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Abstract: Thyroid cancer cells demonstrate an increase in oxidative stress and decreased 
antioxidant action, but the effects of this increased oxidative stress on cell function remain 
unknown. We aimed to identify changes in the metabolism of thyroid cancer cells caused by 
oxidative stress, using  proton nuclear magnetic resonance (1H-NMR) spectroscopy. Samples of 
thyroid cancer and healthy thyroid tissue were collected from patients undergoing thyroidectomy 
and analyzed with 1H-NMR spectroscopy for a wide array of metabolites. We found a significant 
increase in lactate content in thyroid cancer tissue compared to healthy tissue. Metabolomic 
analysis demonstrated significant differences between cancer tissue and healthy tissue, including 
an increase in aromatic amino acids, and an average decrease in citrate in thyroid cancer tissue. We 
hypothesize that these changes in metabolism may be due to an oxidative stress-related decrease in 
activity of the Krebs cycle, and a shift towards glycolysis in cancer tissue. Thus, thyroid cancer cells 
are able to reprogram their metabolic activity to survive in conditions of high oxidative stress and 
with a compromised antioxidant system. Our findings, for the first time, suggested a connection 
between oxidative stress and the alteration of the metabolic profile in thyroid tumors. 
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1. Introduction 

The overproduction of free radicals, and consequent increase in oxidative stress, leads to 
irreversible cell damage, which is associated not only with cardiovascular and chronic diseases, but 
also with cancer [1–5]. In our previous studies, we used electronic paramagnetic resonance 
spectroscopy (EPR) to qualitatively and quantitatively evaluate the presence of oxidizing agents in 
the blood of patients with thyroid diseases, showing an increase in oxidative stress [6]. In addition, 
we have also shown in thyroid cancer a reduction of the expression of glutathione peroxidase (GPx1) 
and thioredoxin reductase (TrxR1), two seleno-enzymes with antioxidant action. GPx1 is expressed 
in cell cytosol, as well as in the mitochondria of many tissues, and it functions as an antioxidant by 
reducing H2O2 to water, and lipid hydroperoxides to their corresponding alcohol [7]. TrxR1 is the 
only enzyme known to catalyze the reduction of thioredoxins—proteins, characterized by the 
presence of two cysteines, that act as antioxidants by reducing oxidized proteins through cysteine 



Biology 2020, 9, 112 2 of 12 

 

thiol-disulfide exchange. In brief, the electrons are taken from NADPH via TrxR and transferred to 
the active site of thioredoxin, which goes on to reduce protein disulfides or other substrates [8]. Our 
data demonstrates the involvement of oxidative stress in thyroid tumors, consistent with previous 
literature, utilizing the novel method of EPR spectroscopy [9]. Compared to other methods of 
detecting oxidative stress, EPR spectroscopy allows us to obtain a direct measurement of the 
primary species, rather than its effect [10]. However, the downstream effects exerted by oxidative 
stress on the biochemical and metabolic pathways involved in thyroid cancer remain unknown. Nuclear 
magnetic resonance (NMR) represents one of the most useful techniques for metabolomic studies. NMR 
spectroscopic analyses allow the identification and quantification of metabolites, thus providing 
important information on the metabolomic pathways that may be involved in cancer. Moreover, the 
identification of specific molecules involved in cancer, using this refined technique, may lead to the 
identification of new cancer biomarkers. Lee et al. [11] have shown that NMR analyses can help to 
identify the metabolic pathway that can be targeted for the treatment of glioma resistant to conventional 
therapy, while Kim et al. [12] proposed NMR metabolomic analysis of the urine as a screening tool for 
early-stage colorectal cancer. Regarding the role of NMR analyses on thyroid diseases, Rezig et al. [13] 
showed the potential of high resolution magic angle spin (HR-MAS)-NMR-based metabolomics to 
improve diagnosis in thyroid lesions with indeterminate cytology after fine-needle aspiration biopsies. 
The purpose of this research was to identify changes in the metabolism of thyroid cancer cells caused by 
oxidative stress. In the present study, we performed a metabolomic analysis, using nuclear magnetic 
resonance (NMR) spectroscopy, to detect and evaluate the expression of metabolites present in 
thyroid tumor tissue compared to those found in healthy thyroid tissue. Our results allowed us to 
reconstruct the modifications of metabolic pathways induced by oxidative stress, showing for the 
first time that thyroid cancer cells undergo a sort of “metabolic reprogramming”, that make cells 
able to survive, even in conditions of high levels of oxidative stress. 

2. Materials and Methods 

2.1. Recruitment of Patients 

Our research population was recruited at the Department of Surgical Sciences of the Umberto I 
Hospital in Rome. We enrolled 14 patients (12 women and 2 men) who underwent total 
thyroidectomy, aged between 26 and 64 years, and who had presented with multinodular goiter or a 
suspicious nodule on cytological examination after fine needle aspiration (FNA), according to the 
classification of the Italian Society of Pathology and Diagnostic Cytopathology [14]. FNA was 
performed only on thyroid nodules ≥1 cm with suspicious ultrasound characteristics, in accordance 
with recommendations for FNA by the American Thyroid Association (ATA) [15]. Exclusion criteria 
from the study included the presence of debilitating diseases (advanced stage of diabetes, 
immunological diseases and hematological disorders), lack of informed consent and/or 
authorization for the processing of personal data. All procedures involving human participants were 
in accordance with the 1964 Helsinki declaration and its later amendments, or comparable ethical 
standards, and with the ethical standards of the ethics committee of the Umberto I Hospital of Rome 
that approved the study (ID number: 4240). All patients provided written informed consent for the 
use of clinical specimens for medical research. 

2.2. Surgical Treatment and Sampling of Thyroid Tissue for Metabolomic Analyses 

Total thyroidectomy was performed based on findings from neck ultrasound, cytological 
diagnosis, and physical examination. After surgery, we performed a histological exam of the thyroid 
to determine the presence or absence of cancer. We collected 21 thyroid tissue samples, 11 taken 
from tumor tissue and 10 from healthy thyroid tissue. Each sample analyzed was obtained from a 
single biopsy of the thyroid tissue. We enrolled 9 patients affected by thyroid cancer. In one of the 
patients who underwent total thyroidectomy for cancer we detected 3 different foci of cancer in the 
same lobe, thus obtaining 3 samples of thyroid tumor tissue from this single patient. The other 8 
patients presented unifocal thyroid cancer, from whom we’ve obtained the other 8 samples (n = 11). 
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The healthy thyroid samples (n = 10) were obtained from 10 patients (5 from contralateral healthy 
lobe in case of cancer and 5 from thyroid in case of benign disease). Healthy thyroid samples were 
taken from the contralateral uninvolved thyroid lobe of patients who underwent total 
thyroidectomy for cancer, or from the whole thyroid, in the case of benign disease. In the case of 
patients with multifocal cancer, we took more than one cancer tissue sample from the same patient. 
The tissues collected were quickly frozen (within 30 min) and stored at −80 °C. 

2.3. Extraction of Tissue Metabolites for Metabolomic Analysis by NMR 

All samples were stored at −80 °C until metabolomic analysis with NMR spectroscopy was 
performed. All tissues were homogenized before the analyses. In brief, the frozen tissue pieces were 
weighed and placed into pre-cooled (dry ice) homogenization tubes. Ice-cold extraction solvent (10 
volumes of ethanolic solution (EtOH:H2O, 77:23, v/v) was added to each tube in dry ice and the tissues 
were then homogenized by homogenizator (Ika Homogenizer T10, Sigma-Aldrich, Milan, Italy) three 
times over 30 s with 30 s pause intervals to ensure constant temperatures during homogenization. Then, 
the samples were ultra-sonicated at 20 kHz using a ultrasonic disintegrator MK2 (exponential probe, 8 
µm peak-to-peak; MSE Scientific Instruments, Crawley, UK) and centrifuged at 14,000× g for 30 min. 
This method has been proven to have the same efficiency as the more common perchloric extract 
method, with the added benefit of a simpler experimental procedure [16]. The supernatant was then 
freeze-dried two times in a Savant RTV 4104 freeze dryer (Mildford, ME), and the residue resuspended 
in 0.7 mL of deuterated water (Sigma-Aldrich, Milan, Italy) containing 0.1 mM of 3 
(trimethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt (TSP) as an internal standard. 

2.4. Metabolic Analysis by NMR Spectroscopy of the Thyroid Tissue 

High-resolution NMR experiments (25 °C) were performed at 400 MHz (Bruker AVANCE 
spectrometer, Karlsruhe, Germany). NMR analyses on tissue extracts were carried out using a 60° 
flip angle pulse, preceded by 2 s presaturation for water signal suppression (interpulse delay 2 s, 
acquisition time 1.70 s, spectral width 12 ppm, 16,000 data points, 320 scans). Free induction decays 
were zero-filled to 32,000 data points and Fourier-transformed; a cubic splines model function was 
applied for baseline correction. Peak area correction factors were determined by experiments carried out 
at the equilibrium of magnetization (90° pulses, 30 s interpulse delay). The quantization of the low 
molecular weight metabolites was obtained from the area of the signals (obtained in conditions of 
non-saturation of the magnetization vector, with a repetition time between the pulses long enough to 
allow complete spin-lattice relaxation of the observed species), and the use of a specially implemented 
software (XWIN-NMR), using as standard internal TSP added to the sample. The absolute quantification 
of the concentration of the metabolites was assessed by measuring the areas of the signals and 
multiplying by suitable protection factors, using the balance of the magnetization from experiments (90° 
pulse, with a pulse interval of 40 s). Metabolites were identified according to our previous studies (by 
spiking with metabolite standards) and the databases published on the Human Metabolome Database 
site (http://www.hmdb.ca). The absolute quantification of metabolites was determined by comparing the 
integral of each metabolite to the integral of reference standard TSP, and corrected by respective proton 
numbers for metabolite and TSP. Metabolite quantification was expressed as nanomoles/g tissue and 
then converted into metabolite percentage (relative to total metabolites evaluated in each sample) to 
enable comparisons among the patients. 

2.5. Statistical Analysis 

All tests were applied to the metabolite percentage relative to total metabolites evaluated in 
each sample (nanomoles metabolite/g of tissue) in healthy versus cancer subjects (i.e., biopsy 
samples). Multivariate partial least squares discriminant analysis (PLS-DA) was used to explore the 
metabolite profiles of human thyroid tissues and evaluate the metabolic differences between the 
tested groups using MetaboAnalyst 4.0 available online (https://www.metaboanalyst.ca) [17,18]. The 
optimal number of components in the analysis was determined by cross validation for the model 
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(leave one observation out) based on the original class assignment. Variables in the data sets were 
standardized (Pareto scaling) prior to PLS-DA to promote normality of data to ensure all metabolites 
contributed evenly to the analyses. The variable (predictor) importance in projection (VIP) statistic of 
Wold, which summarizes the contribution a variable makes to the model, was used to select the 
most important variables for projection [19]. In this study, we have considered VIP values greater 
than 1 to indicate important variables and from this set (7) further selected the variables with a 
weighted sum of absolute regression coefficient greater than 50 (5 variables, VIP > 1.3). The variable 
importance values reflect the contribution of each predictor in fitting the PLS model for both 
predictors and response while the regression coefficients represent the importance each predictor 
has in the prediction of just the response. All selected variables important to discriminate between 
healthy and cancer sample biopsies were tested by ANOVA (SPSS® version 23, SPSS, Chicago, IL, 
USA). The p-values of the set of the 5 metabolites with VIP > 1.3 subjected to ANOVA, were adjusted 
for multiple testing using false discovery rate (FDR q-values) to account for multiple comparisons 
using a FDR online calculator that coincides with the R code of the version proposed by Benjamini 
and Hochberg (http://sdmproject.com/utilities/?show=FDR). To give a more accurate indication of 
the FDR, both p- and q-values are presented in the results when suitable. ANOVA were applied 
separately to each set of metabolites involved in (i) glucose/pyruvate pathways, (ii) amino acid 
metabolism, (iii) lipid metabolism, and (iv) energy and redox balance. The Robust Test of Equality of 
Means (Welch statistic) was applied instead of Fisher's classic one-way ANOVA to L-Lysine data, 
which failed the test of homogeneity of variances (Levene Statistic = 10.33; p = 0.005) [20] using SPPS 
(SPSS® version 23). The p-values from each set of metabolites subjected to ANOVA were adjusted 
for multiple testing using false discovery rate (FDR q-values) as described above. 

3. Results 

3.1. Relative Quantification by NMR Spectroscopy of Metabolites in Cancer and Healthy Thyroid Tissue 

Thyroid cancer tissues (n = 11) and healthy thyroid tissues (n = 10) were analyzed by NMR 
spectroscopy in order to clarify the biochemical and metabolic changes that occur in thyroid cancer, 
and to evaluate their relationship with increased oxidative stress. In order to avoid patient 
variability and tissue heterogeneity, the first step was to perform both absolute and relative 
quantification (Table S1), of 22 aqueous metabolites involved in several biochemical pathways in 
cancer and normal thyroid tissue spectra (Figure 1).  

  
Figure 1. Representative partial 1H nuclear magnetic resonance (1H-NMR) spectra (9.4 T) of aqueous 
extracts of thyroid cancer and healthy thyroid tissues. Peak assignment: Acet, acetic acid; Ala, 
alanine; BCCA, branched amino acids; Gly, glycine; Glx, pool of glutamate, glutamine and 
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glutathione; Glt, glutamate; GS, glutathione; HOD, residual H2O; Lac, Lactic acid; m-Ins, 
myo-inositol; tCr, creatine plus phosphocreatine; tCho, choline containing compounds. 

3.1.1. Overall Metabolites in Healthy and Cancer Biopsies  

High-resolution 1H-NMR analyses of biopsy extracts have shown a variation in the molecular 
proportion of various metabolites relative to the total metabolite content between healthy and cancer 
tissues. Class membership of healthy vs. cancer biopsies could not be accurately predicted by the 
linear combination of the assessed metabolites with a predictive ability (Q2) of 0.49 (predicted R2 = 
0.83) with the three components of the PLS-DA model containing 55.4% of data variance (Figure 2 
and Figure S1). Nevertheless, the analysis has indicative value with the following significant 
metabolites in group classification, having both high predictor importance in projection (VIP > 1.3) 
and correlation coefficient above 50%: L-phenylalanine and lactate, which had positive loadings on 
the latent component 1 (LC1); citrate, myo-inositol and threonine, which had negative loadings on 
LC1. The first group of metabolites were in significantly higher concentrations in the cancer thyroid 
tissue than in the healthy tissue (F1,19 = 13.94, p = 0.001, q = 0.005 for L-phenylalanine; F1,19 = 5.348, p = 
0.032, q = 0.08 for lactate), while the second group of metabolites were in higher, albeit not 
significantly, concentration in the healthy thyroid tissue (ANOVA p > 0.05) (Figure 2). 

 
Figure 2. Discrimination between healthy and cancer thyroid tissue based on metabolites analyzed 
by high-resolution 1H-NMR (scores—left panel). The most important metabolites (VIP > 1.3) in the 
partial least squares discriminant analysis (PLS-DA) models are indicated in green or in red 
(loadings—right panel). Green indicates higher proportion of metabolites in healthy tissue relative to 
cancer tissue, while red indicates the reverse; (*) indicates metabolites contributing with more than 
80% of their variance to the latent components. 

3.1.2. Metabolites in Biochemical Pathways 

We analyzed metabolites involved in glucose/pyruvate metabolism, and a significant (p < 0.05) 
increase of 22% was observed only for lactate content (ANOVA F1,19 = 5.39; p = 0.032, although FDR q 
= 0.128) in cancer tissues compared to healthy tissues in the glucose/pyruvate pathways (Figure 3). 
The levels of glucose did not differ between cancer and healthy tissues, while we observed an 
average increase (but not significant) of alanine and acetic acid linked to pyruvate metabolism. 
These observations suggest an increase of glycolytic activity in thyroid cancer tissues. 
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Figure 3. Percentage of metabolites (nmoles of metabolite relative to total nmoles of metabolites per 
g of tissue) involved in the glucose/pyruvate pathways in thyroid cancer tissue (n = 11) and healthy 
thyroid tissues (n = 10). Values are mean ± SD; (*) indicates ANOVA F1,19 = 5.39; p = 0.032 and FDR q 
= 0.128. 

Additionally, we found a significant increase in the levels of the aromatic amino acids tyrosine 
(ANOVA F1,18 = 9.38; p = 0.007; FDR q = 0.035) and phenylalanine (ANOVA F1,19 = 13.94; p = 0.001; FDR 
q = 0.010) and a less significant increase in the level of the branched-chain amino acid (BCAA) 
isoleucine (ANOVA F1,19 = 6.60; p = 0.019; FDR q = 0.063) in cancer tissues, as compared to the 
corresponding healthy tissues (Figure 4). Other NMR-detectable amino acids were not significantly 
different between cancer and healthy tissues. 

  
Figure 4. Percentage of metabolites (nmoles of metabolite relative to total nmoles of metabolites per 
g of tissue) involved in the amino acid metabolism in thyroid cancer tissue (n = 11) and healthy 
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thyroid tissues (n = 10). Values are mean ± SD; (*) indicates ANOVA F values with p < 0.05, and (**) 
indicates q < 0.05 when FDR correction is applied for multiple comparisons. 

The analysis of other metabolites involved in lipid metabolism (Figure 5) and cellular energy 
and redox balance metabolism (Figure 6), did not show any statistically significant difference 
between the levels of polar phosphatidylcholine and phosphatidylinositol in healthy relative to 
cancer tissues. Nevertheless, a slight decrease of the citrate content was observed in cancer tissues 
(ANOVA F1,17 = 4.05; p = 0.060). An average decrease in citrate and increase in acetic acid in cancer 
tissues, could be compatible with de novo lipid synthesis and histone acetylation. Furthermore, we 
found a statistically significant increase in formic acid in cancer tissue compared to healthy tissue (p 
= 0.037). There was an average increase in the pool of glutathione (p = 0.087) and creatine (plus 
phosphocreatine) not statistically significant. 

 

Figure 5. Percentage of metabolites (nmoles of metabolite relative to total nmoles of metabolites per 
g of tissue) involved in lipid metabolism in thyroid cancer tissue (n = 11) and healthy thyroid tissues 
(n = 10). The tendencies of variation of metabolites between healthy and cancer tissues were not 
statistically significant (highest ANOVA F1,17 = 4.05; p = 0.060 for citrate). 

 
Figure 6. Percentage of metabolites (nmoles of metabolite relative to total nmoles of metabolites per 
g of tissue) involved in energy and redox balance in thyroid cancer tissue (n = 11) and healthy 
thyroid tissues (n = 10). The tendencies of variation of metabolite % between healthy and cancer 
tissues were not statistically significant (ANOVA p > 0.05). 
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4. Discussion 

Cancer cells tend to have increased production of free radicals, as well as a compromised 
antioxidant defense system that is no longer able to counteract the overproduction of free radicals 
[21,22]. This leads to an increase in oxidative stress, with the impairment of physiological activities 
such as cell growth and mitosis [23]. Our group has previously reported an imbalance in the 
oxidant/antioxidant system in thyroid cancer. In fact, the decrease in the antioxidant enzymes GPx1 
and TrxR1 found in thyroid cancer suggest that the antioxidant systems of thyroid cancer cells are 
not able to adequately counteract the effect of free radicals. The use of EPR spectroscopy [24] 
associated to the CPH spin trap, helped us to detect an increase in oxidative stress in thyroid cancer, 
by obtaining a direct measure of the responsible free radicals. These results support different 
hypotheses. On the one hand, cancer cells ability to protect themselves from oxidative stress may be 
impaired due to a quantitative and qualitative deficit of antioxidant systems. On the other hand, this 
deficit could be, instead, the consequence of an increase in consumption of the antioxidant cellular 
reserve, due to an overproduction of free radicals. However, it is still unclear what effects this 
oxidative stress could have in thyroid cancer. NMR spectroscopy allowed us to explore the changes 
in the metabolism of thyroid cancer tissues, which may be related to an increase in oxidative stress. 
Figure 6 shows a schematic picture obtained by our results, which highlights the expression of the 
various metabolites in healthy thyroid vs. thyroid cancer tissue. In thyroid cancer tissues, we 
observed a metabolic “reprogramming” which includes changes in the metabolites involved in 
mitochondrial activities (citrate), and in glucose/pyruvate metabolism. The difference in citrate 
levels, as well as the increase in acetate content, support lipid biogenesis in thyroid cancer tissues. 
Mitochondria tightly regulate cellular processes involved in energy production and homeostasis, 
producing ATP and reactive oxygen species (ROS). The ROS content could dramatically increase 
when the respiratory chain is dysfunctional and alter mitochondrial activity, leading to enhanced 
glycolysis. Our quantitative results have shown an average increase in lactate levels in thyroid 
cancer tissues, suggesting a metabolic shift towards glycolysis in these cancer tissues. Taking into 
account that changes in the redox status affect the oxidative and energetic metabolism, we decided 
to verify the role of oxidative stress in thyroid cancer cell metabolism. Our findings demonstrate an 
increase in glycolytic activity, associated with the increase of ROS levels in cancer tissues we 
detected in our previous study [9]. These data were confirmed by the increase in lactate 
concentration in thyroid cancer tissues. In our previous study, we showed that the alteration in the 
metabolic profile (switch towards glycolysis) is due to ROS, since it was reverted when cells were 
cultured in the presence of antioxidant N-acetylcysteine [25]. Therefore, we hypothesize that ROS 
are also the determinant of this metabolic alteration. Furthermore, as reported by Tauffenberger et 
al, lactate may promote oxidative stress resistance through ROS signaling, as seen in neuroblastoma 
and in the nematode Caenorhabditis elegans [26]. High content of lactate and choline, and low levels of 
citrate, glutamine, and glutamate were reported by Ryoo et al. [27] in malignant thyroid nodules, 
and were suggested as the discriminative markers for determining the preoperative metabolomic 
profile of thyroid nodules. High levels of lactate have also been found in several other neoplasias, 
including breast, glioma, and head and neck cancers [28]. Elevated levels of lactate result from an 
increase in the glycolytic pathway following hypoxia or ischemia in tumor tissues. Lactate is known 
as an important factor in terms of cancer cell mobility and immune suppression [29]. Several studies 
have reported a significant alteration of lipid profiles in thyroid carcinoma, compared to adjacent 
healthy tissue. These studies have shown different concentrations of fatty acids at the level of 
phosphatidylcholine [30–32] and high levels of choline in tumor tissues [27,33]. Furthermore, it has 
also been observed that malignant thyroid lesions have lower citrate levels than benign ones [34,35], 
as also demonstrated in our results. Studies of in-vitro cultured cells suggest that oncogenic 
activation of BRAF (often mutated in thyroid cancer) inhibits OXPHOS in mitochondria and 
promotes aerobic glycolysis to sustain cancer cell growth [36]. Our findings, for the first time, 
hypothesize a connection between oxidative stress and the alteration of the metabolic profile in 
thyroid tumors. We observed by EPR spectroscopy a significant increase in the ROS content of 
approximately double in thyroid cancer samples, associated with a reduction in the levels of the 



Biology 2020, 9, 112 9 of 12 

 

antioxidant enzymes GPx1 and TrxR1, and now suggest a kind of metabolic “reprogramming” in 
thyroid cancer cells, assessed through NMR spectroscopy. Specifically, the results obtained with 
NMR spectroscopy suggest reduced activity of the Krebs cycle. The reduction in citrate, produced 
during the Krebs cycle, may be attributed to a decrease in oxidative metabolism in neoplastic cells, 
consistent with an accumulation of precursors such as acetate. Furthermore, impairment of oxidative 
metabolism would also explain the reduction in the formation of acetyl CoA, with the resultant 
accumulation of its precursor, acetate (Figure 7).  

 
Figure 7. Schematic picture of altered metabolism in thyroid cancer. The reduction observed in the 
intermediates produced during the Krebs cycle (citrate), along with an accumulation of tyrosine, 
phenylalanine, isoleucine, acetate and formic acid may be attributable to a decrease in activity of the 
Krebs cycle, and a shift towards glycolysis in cancer tissue. (The red and green boxes indicate an 
increase or a decrease of the metabolites’ concentration, respectively). 

Our findings also show an increase in total glutathione—likely due to enhanced oxidant 
environment [ROS]. The metabolomic analysis performed (and the type of instrumentation used) 
did not allow us to discriminate between reduced or oxidized glutathione, only showing an increase 
in total glutathione. Our findings, of course, only partially clarify the complex mechanisms 
underlying thyroid cancer. Other studies are needed to better understand the role of other 
metabolites and enzymes involved in thyroid cancer, as well as the mechanisms involved in the 
overproduction of free radicals. However, the data is quite clear that thyroid cancer cells are able to 
reprogram their metabolic activity to survive in conditions of high oxidative stress and with a 
compromised antioxidant system. A recent study by Yanyun Li et al [37] on 16 patients reported that 
the metabolome of papillary thyroid carcinoma (PTC) is characterized by increased glycolysis and 
inhibited tricarboxylic acid cycle, with increased oncogenic amino acids (isoleucine) as well as 
abnormal choline and lipid metabolism. An increase in isoleucine levels, together with high levels of 
other branched-chain amino acids are often associated with the risk of PTC [38]. Other studies have 
suggested metabolites involved in different pathways such as alanine, methionine, acetone, 
glutamate, glycine, lactate, tyrosine, phenylalanine and hypoxanthine as potential biomarkers 
common to all thyroid lesions [39]. Finally, analyses of intact samples by HR-MAS technology 
showed an increase of phenylalanine, taurine, and lactate and a decrease of choline and choline 
derivatives, myo- and scyllo-inositol in malignant thyroid tumors compared to benign tissue [40]. 
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Chronic administration of L-tyrosine results in a marked decrease in the activity of citrate synthase 
and succinate dehydrogenase activities in hippocampus and striatum, and that antioxidants 
administration (N-acetylcysteine, and deferoxamine) could prevent this inhibition in hippocampus 
and striatum [41]. 

5. Conclusions 

Thyroid cancer cells show evidence of increased oxidative stress and impaired antioxidant 
defenses. In this study, using NMR spectroscopy to explore differences in the metabolites of thyroid 
cancer tissue compared to healthy tissue, we demonstrate evidence of metabolic “reprogramming” 
in cancer cells, with changes in the metabolites involved in mitochondrial activity and in 
glucose/pyruvate metabolism. Our findings suggest that thyroid cancer cells have metabolic 
plasticity that allows them to survive in extreme environmental conditions, such as those with high 
oxidative stress levels. The metabolic pathways involved in this adaptation may provide additional 
targets for cancer-fighting therapeutic agents. Lactate, for example, may be considered not only as a 
cancer marker but also as an oncometabolite potentially capable of increasing cellular resistance to 
harmful stimuli. The metabolic pathways involved in lactate synthesis may represent a novel 
molecular target to counteract thyroid cancer.  
Supplementary Materials: The following are available online at www.mdpi.com/2079-7737/9/6/112/s1, Figure S1: 
The variable importance in projection (VIP) for the analyzed metabolites in the PLS-DA model, Table S1: Absolute 
and relative quantification of metabolites detected by NMR in thyroid cancer and healthy thyroid tissues. 
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