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Abstract
Imaging Cherenkov detectors are largely used for particle identification (PID) in nuclear and
particle physics experiments, where developing fast reconstruction algorithms is becoming of
paramount importance to allow for near real time calibration and data quality control, as well as to
speed up offline analysis of large amount of data.

In this paper we present DeepRICH, a novel deep learning algorithm for fast reconstruction
which can be applied to different imaging Cherenkov detectors. The core of our architecture is a
generative model which leverages on a custom Variational Auto-encoder (VAE) combined to
MaximumMean Discrepancy (MMD), with a Convolutional Neural Network (CNN) extracting
features from the space of the latent variables for classification.

A thorough comparison with the simulation/reconstruction package FastDIRC is discussed in
the text. DeepRICH has the advantage to bypass low-level details needed to build a likelihood,
allowing for a sensitive improvement in computation time at potentially the same reconstruction
performance of other established reconstruction algorithms.

In the conclusions, we address the implications and potentialities of this work, discussing
possible future extensions and generalization.

1. Introduction

Imaging Cherenkov detectors [1] measure the velocity of charged particles and, if combined with
independent measurements of their momentum, are largely used for PID in modern particle physics
experiments. The photon pattern recognition is typically likelihood-based and requires computationally
expensive simulations, hence different strategies (among which pre-computed look-up tables) have been
developed to find a trade-off between time and reconstruction performance. A particular class of Cherenkov
detectors is based on the detection of internally reflected Cherenkov (DIRC) light (see, e.g. [2]): light is
contained by total internal reflection inside a solid radiator preserving its angular information until it reaches
spatially segmented photon sensors, where typically rather complex hit patterns are observed.

Machine learning (ML) algorithms are already the state-of-the-art in event and particle identification in
high energy physics [3] but solutions based on ML for this kind of detectors just started being explored [4].

The first DIRC detector was developed by the BaBar experiment at SLAC [5], and inspired other
experiments (see, e.g. [6–8]) to utilize similar detectors, also in view of future experiments like the Electron
Ion Collider [9]. In the following we will consider as an example the case of the GlueX experiment [2, 10] at
the Jefferson Laboratory, where the DIRC has been recently installed utilizing components of the
decommissioned BaBar DIRC to enhance the PID capabilities of the experiment. Our choice is motivated by
FastDIRC [11], an open source simulation and reconstruction package for DIRC detectors implementing the
GlueX DIRC geometry.

This geometry consists of four bar boxes and two photon cameras, where each bar box contains 12 fused
silica radiators (1.725× 3.5× 490 cm3). Both photon cameras are attached to two bar boxes and are
equipped with an array of Multianode Photomultiplier Tubes (MaPMTs) allowing a three-dimensional
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Figure 1. (left) Drawing (not to scale) of the GlueX DIRC box containing fused-silica bars and wedges. An optical box filled with
distilled water is used to transport the Cherenkov photons from the wedges to the PMT arrays. (right) Example of hit pattern
detected in the PMT plane (spatial coordinates are dubbed x,y, while the time is indicated as t) simulated with FastDIRC. The two
colors correspond to the hit pattern of a kaon and of a pion as reported in the legend, under the same kinematic conditions (i.e.
particle momentum, incident angle on the bar, azimuthal angle with respect to the bar, location on the bar and which bar has
been hit).

Figure 2. Kaon efficiency vs momentum for π mis-identification probabilities of 0.1, 1, and 10% (i.e. probability for a charged π
track to be incorrectly identified as a charged K). The dashed curves show the conservative performance, while the solid curves
show the improved performance achieved in simulation for the current GlueX DIRC design. Image taken from [2], where the
reader can find more details.

(x, y, t) readout with a time resolution of approximately 200 ps. Patterns take up significant fractions of the
PMT in x,y and are read out over 50-100 ns due to propagation time in the bars. The reader can find in
figure 1 (left) a schematic of the detector with one of the two photon cameras and in figure 1 (right) an
example of hit pattern generated with FastDIRC expected in the PMT plane (x,y) as a function of the
propagation time. In particular, the GlueX experiment is designed to search for gluonic excitations in the
meson spectrum produced through photoproduction reactions at a tagged photon beam facility. For this
physics program, the DIRC is expected to provide a good separation power between pions and kaons of at
least 3σ up to 4 GeV/c in momentum (a plot of the kaon efficiency as a function of the kaon momentum for
different pion mis-identification probabilities is shown in figure 2), which allows systematic studies of kaon
final states that are essential for inferring the quark flavor content of both hybrid and conventional mesons
[12, 13]. For all these reasons, developing an efficient and fast reconstruction algorithm is of crucial
importance. Notice that in the case of ring imaging Cherenkov (RICH) detectors, the time variable is
typically not used in the reconstruction methods. This feature could be part of future reconstruction
algorithms if better time resolutions are achieved. Instead in the DIRC case, the larger propagation times
contribute to distinguish the type of particle producing Cherenkov light. Depending on the type of detector,
DeepRICH reconstruction can be based on spatial features only or on combined space and time components.
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The outline of this paper is as follows: existing reconstruction methods are discussed in section 2; the
DeepRICH architecture is presented in section 3; application to the DIRC case, discussion of the results and
comparison with FastDIRC are described in section 4; summary and conclusions are reported in section 5.

2. Established methods and novel approaches

Cherenkov detectors are relatively slow to simulate with full simulations like Geant [14]—e.g., for the DIRC
case, each Cherenkov photon reflects on averageO(102) times within a bar and this makes the simulation
CPU intensive—thus new approaches are being developed to get a faster reconstruction of the detected light
[4, 11, 15, 16]. In this section we briefly describe the state of the art of established computational methods
and provide an overview of novel paradigms based on machine learning.

2.1. The geometrical reconstructionmethod
The geometrical reconstruction method is based on the BaBar DIRC algorithm [17]. This approach involves
generating in advance a large number of photons at different angles exiting each bar, and then tracking them
to the PMT plane. In this way the look-up table is created, where each pixel on the photo-detection plane is
associated to a set of photon directions at the exit from the bar potentially leading to a photon detected in
that pixel. The Cherenkov angle θC of each photon is then reconstructed combining the particle direction
provided by the tracking system with the photon direction taken from a look-up table. The look-up table is
stored as a ROOT tree with the size of about 300 MB [10]. The resulting cumulative distribution of the
reconstructed Cherenkov angles is typically characterized by peaks at the expected values of θC for pions and
kaons and a combinatorial background beneath them. The width of the Cherenkov angle reflects the single
photon Cherenkov angle resolution characteristic of the detector performance.

2.2. Time-based image reconstruction
Another approach is the so called time-based imaging reconstruction which is derived from a method used
by the Belle II TOP [18]. For every particle hypothesis, the expected arrival time of Cherenkov photons is
calculated analytically based on the charged particle direction and hit location and is compared to the
measured time, yielding to likelihoods. This method is rather compute-intensive, as one in principle should
simulate all the configurations of the charged particles as a function of the mass, energy, direction and
location in the DIRC bars.

2.3. FastDIRC
The main characteristic of the FastDIRC algorithm [11] is to analytically trace the photons through the
optical system. This approach is aboutO(104) times faster than the full Geant simulation. The
reconstruction is based on a kernel density estimation (KDE) [19] of the probability distribution function
(PDF) for each assumed particle type. The expected distributions on the detection plane for each charged
particle hypothesis are compared to the actually observed hit patterns to build likelihoods. FastDIRC allows
for parameterization, a feature that makes it suitable for detector design optimization and for offline
calibration of real data. It has been shown [11] that the resolution of the reconstructed Cherenkov angle is
about 30% better than the geometric reconstruction method. However the FastDIRC method is about
O(102 − 103) times slower than the look-up table based reconstruction.

In this paper, FastDIRC is used as a source of reliable simulated events that are injected as input of the
DeepRICH architecture.

2.4. Generative adversarial network
A first attempt to apply deep learning to simulate Cherenkov detector response appeared recently in [4],
where it has been proposed to use a generative adversarial neural network (GAN) [20] to bypass low-level
details at the photon generation stage. This work is based on events simulated with FastDIRC assuming the
design of the GlueX DIRC. The GAN architecture is trained to reproduce high-level features (the likelihood
results from FastDIRC) based on input observables of the incident charged particles, allowing for an
improvement in simulation speed. The authors of [4] claim a good precision and very fast performance (the
batch generation on GPU produces up to 1 million track predictions per second) from their studies.

Recently in another paper [21] generative models have been used for fast simulation of RICH detectors at
LHCb.

In the following section we are going to present a new deep architecture called DeepRICH, providing a
thorough description of the code, data preparation, training/testing phases and performance.
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3. The deepRICH network

Differently from the GAN based method, which directly maps the injected input to the reconstructed output,
our generative model explicitly reconstructs the injected hit patterns expected for each kinematics, and
internally creates latent variables that allow to classify the particles.

3.1. Architecture
DeepRICH is based on a custom Variational Auto-encoder [22]. VAEs are generative models that try to
simulate how the data are generated. In order to characterize the causal relations underlying the observed
data, VAEs provide a posterior function approximated by an autoencoder architecture, which is made by an
encoder and a decoder, the latter being symmetric to the first in terms of layer structure.

In what follows we describe each detected hit by a three-dimensional vector, (x,y,t), corresponding to the
spatial and temporal components. We use the notation x ∈ Rm×3 to indicatem hits associated to an
individual charged particle. The kinematic parameters of each particle are represented by the vector h, and
they embody information on the particle momentum, angle and location where the particle crossed each bar
(more details on this can be found in section 3.2, where we discuss about the preparation of data).

Our novel architecture consists of three main parts:

• AnEncoder, which takes as input the concatenation between (i)mhits produced by a particle, x ∈ Rm×3 and
(ii) the associated vector h of kinematic parameters, to produce a d-dimensional vector of latent variables
for each input hit, i.e. l ∈ Rm×d.
These vectors contain all the information that the network is capable of extracting from the hits x.

• ADecoder, which takes as input the vectors of latent variables l concatenated with h and provides as output
a set of hits x̃ ∈ Rm×3, corresponding to the reconstruction of the input x.

• A Particle Classifier, which basically consists in convolutional and linear layers; the network takes as input
the vectors of latent variables l to classify the particle.
The challenging aspect here is to use the information extracted from the Encoder to do PID, that is to
understand if the particle that has generated the hits x ∈ Rm×3 is a pion (π) or a kaon (K)1.

A flowchart of the DeepRICH network is represented in figure 3.
The model is trained by minimizing the total loss function which is:

L(x, x̃,y, ỹ, l) =
λrLr(x, x̃)+λcLc(y, ỹ)+λvLv(l),

(1)

where the λmultipliers are used to weigh the contribution of the corresponding loss terms, described in the

following:
(i) The term Lr is the average reconstruction loss between the real particle x and the output of the

Decoder x̃, calculated using the L1 smooth loss (also called Huber error. See, e.g., [24])2:

Lr(x, x̃) =
1

3

3∑
i

zi (2)

where zi is given by

zi =

{
0.5(xi − x̃i)2, if |xi − x̃i|< 1
|xi − x̃i| − 0.5 otherwise,

and the index i indicates the spatial or time components of each hit. Such a loss is less sensitive to outliers
than the Mean Squared Error (MSE). In fact in the case of an unbounded output, MSE requires careful
tuning of the learning rate and the loss in order to prevent exploding gradients.

(ii) The term Lc is the classification accuracy, calculated using the Cross Entropy between the target y, i.e.
the ground truth particle’s type (0 for kaons and 1 for pions), and the output of the classification layer ỹ.

Lc =−(y log(ỹ0)+ (1− y) log(ỹ1)) (3)

1We are focused here on distinguishing πs from Ks as this is the main scope of the GlueX DIRC. DeepRICH can be generalized to more
than two categories of particles.
2 Notice we are using a simplified notation: another sum running over all the hits of the particle is present in equation (2).
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Figure 3. A flowchart of DeepRICH: the inputs are concatenated—n.b., the⊕ represents the concatenation between vectors—and
fed into the encoder, which generates a set of vectors of latent variables, which are then used for both the classification of the
particle and for the reconstruction of the hits. Image taken from [23]

where the components ỹ0 and ỹ1 refer to the logits, associated to pions and kaons, scaled using the softmax(·)
function. After this scale we have ỹ0+ ỹ1 = 1.

(iii) The loss Lv is a term calculated using the MaximumMean Discrepancy (MMD) [25], as explained in
the following; notice that the idea of combining VAE and MMD was used for the first time in [26], where the
authors proved that infoVAE (VAE using MMD) is fast to train, stable and leads to a better learning of the
features if compared to the traditional evidence lower bound (ELBO) [27] criterion used in VAEs. The basic
idea of MMD is that two distributions are identical if and only if their moments are the same. Assuming to
have two distributions p(z) and q(z), one can measure the divergence between these distributions:

Lv=MMD(p(z),q(z)) = Ep(z),p(z′)[κ(z,z
′)]

+Eq(z),q(z′)[κ(z,z
′)]− 2Ep(z),q(z′)[κ(z,z

′)], (4)

where κ(·,·) can be any positive definite kernel, which can be seen as a function that measures the distance
between two samples. To this end, we use a Gaussian kernel [28]. In our case the distribution p(z) is related
to the vector of latent variables, and q(z) is a normal distributionN (0,σ); the best value of σ is determined
using the Bayesian optimization described in section 3.4. A naive intuition of MMD is that the latent vectors
should follow the same distribution of q(z). The architecture described in this section is also summarized in
form of a pseudo-code in the algorithm 1.
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Table 1. A detailed description of the DeepRICH architecture used in the experiments. Each sub-architecture—specified by the type of
neural network—is described layer by layer in terms of the number of neurons and the size of the kernel, the used activation function
and the regularization.

Architecture name Type Neurons/kernel size Activation function Regularization

Encoder/Decoder Linear 512/256 ReLU Drop 0.1
256/512 ReLU Drop 0.1
Latent Dim/3

CNN Conv 64 (3x3, Stride 1) ReLU Batch Norm
64 (3x3, Stride 1) ReLU Batch Norm
128 (3x3, Stride 1) Batch Norm+ Drop 0.5

Classifier Linear 100 ReLU
50 ReLU
25 ReLU
2

Algorithm 1 Pseudo-code for particle identification with DeepRICH.

proceduretraining
fori= 1 . . .E (training epochs)
foreach batch b= (x,y,h) ∈ B
l← Encoder(x,h; θ)
ỹ← Classifier(l; θ)
x̃← Decoder(l,h; θ)
update θ by minimizing total loss L(x, x̃,y, ỹ, l)
end for
end for
end procedure
• x ∈ Rm×3 is a set of hit produced by a charged particle; y is the ground truth of the particle (i.e. a π or a K); h is the
vector containing the kinematic parameters associated to the particle; θ are the weights (parameters) of the networks;
l is the vector of latent variables associated to x and produced by the Encoder.

• For each hit in the particle, the Encoder produces a vector of the latent variables l, by taking as input the encoded
kinematic parameters concatenated with the hit itself.

• The vectors of latent variables associated to the hits of a particle are used to classify the particle itself.
• The Decoder reconstructs the input hits using the latent variables and the kinematic parameters.

In addition we use a dropout layer after each layer in the Encoder/Decoder, with drop probability equal
to 10%; we also apply a dropout on the latent variables before feeding them into the CNN, with a probability
equal to 50%. We fix the number of layers in the decoder/encoder to 2, while the number of hidden units is
set to [512, 256]. The CNN has 3 layers with, respectively, [64, 64, 128] kernels with stride 1 and size 3,
whereas the classifier has 4 layers with [100, 50, 25, 2] neurons, where the dimension of the last layer
correspond to the number of classes (π and K). The activation function used after each layer is the Rectified
Linear Unit (ReLU). The reader can find more technical details summarized in table 1.

3.2. Data Preparation
The data generation is based on FastDIRC [11]. FastDIRC allows to generate the hit pattern observed in the
PMT detection plane for a given kinematics of the charged particle traversing the radiator. The kinematics is
characterized by different parameters, namely the momentum of the particle p [GeV/c], the polar angle θ
relative to the normal to the surface of the bars, the azimuthal angle ϕ, the location X, Y on the surface of the
bar, the information (as an integer index) on which fused silica bar has been hit 3. FastDIRC uses kernel
density estimation to produce an estimate of the probability distribution function on the PMT plane. It
generates about 105 provisional points for each kinematics, which are used to detect an actual charged
particle passing through the bars and generating a sparse hit pattern of about 20-50 ‘real’ hits. FastDIRC
therefore generates both the sparse hit patterns associated to one particle as well as the whole probability
density function (PDF) associated to a particular kinematics which is used to identify that particle. The
training set for DeepRICH has been generated with FastDIRC combining more than one kinematics for a
single bar. A particular region of the phase-space can be divided into a fine grid of points. For example, the

3We use capital letters to distinguish the location on the bar (X,Y) from the hit spatial coordinates (x,y) in the detection plane.

6



Mach. Learn.: Sci. Technol. 1 (2020) 015010 C Fanelli and J Pomponi

largest dataset we generate corresponds to an hypercube of∼ 2·104 kinematic points covering the kinematic
subspace∆p×∆θ×∆ϕ×∆X×∆Y = [4, 5] [GeV/c]× [2, 5] [deg]× [20, 90] [deg]× [-17.5, 17.5] [mm]
× [50, 1000] [mm], where θ, ϕ, X and Y have been divided into equally distant points within those intervals.

For each point of the grid we generate one PDF with FastDIRC and then sample randomly the observed
‘real’ hits. This is done by taking into account the expected yield of the photons: we implemented a yield
generation inspired by the FastDIRC simulation of the observed hits which takes into account the photon
yield reduction due to several effects, e.g., if the total internal reflection condition is not met or a photon
misses a mirror. We also check that keeping the yield constant (fixing it to 40 photons) does not change the
performance significantly.

Consistently with the expectations, a more dense grid of points combined with a larger number of
sampled particles at each kinematic point generally improves the PID performance of DeepRICH (this can
be quantified as the Area Under Curve described in section 4.1). Taking into account that the intrinsic limit
on the achieved performance depends on the kinematic conditions (e.g., the larger the momentum the lower
is the π/K distinguishing power), a tradeoff on the above numbers (i.e. how dense the grid and how many
particles should be chosen for training) can be found based on the sought classification accuracy and the
available computing resources.

3.3. Model training and testing
At each kinematic point (p, θ,ϕ,X,Y) we use FastDIRC to produce a large number of expected hits for both
πs and Ks. Then we sample N particles of a given type (π or K) where by construction each particle consists
of a random set ofm hits. In this way we avoid that the network learns how to classify particles based on
some patterns internal to the FastDIRC generation algorithm. At the same time with this choice we can
virtually build an unlimited dataset of particles from the PDFs of FastDIRC.

The generated samples have been then divided into two subsets: training and test: (i) The training set
contains particles at certain kinematics which are used during the training phase—ensuring that all the
vertices of the hypercube are included—while (ii) the test subset will be used only for testing the network
performance after the training procedure to see if it can achieve good results on unknown kinematics.
Furthermore the particles from the training set are divided into ‘training particles’ and ‘development
particles’ (the split is 80%/20%); the training particles are used to update the parameters of the network by
minimizing the total loss (see equation (1)), while the development particles are used to calculate an
accuracy score, to evaluate the goodness of the classification while training and check if the network is
learning properly how to classify hits from known kinematics. Early stopping is used to interrupt the training
procedure if the development score does not improve after a certain number of epochs. The classification
score on the development particles is also used to tune the hyperparameters of the network with a Bayesian
optimization (the procedure is explained in detail in section 3.4).

We then optimize the parameters of the network with Adam [29] using the tuned learning rate. The
dataset has been standardized—for each feature we choose 0 mean and standard deviation (Std) equal to
1—and this is done separately for both the hits and the kinematics parameters, in order to avoid the
overshadowing of features with smaller values and further improve the training procedure; notice that the
development and test hits have been standardized using the mean and the Std calculated on the training hits,
to avoid a potential injection of bias that could improve the classification performance.

We train the network in different experiments, each consisting of at most 50 epochs, and evaluate the
performance on the development subset during the training phase. The development accuracy is calculated
by applying the softmax(·) on the classification layer. When the training is over, the model is evaluated on the
test particles extracted from unknown kinematics.

3.4. Network optimization
Bayesian Optimizers (BOs) [30, 31] are among the most efficient tools for optimizing the hyperparameters of
a deep architecture [32]. In fact BOs search for the global optimum x* over a bounded domain χ of a
black-box functions f (x). In particular, f can be noisy, non-differentiable and expensive to evaluate.

Typically Gaussian processes [33] are used to build a surrogate model of f, but other regression methods
such as decision trees can also be used. Once the probabilistic model is determined, a cheap utility function
(also called acquisition function) is considered to guide the process of sampling the next point to evaluate.
The DeepRICH network consists of N hyperparameters listed in table 2. In particular, the multipliers of the
loss functions defined in equations (2), (3), (4), the dimension of the latent variables, the MMD variance and
the learning rate play an important role in the performance of the network. These hyperparameters are tuned
with a BO provided by the sklearn [34] package. As previously discussed, other hyperparameters, e.g., the
number of layers in the architecture, are not tuned and their values are reported in table 1. We choose as
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Table 2. List of hyperparameters tuned by the BO. The tuned values are shown in the outermost right column. The optimized test score
is about 92%.

symbol description range optimal value

NLL λr [10−1,102] 0.784
CE λc [10−1,10] 1.403
MMD λv [1,103] 1.009
LATENT_DIM latent variables dimension [10,200] 16
var_MMD σ inN (0,σ) [0.01,2] 0.646
Learning Rate learning rate [0.000 1, 1] 6.6·10−4

Figure 4. Example of features extracted by the CNNmodule from π’s and K’s at 4 GeV/c (left) and 5 GeV/c (right). These features
are then used to classify the particle. The plot shows a better separation between π/K at 4 GeV/c, which means that the network
has good distinguishing power. As expected the points become less separated at larger momentum. The 3D visualization is
obtained with t-SNE [35]. Image taken from [23]

objective function f the development score obtained during the training phase. Each call of the BO is based
on 50 epochs. Results of the optimization are summarized in table 2.

4. Results

The following results are based on charged π,K candidates with momentum between 4 and 5 GeV/c, the
latter corresponding to a challenging kinematics given the sizeable overlap between the expected hit patterns.
The capability of distinguishing πs from Ks and effectively doing PID depends on the features and the causal
relations learnt in the space of the latent variables. A 3D visualization in the space of the latent variables is
shown in figure 4, where t-SNE [35] is used for dimensionality reduction. A clearer separation is achieved in
the reduced space of the latent variables at 4 GeV/c compared to 5 GeV/c.

An alternative representation of the same data is shown in figure 5. Here the distinguishing power is
quantified as the average absolute difference between π and K in each latent variable versus the Y-position on
the quartz bar. This is shown at 5 and 4 GeV/c in momentum (top and middle of figure 5, respectively).
Notice that the number of bins (16 on the x-axis) corresponds to the dimension of the vector of latent
variables. Intuitively, the larger the absolute difference the more πs are separated from Ks. The relative
difference (bottom of figure 5) is characterized by negative values only, pointing to the obvious
interpretation that the distinguishing power is larger at 4 GeV/c. Notice also that in good approximation the
separation between the two particle types does not depend on the Y-location on the quartz bar and we verify
as a sanity check the presence of vertical bars in the patterns of figure 5 along the y-axis.

As described in section 3.2, the event generation is based on FastDIRC which is also used in this section
as a reconstruction algorithm to provide a benchmark against which evaluating the performance of the
DeepRICH architecture.
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Figure 5. (Top and middle plots) 2D plot of the absolute difference on each latent variable between π’s and K’s, obtained for
5 GeV/c and 4 GeV/c, respectively. The latent variables are binned along the x-axis, whereas the y-axis shows where the particle
traversed the bar (along Y [mm]). The color axis indicates the value of the absolute difference. The larger the difference the larger
is the distinguishing power of the network. As expected the separation becomes less clear when the momentum is larger whereas
there is no appreciable dependence on the position on the bar resulting in patterns with vertical bands. (Bottom) The relative
difference between the first row (5 GeV/c) and the second row (4 GeV/c) showing negative values in the majority of the bins.

4.1. Comparison with fastDIRC
The PID strategy in FastDIRC is likelihood-based: Nd photons for each candidate particle are detected in the
PMT plane, and Ng photons are generated to produce the expected PDFs of the 2 candidates (π, K). The Nd

particles are then used to compute the log-likelihood from each candidate PDF as follows:

logLπ(K) =

Nd∑
j=1

ln(

Nπ(K)
g∑
i=1

g(
|xπ(K)i − xj|

λ
)), (5)

where λ is a bandwidth and x is a vector whose components are the spatial and time coordinates of each hit
(either detected or generated)4.

The operational definition of likelihood in DeepRICH is different from equation (5), in that different
quantities are provided by the network: as explained in section 3, the output of the classifier is a
two-dimensional vector ỹ ∈ R2, and we use these values as likelihoods for π and K.

At this point we can consider the∆ logL, the difference between the two log-likelihoods (under the null
hypotheses of π and K, respectively). Histograms of∆ logL are obtained for both FastDIRC and DeepRICH
and shown in figure 6 at 4 GeV/c (left column) and 5 GeV/c (right column), respectively. Two different
colors are used in the legend to highlight the ground truth of each particle (which is either a real π or K).

In the same figures, to quantify the performance of the two algorithms, a Receiver Operating
Characteristic (ROC) curve is obtained by changing the threshold on the∆ logL to cut on. The ROC curves

4 In FastDIRC Ng is chosen such that the achieved resolution reaches a stable value, and the bandwidth is tuned to provide the best
performance.
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Figure 6. The results are obtained with p= 4 GeV/c (left column) and p= 5 GeV/c (right column), at θ= 2.0 [deg], ϕ= 20
[deg], X= -10.5 [cm], Y= 500 [cm] using 350 particles. (top row) The overlaid distributions of∆ logL (see text for definition)
for DeepRICH and FastDIRC, from which the corresponding ROC curves are calculated for comparison: (middle) DeepRICH;
(bottom) FastDIRC.

have been produced generating 350 particles observed for each kinematics and the Area Under Curve (AUC)
is used as a metric to compare the performance of the two algorithms.

A detailed comparison between FastDIRC and DeepRICH reconstructions is reported in Figure 7 (top),
where the DeepRICH AUC divided by the corresponding AUC of FastDIRC is drawn as a function of a single
kinematic variable, after integrating the performance over all the other kinematic parameters to show the
partial dependence on that particular variable.

The plots show that the two algorithms are very close in reconstruction performance, namely
AUC(deepRICH)≳ 0.99· AUC(FastDIRC) in a large region of the kinematic parameters where the
reconstruction efficiency of DeepRICH is approximately uniform, while a slight dependence is observed as a
function of the momentum. Figure 7 (bottom) summarizes these results in form of radar plots: each axis
correspond to a kinematic parameter, and the distance from the center on each direction corresponds to the
correlation of the AUC with that specific parameter. As expected, the largest dependence of the AUC is on the
momentum parameter, the π/K distinguishing power becoming lower at larger values of the momentum.

4.2. Test on unknown kinematics
One major concern about this method regards the predictability for kinematics not explicitly injected in the
training phase. In this section we show results that prove the stability of the network reconstruction for every
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Figure 7. (top 3 rows) The ratio between DeepRICH and FastDIRC AUCs. Each AUC is calculated to show the partial dependence
on one kinematic parameter by marginalizing on all other parameters. (bottom row) Radar plots representing the correlation
between the AUC and each kinematics parameter for DeepRICH and FastDIRC, showing that the two reconstruction algorithms
perform similarly as a function of the kinematic parameters. Notice at 4 GeV/c that the two reconstruction methods perform
almost identically.

kinematic point belonging to the hypercube∆p×∆θ×∆ϕ×∆x×∆y, which was approximated in
section 3.2 by a discrete grid of training datasets. This approximation tacitly assumes no discontinuities in
the hit pattern by varying the parameters within the hypercube.

In figure 8 we show the quality of the DeepRICH reconstruction for unknown kinematics in terms of the
test score. We performed different tests and we did not notice any sensible changes in the test score and in the
AUC, which are two figures of merit we have used to prove the quality of the reconstruction.

4.3. DeepRICH performance
In this section we summarize the performance of the network both in terms of reconstruction efficiency and
computing time.

The quality of the reconstruction is high as shown in table 3: as already mentioned, the AUC values are
close to those of FastDIRC, given a certain sub-region of the kinematic space for the training process. Notice
these results can further improve considering the major points addressed in sections 3.2–3.4 for the training
phase.
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Figure 8. The image shows the learning curve corresponding to known and unknown kinematics combining the datasets with
momentum ∈ [4,5] GeV/c. Each point is obtained as an average over 3 experiments—notice in some experiment the early
stopping activated earlier. These results prove the ability of DeepRICH to reconstruct unknown kinematics.

Table 3. The area under curve (%), the signal efficiency to detect pions εS and the background rejection of kaons εB corresponding to
the point of the ROC that maximizes the product εS*εB. The corresponding momenta at which these values have been calculated are
also reported. This table is obtained by integrating over all the other kinematic parameters (i.e. a total of∼6k points with different
θ,ϕ,X,Y for each momentum).

DeepRICH FastDIRC

Kinematics AUC εS εB AUC εS εB

4 GeV/c 99.74 98.18 98.16 99.88 98.98 98.85
4.5 GeV/c 98.78 95.21 95.21 99.22 96.33 96.32
5 GeV/c 96.64 91.13 91.23 97.41 92.40 92.47

Table 4. Performance of the DeepRICH architecture, reporting the average inference time, the inference memory and the training
memory, i.e. the GPU memory required by the network during the inference and training phases with a fixed batch size. The
workstation uses a GPU Titan V with the CUDA10.0_0 build. The network has been implemented using PyTorch 1.2 [36].

specs value

inference time per batch O(1) ms
inference network memory O(1) GB
training network memory O(4) GB
network memory on local storage ∼ 6 MB
network trainable parameters 458 592

Figure 9. After training, the inference time is almost constant as a function of the batch size, meaning that the effective inference
time—i.e., the reconstruction time per particle—can be lower than a µs, the architecture being able to handle 104 particles in
about 1.4ms in the inference phase. Notice that the corresponding memory size in the inference phase is approximately equal to
the value reported in table 4.

12
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Table 4 reports on the memory and computing time performance: the inference time is the actual time
DeepRICH needs to do PID after the training phase and is on averageO(ms) per batch of particles using a
GPU Titan V. Figure 9 shows the inference time as a function of the batch size: the inference time is
approximately constant up to 104 particles, which is the maximum batch size that could be handled in our
configuration due to internal memory limits of Titan V in the inference phase.

For completeness we also report a comparison with the reconstruction time of other methods: for
look-up-table-based algorithms, not fully optimized estimates provide order few ms per track on a single
standard CPU [37]; for FastDIRC it is about 300 ms per track on a Macbook Air 2.2 GHz i7 and is dominated
by the generation of the PDF, though it is worth reminding that can be massively parallelized; the GAN
method [4] is the closest to our order of magnitude (but it regards the generation of∆ logL values) and the
authors claim 1 M particles generated per second.

Another potential advantage of DeepRICH is the limited network size evaluated throughout all the
training phase, which never exceeded 4 GB for different network configurations. It’s worth reminding that
the network size depends mainly on the weights of the network and the gradients, rather than on the
subspace of the kinematic parameters used in the training phase.

This is a feature to keep in mind when comparing to the overall size of a look-up table obtained for
example with the geometrical reconstruction method.

5. Summary and conclusions

The DeepRICH architecure developed in this paper shows very promising results. As a case study we consider
the DIRC detector. Notice that DeepRICH is agnostic to the shape of the photon patterns, and in principle it
can be trained to do PID for other imaging Cherenkov detectors.

The training set is generated with FastDIRC dividing the phase-space in a fine grid of points. We have
made different tests changing the number of kinematic points in p, θ,ϕ,X,Y and for one specific bar of the
DIRC (we refer the reader to section 3.2 for more details on the preparation of data).

We prove the high quality and stability of the reconstruction within the kinematic subspace. We then
increased the space and kept the same dimensions of the neural network architecture, and this does not seem
to affect the quality of the reconstruction. Notice that the generation of the hypercube and the resulting
density can be further optimized in the future. Increasing the kinematic space and consequently the size of
the dataset obviously results in larger training time and ideally this is limited only by computing resources
and available time to train the network. The training time of DeepRICH has not been optimized. One can
improve this in different ways, for example with a more sparse grid of points, or with distributed training,
see, e.g. [38], However, without optimization, this time can be as large as half a day with the current
configuration on a single Titan V GPU.

It is worth reminding that the size of the network is related to the weights and the dimensions of the
architecture. The measured inference time is approximately equal to 1 ms per batch and we find it is roughly
constant up to 104 particles. Notice that further parallelization of the network can be explored during both
the training and inference phases.

Our conclusion is that DeepRICH, within the conditions described throughout the text, can reach the
reconstruction efficiency of established algorithms and potentially outperform them in the reconstruction
time.

TheO(ms) time performance per batch of 104 particles makes this algorithm suitable for near real-time
applications (e.g. calibration). The high quality of reconstruction and the fast computing time are two
compelling features of the DeepRICH algorithm, this coming at the cost of relatively long training time, as
expected. If the latter aspect cannot be further optimized in the future, one can always use DeepRICH to
characterize critical sub-regions of the phase-space, e.g. it can be applied to each bar separately.

DeepRICH has been designed to be easily generalized to classify other categories of particles, and the
extension of the network is left for future development. An important feature is related to the nature of the
VAE, which suggests a tempting scenario of generalizing DeepRICH to fast generation of events once the
behavior in the latent space is learnt. Finally another suggestive application could be training DeepRICH
using pure samples of identified particles from real data, this allowing to deeply learn the response of the
Cherenkov detector.
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