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Theoretical models of self-interacting dark matter represent a promising answer to a series of open
problems within the so-called collisionless cold dark matter paradigm. In case of asymmetric dark matter,
self-interactions might facilitate gravitational collapse and potentially lead to the formation of compact
objects predominantly made of dark matter. Considering both fermionic and bosonic (scalar ϕ4) equations
of state, we construct the equilibrium structure of rotating dark stars, focusing on their bulk properties and
comparing them with baryonic neutron stars. We also show that these dark objects admit the I-Love-Q
universal relations, which link their moments of inertia, tidal deformabilities, and quadrupole moments.
Finally, we prove that stars built with a dark matter equation of state are not compact enough to mimic
black holes in general relativity, thus making them distinguishable in potential events of gravitational
interferometers.
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I. INTRODUCTION

It is quite probable that if dark matter (DM) exists in
the form of particles, it might experience non-negligible
self-interactions. This is highly motivated both theoretically
and observationally. From a theoretical point of view, if the
dark sector is embedded in a unification scheme in a theory
beyond the Standard Model, it is hard to imagine DM
particles that do not interact among themselves via some
gauge bosons. In addition, DM self-interactions might be a
desirable feature due to the fact that the collisionless cold
dark matter (CCDM) paradigm seems to be currently at
odds with observations. There are three main challenges
that CCDM faces today. The first one is related to the
flatness of the DM density profile at the core of dwarf
galaxies [1,2]. The latter are dominated by DM and,
although numerical simulations of CCDM [3] predict a
cuspy profile for the DM density at the core of these
galaxies, measurements of the rotation curves suggest that
the density profile is flat. A second issue is that numerical
simulations of CCDM also predict a larger number of
satellite galaxies in the Milky Way than what has been
observed so far [4–6]. Finally a third serious problem for
CCDM is the “too big to fail” [7]; i.e. CCDM numerical
simulations predict massive dwarf galaxies that are too big
to not form visible and observable stars. These discrepan-
cies between numerical simulations of CCDM and obser-
vations could be alleviated by taking into account
DM-baryon interactions [8–11]. In addition, the satellite

discrepancy could be attributed to Milky Way being a
statistical fluctuation [12–14], thus deviating from what
numerical simulations predict. Apart from these explan-
ations, another possible solution is the existence of
substantial DM self-interactions, which can solve all three
aforementioned problems [15–18]. It is not hard, for
example, to see that DM self-interactions would lead to
increased rates of self-scattering in high DM density
regions, thus flattening out dense dwarf galaxy cores.
In this picture, DM self-interactions have been thoroughly

studied in the literature in different contexts [16–35].
Although depending on the type of DM self-interactions,
the general consensus is that DM interactions falling within
the range 0.1 cm2=g < σXX=mX < 10 cm2=g (σXX and mX
being the DM self-interaction cross section and DM particle
mass, respectively) are sufficient to resolve the CCDM
problems. If DM is made of one species, DM self-
interactions cannot be arbitrarily strong because in this case
they could destroy the ellipticity of spiral galaxies [36,37],
dissociate the bullet cluster [38], or destroy old neutron stars
(NSs) by accelerating the collapse of captured DM at the
core of the stars leading to formation of black holes that could
eat up the star (thus imposing constraints due to observation
of old NSs) [39].
Apart from the associated problems of CCDM, there is

another orthogonal scenario where DM self-interactions
might be needed. The supermassive black hole at the center
of the Milky Way seems to be too big to have grown
within the lifetime of the galaxy from collapsed baryonic
stars. One possible solution is to envision a strongly self-
interacting subdominant component of DM that collapses
via a gravothermal process, providing the seeds for the
black hole to grow to today’s mass within the lifetime of the
Milky Way [40].
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As a desirable feature of DM, self-interactions may assist
DM clumping together and forming compact objects,1 if
they are dissipative or they speed up gravothermal evolu-
tion [41]. There could be two different possibilities here:
(i) DM with a substantial amount of annihilations and
(ii) DM with a negligible amount of annihilations. The
weakly interacting massive particle (WIMP) paradigm
belongs to the first category. In this case, the DM relic
density in the Universe is determined by the DM annihi-
lations. DM is in thermal equilibrium with the primordial
plasma until the rate of DM annihilations becomes smaller
than the expansion of the Universe. In this WIMP para-
digm, particle and antiparticle populations of DM come
with equal numbers. Gravitational collapse of such a type
of DM could create dark stars that oppose further gravi-
tational collapse by radiation pressure [42–44]. However,
these types of stars cannot exist anymore, as DM annihi-
lations would have already led to the depletion of the DM
population and therefore to the extinction of these dark
stars a long time ago.
On the contrary, asymmetric DM can lead to the

formation of compact starlike objects that can be stable
today. The asymmetric DM scenario is a well-motivated
alternative to the WIMP paradigm [45–64]. In this case,
there is a conserved quantum number, as, e.g., the baryon
number. A mechanism similar to the one responsible for
the baryon asymmetry in the Universe could also create a
particle-antiparticle asymmetry in the DM sector. DM
annihilations deplete the species with the smaller popula-
tion, leaving at the end only the species in excess, to
account for the DM relic density. One can easily see that,
e.g., a DM particle of mass ∼5 GeV could account for
the DM abundance, provided that a common asymmetry
mechanism that creates simultaneously a baryon and a
DM unit is in place. Obviously, in such an asymmetric
DM scenario, there is no substantial amount of annihila-
tions today due to the lack of DM antiparticles. Therefore,
provided that DM self-interactions can facilitate the
collapse, asymmetric DM can form compact objects that
can be stable, thus possibly detectable today via, e.g.,
gravitational wave (GW) emission in binary systems.
The possibility of asymmetric DM forming compactlike

objects has been studied in the cases of both fermionic
[65,66] and bosonic [67] DM. In both of these papers, the
mass-radius relations, density profiles, and maximum
“Chandrasekhar” mass limits were established for a wide
range of DM particle masses and DM self-coupling, for
both attractive and repulsive interactions. Bosonic DM
forming compact objects has also been studied in other than
asymmetric DM contexts, i.e., in the case DM is ultralight,

e.g., axions [68–82] or other theoretically motivated
bosonic candidates [83].
These proposed dark stars, if in binary systems, can

produce GW signals that could potentially distinguish them
from corresponding signals of black hole binaries, as it was
suggested in [84,85]. Other probes of bosonic DM stars via
GWs have been proposed in [86]. We remark that objects
inconsistent with either black holes or NSs may suggest
the existence of new particle physics. Therefore, compact
binary mergers could become a search strategy for beyond-
standard-model physics which is completely orthogonal to
the LHC and (in-)direct DM searches. The interesting
scenario of compact objects made of asymmetric DM with
a substantial baryonic component has also been studied
[87–90].
One should mention that there are several scenarios of

how these dark stars can form in the first place.
Gravothermal collapse is one option [91]. In this case,
DM self-interactions facilitate the eviction of DM particles
that acquire excessive energy from DM-DM collisions, thus
leading to a lower energy DM cloud that shrinks gradually
forming a dark star. Another possibility is by DM accretion
in supermassive stars. Once the star collapses, DM is not
necessarily carried by the supernova shock wave, leaving a
highly compact DM population at the core [92]. Moreover,
if DM interactions are dissipative, DM can clump via direct
cooling [93].
It is crucial to determine themost important featureswhich

characterize the bulk properties of dark compact objects and
form a set of suitable observables to be potentially con-
strained by gravitational and electromagnetic surveys. In this
paper, we investigate the structure of slowly rotating and
tidally deformed stars, modeled with a DM equation of state
(EoS), based on fermionic and bosonic DM particles. As far
as rotation is concerned, we follow the approach developed
in [94,95], in which spin corrections are described as a
small perturbation of a static, spherically symmetric space-
time.At the background level, the star structure is determined
by solving the usual Tolman-Oppenheimer-Volkoff equa-
tions (TOV). Rotational terms are included up to second
order in the angular momentum J, which allow one to
compute themoment of inertia I and the quadrupolemoment
Q of the star. Similarly, we model tidal effects through
the relativistic perturbative formalism described in [96].
At leading order, this approach leads to the Love number
k2 or, equivalently, the tidal deformability λ ¼ 2=3k2R5,
which encodes all the properties of the star’s quadrupolar
deformations. We refer the reader to the references cited
above for a detailed description of the equations needed to
compute these quantities.
The plan of the paper is the following: In Sec. II we

describe the main properties of the two classes of the
dark EoS considered. In Secs. III and IV we analyze the
bulk properties of the stellar models, such as masses
and radii, which can be potentially constrained through

1DM can also clump without self-interactions, e.g., when
density perturbations fulfill Jean’s criterion or via gravothermal
evolution.
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electromagnetic and GWobservations. An explicit example
of such constraints is discussed in Sec. IVA. In Sec. V we
investigate universal relations for dark stars. Finally, in
Sec. VI we summarize our results.
Throughout the paper (with the exception of Sec. II and

Appendix) we use geometrized units, in which G ¼ c ¼ 1.

II. THE DARK MATTER EQUATION OF STATE

In this section we describe the most important features of
the dark EoS used in this paper to model fermion and boson
stars. Moreover, in our analysis we will also consider two
standard EoS, apr [97] and ms1 [98], which represent
two extreme examples of soft and stiff nuclear matter, and
will allow one to make a direct comparison between the
macroscopic features of baryonic and dark objects.

A. Fermion star

We consider a fermionic particle interacting via a
repulsive Yukawa potential (e.g., due to a massive dark
photon),

V ¼ αX
r
exp

�
−
ℏmϕr

c

�
; ð1Þ

where αX is the dark fine structure constant and mϕ is the
mass of themediator. Themass of theDMfermion is denoted
as mX. Models that interact through a Yukawa potential are
useful in the context of self-interacting DM, because the
scattering cross section is suppressed at large relative
velocities [27]. As a result, the success of collisionless
cold DM is left untouched at supergalactic scales, while
the subgalactic structure is flattened. In the context of self-
interacting DM, both attractive and repulsive interactions
flatten structures. However, attractive interactions in a
compact object will soften the EoS. Since we are interested
in dense objects, we only consider repulsive interactions.
Pressure in fermion stars has two contributions: one from

Fermi repulsion and one due to the Yukawa interactions.
We calculate the energy density and pressure due to
Yukawa interactions in the mean field approximation; in
this case the EoS is given by two implicitly related
equations (see [66] for further details),

ρ ¼ m4
Xc

3

ℏ3

�
ξðxÞ þ 2

9π3
αX
ℏc

m2
X

m2
ϕ

x6
�
; ð2aÞ

P ¼ m4
Xc

5

ℏ3

�
χðxÞ þ 2

9π3
αX
ℏc

m2
X

m2
ϕ

x6
�
; ð2bÞ

where x≡ pF=ðmXcÞ is a dimensionless quantity that
measures the Fermi momentum compared to the DM mass
(note that the density is defined such that ρc2 is the total
energy density). The functions ξ and χ are the contributions
from Fermi repulsion [99], given by

ξðxÞ ¼ 1

8π2

h
x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
ð2x2 þ 1Þ − ln

�
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p �i
;

χðxÞ ¼ 1

8π2

h
x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
ð2x2=3 − 1Þ þ ln

�
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
Þ
i
:

Both pressure and density are smooth monotonic func-
tions of the parameters x. At low density the EoS becomes
an approximate polytrope P ¼ Kργ with index γ ≃ 5=3,
whereas at large density the index changes to γ ≃ 1. At
large density the proportionality constant is K ¼ c2=3 or
K ¼ c2, depending on whether the Fermi repulsion or the
Yukawa interaction dominates, respectively.

B. Boson star

Boson stars are naturally much smaller than their
fermionic counterparts, because they lack Fermi pressure
to balance their self-gravity [100,101]. In the absence of
self-interactions, bosons stars are stabilized by a quantum
mechanical pressure due to the uncertainty principle.
Unless the bosons are extraordinarily light, this pressure
is inherently tiny and can only balance small lumps of
matter. If the field self-interacts, the boson star would
naturally be similar to a fermion star in size [102].
A wide variety of boson stars have been investigated in

the literature (see [103] for a comprehensive review).
The most studied examples include a complex scalar field
with a Uð1Þ symmetry and an associated Noether charge.
Other solutions include real scalar field oscillatons [104],
Proca stars [105], and axion stars [106]. In this work, we
consider a complex scalar field coupled to gravity with the
action

SBS ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
c4R
16πG

− j∂μϕj2

−
m2

Xc
2

ℏ2
jϕj2 − 1

2

β

ℏc
jϕj4
�
; ð3Þ

where mX is the boson mass and β is a dimensionless
coupling constant. The energy-momentum tensor is not
automatically isotropic for a boson star. As such, the TOV
formalism does not always apply. However, if we choose a
spherically symmetric ansatz for the metric and the field
[ϕ ¼ φðrÞeiωt], the energy-momentum tensor becomes
approximately isotropic.2 The EoS for this boson star
model was first derived in [102], and it is given by

P ¼ c5

9ℏ3

m4
X

β

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ℏ3

c3
βρ

m4
X

s
− 1

!2

: ð4Þ

2This is true only when β=ð4πℏcÞ ≫ Gm4
X, in which case

spatial derivatives of the field can be dropped such that the Klein-
Gordon equation becomes algebraic.
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This EoS behaves as a γ ≃ 2 polytrope at low density and
smoothly softens to γ ≃ 1 at high density.

III. MASS-RADIUS PROFILES

Masses and radii are the macroscopic quantities which
immediately characterize astrophysical compact objects,
and they represent the primary target of both gravitational
and electromagnetic surveys. X-ray and radio observations
of astrophysical binaries are expected to provide precise
measurements of the mass components, as they develop
multiple relativistic effects which can be used to independ-
ently constrain the stellar structure [107,108]. However, an
accurate estimate of the radius still represents a challenging
task, mostly relied upon the observation of signals coming
from the interaction of the star with its surrounding
environment, which strongly depends on the assumption
employed to model the process. Coalescences of binary
NSs are also among the most powerful sources of GWs
for ground-based interferometers, such as LIGO [109] and
Virgo [110], as the large number of cycles before the
merger will allow one to extract the mass of the objects with
good accuracy [111]. Moreover, unlike the EM bandwidth,
GWobservatories have access to another quantity, the tidal
deformability [96,112], which offers complementary infor-
mation about the stellar radius (see Sec. IV).
These considerations point out that it is crucial to under-

stand how the values of M and R change according to the
extra parameters which specify the DM sector, and to which
extent they differ from ordinary NSs.3 The first section of
our analysis will therefore be devoted to investigate these
features.

A. Fermion stars

The fermion stars described in this paper are fully specified
by three parameters: the coupling constant αX, the dark
particle mass mX, and the mediator mass mϕ. Hereafter, we
will fix αX=ℏc≡ α ¼ 10−3, varying the other two coeffi-
cients mϕ ¼ ð8; 10; 12Þ MeV andmX ¼ ð1; 2Þ GeV. These
values lead to mass-radius profiles comparable with those
computed for apr and ms1, and therefore will allow for a
direct and clearer comparison with NSs. All our models,
identified by the label ϕmϕ XmX, are presented in Fig. 1.
Each point of the plot is obtained, for a chosen EoS, by
varying the star’s central pressure.
The left panel of the plot shows how the dark sector

parameters affect the stellar configurations. We note first
that, for a fixed radius, larger values ofmX rapidly decrease

the mass, therefore leading to less compact objects. This is
more evident from the center panel in which we draw the
compactness C ¼ M=R for all of our models. The mediator
mass also provides large changes, still in the same direction
as mX, as fewer compact stars are obtained passing from
mϕ ¼ 8 MeV to mϕ ¼ 12 MeV. It is interesting to note
that the two baryonic EoS considered are characterized by
steeper slopes, which lead to larger mass/radius variations.
Both left and center plots also show that overlapping
regions do exist between fermion stars and baryonic matter
profiles which yield the same configurations. This is
particularly relevant from the experimental point of view,
as mass and radius measurements lead to degeneracies
which may prevent a clear identification of the nature of
the compact object.
Mass-radius profiles are extremely useful, since they can

exploit astrophysical observations to constrain the space of
nuclear EoS. As an example, in the left plot of Fig. 1 we
show two shaded regions corresponding to constant surface
redshift

z ¼
�
1 −

2M
R

�
−1=2

− 1; ð5Þ

with two reference values, namely z ¼ 0.35 and z ¼ 0.5.
The first one matches the data obtained for EXO 0748-676, a
NS showing repeated x-ray bursts [113]. The width of the
bands represents a 10% accuracy in the measurements. It is
clear that, in the first case (z ¼ 0.35), the observed value is
already inconsistent with all the stable branches of the
models considered in this section. However, a potential
observation of a surface redshift z ¼ 0.5 would set a tighter
bound, ruling out the possibility that the source is a fermion
star with one of the EoS we have used here. Using multiple
observables, such as theEddington flux and the ratio between
the thermal flux and the color temperature, would further
reduce the parameter space of allowed configurations.
The center panel of Fig. 1 shows another interesting

property of fermion stars. The EoS considered cover large
changes in the mass-radius space, but the corresponding
compactness, for stable configurations, never exceeds a
threshold C ≈ 0.22, contrary to apr and ms1, which can
achieve values higher than 0.3. Although significantly
different from white dwarfs and main-sequence stars (for
which C ≲ 10−6), these values are below the well known
maximum theoretical bound for stationary and static NS,
C ≤ =9 ∼ 0.44. This result indicates that fermion stars
cannot act as black hole mimickers, i.e., compact objects
with a compactness approaching the limit C → 0.5 [85,114]
(with C ¼ 0.5 being the actual value for a nonrotating
Schwarzschild black hole).
As a final remark, for each model it is useful to investigate

the maximum rotation rate allowed by the stellar structure.
This quantity is of particular interest for astrophysical
observations, as spinning frequencies of isolated and binary
NSs are measured with exquisite precision and they can be
used to constrain the underlying EoS [108]. The right panel

3We note that in computing the star’s quadrupole moment
(Sec. IV), the rotation rate introduces a monopole correction
which modifies the mass of the compact object, namely
M̄ ¼ M þ δM, with δM ≪ M, M being the bare mass of the
star. Therefore, in general, M ≠ M̄. However, for the sake of
clarity, in the next sections we will mostly use M as the
fundamental parameter of our analysis.
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of Fig. 1 shows the minimum rotational period for fermion
stars, derived from the Keplerian limit T ¼ 2π=ΩK, where
ΩK ≈

ffiffiffiffiffiffiffiffiffiffiffiffi
M=R3

p
(mass-shedding limit). Although this is a

Newtonian approximation, it gives a good estimate of the
order of magnitude of this quantity and provides an absolute
upper limit on the spin. As a benchmark, we also draw
(horizontal black line) the value corresponding to the maxi-
mum frequency observed for a spinning NS, f ¼ 716 Hz,
i.e., T ≈ 1.4 ms [115]. This constraint alone cannot rule out
any theoretical model that we have used to describe both dark
stars and regular NSs. Assuming a future dark star observa-
tion, a bound potentially able to exclude configurations with
mX ≲ 1 GeV would require a much faster rotating object,
with f ≈ 1800 Hz or, equivalently, T ≈ 0.55 ms.

B. Boson stars

The mass-radius profiles for boson stars are shown in the
left panel of Fig. 2. We consider three values of the
coupling parameter4 β ¼ ð0.5; 1; 1.5Þπ and two values of

the boson mass mX ¼ ð300; 400Þ MeV. As the fermion
case, these configurations are chosen to provide the stellar
models closest to the standard NSs built with apr and ms1.
We label the boson EoS as β XmX.
We first note that, for a given mass, stronger couplings

stiffen the EoS, leading to larger radii and, therefore, to less
compact objects. At the same time, β modifies the maxi-
mum mass of each model, shifting the value to the top end
of the parameter space. The same trend, although with a
major impact, occurs if we consider lighter dark particles.
Even for boson stars, the slope of the curves is smoother

than that obtained for standard nuclear matter. This
produces more pronounced changes in the radius distribu-
tion, as the central pressure of the star varies. The right
panel of Fig. 2 also shows the stellar compactness M=R.
For all the considered models within the stable mass-radius
branch, we observe a maximum value C ≈ 0.16, well below
the edge of the curve related to apr and ms1 which, for a
fixed radius, yield softer EoS and therefore larger masses.
Therefore, even for the boson star models considered in this
paper, the values of the compactness do not reach the
maximum limit of C ≤ 4=9. Remarkably, we find that this

FIG. 2. Same as Fig. 1, but for boson stars with different values of the coupling constant β ¼ ð0.5; 1; 1.5Þπ and boson mass
mX ¼ ð300; 400Þ MeV.

FIG. 1. (Left) Mass-radius profiles for fermion stars with fixed α ¼ 10−3, dark particle mass mX ¼ ð1; 2Þ GeV, and mediator mass
mϕ ¼ ð8; 10; 12Þ MeV. The standard EoS apr and ms1 are represented by the yellow solid and the dashed green curves, respectively.
The shaded regions correspond to contour regions of constant surface redshift z ¼ 0.35 and z ¼ 0.5 with 10% of accuracy. (Center)
Compactness C ¼ M=R as a function of the stellar mass, for the models considered in the left panel. (Right) Minimum period, according
to the Kepler frequency limit, T ¼ 2π=ΩK. The dashed horizontal line represents the fastest known pulsar with f ¼ 716 Hz.

4The values of β are chosen to be less than 2π, such that the
interactions can be treated perturbatively [67].
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property holds in general for any class of boson EoS,
independently from the coupling parameter. A mathemati-
cal proof of this feature is outlined in Appendix.
Electromagnetic observations of the stellar spin frequency

are still too weak to considerably narrow the star parameter
space, as the maximum value observed so far leaves the
EoS essentially unbound. Larger values of f ≈ 1400 Hz
(or, equivalently, T ≈ 0.7 ms) would be required to exclude
the presence of a dark star. On the other hand, as seen in
the previous section, precise measurements of the surface
redshift represent a powerful tool to constrain the stellar
structure. As an example, the value z ¼ 0.35, derived for
EXO 0748-676, seems already to exclude the possibility that
this object is built by one of the bosonic EoS considered.

IV. MOMENTS OF INERTIA, TIDAL LOVE
NUMBERS, AND QUADRUPOLE MOMENTS

The moment of inertia represents another global feature
of compact objects, potentially observable by electromag-
netic surveys, which depends more on the compactness C
rather than on the microphysical details of the EoS. The
moment of inertia is found to be correlated through semi-
analytical relations with different stellar parameters, scaling
approximately as R2. Therefore, any constraint on the
stellar radius naturally provides a bound for I [116,117].
Moreover, this quantity affects different astrophysical
processes, such as pulsar glitches, characterized by sudden
increases of the stellar rotational frequency (of the order of
10−6). The relativistic spin-orbit coupling in compact
binary systems also depends on the moment of inertia.
In the near future, high precision pulsar timing could
determine the periastron advance of such systems in order
to provide an estimate of I (and therefore of R) with an
accuracy of 10% [118].
Motivated by these considerations, in this section we

shall compare the values of the moment of inertia computed
for DM and baryonic EoS. Our results are shown in Fig. 3.
As expected, for fermion stars and a fixed stellar mass, I

increases for smaller values of mϕ and mX, with the latter
leading to the largest variations, as it mainly affects the
stellar compactness. For the boson case, the largest moment
of inertia results from light particles, with mX < 300 MeV,
and stronger repulsive interactions β ≳ π. We also note that
for fermion stars and a fixed mass mX, the spread within
the configurations given by the mediator ϕ, typically
ΔI ≳ 10%, is much larger than the gap between apr
and ms1, which cover a rather wide range of standard
EoS currently known. This is particularly relevant for future
space observations, as measurements of the spin-orbit
effect (previously described) would provide errors smaller
than or equal to ΔI, and therefore would be able to set
(at least) an upper bound onmϕ. Similar considerations also
apply to the boson sector, if we consider the deviations
produced by the coupling parameter β.
Extracting information on the internal structure of

compact objects is also a primary goal of current and
future GW interferometers. The imprint of the EoS within
the signals emitted during binary coalescences is mostly
determined by adiabatic tidal interactions, characterized in
terms of a set of coefficients, the Love numbers, which are
computed assuming that tidal effects are produced by an
external, time-independent gravitational field [96,119,120].
The dominant contribution k2, associated with a quadru-
polar deformation, is defined by the relation

Qij ¼
2

3
k2R5Eij ¼ λEij; ð6Þ

where Eij is the external tidal tensor and Qij is the (tidally
deformed) star’s quadrupole tensor.5 The Love number k2
or, equivalently, the tidal deformability λ, depends solely on
the star’s EoS. The inclusion of the Love number into
semianalytical templates for GW searches and its detect-
ability6 by current and future detectors have been deeply
investigated in the literature [112,121–134]. As an exam-
ple, fully relativistic numerical simulations have shown
that, for stiff EoS, the radius of a standard NS can be
constrained within ∼10% of accuracy by advanced detec-
tors, with the measurability rapidly getting worse for softer
matter, i.e., for stellar configurations with larger compact-
ness [135]. More recently, the effect of dynamic tides has
been taken into account, proving that they also provide a
significant contribution to the GW emission [136,137].
To this end, it is crucial to analyze how λ behaves for

dark stars, as they may lead to large signatures, potentially

FIG. 3. Moment of inertia for fermion (left) and boson (right)
stars, for the various EoS considered in Figs. 1–2. The yellow
solid and green dashed curves correspond to the apr and ms1
EoS, respectively.

5Not to be confused with the spin-induced quadrupole moment
introduced later.

6We note that, so far, most of the works concerning tidal effects
focused on NS binaries only, as in general relativity k2 ¼ 0 for
black holes. However, the Love number formalism has recently
been extended to exotic compact objects, showing that they
represent a powerful probe to distinguish between such alter-
native scenarios and regular black holes [85].
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detectable by GW interferometers, to be used together with
measurements of I and Q for multimessenger constraints.
Figure 4 shows the tidal deformability as a function of the
stellar mass, for fermion and boson stars. For the former,
different values of mX and mϕ yield large variations of λ
within the parameter space. Such differences are mainly
related to the strong dependence of the tidal deformability
on the stellar radius, λ ∝ k2R5, which amplifies the dis-
crepancies between the models. We also note that for boson
stars a universal relation between k2 and the compactness
C ¼ M=R exists, which is independent of the specific
choice of mX and β.
It is worthwhile to remark that these features, which

ultimately reflect the stellar compactness, may be a crucial
ingredient for future GW detections, as λ is the actual
parameter entering the waveform. In this regard, dark stars
with a lighter mediator ϕ would experience large defor-
mations, improving our ability to constrain the tidal Love
number. On the other hand, EoS with mϕ ≫ 1 GeV would
provide smaller λ, leading to weaker effects within the
signal and, hence, to looser bounds on the star’s structure.
Similar considerations hold as far as boson interactions

are taken into account. For a chosen mass, both larger
couplings and lighter particles lead to larger values of the
Love number. The right panel of Fig. 4 shows indeed that
for a canonical 1.4 M⊙ star, even a very stiff EoS like ms1
would provide a tidal deformability more than 2 orders of
magnitude smaller than those computed for β ≳ π and
mX ≲ 300 MeV. Such an enhancement would strongly
improve the measurability of λ from GW signals.
As a final remark, in Fig. 5 we show the spin-induced

quadrupole moment for fermion and boson stars. Following
[94,95], the spacetime describing a spinning compact
object can be obtained perturbing a spherical nonrotating
metric, as a power series of the dimensionless spin variable
χ ¼ J=M2, J being the star’s intrinsic angular momentum.
The quadrupole moment affects the perturbed metric at the
second order in χ. In our analysis we consider rotational
frequencies f ¼ ð10; 100Þ Hz, such that χ ≪ 1, i.e., requir-
ing that spin effects represent a small perturbation of the
static, spherically symmetric background. Looking at the
figure we immediately note that, for a fixed mass, the values

of Q for dark and neutron stars yield large differences,
which can potentially be tested both by GW and electro-
magnetic observations. Indeed, the quadrupole moment
modifies the gravitational waveform produced by binary
coalescences, leading to signatures detectable by terrestrial
interferometers [138]. Moreover,Q is expected to affect the
location of the innermost stable circular orbit, and therefore
to influence the geodesic motion around the star [139]. The
latter plays a crucial role in several astrophysical phenom-
ena related to accretion processes, which produce charac-
teristic signals (quasiperiodic oscillations), that have been
proven to be a powerful diagnostic tool of the nature of
gravity in the strong-field regime.

A. Constraining the bulk properties:
A practical example

Before further discussing the basic properties of boson
and fermion stars, it is useful to provide an explicit example
of how future observations will constrain the bulk properties
described in the previous sections. For the sake of simplicity,
we shall consider one particular quantity, the tidal deform-
ability λ, which affects the GW signals emitted by binary
systems. We consider indeed the coalescence of two non-
spinning dark stars with masses m1, m2 and the same
EoS. The emitted sky-averaged waveform in the frequency
domain

~hðfÞ ¼ AeiψðfÞ ð7Þ

is specified by the overall amplitude A and the phase ψðfÞ,
which depends on the GW frequency f and the physical

FIG. 5. Quadrupole moments as functions of the stellar massM
for two values of the rotational frequency f ¼ ð10; 100Þ Hz. The
data for fermion and boson stars are compared against the results
derived for the standard EoS apr and ms1.

FIG. 4. Same as Fig. 3 but for the tidal deformability λ.
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parameters θ ¼ ðA; lnM; ln ν; tc;ϕc;ΛÞ, where M ¼
ðm1 þm2Þν3=5 and ν ¼ m1m2=ðm1 þm2Þ2 are the chirp
mass and the symmetric mass ratio, while ðtc;ϕcÞ are the
time and phase at the coalescence. The parameter Λ is an
average tidal deformability,

Λ ¼ 1

26
½ð1þ 12=qÞλ1 þ ð1þ 12qÞλ2�; ð8Þ

where q ¼ m1=m2 ≥ 1, related to the λ1;2 of the single
objects. In our analysis we assume that the GW template is
described by the post-Newtonian (PN) Taylor-F2 approx-
imant in the frequency domain, which is 3.5 and 2.5 PN
accurate in the point-particle and tidal phases, respectively.
We also consider the amplitude A at the leading Newtonian
order. We refer the reader to [140] and [123,129] for the
complete analytical expressions of the gravitational wave-
form. Equal-mass binaries, with q ¼ 1, yield Λ ¼ λ1 ¼ λ2.
For strong signals, with a large signal-to-noise ratio, the
errors on the parameters σθ can be estimated using a Fisher
matrix approach (see [141] and references therein). In this
framework, the covariance matrix of θ, Σij, is given by the
inverse of the Fisher matrix

Σij ¼ ðΓijÞ−1; Γij ¼
�∂h
∂θi
				 ∂h∂θj

�
θ¼θ̄

; ð9Þ

which contains the derivatives with respect to the binary
parameters computed around the true values θ̄, and we have
defined the scalar product ð·j·Þ between two waveforms

ðh1jh2Þ ¼ 2

Z
fmax

fmin

df
~h1ðfÞ ~h⋆2 ðfÞ þ ~h⋆1 ðfÞ ~h2ðfÞ

SnðfÞ
; ð10Þ

weightedwith the detector noise spectral densitySnðfÞ. In the
following, we consider one single interferometer, Advanced
LIGO, with the sensitivity curve provided in [142],
numerically compute Eqs. (9) between fmin ¼ 20 Hz and
fmax ¼ fISCO, the latter being the frequency at the innermost

stable circular orbit for the Schwarzschild spacetime, i.e.,
fISCO ¼ ½π63=2ðm1 þm2Þ�−1. We also assume sources at
distance d ¼ 100 Mpc, with masses m1;2 ¼ ð1.2; 1.4ÞM⊙
and q ¼ 1.
Table I shows the relative percentage errors σΛ=Λ for the

binary systems considered, and different EoS, together with
the values of Λ. The third and fifth columns immediately
show how, for a fixed mass, the uncertainties change among
all the models. As described in the previous sections, for
fermion stars, small values of the mediator mass ϕ lead to
larger tidal deformations, which drastically improve the
errors on Λ, around 1%. These numbers have to be
compared against the results for standard nuclear matter,
which provide much looser bounds. The same trend is
observed for boson EoS with β ≳ π and mX ≲ 300 MeV.
These data can be combined with other information,

coming from different experiments and/or bandwidths to
further constrain the stellar EoS. A more detailed analysis
on this topic, focused on how to join the results from both

TABLE I. Average tidal deformability Λ and corresponding
relative percentage errors, computed for boson and fermion dark
star binaries, with m1;2 ¼ 1.4 M⊙ (second and third columns)
and m1;2 ¼ 1.2 M⊙ (fourth and fifth columns). We assume
nonspinning sources at a distance d ¼ 100 Mpc. For some
EoS no model with 1.4 M⊙ exists.

EoS lnΛ1.4 σΛ=Λ1.4 lnΛ1.2 σΛ=λ1.2

ms1 10.88 20.55 10.93 19.41
apr 9.16 117.6 9.321 99.93
ϕ8 MeV X1 GeV 14.98 0.6746 15.22 0.7248
ϕ10 MeV X1 GeV 13.73 0.7228 14.06 0.5555
ϕ12 MeV X1 GeV 12.63 2.986 13.08 1.683
ϕ8 MeV X2 GeV � � � � � � 9.272 105
β0.5π X300 MeV � � � � � � 11.05 17.17
β1.0π X300 MeV 13.49 0.9701 13.85 0.6402
β1.5π X300 MeV 14.95 0.6677 15.18 0.717
β1.5π X400 MeV � � � � � � 10.77 22.92

FIG. 6. I-Love-Q relations for fermion stars with a fixed coupling constant α ¼ 10−3 and different values for mϕ and mX. The bottom
panels show the relative percentage errors between the numerical data and the universal relation (11) (dashed black curve).
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electromagnetic and GW surveys, will be presented in a
forthcoming publication.

V. UNIVERSAL RELATIONS

Astrophysical observations of compact objects in
both the electromagnetic and the gravitational bandwidths
are limited by our ignorance on their internal structure.
As discussed in the previous sections, macroscopic quan-
tities, such as masses and radii, strictly depend on the
underlying EoS, and their measurement is strongly affected
by the behavior of matter at extreme densities. This lack of
information can be mitigated by exploiting the recently
discovered I-Love-Q universal relations [143,144], which
relate the moment of inertia, the tidal Love number, and the
spin-induced quadrupole moment of slowly rotating com-
pact objects through semianalytical relations, which are
almost insensitive to the stellar composition and are
accurate within 1%. The I-Love-Q have several applica-
tions, as they can be used to break degeneracies between
astrophysical parameters and make redundancy tests of
general relativity (GR) [145,146]. These relations have
been extensively investigated in the literature so far,
extending their domain of validity to binary coalescence
[147], fast-rotating bodies [148–151], magnetars [152], and
proto-NS [153]. This analysis also led to the discovery of
new universal relations, both in GR [150,151,154–158] and
in alternative theories of gravity [159–162].
The I-Love-Q relations are described by semianalytic

fits of the following form:

ln y ¼ aþ b ln xþ cðln xÞ2 þ dðln xÞ3 þ eðln xÞ4; ð11Þ

where ða � � � eÞ are numerical coefficients (provided in
[144]), while ðy; xÞ correspond to the trio ðĪ; Q̄; λ̄Þ, nor-
malized such that

Ī ¼ I
M3

; Q̄ ¼ −
Q

M3χ2
; λ̄ ¼ λ

M5
; ð12Þ

where M is the mass of the nonrotating configuration.
Although the reason of the universality is not completely
clear, several works have already provided interesting
proofs to support the discovery, which can be classified
into three main arguments: (i) an approximate version of
the no-hair theorem which holds for isolated black holes in
GR [163]; (ii) the assumption that NS are modeled by

isodensity contours which are self-similar ellipsoids, with
large variations of the eccentricity being able to destroy the
universality [153,164–166]; and (iii) the stationarity of
I-Love-Q under perturbations of the EoS around the
incompressible limit, suggesting that EoS independence
could be related to the proximity of NSs to incompressible
objects [167,168].
In this regard, it is extremely interesting to analyze the

validity of the I-Love-Q relations for nonordinary NSs.
The next sections will be devoted to test our results for
fermion and boson stars against the original relations
derived in [144].

A. Fermion stars

Figure 6 shows the universal relations among the
ðĪ; λ̄; Q̄Þ trio for the fermion stars considered in this paper.
Colored dots represent our results, obtained by solving the
TOV equations for different values of mϕ and mX, while
the dashed black curve refers to the semianalytical fit (11).
The bottom panel of each plot also shows the relative errors
between the latter and the numerical values. We note that,
in all the three cases, the original universal relations seem to
accurately describe the data for λ̄≲ 105 and Q̄≲ 50, with
errors less than 10%. Although these values are larger
compared with those obtained for standard NSs, which are
of order 1%, it is still notable that the I-Love-Q relations
are able to describe such exotic objects with reasonable
accuracy. However, larger values of the tidal deformability
and quadrupole moment, corresponding to less compact
stars, rapidly deteriorate the agreement. Nevertheless,
Fig. 6 also shows that it is still possible to interpolate
the points with one single curve, which better approximates
the data. Indeed, fitting our results with the same functional

TABLE II. Best-fit coefficients of the I-Love-Q relations for fermion stars, with the same functional form of
Eqs. (11).

y x a b c d e

Ī λ̄ 1.38 0.0946 0.0184 −0.000514 5.51 × 10−6

Ī Q̄ 1.27 0.632 −0.0118 0.0383 −0.0031
Q̄ λ̄ 0.00796 0.272 0.00526 −0.00046 8.53 × 10−6

FIG. 7. Relative percentage errors between the universal
relations (11) and the ðĪ; Q̄; λ̄Þ trio computed for the boson star
models considered in this paper.
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form of Eq. (11), we find new universal relations, which
reproduce the numerical values with accuracy better than
10% within the entire spectrum of models. The fitting
coefficients of these relations are listed in Table II.

B. Boson stars

Universal relations between Ī; Q̄, and λ̄ also exist for boson
stars. As a first comparison, it is useful to analyze the
agreement between our numerical results for the dark EoS
described in Sec. IVand the original fits (11). Figure 7 shows
indeed the relative percentage errors between the semi-
analytical predictions and the actual data. As for the fermion
case, the largest differences occur for higher values of the
quadrupole moment and of the tidal deformability. More
precisely, for 100≲ λ≲ 104, the I-Love-Q relations are as
accurate as for standard NSs, with bothΔĪ andΔQ̄ being of
the order of 1% (or even less). For the Ī − Q̄ pair a reasonable
agreement holds for 2≲Q≲ 30, with relative errors smaller
than 10%. Outside these ranges, the discrepancies increase
monotonically with λ̄ and Q̄, up to 100%.
However, as described in the previous section, it is still

possible to fit all the data to obtain new universal relations
with improved accuracy, which reproduce the numerical
results of our boson stars with relative errors smaller than
1% for λ̄≳ 102 and Q̄≳ 5. The coefficients of these
relations are listed in Table III.

VI. CONCLUSIONS

Self-interacting DM particles represent a well-motivated
theoretical and observational scenario, potentially able to
solve a number of important problems, currently unresolved
by the CCDM paradigm. In this picture, asymmetric DM
may cluster to form stable astrophysical objects, compact
enough to mimic regular NSs. If such objects form in nature,
they offer the unique chance to explore the dark sector in
extreme physical conditions, characterized by the strong-
gravity regime. Since the only dark matter property which is
knownwith certainty is that it gravitates, the existenceof dark
stars could reveal particle properties of DM without any
nongravitational coupling to the Standard Model.
In this paper we have investigated compact stars modeled

with fermionic and scalar ϕ4 DM EoS, as viable candidates
to be tested with future electromagnetic and GW observa-
tions. By solving the stellar structure equations for slowly
rotating and tidally deformed bodies, we have derived the
most important bulk properties of such dark stars, namely,

their moment of inertia, tidal deformability, and quadrupole
moment. Together with the mass and the radius, these
quantities specify (at leading order) the shape of the
compact object and its external gravitational field, and
therefore they affect the orbital motion and the astrophysi-
cal phenomena in its close surroundings. We have com-
pared these results with two extreme cases of soft and stiff
standard nuclear EoS, showing that dark objects may cover
large portions of the parameter space close to standard NSs.
Moreover, as an explicit example, we have computed the
constraints that current GW interferometers may already be
able to set from signals emitted by binary systems com-
posed of two dark stars.
Our results also show that universal relations for both the

fermion and the boson case do exist, which connect the
ðI; λ; QÞ trio regardless of the specific EoS. These relations
could be extremely useful in the near future to combine
multiple observations and perform redundancy tests of the
stellar model. The validity of the I-Love-Q relations for
dark stars seems to also confirm that besides the particle
content, the universality may be related to the ellipsoidal
isodensity contours used to model the spinning and tidally
deformed stars.
Finally, a simple analysis of the mass-radius profiles

shows that the stellar compactness of all the considered
models never exceeds the threshold C ≈ 0.24. Interestingly,
we find that this is actually a more general result, holding for
all fermionic and bosonic EoS for which a self-similar
symmetry exists, such that the mass and the radius scale
identically. We prove this statement analytically in
Appendix. As a consequence, bosonic EoS lead to stellar
configurations with a maximum compactness Cmax ≃ 0.16,
independently from the coupling. In the fermionic case, self-
similarity can be proven for noninteracting ðαX ¼ 0Þ or
strong-interacting particles, leading to Cmax ≃ 0.15 and
Cmax ≃ 0.22, respectively. We note that in both cases, our
analysis applies to stable configurations, and that larger
values may be obtained, as far as the unstable branches are
considered. This result clearly indicates that dark stars are not
compact enough to act as black hole mimickers.
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TABLE III. Best-fit coefficients of the new I-Love-Q relations for boson stars. The semianalytic relations follow
the form given by Eqs. (11).

y x a b c d e

Ī λ̄ 0.967 0.245 −0.00146 0.000622 −0.0000181
Ī Q̄ 1.03 0.719 0.031 0.0153 −0.000443
Q̄ λ̄ 0.618 0.0218 0.0429 −0.00284 0.0000615
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APPENDIX: SELF-SIMILARITY

The solutions to the TOV equations in this paper exhibit
self-similar symmetries, i.e., the shape (not the scale) of the
mass-radius relation is independent of the EoS parameters
(such as the particle mass or the interaction strength). In this
appendix we discuss the features of the EoS which lead
to self-similarity, so that general statements about our
models can be made, without scanning the entire space
of parameters.
We first define a dimensionless mass and radius,

M� ≡GM
c2l

; r� ≡ r
l
; ðA1Þ

where l is a length scale. Note that C ¼ M�=r� independent
of l. If we further use the scaling l to define a dimension-
less density ρ� and pressure P�, the TOV equations can be
cast in a dimensionless form, again independent of the
choice of l. The dimensionless density and pressure are

ρ� ≡ l2G
c2

ρ; P� ≡ l2G
c4

P: ðA2Þ

Using these variables, the TOV equations read

dP�
dr�

¼ −
M�ρ�
r2�

�
1þ P�

ρ�

��
1þ 4πr3�P�

M�

��
1 −

2M�
r�

�
−1
;

dM�
dr�

¼ 4πr2�ρ�: ðA3Þ

To solve these equations, we must specify the central
density ρ�ð0Þ and the EoS P� ¼ P�ðρ�Þ. The mass-radius
relation follows from scanning over all values of ρ�ð0Þ.
The parameters of the model can affect the differential
equations only if they enter through the EoS. Therefore, if
we can choose the scaling parameter l, such that the EoS is
independent of model parameters (when written in dimen-
sionless variables), then the solution will be self-similar.

For fermionic EoS, it is in general not possible to rescale
pressure and density such that the EoS [Eq. (2)] is
independent of the model parameters mX, αX, and mϕ.
However, a scaling does exist if the interactions vanish
(αX ¼ 0), and we may choose

lFS ¼
ffiffiffiffiffiffi
ℏ3

Gc

r
1

m2
X
: ðA4Þ

In this case, the dimensionless EoS is P� ¼ χ½ξ−1ðρ�Þ� and
the maximum compactness is C≃ 0.15. If the interaction
term in Eq. (2) is so large that Fermi repulsion is negligible,
the EoS can also be rescaled to dimensionless form with
P� ≃ ρ�. However, this limit cannot be satisfied every-
where in the star, since interactions are always subdominant
near the surface.7 Still, in the regime of large interactions
ðαX=ℏcÞm2

X=m
2
ϕ ≫ 1 we find that the mass-radius relations

become approximately self-similar, with a maximum com-
pactness around C≃ 0.22. Whereas, in the range of
intermediate interaction strength, ðαX=ℏcÞm2

X=m
2
ϕ ∼ 1,

the solutions are not self-similar.
Unlike the fermion star EoS with nonzero αX, the boson

star EoS with self-interactions in Eq. (4) produces exactly
self-similar mass-radius relations. The relevant rescaling is

lBS ¼
ffiffiffiffiffiffiffiffiffiffi
3ℏ3β

Gc

r
1

m2
X
; ðA5Þ

and the dimensionless EoS is given by

P� ¼
1

3
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ�

p
− 1Þ2: ðA6Þ

We find the maximum compactness with this EoS to
be C≃ 0.16.
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