements of the latter

class is not homogeneous, making hard to train a classifier on it. Moreover, the huge difference

in the cardinality of this class with the respect to APT classes leads to an excessive imbalance in

the training set. For this reason, in the training phase, authors only consider classes of known

APTs. To discriminate a sample as not related to any APT, they set a threshold for each class in the

Knowledge Base (KB): if the score of a given sample analyzed is lower than all the relative APT

thresholds, it is assumed to belong to the non-APT class.

Laurenza et al. [11] tested RFT with 10-fold cross-validation, a common value in literature. For

each execution, they generate the model with k − 1 folds and test it with both the remaining fold

and all the collected malware not developed by APTs.

4.3 One-class classification
In the multi-class classification, each time an APT sample is going to enrich the Knowledge Base,

there is the need of re-training the whole RFT model, in order to update classification parameters

and APT thresholds, wasting time and resources. In this paper, we propose to leverage on an

Isolation Forest for every single APT class. This classification algorithm requires in the training

set only the single class it should identify. In such a way we can create a model that identifies all

those elements belonging to the related APT while considering the other samples as anomalies.

All the one-class classifiers form an ensemble classifier [14] where it is sufficient that one of them

recognizes a sample to be associated to the relative APT to raise the alarm in the triage phase.

Whenever a new sample is identified and associated with a known APT, it is going to enforce the

knowledge base, and it is sufficient to re-train the related APT classifier in the case it would exhibit

a concept drift [25], i.e. its statistical properties drifts from the ones at the time of training. The

other one-class classifiers are not impacted by the concept drift and are hence kept unchanged.

We implemented our classifiers on the open-source Scikit library
5
, that provides different machine

learning tools in Python programming language. Linear discriminant analysis has been used to

reduce the feature dimensionality from 264 to N − 1 features, with N the number of APTs. After

having split the dataset in training set and validation set through 10-folder cross-validation, we

have trained one Isolation Forest for each class by using only malware of the training set developed

by the specific corresponding APT. Isolation Forest implementation requires two main arguments

to tune in the fitting phase: contamination expresses how much the classifier has to be tolerant

in creating the model for detecting outliers; number of estimators is an attribute totally related to

the tree-nature of the Isolation Forest and it defines how many trees it has to use in the ensemble

methods. In order to tune the ⟨contamination, number of estimators⟩ tuple for achieving the best
result for each Isolation Forest classifier, we performed cross-validation over the APT training set.

To train our Isolation Forest classifiers, we decided to provide a non-zero value to contamination.

This means that some of the training samples can be wrongly considered as outliers, but increases

precision in the classification phase. Such a decision is mainly motivated by the following reasons:

5
http://scikit-learn.org/
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i) APT reports are a known unreliable source of labeled data [24] and hence we cannot be sure that

any identified sample is really related to the specific APT. ii) malware samples have high feature

variability, which can compromise the performance of the classifiers if we do not allow them to

discard atypical samples in the training phase; iii) APT can leverage on masking (a non-APT sample

is detected) to induce misclassification errors [23]. This is possible if an APT is going to use many

different malware samples, not really necessary for its activity, only intending to confuse analysts

and ML tools during training. This would result in many false alarms in the classification test.

Introducing contamination does not completely solve the problem, but makes the system more

robust. On the other side, APTs usually perform swamping (an APT sample is classified as an

outlier) to hide their presence behind the samples. However our Isolation Forests are trained only

on samples belonging to APTs according to public reports, hence swamping is not affecting the

training. We only miss not recognized samples and similar samples during classifications. In the

choice of the correct parameters, we mainly rely on i) Precision, due to the malware triage nature

of the proposed framework. A high number of false positives is undesirable since it would increase

the workload of human analysts; ii) Accuracy, expressing how much the APT classifier is accurate

in determining the right APT class of an APT sample. The choice of the contamination-number

of estimators parameters for the Isolation Forest is hence totally based on the precision-accuracy

trade-off. Since the triage nature of the framework, we have been more oriented to tune this choice

toward precision measure. In fact, in our view, in a triage application, stating with high precision

that an APT sample belongs to a given APT with high certainty, even if some APT samples are not

identified, is more important than recognizing all the APT samples, but also raising false alarms

related to non-APT sample that are assigned to some class.

4.4 Result validation
As previously explained, the triage system should prioritize APT-related malware that are the most

dangerous ones. Samples associated with some APT are immediately dispatched to human analysts,

which have the tasks of validating the classifier results and performing in-depth sample analysis.

We remind that our triage prefers precision to accuracy. Hence false negatives can occur. In this

case, APT samples are not recognized. However this does not mean that they are excluded by

further analysis, but they are not prioritized. Indeed, a high classification score can indicate that a

sample deserves further inspection, even if not classified in an APT class. Scores can be a base of a

further prioritization, malware with the higher score has more probabilities to be related to an APT

and thus it can deserve more attention than others.

The output of the triage is the label predicted by the frameworks, but, as collateral results, it gives
also a score for each of the possible labels. These scores can be very helpful for human analysts

because by knowing in advance which group is using the sample, analysts can easily retrieve

information about the APT activities. Moreover, these scores can show interesting relationships

that analysts or other tools can successively investigate. For example, they may indicate that an

APT is trying to imitate another one or even that previously separated groups are part of a single

APT.

5 ANALYSIS
In this section, we compare the proposed triage scheme with RFT. For a fair comparison, we have

implemented and tested both the solutions. We have built our dataset by following the methodology

used in [11]. We have trained a Random Forest classifier on the 15 APT classes in Table 1 and then

created a new dataset by selecting only the classes that are recognized with Precision and Recall

over 95%. This approach, already adopted in [11], gives us two sets of samples, one with malware

belonging to 15 APT classes and the other one with malware of 6 APT classes, the latter having
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higher performances. These classes are APT28, APT30, Carbanak, Hurricane Panda, Patchwork,

Transparent Tribe. The same 2 sets have been used to train and test the Isolation Forest classifiers.

Following the same approach of the previous work, we have computed the thresholds for RFT : we

take the average confidence for each class and we decrease them by a factor ∆ that we set as 5%,

10%, and 15%.

Due to the huge difference in size between the positive and negative classes, we use the weighted

version of Precision and Recall. F1-Score is computed with these values instead of the classical ones.

The weighted formulas are the following:

WeiдhtedPrecision =
1∑

l ∈L TPl

∑
l ∈L

TPl ∗ Precisionl

WeiдhtedRecall =
1∑

l ∈L TPl

∑
l ∈L

TPl ∗ Recalll

• L is the set of labels;

• TPl is the set of samples that have the true label l ;
• Precisionl |Recalll compute the precision or recall for samples that have the label l .

In Section 5.1, we evaluate the performances of the two solutions in discriminating whether a

sample belongs or not to some APTs and their performances in the identification of the correct

APT class, showing the achieved results for each classifier. Finally, in Section 5.2, we compare the

execution time required by both our works. A draft of the code with the used dataset can be found

on GitHub.
6

5.1 APT-Triage
In order to generate a sound and uniform test, we rely on the Scikit’s Stratified 10-Fold Validation,
which splits data into train/test sets, guaranteeing the same percentage of samples for each class.

The train set is used to train an Isolation Forest for each APT class in the dataset, thus creating 6

and 15 Isolation Forests for the two identified scenarios. We built a group of classifiers for each

scenario because we related the number of features produced by the LDA algorithm to the number

of classes. In this way each scenario has its own number of features for the generation of the

forest, thus requesting two separate training phases. A sample is recognized to belong to some

APT if at least one Isolation Forest recognizes it in its class. Otherwise, a malware is classified as

non-APT, if no classifier recognizes it. In RFT, we consider a sample as non-APT if all the scores

given by the framework are lower than the relative thresholds. We performed a preliminary test of

RFT solution with a set of more than 800 binaries not belonging to Advanced Persistent Threats.

Then we validated our proposed solution based on Isolation Forests on a larger set of non-APT

samples containing 9000 binaries. While APT samples are used in both training and classification

in our ten-folder cross-validation (hence each sample is used only once in classification), non-APT

samples have been used only to evaluate all the 10 trained models. Thus, in the various confusion

matrices, the obtained results are the sum of the ten confusion matrices, obtained each one with

the corresponding testing folder and the entire non-APT set of malware.

Tables 2 and 3 show details about the result of the first experiment in the 6 APTs scenario, while

tables 4 and 5 in the 15 APTs one. Our results are slightly better than the ones obtained by RFT, in
fact, we correctly detect most of the malware developed by APTs, achieving a precision of over

99%. Even if our solution detects a bit less APT malware than RFT, we strongly reduced the number

6
https://github.com/GiuseppeLaurenza/I_F_Identifier
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Table 2. APT-Triage Confusion Matrix with 6 APTs.

One-class classifier Predicted
APT non-APT

Real APT 1173 242

non-APT 69 90141

RFT (∆ = 5%) Predicted
APT non-APT

Real APT 1227 164

non-APT 12 8618

RFT (∆ = 10%) Predicted
APT non-APT

Real APT 1261 130

non-APT 25 8605

RFT (∆ = 15%) Predicted
APT non-APT

Real APT 1272 119

non-APT 100 8530

Table 3. APT-Triage quality measures with 6 APTs.

Accuracy F1 Precision Recall
One-class classifier 0.9966 0.9966 0.9965 0.9966

RFT (∆ = 5%) 0.9824 0.9825 0.9826 0.9824

RFT (∆ = 10%) 0.9845 0.9845 0.9845 0.9845

RFT (∆ = 15%) 0.9781 0.9781 0.9780 0.9781

Table 4. APT-Triage Confusion Matrix with 15 APTs.

One-class classifier Predicted
APT non-APT

Real APT 1756 330

non-APT 685 89525

RFT (∆ = 5%) Predicted
APT non-APT

Real APT 1759 327

non-APT 45 8585

RFT (∆ = 10%) Predicted
APT non-APT

Real APT 1803 283

non-APT 60 8570

RFT (∆ = 15%) Predicted
APT non-APT

Real APT 1831 255

non-APT 77 8553
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Table 5. APT-Triage quality measures with 15 APTs.

Accuracy F1 Precision Recall
One-class classifier 0.9890 0.9895 0.9901 0.9890

RFT (∆ = 5%) 0.9653 0.9654 0.9656 0.9653

RFT (∆ = 10%) 0.9680 0.9680 0.9680 0.9680

RFT (∆ = 15%) 0.9690 0.9689 0.9688 0.9690

of false-positive cases, cutting more than half of them in percentage respect to the other solution.

As described in the previous section, a triage approach must focus on lowering the false detection

rate in order to not waste analysts’ effort. Hence, this small loss in accuracy can be well accepted if

it implies a heavy reduction of false alarms and, thus, of time loss. However, the results of these

tests show improvements in all the measures, confirming the goodness of our solution.

Table 6. APT-Identification Confusion Matrix with 6 APTs.

One-class classifier Predicted
Correct APT Other APTs

Real Correct APT 1171 2

Other APTs 2 5865

RFT (∆ = 5%) Predicted
Correct APT Other APTs

Real Correct APT 1224 3

Other APTs 3 6132

RFT (∆ = 10%) Predicted
Correct APT Other APTs

Real Correct APT 1258 3

Other APTs 3 6302

RFT (∆ = 15%) Predicted
Correct APT Other APTs

Real Correct APT 1269 3

Other APTs 3 6357

Table 7. Detailed APT-Identification Confusion Matrix of our Isolation Forest based triage with 6 APTs.

Predicted

Real

APT28 APT30 Carbanak Hurricane Panda Patchwork Transparent Tribe
APT28 44 0 0 0 0 0

APT30 0 81 0 0 0 0

Carbanak 0 0 97 0 0 0

Hurricane Panda 0 0 0 293 0 2

Patchwork 0 0 0 0 408 0

Transparent Tribe 0 0 0 0 0 248

Tables 6 and 8 show the results of the second experiment in the 6 APTs scenario, and Table 7

presents the detailed confusion matrix for this scenario. Tables 9 and 10 contain results of the second

experiment in the 15 APTs scenario. Again, in this experiment, we achieve results comparable with

RFT. The small number of APTs misclassified as other ones in the second experiment is related

to the structure of our framework. In fact, using different classifiers, it is possible that more than
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Table 8. APT-Identification quality measures with 6 APTs.

Precision Recall Accuracy F1
One-class classifier 0.9994 0.9994 0.9994 0.9994

RFT (∆ = 5%) 0.9992 0.9992 0.9992 0.9992

RFT (∆ = 10%) 0.9992 0.9992 0.9992 0.9992

RFT (∆ = 15%) 0.9992 0.9992 0.9992 0.9992

Table 9. APT-Identification Confusion Matrix with 15 APTs.

One-class classifier Predicted
Correct APT Other APTs

Real Correct APT 1731 56

Other APTs 25 25018

RFT (∆ = 5%) Predicted
Correct APT Other APTs

Real Correct APT 1753 6

Other APTs 6 24620

RFT (∆ = 10%) Predicted
Correct APT Other APTs

Real Correct APT 1797 6

Other APTs 6 25236

RFT (∆ = 15%) Predicted
Correct APT Other APTs

Real Correct APT 1822 9

Other APTs 9 25625

Table 10. APT-Identification quality measures with 15 APTs.

Precision Recall Accuracy F1
One-class classifier 0.9970 0.9970 0.9970 0.9970

RFT (∆ = 5%) 0.9995 0.9995 0.9995 0.9995

RFT (∆ = 10%) 0.9996 0.9996 0.9996 0.9996

RFT (∆ = 15%) 0.9993 0.9993 0.9993 0.9993

one classifier labels the same sample as belonging to the relative APT. As introduced in Section

4.4, our framework can provide a score vector, thus this kind of error can be probably reduced by

evaluating it before taking a decision. Indeed, this number is small enough to be negligible, in fact,

the average metrics are only less than 0.002% lesser than the ones obtained by the other solution.

Moreover, the assignment of a sample to more classes can highlight some relations between APTs

that an analyst can deepen.

Summarizing the result of both tests, we always achieve results comparable to the ones obtained

by Laurenza et al., even better in most of the cases, thus we can conclude that we have improved

the results of RFT.
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Table 11. Execution Time with 6 APTs in seconds.

One-class classifier RFT
Feature Reduction (LDA) 0.1729 ± 0.0004 0.0000 ± 0.0000

Training Phase 1.6948 ± 0.3495 1031.9726 ± 9.1574

Prediction Phase 3.7564 ± 0.2253 7.0076 ± 0.0012

Table 12. Execution Time with 15 APTs in seconds.

One-class classifier RFT
Feature Reduction (LDA) 0.2129 ± 0.0005 0.0000 ± 0.0000

Training Phase 1.6179 ± 0.0111 1600.7085 ± 25.1686

Prediction Phase 4.7240 ± 0.1566 8.4778 ± 0.,3841

5.2 Execution Time
We here compare the runtime of training and evaluation phases for both RFT and Isolation Forests.

In our tests, we have measured the time of 10 executions and computed the average time.

Tables 11 and 12 respectively show execution time in seconds with 6 and 15 APTs. Tables also

include the training time required by the LDA algorithm to generate the LDA transformation, based

on the training set. On the other side, LDA runtime for feature reduction in classification is not

provided because negligible. We underline that the configuration of the LDA transformation is

performed only at the first training and repeated when we need re-training of all the Isolation

Forests (because precision and accuracy significantly decreased after the introduction of several

new samples) or when we need to add another APT. In both training and prediction, our solution is

faster than the previous one, especially in the training phase. In fact, training of a set of Isolation

Forests is orders of magnitude lower than the training of RFT and computing the various thresholds.

Moreover, we remind that the training time of our solution is the sum of the time required to build

each single Isolation Forest; thus when there is the need to re-train only a single class, for example

after collecting new samples developed by a particular APT, the time is only a fraction of that total

time. Exactly, our solution requires an average of 0.3 seconds to build an Isolation Forest related to

a particular APT.

6 CONCLUSION
Among the huge amount of malware daily produced, those developed by Advanced Persistent

Threats (APTs) are highly relevant, as they are part of massive and dangerous campaigns that can

exfiltrate information and undermine or impede critical operations of a target.

This work improves the previous automatic malware triage process, reducing needed computa-

tional resources, reducing the time required for the training phase, and providing higher flexibility.

These improvements are achieved through the change of the classification approach, moving from a

single multi-class classifier to a set of one-class classifiers. Both algorithms were used with features

obtained by static analysis on available malware known to be developed by APTs, as attested by

public reports. Although static features alone are not sufficient to completely exclude relations

with APTs, they allow to perform a quick triage and prioritize the analysis of malware that surely

deserve higher attention, with minimal risk of wasting analysts’ time. In fact, the experimental

evaluation has shown encouraging results: malware developed by known APTs have been detected

with precision and accuracy over 90%.

As future work, first of all, we want to enlarge the Knowledge Base. In this work, we have

realized classifiers relative to 15 distinct classes, but the actual number of APTs is higher. Thus, we
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are interested in enriching our Knowledge Base by crawling other public APT reports, to be able to

detect, among the huge number of malware delivered per day, the ones more relevant for further

analysis.

As outlined in Section 4.3, a re-training is necessary each time the discovery of new malware

would cause a concept drift in the model. Tracking concept drift [25] is hence critical to the

successful application of the proposed solution and must be included in our future works.

Another interesting future development regards the improvements of the classification through

the revise of the features reduction phase and the classification algorithm. For the former, we want

to observe the impact of variation of the number of projections or applying other techniques such

as Principal Component Analysis. Given the modularity of our proposal, we also want to test other

algorithms based on different principles respect to Isolation Forests, also examining the possibility

to rely on different approaches (not necessarily based on machine learning tools) for different APTs.

Also, different metrics can be considered in our approach. For example, an interesting approach to

be investigated is the one proposed in [27] for the identification of malicious emails, which presents

a new scoring system that is based on the combination of various scores applied on different

subgroups of features. The modularity of our approach is a strong advantage of our proposal, in fact,

we should use different classification algorithms and metrics for different APTs, choosing each time

the one that performs better or combining the output of more single classifiers. Modularity also

permits to introduce classifiers for other problems of interest, such as the recognition of important

malware families, even if not necessarily connected to APTs.

Another aspect that we want to study is the use of different types of features: in our works

we focus on characteristics extracted from the headers of the file and its structure, but the static

analysis also includes code analysis that we slightly use only in the form of function size observation.

Code reuse and code similarities are techniques that we can exploit to add new information to our

knowledge base. Similarly, both our proposal and previous work rely on static features to provide a

fast response, but many obfuscation techniques can hide characteristics useful for APT identification.

To overcome these protections made by adversaries, it is always possible to use dynamic analysis

tools that can observe the behavior of the malware. Even if these tools require a higher amount of

time respect to static analysis, we can use dynamic analysis in a second step after the first triage one,

to validate results of the first phase or take decision on samples that have not been identified in the

first step, but whose classification score is close to the threshold. Moreover, we plan to investigate

also the field of semantic features. Works like [22] show how it is possible to use semantic features

to determining malware similarity and the temporal ordering of malware, generating also malware

lineages. We believe that these information can heavily help to detect and identifying malware

developed by APTs, with the addition of highlighting the evolution of the tools used by attackers

to perform their activities.

Finally, as described in 4.4, a collateral result of our framework is a scoring vector showing the
probability of a binary to be developed by each APT. Such score vectors can be exploited in many

different ways. First of all, they can be used in a multi-level prioritization system where samples

not classified as belonging to some APT are scheduled to analysts according to their scores because

a higher score highlights some correlation with other malware developed by that particular APT.

Moreover, they provide much other useful information, beyond our triage analysis. These scores

might highlight relationships among different groups, and investigating them can then lead to

interesting discoveries, such as, for example, a group trying to imitate another one, more APTs

collaborating against a common target, or also an APT incorrectly divided in more groups. It is of

our interest to explore their utility in future applications, beyond malware triage.
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