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Black-hole spectroscopy is arguably the most promising tool to test gravity in extreme regimes and to
probe the ultimate nature of black holes with unparalleled precision. These tests are currently limited by the
lack of a ringdown parametrization that is both robust and accurate. We develop an observable-based
parametrization of the ringdown of spinning black holes beyond general relativity, which we dub ParSpec

(parametrized ringdown spin expansion coefficients). This approach is perturbative in the spin, but it can be
made arbitrarily precise (at least in principle) through a high-order expansion. It requires Oð10Þ ringdown
detections, which should be routinely available with the planned space mission LISA and with third-
generation ground-based detectors. We provide a preliminary analysis of the projected bounds on
parametrized ringdown parameters with LISA and with the Einstein Telescope, and discuss extensions of
our model that can be straightforwardly included in the future.
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I. INTRODUCTION

Atomic spectroscopy revolutionized the quantum
description of atomic interactions and paved the wave for
quantum electrodynamics, through the precise measure-
ments of the energy levels of the hydrogen atom [1]. Black-
hole (BH) spectroscopy [2–4]—i.e., the measurement of the
quasinormal modes (QNMs) of a BH [5–10] through
gravitational wave (GW) ringdown observations—may play
a similarmajor role to probe the gravitational interaction and
fundamental physics in extreme conditions [11–15].
The postmerger ringdown signal from a remnant BH can

be modeled as a superposition of damped sinusoids [7–9],
each defined by an oscillation frequency ω and a damping
time τ. Owing to the BH uniqueness and no-hair theorems
[16–19], the entire QNM spectrum of a spinning (Kerr) BH
in general relativity (GR) is completely determined by the
mass M and spin J ¼ χM2 of the BH. (We use G ¼ c ¼ 1

throughout.) Thus, measuring one frequency and damping
time allows us to infer the mass and spin of a merger
remnant from the ringdown signal only, whereas measuring
more than two quantities (i.e., also subdominant modes)
provides multiple independent null-hypothesis tests of GR
[3,4,20–27]. In addition, measuring also the amplitudes of
multiple modes provides information about the intrinsic
parameters of the progenitor binary [28–30]. These tests
require high signal-to-noise ratio (SNR) in the ringdown
[4,20] and will become routinely available with the space
mission LISA [31] and with third-generation (3G) ground-
based GW detectors [such as the proposed Einstein
Telescope (ET) [32] and Cosmic Explorer [33] ], which

are expected to detect several ringdown events per year
with SNR in the hundreds to thousands, even from sources
at cosmological distance [34].
The LIGO/Virgo Collaboration checked that the full

inspiral-merger-ringdown waveform is consistent with GR
by analyzing separately the lower-frequency signal emitted
during the inspiral phase and the higher-frequency signal
emitted during the late inspiral, merger and ringdown of the
first event, GW150914 [35]. Separately fitting each of these
signals to GR-based templates leads to two independent
estimates of the mass and dimensionless spin of the
remnant BH. An extension of this analysis to seven selected
binary BH events found that the two estimates are com-
patible with each other within statistical errors of order 30%
(see Fig. 2 in [36]). Recent work tried to better quantify the
contribution of additional overtones to the high-frequency
signal for GW150914. Adding at least one overtone is
necessary to obtain ringdown estimates of the mass and
spin of the remnant which are in agreement (at the ∼20%
level) with the values inferred by fitting the entire signal
within GR [37,38] (see also [20,24,39]).
Going beyond these consistency tests requires modeling

the BH ringdown beyond GR, for instance, to perform a
Bayesian model selection between GR and any proposed
extension of the theory. This is a challenging task and,
despite recent progress [40–47], all current attempts have
significant limitations: they are based on particular classes
of theories, use geometric-optics approximations for the
QNMs, or neglect the spin of the remnant.
Working in the nonrotating limit is a major limitation,

since the final spin of the merger remnant is typically
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high [48–51]. Including spin in current approaches is
challenging, especially because the geometry of spinning
BHs beyond GR is known only perturbatively or numeri-
cally (see, e.g., [52–58] for specific examples and
[11,59,60] for reviews), which makes it very hard to
compute the QNMs. In addition, there is in general no
analog of the Teukolsky equation [6,61,62] beyond GR. In
general, the perturbation equations are not separable [63],
and this requires the solution of an elliptic system of partial
differential equations [64] or the extraction of QNM
frequencies from numerical-relativity simulations of BH
mergers [65–68].
In contrast to these major technical limitations, modeling

the BH QNMs beyond GR is remarkably straightforward.
In any extension of GR, the QNMs of a BH can be
parametrized as [21,22,27]

ω ¼ ωKerr þ δω; ð1Þ

τ ¼ τKerr þ δτ; ð2Þ

where the frequency ωKerr and damping time τKerr depend
only onM and χ, whereas δω and δτ are generic deviations.
We consider a modified ringdown which deviates pertur-
batively from the Kerr case in GR, i.e., δω ≪ ωKerr and
δτ ≪ τKerr. These departures can be due to extra charges, a
modified theory of gravity, environmental effects, etc., and
we wish to develop a generic framework that can accom-
modate various special cases. GR corrections might affect
the ringdown in two ways: by predicting a spinning BH
other than Kerr [11,12,15,53,54,56,60,69], or (even if GR
BHs are still solutions of the theory) by affecting the
dynamics of the perturbations [43,70–74]. In both cases,
the ringdown modes will acquire corrections proportional
to the fundamental coupling constant(s) of the theory.
There may be new classes of modes associated to extra
polarizations, but they are unlikely to be significantly
excited for GR deviations small enough to be compatible
with existing observations [40,71,75]. For this reason, they
will not be considered in our analysis.
The above discussion suggests that a case-by-case

analysis is impractical, and that parametrizing directly
the observables (i.e., frequencies and damping times) is
the most efficient way to perform ringdown tests (see, e.g.,
[22,27,45,46] for work in this direction). Similar observ-
able-based approaches have been very successful to model
weak-field effects [76] and the inspiral [77,78].
In this paper, we develop a scheme based on “para-

metrized ringdown spin expansion coefficients” (ParSpec)
which differs from related hierarchical approaches [79] and
mode-stacking proposals [80]. Its salient features are as
follows:
(1) We expand the spectrum in a bivariate series in terms

of the fundamental parameters (mass and spin)
characterizing BH dynamics in GR.

(2) The expansion parameters take into account the fact
that modifications of GR are suppressed by a
(possibly dimensionful) coupling constant.

(3) Bayesian inference allows us to identify the most
easily measurable expansion coefficients. By com-
bining several observations, we can in principle map
the deviation parameters to specific modified theo-
ries of gravity for which QNM spectra may be
available. Since the third LIGO/Virgo observing run
has been detecting BH mergers on a weekly basis,
this approach holds the promise of allowing us to
constrain several parameters (or identify deviations)
as soon as the typical SNR of the observations
becomes large enough.

The plan of the paper is as follows. In Sec. II, we
describe our parametrized framework. In Sec. III, we
illustrate the potential of the method by performing a
statistical analysis on a representative catalog of merger
events with LISA and 3G Earth-based detectors. In Secs. IV
and V, we compare our framework with previous work and
discuss directions for future research.

II. ParSpec FRAMEWORK

Let us assume i ¼ 1;…; N independent ringdown detec-
tions, for which q QNMs are measured. In general, q
depends on the source i, but for simplicity we shall consider
a subset of allNT merger events forwhich the same numberq
of QNMs passes a certain SNR threshold. Therefore,N is (in
general) smaller than NT , but this is not a major limitation,
given the high event rates expected for future detectors.
In terms of a standard spheroidal-harmonics decompo-

sition [9], and depending on the intrinsic parameters of
the progenitor binary (mass ratio and spins), typically the
most excited QNMs1 are the fundamental modes with
l ¼ m ¼ 2, l ¼ m ¼ 3, and l ¼ 2, m ¼ 1. For simplicity,
we will assume the subdominant mode to be l ¼ m ¼ 3 for
all NT sources; this assumption will be justified below.
For a given ðl; mÞ, the overtones are in general relevant for
parameter estimation [24,37,38,81–83]. However, the
frequencies of different overtones are very similar and
hard to resolve [4,39], and therefore it is hard to use them
for direct BH spectroscopy. For this reason, in this paper we
will not consider overtones.
Rather than considering the corrections in Eqs. (1) and

(2) as independent parameters, it is sensible and convenient
to reduce the dimensionality of the parameter space by
performing a spin expansion. To this aim, we parametrize
each mode of the ith source as

1TheQNMs are identified by three integer numbers: the angular
momentum number l, the azimuthal number m ∈ ½−l; l�, and the
overtone number, which we set to zero in this paper, i.e., we only
consider fundamental modes. For ease of notation, we leave these
indices implicit, i.e., ωðJÞ ≡ ωð0lmÞ, where J is an index that labels
the mode.
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ωðJÞ
i ¼ 1

Mi

XD
n¼0

χni w
ðnÞ
J ð1þ γiδw

ðnÞ
J Þ; ð3Þ

τðJÞi ¼ Mi

XD
n¼0

χni t
ðnÞ
J ð1þ γiδt

ðnÞ
J Þ; ð4Þ

where J ¼ 1; 2;…; q labels the mode; Mi and χi ≪ 1 are
the detector-frame mass and spin of the ith source, both
measured assuming GR (see below); D is the order of the

spin expansion; wðnÞ
J and tðnÞJ are the dimensionless coef-

ficients of the spin expansion for a Kerr BH in GR
(provided in Table I for a few representative modes); γi
are dimensionless coupling constants, which can depend on
the source i—see Eq. (6) below—but do not depend on the

specific QNM; and δwðnÞ
J and δtðnÞJ are “beyond-Kerr”

corrections to the QNM frequencies. Crucially, the latter
are universal dimensionless numbers that do not depend on
the source. Any possible source dependence is parame-
trized through γi, as discussed below.
As customary in parametrized approaches, we focus

on perturbative corrections by assuming γiδwðnÞ ≪ 1,
γiδtðnÞ ≪ 1, and GR is recovered in the limit γi → 0.
We remark that in the parametrization (3), (4),Mi and χi

are the BH masses (in the detector frame) and spins
extracted assuming GR. In a non-GR theory, these are
generally different from the actual BH masses and spins,
M̄i, χ̄i (see the Appendix A). Therefore, the coefficients γi,

δwðnÞ
J , and δtðnÞJ also include the shift betweenMi, χi and the

physical masses and spins. SinceMi and χi refer to the GR
values of the detector-frame mass and spin of the ith source,
they can be computed either from the full inspiral-merger-
ringdown waveform within GR or from a measurement of
the l ¼ m ¼ 2modewith a standard GR ringdown template
(without any assumption on the luminosity distance of the
source). The remaining parameters in Eqs. (3) and (4) are
discussed below for various special cases.

A. Special cases

1. Case I: scale-free corrections

The simplest parametrized beyond-Kerr correction cor-
responds to having γi ¼ α for all sources, where α is a

dimensionless coupling constant. Then α can be reabsorbed
within δwðnÞ and δtðnÞ, and (assuming that Mi and χi are
known within some parameter estimation uncertainty) we
can parametrize the QNM spectrum beyond GR with

P ¼ 2ðDþ 1Þq ð5Þ

parameters, where 2ðDþ 1Þq is the total number of δwðnÞ

and δtðnÞ parameters required if we consider q modes up to
order D in the spin expansion.

2. Case II: single dimensionful coupling

A more general model consists of a single fundamental,
dimensionful coupling constant α (the extension to multiple
coupling constants is straightforward). Without loss of
generality, we assume that α has mass dimensions ½α� ¼
M̂p, where p is fixed by the theory (for p ¼ 0 we recover
Case I above). Here, M̂ is the typical mass/length scale in
the problem, which for a BH coincides with its mass in the
source frameMs, as measured within GR (see Appendix A
for a discussion). In this case, since the coefficients γi are
linear in the coupling, to leading order in our perturbative
scheme

γi ¼
α

ðMs
iÞp

¼ αð1þ ziÞp
Mp

i
ð6Þ

are small dimensionless couplings that depend on the
theory, on the source mass in the detector frame Mi, and
on the source redshift zi. The redshift can be estimated from
the luminosity distance of the source, which can be
extracted from the amplitude of the inspiral waveform
(assuming the standard cosmological model2). We will
consider p as fixed (in modified theories of gravity it is
typically an integer, or possibly a rational number) so that
the number of parameters is the same as in Case I
[cf. Eq. (5)]. Note that α can be again reabsorbed within
δwðnÞ and δtðnÞ, but α is dimensionful if p ≠ 0 (and so are
δwðnÞ and δtðnÞ after the rescaling).
Cases I (i.e., p ¼ 0) and II include some of the best

studied modified theories of gravity:
(i) p ¼ 0: Theories with dimensionless couplings in

the action include certain scalar-tensor theories,
Einstein-Aether, and Hořava gravity (to leading
order) [86].

(ii) p ¼ 4: This case includes Einstein-scalar-Gauss-
Bonnet [52,55,87–89] and dynamical Chern-Simons
gravity [54,90,91]. In this case, γi ¼ β2=ðMs

iÞ4,
where β is the coupling constant in the action,

TABLE I. Coefficients of the spin expansion for the QNMs
l ¼ m ¼ 2, l ¼ m ¼ 3 and l ¼ 2, m ¼ 1 of a Kerr BH in GR,
obtained from the numerical data in [84].

l ¼ 2, m ¼ 2 l ¼ 3, m ¼ 3 l ¼ 2, m ¼ 1

n wðnÞ tðnÞ wðnÞ tðnÞ wðnÞ tðnÞ

0 0.3737 11.2407 0.5994 10.7871 0.3737 11.2407
1 0.1258 0.2522 0.2021 0.2276 0.0629 0.1261
2 0.0717 0.6649 0.1072 0.8238 0.0449 0.7710
3 0.0480 0.5866 0.0689 0.7353 0.0218 0.3821
4 0.0350 0.5797 0.0491 0.0685 0.0163 0.5565

2As discussed, e.g., in Refs. [72,85], theories with a dimen-
sionful coupling do not significantly affect the cosmological
model, and thus the relation between cosmological distance and
redshift can be assumed to be that predicted by GR.
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which has dimensions of a length squared in
geometrical units.

(iii) p ¼ 6: This case corresponds (e.g.,) to certain
classes of effective field theories [69].

As discussed in [46], if different classes of gravitational
perturbations are nondegenerate at order zero in the
coupling parameter, the leading-order corrections to the
QNM frequencies coming from OðαÞ terms in the action
are Oðα2Þ. In this case, an operator with mass dimension
p=2 in the action will lead to a correction α2=Mp in the
QNMs. In the case of degenerate spectra (e.g., for axial and
polar gravitational perturbations), the leading-order correc-
tions to the QNMs coming from OðαÞ terms in the action
are also OðαÞ. The special cases discussed above corre-
spond to terms in the action with mass dimension 0, 2, and
3, respectively.

3. Case III: individual charges

Since the γi’s appearing in Eq. (6) depend only on the
fundamental coupling and the masses in the source frame,
Cases I and II encompass BHs with secondary hair, but not
BHs with primary hair (corresponding to an extra charge
which does not depend on the mass and spin of the BH). A
simple example of BHs with primary hair are Kerr-
Newman BHs, which are useful and well-studied toy
models for beyond-Kerr BHs, and may be astrophysically
significant in certain dark-sector scenarios [92]. In the case
of BHs with primary hair, we have

γi ¼
Q2

i

ðMs
iÞ2

; ð7Þ

where Qi is the charge of the ith source. The number of
parameters necessary to parametrize the spectrum then
becomes

P0 ¼ P þ N ¼ 2ðDþ 1Þqþ N: ð8Þ

Our approach is perturbative by assumption (i.e.,
γi ≪ 1). In the Kerr-Newman example, this means that it
can only accommodate weakly charged BHs.

B. Detection strategies

In summary, we can parametrize the QNM spectrum
beyond GR with P parameters in Cases I and II, and P0
parameters in Case III. On the other hand, in principle forN
sources and q modes we have a certain number O of
observables, which depend on whether we consider the
ringdown only, or rather extract Mi and χi from the full
inspiral-merger-ringdown waveform using numerical rela-
tivity fits (see, e.g., [93]) or analytical models.

1. Using the inspiral-merger-ringdown

In this case, we measure the individual binary compo-
nent properties from the inspiral-merger-ringdown wave-
form, and we use numerical-relativity fits in GR to evaluate
the final masses (in the detector frame) and spins in GR,Mi
and χi (i ¼ 1;…; N). This procedure allows us to use only
the l ¼ m ¼ 2 QNM to perform BH spectroscopy: it is
essentially an extension of inspiral-merger-ringdown con-
sistency checks that allows for a non-GR template in the
ringdown.
In this case, for N sources and q modes, we would have

O ¼ 2N × q ð9Þ

observables, i.e., the frequencies and damping times of q
modes. Then, we need

N >

(
Dþ 1 Cases I and II;
2ðDþ1Þq
2q−1 Case III

ð10Þ

in order to have more observables than parameters. In this
case also, q ¼ 1 is allowed, i.e., the detection of the l ¼
m ¼ 2 mode for all sources is sufficient to perform the test.
For the minimal case q ¼ 1 (detection of one mode for each
source), we get

N ≥
�
Dþ 1 Cases I and II;

2ðDþ 1Þ Case III:
ð11Þ

2. Using the ringdown only

For N sources and q modes, we have

O ¼ 2N × q − 2N ¼ 2N × ðq − 1Þ ð12Þ

observables, namely the frequencies and damping times of
q modes minus 2N observables (the frequencies and
damping times of the fundamental modes) which have
been used to extract the GR masses and spin. By comparing
O with the number of parameters (either P or P0), we need

N >

( qð1þDÞ
q−1 Cases I and II;

2ðDþ1Þq
2q−3 Case III

ð13Þ

in order to have more observables than parameters. Note
that this condition is never satisfied for q ¼ 1, as expected,
since a single mode can only allow us to determine the
masses and spins for each source. For the minimal case
q ¼ 2 (i.e., we are detecting two modes for each source),
we get

N ≥
�
2Dþ 2 Cases I and II;

4Dþ 4 Case III:
ð14Þ
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Equation (13) implies N ≥ Dþ 1 in all cases in the limit
q ≫ 1, i.e., when we can detect several modes for each
source. Note that in this case we need twice of the sources
that we needed in the inspiral-merger-ringdown case
[Eq. (11) above].

3. Minimum number of sources

When the relations (11) and (14) are saturated, N is the
minimum number of sources necessary to perform the test,
whereas further sources will allow for multiple, indepen-
dent tests. The minimum number of sources depends on the
truncation order of the spin expansion.
In order to estimate the accuracy needed when we

truncate the spin expansion, in Fig. 1, we compare
numerical calculations of the QNM frequencies of a
Kerr BH with their small-spin expansion at various trun-
cation orders. For D ≥ 4 (resp., D ≥ 5), the errors are
smaller than 1% for both the frequency (top panel) and
damping time (bottom panel) when χ < 0.6 (resp.,
χ < 0.7). Therefore, a truncation order D ¼ 4 or D ¼ 5
should be sufficient to compute the modes with an accuracy
always better than 1% up to spin χ ¼ 0.7. Reaching the
same accuracy at χ ¼ 0.8 will require D ≥ 7.
As a proof of principle of the ParSpec formalism, in

the following we shall consider D ¼ 4 as a working
assumption. We shall furthermore restrict to the simplest
case (Case I), which minimizes the number of parameters
and is more in line with existing parametrized tests, e.g., in
the inspiral [76–78]. Hence, we require N ≥ 5 inspiral-
merger-ringdown detections. Note that the minimum value

of N grows only linearly with D: even a very large spin
expansion order (e.g., D ¼ 10) would require the same
order of magnitude in terms of ringdown detections. Such a
number of detections (even at large SNRs) may well be
achievable with LISA and 3G detectors.

III. STATISTICAL ANALYSIS:
CONSTRAINING THE BEYOND-KERR

RINGDOWN PARAMETERS

We use Eqs. (3) and (4), expanded up to fourth order in
the spin, as templates to interpret the observed frequencies
and damping times. We assume the true ðωi; τiÞ to
correspond to a Kerr BH in GR, i.e., we assume the true
beyond-Kerr parameters δwðnÞ and δtðnÞ to be zero.
Our goal is to reconstruct the probability distribution of

the beyond-Kerr parameters. We consider either q ¼ 1 or
q ¼ 2, i.e., either one or two modes3 detected for each of
the N sources. The purpose of this analysis is to compute
the minimum value of the deformation parameters δwðnÞ

and δtðnÞ which yield a ringdown observation consistent
with GR. We consider a ground-based 3G detector (ET in
the so-called ET-D configuration [94]) and the planned
space mission LISA [31] as representatives of our best
near-future chances to carry out BH spectroscopy over a
large mass range [34,95].
Each source (i ¼ 1; 2;…; N) provides frequencies and

damping times ðωðJÞ
i;obs; τ

ðJÞ
i;obsÞ for J ¼ 1;…; q modes, with

associated parameter estimation errors σ½ωðJÞ
i � and σ½τðJÞi �

and correlations coefficients.
The values of ωðJÞ

i;obs and τ
ðJÞ
i;obs injected in our analysis are

computed as follows. We consider the merger remnant of N
binary coalescences. The 2N masses of the binary compo-
nents are drawn from a log-flat distribution between
½5; 95� M⊙ for stellar-origin BHs, and from a uniform
distribution within ½106; 107� M⊙ for massive BHs. For
stellar-origin BHs, we also require that m1 þm2 <
100 M⊙ [96,97]. In both mass ranges, the spins are
sampled from a uniform distribution ∈ ½−1; 1�. For illus-
tration, we fix the source distance by choosing the SNR of
the first ringdown mode to be 102 for ET and 103 for LISA,
respectively. We then compute the mass and the spin of the
final BH formed after merger using semianalytical relations
based on numerical relativity simulations in GR [93] (as
discussed in Sec. II, these are the mass and spin that the
final BH would have if GR is the correct theory of gravity).
Given the final mass Mi and spin χi (i ¼ 1…N), we

FIG. 1. Relative percentage errors between the exact l ¼ m ¼ 2
QNM of a Kerr BH (obtained using data from Ref. [84]) and their
small-spin expansion for various truncation orders (see Table I) as
a function of the BH spin (the value of D is indicated in the
legend).

3In the q ¼ 2 case, and for the distributions of binary masses
and spins discussed below, we have used the excitation factors
from Refs. [24,25] to check that the second most excited mode is
l ¼ m ¼ 3 (rather than l ¼ 2, m ¼ 1) roughly 90% of the times.
To simplify the analysis, we therefore assume that the two
measured QNMs are the l ¼ m ¼ 2 and the l ¼ m ¼ 3 funda-
mental modes for all sources.
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compute the errors on the modes through a Fisher-matrix
approach. Following [98], we roughly estimate the energy
in the secondary mode to be 10% of the l ¼ m ¼ 2 mode
energy for all sources. The main purpose of these choices is
to test our data-analysis framework, and we plan to
implement more astrophysically realistic models in future
work.
We use a Bayesian approach to sample the probability

distributions P of the model parameters θ⃗ for a given set of
ringdown observations d⃗. By Bayes’ theorem Pðθ⃗jd⃗Þ ∝
Lðd⃗jθ⃗ÞP0ðθ⃗Þ, where Lðd⃗jθ⃗Þ is the likelihood function and
P0ðθ⃗Þ is the prior on the parameters. For each event, the
likelihood function is chosen to be Gaussian,

Liðd⃗jθ⃗Þ ¼ N ðμ⃗i;ΣiÞ; ð15Þ
where the vector μ⃗i depends on the difference between the
observed J ¼ 1;…qmodes and the parametrized templates
(3) and (4),

μ⃗i ¼ ðμ⃗ð1Þi ;…; μ⃗ðqÞi ÞT; ð16Þ

where each μ⃗ðJÞi is a two-component vector

μ⃗ðJÞi ¼
 
ωðJÞ
i − ωðJÞ

i;obs

τðJÞi − τðJÞi;obs

!
; ð17Þ

and Σi is the covariance matrix that includes errors and
correlations between the frequencies and damping times
measured for the ith source. Under our assumptions, the
observed QNMs correspond to different values of l and m,
i.e., they are “quasiorthonormal” in the terminology of

Ref. [4]. As a consequence, the covariance matrix Σi ¼
diagðΣð1Þ

i …ΣðqÞ
i Þ is block diagonal with each block corre-

sponding to the Jth mode, and the likelihood function can
be written as a product of Gaussian distributions,

N ðμ⃗i;ΣiÞ ¼
Yq
J¼1

N ðμ⃗ðJÞi ;ΣðJÞ
i Þ: ð18Þ

Moreover, given N independent BH detections, the com-
bined likelihood function of the ParSpec parameters can be
further factorized as

Lðd⃗jθ⃗Þ ¼
YN
i¼1

Liðd⃗jθ⃗Þ ¼
YN
i¼1

Yq
J¼1

N ðμ⃗ðJÞi ;ΣðJÞ
i Þ: ð19Þ

The full posterior is obtained through a Markov chain
Monte Carlo (MCMC) method based on the Metropolis-
Hastings algorithm [99], in which the proposal matrix is
updated through a Gaussian adaptation which enhances the
convergence to the target distribution [100,101]. For each
dataset, we compute four chains of 5 × 106 points, with a

thinning factor of 0.02 to reduce the correlation between the
samples. We discard 10% of the initial points as a burn in.
The beyond-Kerr dimensionless parameters θ⃗ ¼

fδwðJÞ
i ; δtðJÞi g are sampled by assuming flat distributions

within the interval ½−0.5; 0.5�. Moreover, for simplicity, we
assume the parameterp associated with the mass dimension
of the coupling to be p ¼ 0. We defer a more detailed
investigation for different values of p to future works. We
remark that when p > 0 the dimensionless coupling γi ¼
α=Mp is much smaller for massive BH mergers, and there-
fore we expect QNM frequency corrections for LISA
sources to bemuch smaller than those for stellar-origin BHs.

A. Projected constraints with ET

1. Nonspinning black holes, one mode (D = 0, q = 1)

As a first case study, we consider nonrotating BHs, i.e.,
we assume that D ¼ 0 in the spin expansion of the
parametrized templates (3) and (4). If only the l¼m¼2
mode is detected for each source (q ¼ 1), the number of

ParSpec parameters to constrain reduces to δwð0Þ
1 and δtð0Þ1 .

We also focus on the first strategy discussed in Sec. II B,
i.e., we assume that the BH masses and spins are measured
using the full inspiral-merger-ringdown signal. Then the
minimum number of events required to perform our test
is Nmin ¼ Dþ 1 ¼ 1.
The top and right panels of Fig. 2 show the inferred

marginalized distributions of the two ParSpec parameters as a

FIG. 2. Posterior distributions for the beyond-Kerr ringdown
parameters δwð0Þ

1 and δtð0Þ1 inferred through the analysis of the
l ¼ m ¼ 2 fundamental QNM for ET, assuming D ¼ 0 and
q ¼ 1. BH masses and spins are estimated from the inspiral-
merger-ringdown signal. Colors correspond to different numbers
of detections N.

MASELLI, PANI, GUALTIERI, and BERTI PHYS. REV. D 101, 024043 (2020)

024043-6



function of the numberN of stellar mass sources detected by
ET. The posteriors are peaked around zero and, as expected,
they become narrower as N grows. In the most optimistic

case, we consider (N ¼ 100), we find jδwð0Þ
1 j≲ 5.4 × 10−4

and jδtð0Þ1 j≲ 3.4 × 10−3 at 90% confidence level. Since
the distributions are nearly symmetrical around the
peak, we can define their width as half of the corresponding
confidence interval σi90¼1=2ðθmax

i −θmin
i Þ, where θmin

i and
θmax
i correspond to the values of the ith parameter such thatZ

θmax
i

θmin
i

PðθiÞdθi ¼ 0.9 ð20Þ

for the marginalized posterior. By fitting σi90 as a function of
N, we find that it scales like ∼N−1=2 to a very good
approximation. The contour plots in the bottom-left panel
of Fig. 2 show 90% confidence intervals for the 2D joint
distribution of the two parameters, and they show that the
parameters are almost completely uncorrelated.

2. Nonspinning black holes, two modes (D= 0, q = 2)

Our approach can accommodate an arbitrary number of
modes. As a slightly more complex scenario, we still set
D ¼ 0 but we now consider the observation of the primary
(l ¼ m ¼ 2) and secondary (l ¼ m ¼ 3) QNM for each BH
(i.e., q ¼ 2), thus doubling the number of parameters that
we wish to constrain. Figure 3 shows the width σ of the
sampled posteriors as a function of N. The smallest values
of σ (i.e., the strongest bounds) correspond to the frequency

corrections δwð0Þ
1 and δwð0Þ

2 of the primary and secondary
modes, respectively. The widths are larger for corrections to

the damping times (δtð0Þ1 and δtð0Þ2 ), which are typically

harder to measure. Most importantly, Fig. 3 shows that
some of the ParSpec parameters can become measurable by
increasing the number of observations N: for example, for

N ¼ 1, the marginalized distribution of δtð0Þ2 is flat within
the allowed range of values, and hence unconstrained by
the data, but this quantity can be constrained for larger
values ofN. As in the q ¼ 1 case considered above, we find
that the width of all parameters scales as ∼N−1=2 to a very
good approximation when the number of sources is large
enough (typically of the order of N ∼ 100).

3. Spinning black holes (D= 4, q = 1, and q = 2)

We can turn to the more realistic scenario of spinning
BHs. We truncate the expansion at D ¼ 4, so that modes in
GR are estimated with an accuracy better than 1% up to
spins χ ∼ 0.6 (see Fig. 1). Results for ET observations with
q ¼ 1 and q ¼ 2 are shown in the top and bottom panels of
Fig. 4, respectively.
Consider first q ¼ 1 (top panel). Even with a large

number of detections N, only some of the parameters are
measurable. In general, we can constrain with good

accuracy the first three δwðnÞ
1 ’s, i.e., GR deviations up to

quadratic order in the spin (n ¼ 0, 1, 2). By contrast, only

the nonspinning correction δtð0Þ1 to the damping times is
bounded by the data.
Note however that δwð2Þ

1 becomes measurable only
for N ≳ 50. Moreover, the posterior of the coefficients
proportional to the BH’s angular momentum are more
than 1 order of magnitude wider than the posterior of
their nonspinning counterparts. For completeness, in
Appendix B, we show the corner plot for the marginalized
and joint posterior distributions of the measurable ParSpec

parameters for q ¼ 1. The spin-dependent frequency
corrections show a correlation which generally decreases

with N, while δtð0Þ1 is typically uncorrelated with the other
coefficients.
The q ¼ 2 case (bottom panel of Fig. 4) is very similar:

the width of the posteriors inferred through the MCMC
decreases with N. The hierarchy among the beyond-Kerr
parameters is also the same as in the single-mode case:
zero-order (nonspinning) terms are best constrained, fol-
lowed by corrections that are of low order in rotation.
Remarkably, with N ¼ 100 sources, we can put tight upper
bounds on the coefficient of the secondary mode, with

jδwð0Þ
2 j≲ 7 × 10−3, jδwð1Þ

2 j≲ 10−1, and jδtð0Þ2 j≲ 2 × 10−2.
These results can be straightforwardly adapted to the

second detection strategy outlined in Sec. II B. In this case,
we assume that for each observation we extract two QNMs
from the postmerger GW signal, using the frequency and
damping time of the fundamental mode to determine the
mass and the spin of the source. This scenario is compa-
rable to the single-mode case described above, but now we
inject into the MCMC the subdominant QNM, which has

FIG. 3. 90% confidence intervals σ90 for the posterior distri-
butions of the parameters δw and δt of the first and second modes,
as a function of the number of sources analyzed and considering
ET. We consider the case of nonrotating BHs, i.e., D ¼ 0,
assuming that frequencies and damping times are measured
through the inspiral-merger-ringdown signal. Only measurable
parameters are shown.
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lower SNR. Therefore, we expect that the bounds shown in
Fig. 3 and in the top panel of Fig. 4 would worsen by
roughly 1 order of magnitude.

B. Projected constraints with LISA

We now perform a similar Bayesian analysis for
LISA QNM observations of massive BH binary mergers.
For nonrotating BHs (D ¼ 0), the reconstructed posteriors
are nearly a factor of 10 tighter than the corresponding
distributions for ET. This is somehow expected, since
the parameters are nearly uncorrelated and the inference
is dominated by the SNR of the detections (which we
assumed to be 1 order of magnitude larger for LISA than
for ET).
Figure 5 shows the width of the posteriors for spinning

BHs with spin corrections up to D ¼ 4 and q ¼ 1 (top
panel) or q ¼ 2 (bottom panel). The values of the upper
bounds on the ParSpec parameters are in qualitative agree-
ment with those obtained for ET in Fig. 4.

To facilitate comparisons, in Fig. 6, we show the posterior
distributions inferred from a sample of N ¼ 100 observa-
tionswith ETandLISA, assumingq ¼ 1. At least in the case
of scale-free corrections considered in this work (p ¼ 0),
LISAconstraints aremore stringent. For the best constrained
parameters, the 90% confidence intervals with LISA are

jδwð0Þ
1 j≲3.2×10−4 (jδtð0Þ1 j≲ 1.3 × 10−3), which are smaller

than the corresponding values obtained for ET by a factor∼6
(∼5). For the upper bounds on the spinning coefficients, we
get jδwð1Þ

1 j ≲ 1.2 × 10−2 and jδwð2Þ
1 j≲ 9.3 × 10−2 which are

∼4 and ∼3 times smaller than those inferred by ET. The
corner plot in Fig. 8 ofAppendixB shows the complete set of
marginalized and joint distributions derived for such param-
eters. As already discussed in Sec. III A, the coefficients

δwðJÞ
i thatmodify themode’s frequencies are all correlated to

each other, while the correction to the damping time is
almost decoupled from the other parameters.
The two-mode analysis (q ¼ 2) follows the same trend.

Moreover, comparing the bottom panels of Figs. 4 and 5 we
note that—unlike ET—LISA will be able to constrain
possible deviations from the primary and secondary modes
with comparable accuracy.

FIG. 4. 90% confidence intervals σ90 of the beyond-Kerr
ringdown spin coefficients considering GR modifications up to
fourth order in rotation (D ¼ 4) as a function of the number of
sources N observed by ET. Top and bottom panels refer to q ¼ 1
and q ¼ 2, respectively. Only measurable parameters are shown.

FIG. 5. Same as Fig. 4, but for massive BHs observed by LISA.
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IV. POSSIBLE EXTENSIONS

In this work, we have presented a data-analysis frame-
work (that we dub PARSPEC) and performed a preliminary
analysis. Here we discuss several interesting extensions that
should be explored in the future.
In our proof-of-principle data-analysis demonstration,

we consider only scale-free corrections, i.e., p ¼ 0. The
extension to different values of p (and hence to dimen-
sionful couplings) is technically straightforward, but intro-
ducing a scale inevitably makes certain sources more
relevant than others. Specifically, for a coupling parameter
α with mass dimension p, sources with (source-frame)
massMs such that α=ðMsÞp ∼ 0.1 will contribute the most,
whereas sources with α=ðMsÞp ≪ 1 will be irrelevant for
the analysis. We could simply consider only the subset of
events such that α=ðMsÞp is larger than a fixed threshold.
Overall, this would require more detections.
The assumption that our true signal is the standard

ringdown within GR allows us to put at most upper bounds
on the beyond-Kerr ringdown parameters, but we can
search directly for GR deviations by writing the beyond-
Kerr ringdown parameters explicitly for a given theory. As
an extension, it would be interesting to consider a particular
non-GR theory and to recover the ringdown signal in this
theory with a standard GR ringdown template in order to
quantify systematic errors [102].

Additional “branches” of the QNM spectrum which are
not perturbatively close to the Kerr spectrum are expected
in virtually any extension of GR, although they might be
excited with small amplitude (see, e.g., [43,65–67,71,75]).
To leading order, the extra modes coincide with the
corresponding QNMs of a Kerr BH in GR: for example,
extra scalar (vector) degrees of freedom can give rise to
standard scalar (vector) QNMs in the gravitational wave-
form, with amplitude proportional to the coupling param-
eter of the theory [43,66,71,75]. Our formalism can
accommodate extra QNMs, which can be parametrized
with Eqs. (3) and (4) with γi ¼ 0 by setting wðnÞ and tðnÞ to
match the corresponding values for the (scalar, vector,
etcetera) QNMs of a Kerr BH in GR (but see [46] for
possible complications arising when different perturbations
are coupled to each other).
Some theories of gravity may have multiple coupling

constants, rather than the single perturbative parameter
considered here. It is straightforward to extend our for-
malism to this case.
Our spin expansion is necessary to parametrize the

ringdown in terms of a set of constant coefficients (as
opposed to functions of the spin). The resulting systematic
errors can be reduced by considering higher-order expan-
sions than the D ¼ 4 case considered here. To check the
impact of the truncation order, we have also considered a
spin expansion truncated at D ¼ 6. In our tests, the
posterior distribution of the measurable parameters did
not change significantly relative to the D ¼ 4 case.
An obvious and important extension of our work is to

compute rates for both 3G and LISA sources using more
realistic astrophysical models. In this preliminary analysis,
we have assumed 10–100 events at SNR ∼ 100 (∼1000) for
ET (LISA), corresponding to nearby sources. It is important
to estimate whether these estimates are realistic. Since we
select only large-SNR sources, which are generally the
closest ones, we have neglected the source redshift. Even
the closest LISA ringdown sources may have nonnegligible
redshift, and therefore cosmological effects should be
included in a more refined analysis.
We assume that two different angular modes are detected

for each source. The extension to multiple angular modes is
straightforward, and in general it should lead to stronger
constraints. Likewise, in realistic scenarios not only the
amplitude of the secondary mode, but also its nature will
depend on the binary parameters (mass ratio and spins): in
general, the second most exited mode will correspond to
l ¼ m ¼ 3 only for a subset of sources, whereas the mode
with l ¼ 2, m ¼ 1, and l ¼ m ¼ 4 may be dominant for
others. Future work should extend our parameter estimation
strategy to the case of multiple, source-dependent secon-
dary modes.
For any given ðl; mÞ, we consider only the fundamental

mode, neglecting the overtones. In general, overtones
are relevant for parameter estimation [24,37,38,81–83].

FIG. 6. Comparison between the posteriors of some of
the ParSpec parameters obtained for ET and LISA assuming
spinning corrections with D ¼ 4 for N ¼ 100 sources. The
probability distribution refers to the same dataset shown in the top
panel of Fig. 5.
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However, the frequencies of different overtones are very
closely spaced and hard to resolve [4,39], and therefore—
besides consistency tests with mass/spin inferred from the
whole waveform [37,38]—it is hard to use them for direct
BH spectroscopy. If the ringdown SNR is very high (as
expected for 3G detectors and LISA) [39], the overtones
may be resolved, and therefore they should be included in
our model.

V. CONCLUSIONS

Ringdown tests and BH spectroscopy will allow us to
place much tighter constraints on strong-field gravity when
high-SNR BH merger detections will become routine, as
expected for LISA and 3G interferometers. We have
introduced an approach based on PARSPEC to parametrize
beyond-GR deviations from the standard QNM ringdown
of a Kerr BH in Einstein’s theory. We demonstrated that
this method can be used to constrain a large number of
beyond-Kerr ringdown parameters using multiple ring-
down observations.
Our main results can be summarized as follows:
(i) At variance with previous frameworks (e.g., [22]), in

ParSpec the ringdown parameters can be mapped to
virtually any (perturbative) extension to GR. The
framework is perturbative in the spin but can be
made arbitrarily precise—at least in principle—
through high-order spin expansions.

(ii) We estimate that for a spin expansion of order five or
higher (D ≥ 5), truncation errors are below 1% for
spins χ ≲ 0.7 (see Fig. 1).

(iii) The number of beyond-GR parameters can be very
large (especially in the case of a high-order spin
expansions), but we can use Bayesian inference to
identify the most easily measurable expansion co-
efficients. It turns out that Oð10Þ ringdown detec-
tions at SNR ∼ 100 (as achievable with ET and
Cosmic Explorer) can constrain the beyond-Kerr
parameters associated to zeroth- and first-order
corrections in the spin, whereas constraining the
second-order in spin coefficients will require Oð10Þ
ringdown detections at SNR ∼ 1000, something that
could be achievable with LISA.

(iv) An important consequence of this observation is
that, even including beyond-Kerr parameters up to
D ¼ 4 in the spin, only those with D ≤ 2 can be
actually measured in the foreseeable future.

(v) The method can automatically accommodate an
arbitrary number of sources. As expected, the pos-
terior distribution becomes narrower as the number of
eventsN increases. Their width scales approximately
as σ ∼ N−1=2 when N ≳ 100 (the accuracy of this
scaling improves when the number of parameters is
not too large). Interestingly, the number of beyond-
Kerr parameters that can be measured increases with
N. Furthermore, as the number of sources increases, it

could be possible to perform multiple and indepen-
dent checks.

Future work will focus on a more systematic analysis of
ParSpec along the lines discussed in Sec. IV.
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APPENDIX A: QNM PARAMETRIZATION

In this Appendix, we show that—for theories which are
perturbatively close to GR—the QNM frequencies and
damping times are given by Eqs. (3) and (4), whereMi and
χi are the mass (in the detector frame) and spin of the ith
source, both measured assuming GR.
In general, the QNM parametrization can be written

similarly to Eqs. (3) and (4), but in terms of the physical
masses and spin and of new parameters, namely

ωðJÞ
i ¼ 1

M̄i

XD
n¼0

χ̄ni w
ðnÞ
J ð1þ γiδW

ðnÞ
J Þ; ðA1Þ

τðJÞi ¼ M̄i

XD
n¼0

χ̄ni t
ðnÞ
J ð1þ γiδT

ðnÞ
J Þ; ðA2Þ

where M̄i and χ̄i are the physical mass (in the detector
frame) and spin of the ith source, whereas γi ¼
αð1þ ziÞp=M̄p

i . The physical masses and spins can be
expanded as

M̄i ¼ Mið1þ γiδmÞ; ðA3Þ

χ̄i ¼ χið1þ γiδχÞ; ðA4Þ

whereMi and χi are the values within GR, whereas δm and
δχ are universal, dimensionless corrections due to the fact

that the underlying theory is not GR. Like δwðnÞ
J and δtðnÞJ
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(or, equivalently, δWðnÞ
J and δTðnÞ

J ), these corrections
depend only on the theory and not on the source.
It is easy to check that, to leading order in α, the

redefinitions

δWðnÞ
J ¼ δwðnÞ

J þ δm − nδχ; ðA5Þ

δTðnÞ
J ¼ δtðnÞJ − δm − nδχ ðA6Þ

bring Eqs. (A1) and (A2) to the form in Eqs. (3) and (4)
used in the main text.
The above redefinitions also show that there is some

degeneracy among the beyond-GR parameters, and that one
can only constrain the combinations δwðnÞ

J and δtðnÞJ , which

contains the intrinsic mode corrections (δWðnÞ
J and δTðnÞ

J )
and the mass and spin corrections (δm and δχ).

APPENDIX B: CORNER PLOTS FOR
SINGLE-MODE ANALYSIS OF
THE ParSpec PARAMETERS

In Figs. 7 and 8, we show two corner plots for the
marginalized and joint posterior distributions of the ParSpec

parameters for the case of ET and LISA detections,
respectively. The spin dependent terms feature a correlation
which decreases with the overall number of sampled
events. Note that δtð0Þ1 is decoupled from the rest of the
coefficients.

FIG. 7. Corner plot for the ParSpec parameters inferred by ETobservations of a single QNM from rotating BHs. We consider spinning
GR corrections up to the fourth order. Diagonal and off-diagonal panels show marginalized and joint 2D distributions, respectively.
Contour plots identify 90% credible intervals. Only measurable parameters are shown in the plot, while the remaining δwðnÞ

J and δtðnÞJ are
unconstrained by the data.
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