
Conflict of Interest: Gregorio Pitolli declares that he

as not conflict of interest. Giuseppe Laurenza declares

that he as not conflict of interest. Leonardo Aniello de-

clares that he as not conflict of interest. Leonardo Quer-

zoni declares that he as not conflict of interest. Roberto

Baldoni declares that he as not conflict of interest.



2 Gregorio Pitolli et al.

Noname manuscript No.
(will be inserted by the editor)

MalFamAware: Automatic Family Identification and
Malware Classification Through Online Clustering

Gregorio Pitolli · Giuseppe Laurenza · Leonardo Aniello · Leonardo

Querzoni · Roberto Baldoni

the date of receipt and acceptance should be inserted later

Abstract The skyrocketing grow rate of new malware

brings novel challenges to protect computers and net-

works. Discerning truly novel malware from variants of

known samples is a way to keep pace with this trend.

This can be done by grouping known malware in fami-

lies by similarity and classifying new samples into those

families. As malware and their families evolve over time,

approaches based on classifiers trained on a fixed ground

truth are not suitable. Other techniques use clustering

to identify families but they need to periodically re-

cluster the whole set of samples, which does not scale

well. A promising approach is based on incremental

clustering, where periodically only yet unknown sam-

ples are clustered to identify new families, and classi-

fiers are re-trained accordingly. However, the latter so-

lutions usually are not able to immediately react and

identify new malware families. In this paper we pro-

pose MalFamAware, a novel approach to malware fam-

ily identification based on an online clustering algo-

rithm, namely BIRCH, which efficiently updates clus-

ters as new samples are fed without requiring to re-scan

the entire dataset. MalFamAware is able to both clas-

sify new malware in existing families and identify new

families at runtime. We present experimental evalua-

tions where MalFamAware outperforms both total re-

clustering and incremental clustering solutions in terms

of accuracy and time. We also compare our solution

with classifiers re-trained over time, obtaining better

G. Pitolli · G. Laurenza · L. Querzoni · R. Baldoni
Research Center of Cyber Intelligence and Information Secu-
rity, Sapienza University of Rome, Italy
E-mail: {laurenza,querzoni,baldoni}@diag.uniroma1.it

L. Aniello
Cyber Security Research Group, University of Southampton,
UK
E-mail: l.aniello@soton.ac.uk

accuracy, in particular when samples belong to yet un-

known families.

Keywords malware analysis · malware family

identification · incremental clustering · BIRCH

1 Introduction

Over the last few years there has been an outbreak

of cyber-attacks against computers and networks. The

leading tools employed by cyber-criminal are malware,

malicious software crafted to deliver specific attacks and

evade existing security measures. Cyber threats keep

evolving relentlessly in response to the corresponding

progress of security defenses, resulting in an impressive

number of new malware that are being discovered daily,

in the order of millions1. The field of malware analysis

is advancing in response to this escalation of malware-

driven cyber threats. Although the primary objective

is understanding whether an executable is malicious or

not, this cannot be achieved without developing a very

precise and updated knowledge on malware characteris-

tics. Thus, there is also the need for an up-to-date mal-

ware knowledge base where insights can be extracted

from to design new effective countermeasures.

Reverse engineering a malicious sample can add truly

valuable information to such malware knowledge base,

but it is an undoubtedly time-consuming task. Given

the huge amount of new malware appearing every day,

manually analysing in details each of them is obviously

unfeasible. To this end, advanced malware analysis work-

flows commonly adopt a triage stage [1,2] where sam-

ples are quickly and automatically inspected to deter-

1 blog.trendmicro.com/malware-1-million-new-threats-

emerging-daily

blog.trendmicro.com/malware-1-million-new-threats-emerging-daily
blog.trendmicro.com/malware-1-million-new-threats-emerging-daily


MalFamAware: Automatic Family Identification and Malware Classification Through Online Clustering 3

mine if they need to be further investigated manually

by an analyst.

A typical approach is relying on the concept of mal-

ware families, where samples are grouped by similarity

in such a way that malware of a same family share large

portions of code or display very similar behaviours, i.e.

they are variants of each other. Such concept can be

used to save a huge amount of time of work for mal-

ware analysts; indeed, only some samples for each fam-

ily need to be analyzed manually. Malware classifica-

tion, i.e. the process of assigning new malware to known

and previously studied families, helps analysts to focus

only on those malware belonging to groups that have

not been analyzed yet. Thus, accurately characteriz-

ing families is crucial to develop an effective malware

knowledge base; a flawed model would, in fact, lead to

wrong triage decisions, which in turn would be detri-

mental to the whole malware analysis workflow.

The challenge to address in this case is keeping the

malware family knowledge base as updated as possible,

which requires revising it on the basis of the latest sam-

ples analyzed to discover new families and amend those

already known. In this paper, we refer to this process as

family identification, which should be tightly integrated

with malware classification to properly tackle the fast

evolution of malware. Indeed, an ideal malware analysis

mechanism for triage should provide at the same time

classification of samples in families and identification of

new families as they arise.

There exist several approaches for automatic mal-

ware classification that are based on classifiers trained

with a fixed ground truth of families [3,4]. Although

they are highly accurate, they fail in family identifica-

tion as they can not recognize new families unless they

are frequently re-trained on an updated and reliable

ground truth, which is commonly not available. This

problem is often mitigated by adopting machine learn-

ing unsupervised methods. In particular, clustering al-

gorithms are used to group samples by similarity on

the basis of some representative feature vector. In this

case, families correspond to the clusters identified by

the algorithm. However, in order to recognize new fam-

ilies, the whole dataset of available malware needs to

be clustered from scratch (re-clustering) whenever new

samples have to be analyzed. This is the main limita-

tion of this approach because the clustering time grows

at least linearly with the size of the dataset, hence the

current pace of new malware generation makes this ap-

proach impractical.

Such scalability issue can be mitigated by using an

incremental clustering approach, like the one applied

by Malheur [5]. A classifier is periodically trained with

the families identified so far through clustering. This

classifier is used to analyse new samples and deter-

mine what known families they belong to. Only mal-

ware that have not been classified confidently enough

to any known family are then clustered to identify new

families and incrementally improve the current knowl-

edge. The classifier is then retrained on this updated

knowledge. The limitation of this approach lies in the

difficulty of choosing the correct batch size or retraining

period. In fact, a too frequent retraining likely brings

again scalability problems, as training a classifier on an

ever-growing ground truth becomes more expensive as

time goes by. On the other hand, waiting too long for

retraining prevents to steadily identify and react to new

malware families.

To solve this problem, in this paper we propose

MalFamAware, a novel approach to incremental auto-

matic family identification and malware classification,

based on online clustering, where samples are efficiently

assigned to families as soon as they are fed to the clus-

tering algorithm, and the families (i.e. the clusters)

are updated accordingly. This update only modifies the

number and the composition of the families without al-

tering the features space, which remains fixed and con-

sistent among the various executions. The advantage

over incremental clustering lies in cutting the cost of

periodically re-training a classifier. One of the contri-

butions of this work is the idea of using online clus-

tering to implement family identification and malware

classification simultaneously. Table 1 shows an overall

comparison between existing approaches for malware

classification and family identification.

Approach
Malware classifi-

cation

Family identifica-

tion

Classifier-
only

Classifier trained
on available ground
truth

No family identifica-
tion, it needs period
retraining

Re-
clustering

Classifier trained
on available ground
truth

Ground truth up-
dated by periodic
clustering of the
whole dataset

Incremental
clustering

Classifier trained
on available ground
truth

Ground truth up-
dated by periodic
clustering of mal-
ware whose family is
still unsure

Online
clustering

Done simultaneously

Table 1: Existing approaches for malware classification

and family identification.



4 Gregorio Pitolli et al.

MalFamAware uses BIRCH (Balanced Iterative Re-

ducing and Clustering using Hierarchies) [6] as online

clustering algorithm. BIRCH is one of the best clus-

tering algorithms for family identification [7] and it

can be used in an online fashion. We present experi-

mental results on a dataset of publicly available Win-

dows malware, analyzed with the Cuckoo Sandox2 to

extract static and dynamic features. Contrary to our

previous work [7], this paper focuses on both family

identification and malware family classification, pre-

senting a solution to perform them in the same phase.

Indeed, MalFamAware classifies new incoming malware

into the correct family, if already known, or creates a

new one if no suitable existing family is found. We show

that MalFamAware outperforms approaches based on

re-clustering or incremental clustering, both in terms of

accuracy and execution time. In particular, MalFamAware

requires three orders of magnitude less time than other

clustering-based approaches to analyse samples, while

providing slightly better accuracy. We also compare the

accuracy of MalFamAware against that achieved by us-

ing different standard classifiers trained in two distinct

ways: only once at the beginning or periodically on all

the previous samples. Results show that the accuracy

of MalFamAware is comparable to that of other classi-

fiers when samples belong to known families, and it is

larger for samples of new families.

The rest of the paper is organized as follows. Sec-

tion 2 discusses related work. Section 3 explains how

BIRCH works. Section 4 details MalFamAware and Sec-

tion 5 extensively describes the experimental evalua-

tions we carried out. Finally, Section 6 draws conclu-

sions and discusses future work.

2 Related Work

The problem of classifying malware in families has been

extensively addressed in literature, as widely reported

by some recent surveys on the topic, such as those by

Ye et al. [8] and Ucci et al. [9]. Family identification

has been investigated as well, although less thoroughly

than malware classification. Pitolli et al. [7] propose to

use BIRCH to cluster malware in families, but these

families were fixed. Kinable and Kostakis [10] investi-

gate call graph clustering, where samples are modelled

as call graphs and clusters are computed on the ba-

sis of the graph edit distance. DUET [11] is a system

based on cluster ensemble to combine and get the best

out of clusterings computed by different algorithms.

FIRMA [12] relies on network traffic features to de-

termine the clusters. Bayer et al. [13] and BitShred [14]

2 https://www.cuckoosandbox.org/

focus on improving the scalability of malware cluster-

ing.

To the best of our knowledge, only a few works ad-

dress malware classification and family identification in

an integrated way. As already mentioned in section 1,

Malheur [5] is an open-source3 system which identifies

malware families showing similar behaviour and assigns

new samples to identified families. It extracts features

from textual malware analysis reports, such as those

produced by Cuckoo Sandbox. Besides supporting the

standard approach based on total re-clustering, it also

allows for incremental clustering (i.e., Incremental Mal-

heur). Incremental Malheur uses knowledge on fam-

ilies identified during the latest clustering to train a

classifier for quickly classifying novel samples. For each

new batch of malware, Incremental Malheur (i) clusters

only samples that have not been classified with a suffi-

ciently high confidence, (ii) adds resulting new families

to those already known, and (iii) re-trains the classifier

accordingly. An accuracy and performance comparison

between our solution and Incremental Malheur is re-

ported in section 5.4.2.

Zhong et al. [15] propose ARIGUMA, which imple-

ments the same approach of Malheur. The reported ex-

perimental results, stemming from a small-scale dataset

containing 626 samples, outline an accuracy of 61.6%.

We select Malheur for comparison because ARIGUMA

is not available for download and use.

Malware classification into known families has been

also investigated for Android apps, e.g. by Deshotels

et al. [16] and by Garcia et al. [17]. The first work fo-

cuses on creating automatisms to generate signatures
for family recognition. The second one aims to clas-

sify obfuscated Android malware into known families.

Both works present the same limitation of other mal-

ware classification approaches, i.e. they cannot classify

correctly malware belonging to families that were not in

the training set. Family identification for Android mal-

ware has been explored as well. Li et al. [18] iteratively

mine sample payload to remove legitimate libraries and

verify whether different malware use the same payload

version, then use clustering to group malware in fami-

lies. Aresu et al. [19] analyse the logs of HTTP traffic

generated by malicious apps to extract statistical infor-

mation, which are then used to cluster Android malware

in families by using BIRCH algorithm. Both works rely

on clustering algorithms to identify families but address

neither malware classification nor scalability issues.

A common problem of approaches based on machine

learning is their potential vulnerability to attacks where

3 http://www.mlsec.org/malheur/

https://www.cuckoosandbox.org/
http://www.mlsec.org/malheur/


MalFamAware: Automatic Family Identification and Malware Classification Through Online Clustering 5

an adversary prepares samples in such a way to fool

classification or clustering algorithms, with the aim to

make them malfunction, e.g. to achieve the misclassifi-

cation of a sample. The relatively recent research field

that addresses this problem is referred to as Adversarial

Machine Learning [20].

Adversarial machine learning has been investigated

in the field of malware analysis as well. EvadeML [21]

shows that classifiers used for PDF malware detection

can be evaded by performing stochastic manipulations

of samples to generate new variants. IagoDroid [22] im-

plements an effective attack against malware classifica-

tion techniques used in triage stages. IagoDroid takes

as input a malware and a family, different from the one

that malware belongs to, and generates a variant that

is classified into that family, hence achieving evasion.

Adversarial learning for clustering in the field of

malware analysis has been explored as well. Biggio et

al. [23] present a methodology to assess the security of

clustering algorithms against this type of attacks and

give evidence of a successful attack against malware be-

havioural clustering in families. A similar, effective at-

tack against Malheur clustering is shown in [24]. Refer-

enced literature also propose countermeasures to make

classifiers and clustering algorithms robust against those

attacks. In our work we focus on the feasibility and

effectiveness of performing malware classification and

family identification together and, although MalFamAware

can be vulnerable to similar attacks, we leave the cor-

responding adversarial analysis as future work.

3 Balanced Iterative Reducing and Clustering

using Hierarchies

Balanced Iterative Reducing and Clustering using Hier-

archies (BIRCH) is a clustering algorithm optimized to

perform hierarchical clustering over particularly large

data-sets. It exploits the concepts of how the space of

data is not usually uniformly occupied and how data

points are not equally important. Based on these as-

sumptions it can make each clustering decision without

scanning all data points and currently existing clusters.

One great advantage of BIRCH is that it makes full

use of available memory to derive the finest possible

sub-clusters while minimizing I/O costs.

BIRCH is built around the concept of Clustering

Feature [CF] and CF Tree. It tries to minimise the

memory requirements of large datasets by summarising

the information contained in dense regions as Cluster-

ing Feature (CF) entries. Given N d-dimensional data

points in a cluster
−→
X i, where i=1,2,...,N , the CF entry

of the cluster is defined as a triple: CF = (N,
−→
LS, SS),

where N is the number of data points in the cluster,
−→
LS

is the linear sum of the N data points, i.e.
∑N

i=1

−→
X i,

and SS is the square sum of the N data points
∑N

i=1

−→
X 2

i

On the basis of this definition, it is possible to have CFs

composed by other CFs. In this case, the sub-cluster is

equal to the sum of the CFs.

BIRCH authors formalised the CF Additive Theo-

rem: assume that CF1 = (N1,
−→
LS1, SS1) and CF2 =

(N2,
−→
LS2, SS2) are the CF entries of two disjoint sub-

clusters; then, the CF entry of the sub-cluster that

is formed by merging the two disjoint sub-clusters is

CF1 + CF2 = (N1 + N2,
−→
LS1 +

−→
LS2, SS1 + SS2).

On top of these definitions, [6] describes the CF-

tree: a compact representation of the dataset where

each entry in a leaf node represents a sub-cluster. Thus,

a single entry contains pointer to a child node and a CF

made up of the sum of the CFs in the children (i.e., sub-

clusters of sub-clusters). Each leaf node is a CF as well,

i.e. a sub-clusters of data points. All entries in the leaf

nodes should satisfy a Threshold requirement, i.e. the

diameter of each leaf must be lower than this value.

3.1 Algorithm details

BIRCH operates through four phases, with the last be-

ing optional:

1. scans data and loads it into memory by building a

CF tree. If memory is exhausted, it rebuilds the tree

from the leaf nodes;

2. resizes data by building a smaller CF tree. BIRCH

tries to remove more outliers and condenses the

data;

3. directly applies an agglomerative hierarchical clus-

tering algorithm to the sub-clusters represented by

their CF vectors;

4. fixes problems with CF trees where same valued

data points may be assigned to different leaf entries.

Differently from other offline clustering algorithms,

BIRCH has the great advantage of clustering incoming

feature vectors incrementally and dynamically. It uses

CF vectors to summarise the information in each iden-

tified cluster. In this way, it can overcome a common

limitation of other hierarchical clustering approaches:

it can undo clustering choices performed in previous

steps to correct the clusters according to newly anal-

ysed samples [25]. When a new feature vector is fed to

BIRCH, it is assigned to either an existing cluster or to

a novel cluster created on purpose for that sample.



6 Gregorio Pitolli et al.

4 MalFamAware Approach

The approach we propose leverages on online cluster-

ing to simultaneously identify new families and classify

new samples to families.The approach we propose in

MalFamAware leverages online clustering to simultane-

ously perform family identification and malware classi-

fication. As already explained in Section 1, the former

consists in discovering if the analysed malware belongs

to a completely new family, while the latter aims to

find which known family the analysed malicious soft-

ware belongs to.

It consists ofOur approach can be divided in two

phases: a tuning phase (subsection 4.1) where required

parameters are setup, and a family identification and

malware classification phase (subsection 4.2) where avail-

able malware are analysed to determine their families

and spot new families. Before describing the details of

these two phases, the next subsection introduces BIRCH,

the clustering algorithms leveraged by MalFamAware.

4.1 Tuning Phase

The tuning phase works in two consecutive steps. First,

there is the computation of features normalisation val-

ues (subsection 4.1.1). Second, the BIRCH algorithm is

configured on the basis of available ground truth (sub-

section 4.1.2).

4.1.1 Feature normalisation

Fig. 1: MalFamAware workflow for feature normalisa-

tion.

A dataset of non-labelled malware is used for feature

normalisation, Figure 1 shows the corresponding work-

flow. Each sample is executed for at most five minutes

inside the Cuckoo Sandbox, which produces a textual

analysis report containing information extracted both

statically (e.g., header fields, strings, etc.) and dynam-

ically (e.g., file system access, system calls, etc.) from

the sample currently under analysis. A hybrid approach

like this allows to mitigate the issues deriving from us-

ing either static analysis alone (e.g. evasion techniques

based on obfuscation) or dynamic analysis alone (e.g.

evasion techniques based on environment awareness).

A feature vector with 241 numerical values for each

sample is generated from the analysis report. String

information are converted to numeric features by us-

ing locality-sensitive hashing, so that similarity among

strings is preserved as much as possible. A summary of

used features is reported in table 2, the complete list of

used features is detailed in appendix A.

Category Feature count

Static features 58

File system operations 53

Registry operations 36

Process operations 68

Network activities 26

Table 2: Categories of used features

To improve robustness against outliers, feature val-

ues are normalised with respect to the median and the

interquartile range (IRQ) of values present in dataset.

For each feature fi, let mi be the median of fi val-

ues over the dataset, and let irqi be the corresponding

interquartile range. For each value xj of fi, the nor-

malised value x̄i is computed as follows.

x̄i =
xi −mi

irqi

4.1.2 BIRCH Tuning

Fig. 2: MalFamAware workflow for the tuning of

BIRCH radius.

During the tuning phase, the BIRCH radius is con-

figured on the basis of an available ground truth. The

workflow of this tuning is depicted in Figure 2. The

tuning works iteratively. At each iteration, a different

radius is used and the accuracy of the correspondent



MalFamAware: Automatic Family Identification and Malware Classification Through Online Clustering 7

clustering is measured on the basis of the ground truth.

The radius that maximizes the accuracy is chosen.

Note that in this paper we consider a setting of

BIRCH where a single scan of the input dataset is run,

which enables to analyse incoming samples in an online

fashion. BIRCH can be also configured to include addi-

tional three phases that rescan input data to refine and

improve the clustering, which however would prevent

the algorithm to work online.

4.2 Family Identification and Malware Classification

Phase

Fig. 3: MalFamAware workflow for family identifica-

tion and malware classification. The final output, i.e.

malware clustering in families, may have been updated

(family identification) and includes the malware just

analyzed in the proper cluster (malware classification).

After the tuning phase, samples are analyzed as

they arrive following the workflow shown in Figure 3.
Cuckoo analyses statically and dynamically the sample

and produces an analysis report. Required features are

extracted and normalised as described in section 4.1.1.

The corresponding feature vector is fed to BIRCH al-

gorithm, configured to work online and with a specific

radius threshold, as explained in section 4.1.2.

BIRCH revises its clustering for each elaborated fea-

ture vector. A new malware family is identified if a new

cluster is added, which takes place when the radius of

an existing cluster exceeds the threshold. The cluster

where the feature vector is put determines what family

the corresponding malware has been classified in.

Malware classification is achieved by assigning sam-

ples to clusters, while family identification takes place

whenever a new cluster is created. As sample cluster-

ing and the possible addition of a new cluster are car-

ried out by BIRCH for each sample it receives, malware

classification and family identification basically occur

simultaneously.

5 Experimental evaluation

In this section we report the experimental results on

the effectiveness of MalFamAware, in terms of accu-

racy and performance. We first describe the testbed we

use (§ 5.1) and what ground truth we consider (§ 5.2),

then we detail experiments and results on family iden-

tification (§ 5.3) and malware classification (§ 5.4).

5.1 Testbed

We test MalFamAware on a single machine equipped

with an Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00GHz,

using 4 cores and 8 GB of memory. The operating sys-

tem is Ubuntu 16.04.2 with kernel GNU/Linux 4.4.0.

For the implementation we use well-known publicly avail-

able libraries4 that provide machine learning algorithm

tools.

5.2 Ground Truth

To the best of our knowledge, no large-scale Windows

malware dataset containing samples grouped in fami-

lies is publicly available. The lack of this ground truth

cannot be easily overcome with manual labelling [3] be-

cause it is an extremely time-consuming task. Following

the approach proposed in several previous works [14,

26,5,27,7], we build a ground truth by using labels as-

signed by antivirus software.

This approach has well-known issues that mainly

derive from the inconsistent label sets used by different

security firms [28,29,30]. To address this issue, we use

the AVclass tool [31], which analyses the labels assigned

by antiviruses and chooses the one picked by the major-

ity of them. When a majority is not available, AVclass

assigns a unique label to the sample, i.e. the malware

is placed in a singleton cluster.

We collected 5351 malware samples for the Win-

dows operating system from VirusTotal5. In order to

enable the repeatability of our experiments, the list of

MD5 hashes of all the used samples is available online 6.

With the aim of building a malware family ground truth

without under-represented families, we select only the

samples of families with at least 10 malware, in line

with other works [32,33] that use the same approach

of discarding families with a few samples. After this

4 scikit-learn (http://scikit-learn.org/) and SciPy
(https://www.scipy.org/)
5 VirusTotal, https://www.virustotal.com/
6 The detailed list of samples is available at

http://users.diag.uniroma1.it/aniello/malware_dataset/

malware_dataset_md5_list.txt

http://scikit-learn.org/
https://www.scipy.org/
https://www.virustotal.com/
http://users.diag.uniroma1.it/aniello/malware_dataset/malware_dataset_md5_list.txt
http://users.diag.uniroma1.it/aniello/malware_dataset/malware_dataset_md5_list.txt


8 Gregorio Pitolli et al.

selection, we had 4613 samples divided in 18 families;

table 3 reports the distribution of malware over these

families. To properly simulate how samples are ana-

Family Name Samples

allaple 55

cosmu 99

domaiq 33

downloadguide 82

flystudio 417

gator 39

hotbar 21

installcore 12

yantai 130

installerex 47

loadmoney 16

mira 53

multiplug 85

phishbank 1859

ramnit 1115

soft32downloader 13

sytro 412

vobfus 125

Table 3: Distribution of samples over families contain-

ing at least 10 elements.

lyzed over time, we consider their temporal distribution

on the basis of the timestamps reported in their header.

Although some samples have clearly forged timestamps

(e.g. in the future), in the large majority of cases times-

tamps seem to be realistic. The distribution of samples

over time is shown in Figure 4. We include in our ref-

erence dataset only samples between 2006 and 2016,

which amount to around 4100 samples. To enable a fair

comparison with other incremental approaches where

malware are analyzed periodically in blocks, we organ-

ise samples in batches according to their timestamps,

obtaining 10 blocks with approximately 400 samples

each. Figure 5 reports for each block the percentage of

samples belonging to unknown families, i.e. those fam-

ilies for which no sample is present in any of the pre-

vious blocks. This information is useful to evaluate the

accuracy of approaches that deal with malware of new

families.

Fig. 4: Temporal distribution of samples.

Fig. 5: Percentage of samples of unknown families in

each block.

5.3 Family Identification

We assess the capability of MalFamAware to identify

families by evaluating how it clusters malware with

BIRCH against the ground truth (§ 5.2), and compar-

ing clustering accuracy with respect to a number of

well-known algorithms. We first introduce the metrics

used to compare clustering accuracy (§ 5.3.1) and the

comparison algorithms (§ 5.3.2), then we present family

identification results on accuracy (§ 5.3.3) and perfor-

mance (§ 5.3.4).

5.3.1 Clustering Accuracy Metrics

To evaluate the accuracy of an algorithm, we compare

the resulting clustering to the ground truth (§ 5.2),

which can be considered as a clustering having one clus-

ter for each family, containing all the samples of the

family itself. In our experiments, we consider the fol-

lowing three accuracy metrics to measure how similar

two clusterings are: ARI, AMI and FMI.



MalFamAware: Automatic Family Identification and Malware Classification Through Online Clustering 9

– Adjusted Rand Index (ARI). The Rand index [34]

is defined as the number of pairs of samples that

are either in the same family or in different fami-

lies in both clusterings, divided by the total num-

ber of pairs of samples, hence it lies in the nom-

inal range [0, 1]. In practice, the Rand index fre-

quently has value greater than 0.5 and its baseline,

i.e. the average between random partitions, is not

constant. Assuming the generalized hyper-geometric

distribution as a model of randomness, the Rand in-

dex is adjusted for chance to take into account its

expected value. The resulting Adjusted Rand Index

(ARI) [35] lies in the range [−1, 1], where 1 still

means a perfect matching and 0 represents the fact

that the Rand index equals its expected value.

– Adjusted Mutual Information (AMI). The mutual

information measures the mutual dependence be-

tween two random variables. It can be used to com-

pare two clusterings by considering their associated

entropies as random variables. The entropy of a clus-

tering is computed on the basis of the probabil-

ity that a sample belong to a specific cluster [36].

Analogously to the way the Rand index is adjusted

through the ARI, the Adjusted Mutual Information

(AMI) [37] adjusts for chance the mutual informa-

tion by considering the difference with respect to its

expected value, which also in this case is computed

by assuming a generalized hyper-geometric distribu-

tion as model of randomness. The AMI takes a value

of 0 when the mutual information between the two

clusterings is the same as its expected value, and it

is 1 when the two clusterings are identical.

– Fowlkes-Mallows Index (FMI). The Fowlkes-Mallows

Index (FMI) [38] is yet another clustering similarity

metric, which can be defined as the geometric mean

of precision and recall, i.e.
√

TP
TP+FP ·

TP
TP+FN . The

latter are computed on the basis of the number of

samples that are in common or not in the two clus-

terings, as follows. TP represents how many pair of

samples are in the same cluster in both clusterings.

FP is the number of sample pairs that are in the

same cluster in the first clustering but not in the

second one, while FN counts how many pairs be-

long to the same cluster in the second clustering but

not in the first one. Finally, TN represent the num-

ber of pairs of samples that are in different clusters

in both clusterings. FMI takes values closer to 1 as

the similarity of the clusterings increases, while the

nearer FMI is to 0 the more clusterings are different.

5.3.2 Clustering Algorithms for Comparison

This section briefly describes the clustering algorithm

chosen for comparison with BIRCH.

– Density-Based Spatial Clustering of Applications with

Noise (DBSCAN) [39] is a density-based algorithm

that can discover clusters of arbitrary shapes and

is efficient for large spatial datasets. The algorithm

looks for clusters by searching the neighbourhood of

each data point in the dataset.

– Hierarchical algorithms [40] construct a tree of

clusters, also known as a dendrogram. Every cluster

node contains child clusters, thus allowing the explo-

ration of data at different levels of granularity. These

algorithms need a linkage criterion to determine

the distance between sets of observations as a func-

tion of the pairwise distances between single obser-

vations. Most common linkage criteria are Ward’s

link, Single-link, Complete-link and Average-

link.

– K-Means [41] is a well known center-based algo-

rithm. The center of each cluster, called centroid, is

the mean of all the instances of that cluster. The

number of clusters k is assumed to be fixed.

– Mini-Batch K-Means [42] is a variant of K-Means

which uses mini-batches to reduce computation time,

while still attempting to optimise the same objec-

tive function. Mini-batches are subsets of the input

data, randomly sampled in each training iteration.

– Expectation Maximization (EM) [43] is a general-

purpose statistical iterative method of maximum

likelihood estimation in the presence of incomplete

data, which can be used for the purpose of cluster-

ing.

– Clustering Using Representative (CURE) [44] is a

scalable and efficient algorithm for large datasets

that is robust to outliers and is able to identify clus-

ters of arbitrary shapes and sizes. In this algorithm,

each cluster is represented by a constant number of

points that are well scattered in the cluster itself.

All these algorithms rely on specific parameters which

affect their behaviour. BIRCH depends on a threshold

which defines the maximum radius of clusters (§ 4.1.2).

K-Means needs the setup of the number of clusters to

generate. The two main parameters of DBSCAN are

(i) the maximum distance between any two samples to

be considered in the same neighbourhood, and (ii) the

minimum amount of data points in a neighbourhood to

be considered a cluster. Hierarchical algorithms need

a threshold to decide when to cut the tree. EM has

several parameters, including the number of mixture

components. Also CURE needs to setup in advance the



10 Gregorio Pitolli et al.

number of clusters, as well as the number of represen-

tative points for each cluster. For each algorithm, we it-

eratively tune parameters to maximise the accuracy. In

particular, we choose to maximise the FMI. When mul-

tiple parameters have to be configured, we tune them

one by one. The maximisation approach is based on

numerical approximation with direct method: the same

algorithm is executed a large number of times on the

same input data, each time with a different value of

the parameters, in order to cover as much as possible

a given range of values. For example, for BIRCH, we

vary the value of the threshold between 0 and 10 with

a step of 0.1. Figure 6 shows how the FMI for BIRCH

evolves by varying the threshold value.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 2 4 6 8 10

Fig. 6: BIRCH FMI accuracy by varying radius tresh-

old.

5.3.3 Family Identification Accuracy

Clustering algorithms can generate different clusterings

depending on the order of input samples, thus we exe-

cute each algorithm 40 times with malware sorted dif-

ferently. Gigures 7, 8 and 9 show the comparison be-

tween BIRCH and the other clustering algorithms (§ 5.3.2),

in terms of ARI, AMI and FMI, respectively (§ 5.3.1).

The accuracy values are averaged over the 40 execu-

tions, and error bars are included to show how the ac-

curacy varies by changing the order of input malware.

Table 4 reports all the average accuracy scores.

These results show that BIRCH achieves an accu-

racy, in terms of ARI and FMI, lower than some other

hierarchical algorithms and than EM and DBSCAN. It

is to highlight that (i) we use a setting of BIRCH pur-

posely aimed at favouring performance over accuracy

(§ 4.1.2), as can be proved in section 5.3.4, and (ii) EM

and DBSCAN requires as input the number of clusters

to generate, while BIRCH does not.

0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95 1,00

BIRCH

DBSCAN

HIER.	WARD’S	 LINK.

HIER.	SINGLE	 LINK

HIER.	COMPLETE	 LINK.

HIER.	AVERAGE	 LINK.

K-MEANS

MINI-BATCH	 K-MEANS

EM

CURE

Fig. 7: ARI achieved by clustering algorithms.

0,35 0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75

BIRCH

DBSCAN

HIER.	WARD’S	 LINK.

HIER.	SINGLE	 LINK

HIER.	COMPLETE	 LINK.

HIER.	AVERAGE	 LINK.

K-MEANS

MINI-BATCH	 K-MEANS

EM

CURE

Fig. 8: AMI achieved by clustering algorithms.

0,4 0,45 0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95

BIRCH

DBSCAN

HIER.	WARD’S	 LINK.

HIER.	SINGLE	 LINK

HIER.	COMPLETE	 LINK.

HIER.	AVERAGE	 LINK.

K-MEANS

MINI-BATCH	 K-MEANS

EM

CURE

Fig. 9: FMI achieved by clustering algorithms.

5.3.4 Family Identification Performance

Figure 10 shows average and standard deviation of the

execution times of each algorithm. These results clearly

prove that BIRCH is much faster than all the other al-

gorithms, except for the Mini-Batch K-means, which,

however, turns out be the least accurate. The most ac-

curate algorithms (i.e. hierarchical algorithms) perform

significantly worse than BIRCH.



MalFamAware: Automatic Family Identification and Malware Classification Through Online Clustering 11

Algorithm k ARI AMI FMI

BIRCH NO 0.819 0.727 0.851

DBSCAN NO 0.865 0.606 0.891

Hierarchical
Ward’s linkage

NO 0.828 0.686 0.859

Hierarchical single
linkage

NO 0.891 0.739 0.911

Hierarchical com-
plete linkage

NO 0.786 0.697 0.826

Hierarchical aver-
age linkage

NO 0.891 0.739 0.91

K-Means YES 0.738 0.625 0.792

Mini-Batch K-
Means

YES 0.517 0.586 0.601

EM YES 0.879 0.648 0.902

CURE YES 0.691 0.566 0.769

Table 4: Comparison of considered algorithms in terms

of clustering accuracy. Average accuracy scores are re-

ported, measured as ARI, AMI and FMI. The column

k indicates whether the algorithm requires to know in

advance the number of clusters.

0 5 10 15 20 25 30 35 40 45

BIRCH

DBSCAN

HIER.	WARD’S	 LINK.

HIER.	SINGLE	 LINK

HIER.	COMPLETE	 LINK.

HIER.	AVERAGE	 LINK.

K-MEANS

MINI-BATCH	 K-MEANS

EM

CURE

Fig. 10: Execution times in seconds of clustering algo-

rithms.

5.4 Malware Classification

We evaluate the effectiveness of MalFamAware in classi-

fying malware in families over time (i.e. batch by batch)

by measuring its accuracy against the available ground

truth (§ 5.2) and comparing it with other well-known

classifiers. In all these experiments we use the first batch

to learn the BIRCH radius threshold (§ 4.1.2). We first

define the metrics used to measure classification ac-

curacy (§ 5.4.1), then we present a number of experi-

ments on accuracy comparison: between MalFamAware

and Malheur (§ 5.4.2), and between MalFamAware and

other classifiers (§ 5.4.3). Finally, we also show compar-

ative results on classification time (§ 5.4.4).

5.4.1 Classification Accuracy Metrics

We have to evaluate to what extent a clustering is sim-

ilar to the available ground truth, in the same way we

can compare the output of a classifier. It is to note that

this problem is different from the one we addressed to

assess family identification accuracy (§ 5.3.1), indeed for

malware classification we want to evaluate the accuracy

after every batch, not only when all the samples have

been analyzed. The labels of our ground truth, pro-

duced by AVclass [31], are different from those gener-

ated by clustering algorithms, which assign anonymous

labels such as “cluster1”. We have to choose comparison

metrics that are independent from the naming space of

labels, thus we decided to use precision, recall and ac-

curacy (i.e. the F1 score) as defined in [45].

Given the set of labels LGT = {lgti } of the classes

of the ground truth, with i = 1 . . . NGT , let ngt
i be the

number of samples labelled with lgti . Given the set of

labels LC = {lci} produced by a clustering algorithm,

with i = 1 . . . NC , let nc
i be the number of samples

labelled with lci . Let ni,j be the number of samples of

class lgti (according to the ground truth) that have been

assigned to cluster lcj by the clustering algorithm. We

first define precision and recall for a class lgti of the

ground truth with respect to a cluster lcj identified by

the clustering algorithm:

Precision(lgti , lcj) = ni,j/n
c
j

Recall(lgti , lcj) = ni,j/n
gt
i

Given the total number n of samples that have been

clustered, we then define the overall precision, recall

and F1 score (i.e. the accuracy):

Precision =
∑

lgti ∈LGT

ngt
i

n
max
lcj∈LC

{
Precision(lgti , lcj)

}

Recall =
∑

lgti ∈LGT

ngt
i

n
max
lcj∈LC

{
Recall(lgti , lcj)

}
F1 =

2 ·Recall · Precision

(Precision + Recall)

We use these metrics also to compare the accuracy of

classifiers, which have the same labels of the ground

truth because they are trained on it. To make such com-

parison as fair as possible, we do not take into account

this fact and assume the classifiers output labels in a

different namespace.

Another key aspect to investigate and measure is

the capability to deal with samples belonging to fami-

lies that are still not known. At this regard, we intro-

duce another metric, referred to as weighted accuracy,

computed as the product of the accuracy obtained for



12 Gregorio Pitolli et al.

the samples of a certain batch and the percentage of

malware in that batch that belong to families still un-

known.

5.4.2 Comparison between MalFamAware and Malheur

Figure 11 reports the accuracy comparison between BIRCH,

Malheur and Incremental Malheur (§ 2). Figure 12 shows

the same comparison using the weighted accuracy as

metric (§ 5.4.1). BIRCH outperforms the other two al-

gorithms in the large majority of batches. Incremental

Malheur performs quite badly for blocks 8 and 9. In

both cases, this is due to the presence in the previous

block of several malware samples that do not belong

to any known family.Incremental Malheur does not up-

date the clusters identified previously, thus over time

it may end up with an overall clustering that does not

result as accurate as that of BIRCH or Malheur.

Fig. 11: Accuracy comparison between BIRCH, Mal-
heur and Incremental Malheur.

Fig. 12: Weighted accuracy comparison between

BIRCH, Malheur and Incremental Malheur.

5.4.3 Comparison between MalFamAware and

Classifiers

We compare the accuracy of BIRCH against that of

several standard classification algorithms: Random For-

est, Support Vector Machines (SVM), Gaussian Naive-

Bayes and a Multi-layer Perceptron. We train these

classifiers in two distinct ways: (i) once at the begin-

ning using only the samples contained in first block as

training set (see Figure 13), and (ii) at every batch,

where the training set used to analyse the i-th batch

includes all the samples contained in blocks 1 to i − 1

(see Figure 14).

In both cases, BIRCH shows an accuracy compara-

ble with the most accurate classifiers. The evident ac-

curacy degradation for block 7 is justified as this block

is the one having the largest number of samples be-

longing to unknown families. This degradation affects

all the algorithms, but BIRCH proves to be the least

affected. Surprisingly, all the standard classification al-

gorithms perform better when they are trained only on

the samples contained in the first block.

Fig. 13: Accuracy comparison between BIRCH and clas-

sifiers trained once on the first block.

Fig. 14: Accuracy comparison between BIRCH and clas-

sifiers retrained at every block.



MalFamAware: Automatic Family Identification and Malware Classification Through Online Clustering 13

Figures 15 and 16 show the same comparison using

the weighted accuracy (§ 5.4.1) to highlight how these

algorithms behave when samples belong to yet unknown

families. BIRCH outperforms standard classification al-

gorithms, both when trained once at the beginning and

when retrained at each batch.

Fig. 15: Weighted accuracy comparison between

BIRCH and classifiers trained once on the first block.

Fig. 16: Weighted accuracy comparison between

BIRCH and classifiers retrained at every block.

Finally, Table 5 reports precision, recall and F1 score

for the tested approaches, averaged over all the 10 blocks

together with the standard deviation value. It can be

observed that BIRCH provides the highest precision

and F1 score.

5.4.4 Malware Classification Performance

We finally compare the execution time required for each

block. Results are reported in Figure 17 in logarithmic

scale. As we here consider the classifiers trained once

at the beginning with the samples of the first block,

we do not include their execution time for the first

block. The picture shows that BIRCH exhibits execu-

tion times similar to standard classification algorithms,

Algorithm Precision Recall F1

BIRCH 0.952 ± 0.043 0.902 ± 0.077 0.923 ± 0.041

Malheur 0.941 ± 0.018 0.693 ± 0.128 0.789 ± 0.097

Incremental
Malheur

0.949 ± 0.043 0.724 ± 0.285 0.78 ± 0.209

Naive-Bayes 0.789 ± 0.181 0.986 ± 0.026 0.866 ± 0.133

Retrained N-
B

0.69 ± 0.254 0.997 ± 0.003 0.785 ± 0.214

Random For-
est

0.783 ± 0.196 0.995 ± 0.013 0.861 ± 0.148

Retrained
R.F.

0.677 ± 0.26 0.995 ± 0.013 0.739 ± 0.204

SVM 0.746 ± 0.217 0.84 ± 0.152 0.75 ± 0.176

Retrained
SVM

0.701 ± 0.227 0.821 ± 0.166 0.709 ± 0.137

Multi-layer
Perceptron

0.834 ± 0.13 0.977 ± 0.038 0.895 ± 0.091

Retrained
M-l P.

0.833 ± 0.131 0.901 ± 0.151 0.851 ± 0.109

Table 5: Precision, Recall and F1 score for all the tested

algorithms.

and at least three orders smaller than Malheur and In-

cremental Malheur.

Fig. 17: Execution time comparison for all the tested

algorithms.

6 Conclusions and future work

In this paper we propose an approach, MalFamAware,

to carry out simultaneously family identification and

malware classification by using an online clustering al-

gorithm, namely BIRCH. We present an extensive ex-

perimental evaluation where we compare how MalFamAware

performs in terms of family identification (against other

clustering algorithms) and malware classification (against

Malheur, Malheur Incremental and other classification

algorithms). Results prove MalFamAware has good ac-

curacy in family identification and high accuracy in

malware classification, showing very low execution time.



14 Gregorio Pitolli et al.

As main future work we plan to carry out more

extensive experiments with more and larger batches,

in order to assess the reliability of our approach. Ad-

ditionally, we want to study the convenience of intro-

ducing periodic total reclustering whenever an updated

and reliable ground truth becomes available, in order

to properly realign the clustering in families and to re-

train BIRCH radius threshold. As introduced in Section

2, another topic that deserve investigation is Adversar-

ial Machine Learning, we need to analyze and improve

the robustness of our solution regards to this kind of

attacks.

7 Compliance with Ethical Standards

Ethical approval: This article does not contain any stud-

ies with human participants or animals performed by

any of the authors.

References

1. G. Laurenza, D. Ucci, L. Aniello, R. Baldoni, An archi-
tecture for semi-automatic collaborative malware analy-
sis for cis, in: 3rd International Workshop on Reliability
and Security Aspects for Critical Infrastructure, 2016.

2. G. Laurenza, L. Aniello, R. Lazzeretti, R. Baldoni, Mal-
ware triage based on static features and public APT re-
ports, in: Proceedings of the First International Con-
ference on Cyber Security Cryptography and Machine
Learning, CSCML, 2017, pp. 288–305.

3. A. Mohaisen, O. Alrawi, M. Mohaisen, Amal: High-
fidelity, behavior-based automated malware analysis and
classification.

4. L. Massarelli, L. Aniello, C. Ciccotelli, L. Querzoni,
D. Ucci, R. Baldoni, Android malware family classi-
fication based on resource consumption over time, in:
2017 12th International Conference on Malicious and Un-
wanted Software (MALWARE), 2017, pp. 31–38.

5. K. Rieck, P. Trinius, C. Willems, T. Holz, Automatic
analysis of malware behavior using machine learning
19 (4) 639–668.

6. T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an effi-
cient data clustering method for very large databases, in:
ACM Sigmod Record, Vol. 25, ACM, pp. 103–114.

7. G. Pitolli, L. Aniello, G. Laurenza, L. Querzoni, R. Bal-
doni, Malware family identification with BIRCH clus-
tering, in: Proceedings of the 51st Annual International
Carnahan Conference on Security Technology (ICCST),
ICCST ’17, 2017.

8. Y. Ye, T. Li, D. Adjeroh, S. S. Iyengar, A survey on
malware detection using data mining techniques, ACM
Comput. Surv. 50 (3) (2017) 41:1–41:40.

9. D. Ucci, L. Aniello, R. Baldoni, Survey of machine learn-
ing techniques for malware analysis, Computers & Secu-
rity.

10. J. Kinable, O. Kostakis, Malware classification based on
call graph clustering, Journal in computer virology 7 (4)
(2011) 233–245.

11. X. Hu, K. G. Shin, Duet: integration of dynamic and
static analyses for malware clustering with cluster ensem-
bles, in: Proceedings of the 29th annual computer security
applications conference, ACM, 2013, pp. 79–88.

12. M. Z. Rafique, J. Caballero, Firma: Malware clustering
and network signature generation with mixed network be-
haviors, in: International Workshop on Recent Advances
in Intrusion Detection, Springer, pp. 144–163.

13. U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel,
E. Kirda, Scalable, behavior-based malware clustering.,
in: NDSS, Vol. 9, Citeseer, pp. 8–11.

14. J. Jang, D. Brumley, S. Venkataraman, Bitshred: feature
hashing malware for scalable triage and semantic analy-
sis, in: Proceedings of the 18th ACM conference on Com-
puter and communications security, ACM, pp. 309–320.

15. Y. Zhong, H. Yamaki, Y. Yamaguchi, H. Takakura,
Ariguma code analyzer: Efficient variant detection by
identifying common instruction sequences in malware
families, in: Computer Software and Applications Con-
ference (COMPSAC), 2013 IEEE 37th Annual, IEEE,
2013, pp. 11–20.

16. L. Deshotels, V. Notani, A. Lakhotia, Droidlegacy: Auto-
mated familial classification of android malware, in: Pro-
ceedings of ACM SIGPLAN on program protection and
reverse engineering workshop 2014, ACM, 2014, p. 3.

17. J. Garcia, M. Hammad, S. Malek, Lightweight,
obfuscation-resilient detection and family identification
of android malware, ACM Transactions on Software En-
gineering and Methodology (TOSEM) 26 (3) (2018) 11.

18. Y. Li, J. Jang, X. Hu, X. Ou, Android malware cluster-
ing through malicious payload mining, in: International
Symposium on Research in Attacks, Intrusions, and De-
fenses, Springer, 2017, pp. 192–214.

19. M. Aresu, D. Ariu, M. Ahmadi, D. Maiorca, G. Giacinto,
Clustering android malware families by http traffic, in:
Malicious and Unwanted Software (MALWARE), 2015
10th International Conference on, IEEE, 2015, pp. 128–
135.

20. L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, J. D.
Tygar, Adversarial machine learning, in: Proceedings of
the 4th ACM Workshop on Security and Artificial Intel-
ligence, AISec ’11, ACM, New York, NY, USA, 2011, pp.
43–58. doi:10.1145/2046684.2046692.
URL http://doi.acm.org/10.1145/2046684.2046692

21. W. Xu, Y. Qi, D. Evans, Automatically evading clas-
sifiers, in: Proceedings of the 2016 Network and Dis-
tributed Systems Symposium, 2016, pp. 21–24.

22. A. Calleja, A. Mart́ın, H. D. Menéndez, J. Tapiador,
D. Clark, Picking on the family: Disrupting android mal-
ware triage by forcing misclassification, Expert Systems
with Applications 95 (2018) 113–126.

23. B. Biggio, I. Pillai, S. Rota Bulò, D. Ariu, M. Pelillo,
F. Roli, Is data clustering in adversarial settings secure?,
in: Proceedings of the 2013 ACM Workshop on Arti-
ficial Intelligence and Security, AISec ’13, ACM, New
York, NY, USA, 2013, pp. 87–98. doi:10.1145/2517312.

2517321.
URL http://doi.acm.org/10.1145/2517312.2517321

24. B. Biggio, K. Rieck, D. Ariu, C. Wressnegger, I. Corona,
G. Giacinto, F. Roli, Poisoning behavioral malware clus-
tering, in: Proceedings of the 2014 Workshop on Artificial
Intelligent and Security Workshop, AISec ’14, ACM, New
York, NY, USA, 2014, pp. 27–36. doi:10.1145/2666652.

2666666.
URL http://doi.acm.org/10.1145/2666652.2666666

25. J. Han, J. Pei, M. Kamber, Data mining: concepts and
techniques, Elsevier.

http://doi.acm.org/10.1145/2046684.2046692
https://doi.org/10.1145/2046684.2046692
http://doi.acm.org/10.1145/2046684.2046692
http://doi.acm.org/10.1145/2517312.2517321
https://doi.org/10.1145/2517312.2517321
https://doi.org/10.1145/2517312.2517321
http://doi.acm.org/10.1145/2517312.2517321
http://doi.acm.org/10.1145/2666652.2666666
http://doi.acm.org/10.1145/2666652.2666666
https://doi.org/10.1145/2666652.2666666
https://doi.org/10.1145/2666652.2666666
http://doi.acm.org/10.1145/2666652.2666666


MalFamAware: Automatic Family Identification and Malware Classification Through Online Clustering 15

26. M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Ja-
hanian, J. Nazario, Automated classification and analysis
of internet malware, in: International Workshop on Re-
cent Advances in Intrusion Detection, Springer, pp. 178–
197.

27. G. Wicherski, pehash: A novel approach to fast malware
clustering., LEET 9 (2009) 8.

28. P. Li, L. Liu, D. Gao, M. K. Reiter, On challenges
in evaluating malware clustering., in: RAID, Vol. 6307,
Springer, 2010, pp. 238–255.

29. A. Mohaisen, O. Alrawi, Av-meter: An evaluation of an-
tivirus scans and labels, in: International Conference on
Detection of Intrusions and Malware, and Vulnerability
Assessment, Springer, pp. 112–131.

30. D. Harley, The game of the name malware naming,
shape shifters and sympathetic magic, in: CEET 3rd Intl.
Conf. on Cybercrime Forensics Education & Training,
San Diego, CA.

31. M. Sebastián, R. Rivera, P. Kotzias, J. Caballero, AV-
class: A tool for massive malware labeling, in: Interna-
tional Symposium on Research in Attacks, Intrusions,
and Defenses, Springer, pp. 230–253.

32. P. Kotzias, L. Bilge, J. Caballero, Measuring pup preva-
lence and pup distribution through pay-per-install ser-
vices., in: USENIX Security Symposium, 2016, pp. 739–
756.

33. M. Polino, A. Continella, S. Mariani, S. D’Alessio,
L. Fontana, F. Gritti, S. Zanero, Measuring and defeat-
ing anti-instrumentation-equipped malware, in: Interna-
tional Conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, Springer, 2017, pp.
73–96.

34. W. M. Rand, Objective criteria for the evaluation of clus-
tering methods 66 (336) 846–850.

35. L. Hubert, P. Arabie, Comparing partitions 2 (1) 193–
218.

36. A. Strehl, J. Ghosh, Cluster ensembles—a knowledge
reuse framework for combining multiple partitions, Jour-
nal of machine learning research 3 (Dec) (2002) 583–617.

37. N. X. Vinh, J. Epps, J. Bailey, Information theoretic
measures for clusterings comparison: Is a correction for
chance necessary?, in: Proceedings of the 26th Annual In-
ternational Conference on Machine Learning, ICML ’09,
ACM, New York, NY, USA, 2009, pp. 1073–1080.

38. E. B. Fowlkes, C. L. Mallows, A method for comparing
two hierarchical clusterings, Journal of the American Sta-
tistical Association 78 (383) (1983) 553–569.

39. M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., A
density-based algorithm for discovering clusters in large
spatial databases with noise., in: Kdd, Vol. 96, 1996, pp.
226–231.

40. O. Maimon, L. Rokach, Data mining and knowledge dis-
covery handbook, Vol. 2, Springer, 2005.

41. J. MacQueen, et al., Some methods for classification and
analysis of multivariate observations, in: Proceedings of
the fifth Berkeley symposium on mathematical statistics
and probability, Vol. 1, Oakland, CA, USA., 1967, pp.
281–297.

42. D. Sculley, Web-scale k-means clustering, in: Proceedings
of the 19th international conference on World wide web,
ACM, 2010.

43. C. B. Do, S. Batzoglou, What is the expectation maxi-
mization algorithm?, Nature biotechnology 26 (8) (2008)
897–899.

44. S. Guha, R. Rastogi, K. Shim, Cure: an efficient clus-
tering algorithm for large databases, in: ACM Sigmod
Record, Vol. 27, ACM, 1998, pp. 73–84.

45. M. Steinbach, G. Karypis, V. Kumar, et al., A compar-
ison of document clustering techniques, in: KDD work-
shop on text mining, Vol. 400, Boston, 2000, pp. 525–526.



16 Gregorio Pitolli et al.

A Feature List

This appendix includes the complete list of used features in
tables 6,7,8,10,9.

Name Type

File size Integer
Sections with virtual size / 2 >raw size
Sections with entropy <1
Sections with entropy >7
Other sections count
Resources count
Imported libraries count
Imported API count from Kernel*.dll
Imported API count from User*.dll
Imported API count from ADVAPI*.dll
Imported API count from SHELL*.dll
Imported API count from COMCTL*.dll
Imported API count from CRYPT*.dll
Imported API count from msvcr*.dll
Imported API count from GDI*.dll
Imported API count from SHLWAPI*.dll
Imported API count from WS*.dll
Imported API count from WININET.dll
Imported API count from WINHTTP.dll
Concatenated strings String
Most frequent string
Is 32 bit? Binary
Has GUI?
Has .rdata section?
Has .data section?
Has .rsrc section?
Has .reloc section?
Is present ‘LoadLibrary*’ ?
Is present ‘GetProcAddress’ ?
Is present ‘MessageBox*’ ?
Is present ‘ShellExecute*’ ?
Is present ‘IsDebuggerPresent’ ?
Is present ‘VirtualAlloc*’ ?
Is present ‘CreateThread’ ?
Is present ‘CreateProcess’ ?
Is present ‘OpenProcess*’ ?
Is present ‘RaiseException’ ?
Is present ‘CreateEvent*’ ?
Is present ‘GetSystemInfo’ ?
Is present ‘GetComputerName*’ ?
Is present ‘SetWindowsHook*’ ?
Is present ‘WriteProcessMemory’ ?
Is present ‘GetTickCount’ ?
Is present ‘Sleep’ ?
Is present ‘GetDiskFreeSpace*’ ?
Is present ‘SetThreadContext’ ?
Is present ‘CreateRemoteThread’ ?
Is present ‘GetVersion*’ ?
Is present ‘GetProcessHeap’ ?
Is present ‘GetUserName’ ?
Is present ‘ExitProcess’ ?
Is present ‘ CorExeMain’ ?
Is present ‘WaitForSingleObject’ ?
Is present ‘GetStartupInfo*’ ?

Is present ‘GetKeyboard*’ ?
Is present ‘SetUnhandledExceptionFilter’ ?
Is present ‘HttpSendRequest’ ?
Is present ‘HttpQueryInfo’ ?

Table 6: List of Static Features
Name Type

Children processes count Integer
Total processes count
Main process threads count
Main process children threads count
Other processes threads count
Other processes children threads count
Executed commands count
Started services count
Created services count
Number of calls to ‘FlsGetValue’
Number of calls to ‘CreateWindow’
Number of calls to ‘GetSystemMetrics’
Number of calls to ‘NtMapViewOfSection’
Number of calls to ‘RtlRunDecodeUnicodeString’
Number of calls to ‘SystemParametersInfo’
Number of calls to ‘OpenService’
Number of calls to ‘RemoveDirectory*’
Number of calls to ‘NtOpenDirectory*’
Number of calls to ‘GetAdaptersAddresses’
Number of calls to ‘CopyFile’
Number of calls to ‘NtSetTimer’
Number of calls to ‘Process32Next’
Number of calls to ‘GetCursorPos’
Number of calls to ‘CryptHashData’
Number of calls to ‘CryptCreateHash’
Number of calls to ‘InternetSetOption’
Number of calls to ‘HttpQueryInfo’
Number of calls to ‘HttpAddRequestHeaders’
Number of calls to ‘InternetReadFile’
Number of calls to ‘HttpSendRequest’
Number of calls to ‘GetClipboard’
Number of calls to ‘UnhandledExceptionFilter’
Number of calls to ‘GetLastError’
Number of calls to ‘TerminateProcess’
Number of calls to ‘GetFileVersionInfo’
Number of calls to ‘HGetFolderPath’
Number of calls to ‘VirtualProtect’
Number of calls to ‘NtWaitForSingleObject’
Number of calls to ‘NtAllocateVirtualMemory’
Number of calls to ‘NtCreateThread*’
Number of calls to ‘NtQueryInformationProcess’
Number of calls to ‘NtResumeThread’
Number of calls to ‘NtTerminateProcess’
Number of calls to ‘NtCreateFile’
Number of calls to ‘NtOpenFile’
Number of calls to ‘NtQueryInformationFile’
Number of calls to ‘LdrLoadDll’
Number of calls to ‘NtCreateSection’
Number of calls to ‘NtOpenSection’
Number of calls to ‘NtQueryDirectoryFile’
Number of calls to ‘NtProtectVirtualMemory’
Number of calls to ‘NtQueryAttributesFile’



MalFamAware: Automatic Family Identification and Malware Classification Through Online Clustering 17

Number of calls to ‘DeviceIoControl’
Number of calls to ‘NtQuerySystemInformation’
Number of calls to ‘RegOpenKey*’
Number of calls to ‘RegCreateKey*’
Number of calls to ‘RegEnumValue*’
Number of calls to ‘RegQueryValue*’
Number of calls to ‘RegQueryInfoKey*’
Number of calls to ‘NtOpenKey’
Number of calls to ‘NtQueryValueKey’
Number of calls to ‘bind’
Number of calls to ‘connect’
Number of calls to ‘send’
Number of calls to ‘recv’
Main process children names String
Other processes names
Other processes children names

Table 7: List of Process Features
Name Type

Read PIPEs count Integer
Written PIPEs count
Read files count from ‘Fonts’ folder
Read files count from ‘Assembly’ folder
Read files count from ‘Chrome’ folder
Written files count in ‘Chrome’ folder
Read files count from ‘Python’ folder
Read files count from ‘System32’ folder
Written files count in ‘System32’ folder
Read files count from ‘Temp’ folder
Written files count in ‘Temp’ folder
Read files count from ‘Device’ folder
Written files count in ‘Device’ folder
Read files count from ‘WindowsMail’ folder
Written files count in ‘WindowsMail’ folder
Read files count from ‘Common Files’ folder
Written files count in ‘Common Files’ folder
Read files count from ‘Program Files’ folder
Written files count in ‘Program Files’ folder
Read files count from ‘AppData’ folder
Written files count in ‘AppData’ folder
Read files count from ‘Microsoft.NET’ folder
Written files count in ‘Microsoft.NET’ folder
Read files count from ‘Microsoft’ folder
Written files count in ‘Microsoft’ folder
Read files count from ‘ProgramData’ folder
Written files count in ‘ProgramData’ folder
Read files count from ‘Documents and settings’ folder
Written files count in ‘Documents and settings’ folder
Read files count from ‘Windows’ folder
Written files count in ‘Windows’ folder
Read files count from ‘Users’ folder
Written files count in ‘Users’ folder
Read files count from other folders
Written files count in other folders
Created EXE count
Created BAT count
Created COM count
Created VBS count
Created JPG count
Created SYS count

Created PIF count
Created MSI count
Created MSP count
Created TMP count
Created DAT count
Read EXE count
Read DLL count
Read BAT count
Created files count with multiple extensions
Deleted files count
Created mutexes count

Table 8: List of Filesystem Features
Name Type

Contacted ‘com’ domains count Integer
Contacted ‘org’ domains count
Contacted ‘net’ domains count
Contacted other domains count
HTTP GET requests count
HTTP POST requests count
Other HTTP requests count
Contacted hosts count
Hosts subnet
udp packets count
udp source ip subnet
udp destination ip subnet
irc packets count
irc source ip subnet
irc destination ip subnet
smtp packets count
tcp packets count
tcp source ip subnet
tcp destination ip subnet
dns packets count
icmp packets count
udp source port average Real
udp destination port average
tcp source port average
tcp destination port average
User-Agent String

Table 9: List of Network Features



18 Gregorio Pitolli et al.

Name Type
Deleted registry keys count Integer
read HKLM\software\Policies\Microsoft\Windows\CurrentVersion\Internet Settings count
written HKLM\software\Policies\Microsoft\Windows\CurrentVersion\Internet Settings count
read HKLM\Software\Microsoft\.NETFramework count
written HKLM\Software\Microsoft\.NETFramework count
read HKLM\Software\System count
written HKLM\Software\System count
read HKLM\Software\Classes count
written HKLM\Software\Classes count
read HKLM\Software\Microsoft\Windows\CurrentVersion count
written HKLM\Software\Microsoft\Windows\CurrentVersion count
read HKLM\Software\Microsoft\Windows NT\CurrentVersion count
written HKLM\Software\Microsoft\Windows NT\CurrentVersion count
read HKLM\Software\Policies count
written HKLM\Software\Policies count
read other HKLM count
written other HKLM count
read HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer count
written HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer count
read HKCU\Software\Policies\Microsoft\Windows\CurrentVersion\Internet Settings count
written HKCU\Software\Policies\Microsoft\Windows\CurrentVersion\Internet Settings count
read HKCU\Software\Classes count
written HKCU\Software\Classes count
read HKCU\Software\Microsoft\Windows\CurrentVersion count
written HKCU\Software\Microsoft\Windows\CurrentVersion count
read HKCU\Software\Microsoft\Windows NT\CurrentVersion count
written HKCU\Software\Microsoft\Windows NT\CurrentVersion count
read HKCU\Software\Policies count
written HKCU\Software\Policies count
read other HKEY CURRENT USER count
written other HKEY CURRENT USER count
read HKEY CLASSES ROOT count
written HKEY CLASSES ROOT count
read HKEY USERS count
written HKEY USERS count
Run at startup? Binary

Table 10: List of Registry Features


	Introduction
	Related Work
	Balanced Iterative Reducing and Clustering using Hierarchies
	MalFamAware Approach
	Experimental evaluation
	Conclusions and future work
	Compliance with Ethical Standards
	Feature List

