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Restricting retrotransposons: ADAR1 is another guardian of the human genome
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ABSTRACT
ADAR1 is an enzyme that belongs to the Adenosine Deaminases Acting on RNA (ADARs) family. These
enzymes deaminate adenosines to inosines (RNA editing A-to-I) within double-stranded RNA regions in
transcripts. Since inosines are recognized as guanosines by the cellular machinery, RNA editing mediated
by ADARs can either lead to the formation of an altered protein (recoding) or affect different aspects of
RNA metabolism.

Recently, a proteomic analysis led to the identification of novel ADAR1-associated factors and found
that a good fraction of them is shared with the Long Interspersed Element 1 (LINE-1 or L1)
ribonucleoparticles (RNPs). This evidence suggested a possible role of ADAR1 in regulating the L1 life
cycle. By taking advantage of the use of cell culture retrotransposition assays, a novel function of this
deaminase as an inhibitor of L1 retrotransposition was demonstrated. These results pave the way toward a
better comprehension of the mechanisms of restriction of retrotransposons.
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Introduction

Retrotransposons, are the predominant class of Transpos-
able Elements (TEs) in most mammalian genomes and can
be subdivided into those sequences that contain the long-
terminal repeats (LTR) and those that do not (non-LTR).1-2

The Long INterspersed Element-1 (LINE-1s or L1s) is an
autonomous non-LTR retrotransposon that continues to
generate both intra-and inter-individual genetic variations
in the human population.1

A typical retrotransposition-competent human LINE-1 ele-
ment is »6 kb in length and contains a 50 untranslated region
(UTR), open reading frames (ORFs) and a 30 UTR.3-4

The promoter region of these elements is within the 50 UTR,
driving the transcription of a bicistronic L1 RNA, which con-
tains 2 non-overlapping ORFs (ORF1 and ORF2).5

ORF1p is a »40 kDa polypeptide with nucleic acid chaper-
one activity,6-7 and ORF2p is a »150 kDa protein with endonu-
clease and reverse transcriptase functions.8-10 Upon translation
the ORF1p and ORF2p proteins bind their own L1 RNA (cis-
preference) forming a ribonucleoprotein (RNP) complex in the
cytoplasm.11-12 Upon translocation of the RNP to the nucleus,
it may generate a new chromosomal insertion via a target
primed reverse transcription mechanism (TPRT).13 L1 can also
function in trans to mobilize the non-autonomous Short Inter-
spersed Elements (SINEs).

Even though more than 500 000 copies of L1 exist in the
human genome, most L1s are inactive due to point mutations,
rearrangements, or truncations, with only 80–100 elements
potentially active in any individual.14-15

The uncontrolled retrotransposition of LINE-1 can be dele-
terious for the host genome thereby the cell has evolved several
mechanisms of defense against these endogenous parasites. The

repression of retrotransposons occurs both at the transcrip-
tional and post-transcriptional levels.16-17

The major control occurs by limiting the expression of L1
through histone modification and DNA methylation.18-25

Furthermore, several cellular trans-acting restriction factors
regulate the L1 life cycle with different mechanism.16-17 The list
of these factors is growing fast and interestingly many of these
proteins are involved in nucleic acid metabolism, and some are
induced by type I interferons.

During evolution, the cell has developed different mech-
anisms of defense to protect against the danger of endoge-
nous and exogenous parasites, thus it is not surprising
that many of the known anti-retrotransposon restriction
factors are also anti-retroviral. Of note, different enzymes
belonging to the family of the APOBEC3 cytidine deami-
nase were reported to restrict LINE-1 retrotransposition.
In particular, APOBEC3A can inhibit retrotransposition
through the deamination of the single-stranded DNAs that
are exposed transiently during the LINE-1 TPRT process,26

whereas APOBEC3B, APOBEC3C, and APOBEC3DE seem
to inhibit retrotransposition by diverse deamination-inde-
pendent mechanisms,27-29 thus showing the complexity of
the restriction processes. Moreover, we recently provided
evidence showing that another deaminase, ADAR1, is a
suppressor of LINE-1 retrotransposition.30

ADAR1 is a member of the Adenosine Deaminases Act-
ing on RNA (ADARs) family and catalyzes the conversion
of adenosine to inosine (A-to-I) within double-stranded
RNAs.31-32 There are 2 different ADAR1 isoforms generated
by the use of alternative promoters and alternative splic-
ing.33-35 The short form of ADAR1 (p110) is constitutively
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expressed and localizes mainly to the nucleus, whereas the
long form of ADAR1 (p150) is interferon-inducible and
shuttles between the nucleus and cytoplasm.31 ADAR1 can
edit both cellular and viral RNAs and since inosines are
recognized as guanosines by the cellular machinery, RNA
editing mediated by ADARs can lead to the formation of
an altered protein if editing occurs within the coding
sequence of mRNAs.31,36 However, recently it has been
clearly demonstrated that most of the RNA editing occurs
within non-coding regions, most particularly Alu elements,
affecting different aspects of the RNA metabolism, such as
RNA stability, translation, splicing, and interaction with
specific protein factors.36 Moreover, RNA editing is
deregulated in a variety of human diseases.32,37-41 There-
fore, ADAR1 has a deep impact on gene expression regu-
lation. Moreover, ADAR1 plays a role as suppressor of
interferon (IFN) signaling.42-43 Recently, Mannion and col-
leagues proposed that ADAR1 editing may mark endoge-
nous dsRNAs as “self” to distinguish them from
exogenous, mostly viral, “non self” dsRNAs thus avoiding
the induction of an aberrant type I IFN response.44 This
hypothesis was further confirmed by others45-47

ADAR1 is an inhibitor of LINE-1 retrotransposition

Our study started with the affinity purification of the ADAR1
RNP complexes followed by mass spectrometry analysis of
293T cells expressing HIV-1 with the initial goal of identifying
the ADAR1-interacting factors that could contribute to the
proviral activity of the deaminase previously reported.30,48-50

This analysis led to the identification of 14 non-ribosomal
ADAR1-associated factors, among which a good fraction, such
as PABPC1, hnRNP L, HSPA1A, nucleolin and TOP1 were

previously reported as L1 RNP-associated factors.51-53 More-
over, 3 of these proteins (nucleolin, hnRNP L and PABPC1)
were shown to affect L1 retrotransposition.51,54-55 This result
prompted us to test whether ADAR1 too is involved in the L1
life cycle. First, we confirmed by co-immunoprecipitation
experiments the interaction between ADAR1 and the L1 RNP-
associated proteins identified by mass spectrometry. Moreover,
we found that these interactions occur also in the absence of
HIV-1 expression, thus suggesting that we identified general
interactors of the deaminase, most of which are novel. Further-
more, we tested whether ADAR1 is a regulator of L1 retrotrans-
position by taking advantage of the use of different and widely
used cell culture retrotransposition assays.56-58

By using these assays in HeLa cells silenced for ADAR1
expression, we observed an increase of LINE-1 retrotransposi-
tion. We further extended our analysis and confirmed that
overexpression of ADAR1 decreases L1 retrotransposition.30

Overall, these results suggest a novel function for ADAR1 as a
general repressor of retrotransposition.

Possible mechanism for ADAR1 anti-retrotransposon
activity

What could be the mechanism that drives the inhibition of L1
retrotransposition mediated by ADAR1?

a) RNA editing model
It was previously suggested that L1 RNAs harbor some dou-

ble-stranded (ds) RNA-binding elements for Microprocessor,59

thus the most logical answer to this question is that ADAR1
upon binding to L1 dsRNA, catalyzes the conversion of adeno-
sines to inosines, thus potentially either altering the folding of
some dsRNA elements or mutating sequences that are critical
for retrotransposition activity (Fig. 1A).

Figure 1. Possible models for how ADAR1 inhibits LINE-1 retrotransposition. (A) L1 RNAs are edited by ADAR1 causing nucleotide changes in the ORF sequence or altering
the dsRNA elements harbored within L1 RNAs. (B) ADAR1 by binding the basal L1 RNP complex and/or its associated proteins impairs its functionality. (C) ADAR1 seques-
ters L1 RNP complexes in the stress granules. (D) ADAR1 binds L1 DNA/RNA hybrids during the RT step of the L1 life cycle and either impairs the formation of these
hybrids or edits the DNA.
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We tested this hypothesis by using a deletion mutant of
ADAR1 that lacks the deaminase domain, and showed that
this protein represses L1 retrotransposition to a similar
extent as the wild-type protein.30 Moreover, we did not
find A-to-I editing events in the ectopically expressed L1
RNAs isolated from cells over-expressing ADAR1 (almost
half of the full-length 6 kb analyzed).30 All together, these
results suggest that ADAR1 inhibits retrotransposition by
a mechanism that is RNA-editing independent, even
though a more detailed analysis is required to fully address
this issue. In fact, we cannot exclude that editing is indeed
occurring at a very low frequency below the threshold of
detection of our assay (3–4%), although not sufficiently to
affect the retrotransposition process. Moreover, we cannot
rule out that editing is occurring in the L1 RNA regions
not sequenced.

To further complicate this issue, recently, by using inosine-
specific cyanoethylation combined with Sanger sequencing
(ICE method) and deep sequencing (ICE-seq), several A-to-I
editing events were identified in the human brain transcrip-
tome, and some of them lie in the 30UTRs of transcripts (i.e.
TAF1, ACBD7, GPLD1, TAF1, NBPF11 mRNAs) containing
dsRNA structures formed by LINE sequences (partial, not full
length) repeated in tandem and in inverse orientation.60 There-
fore, LINE-1 sequences embedded in other transcripts and
forming dsRNA structures can be targets of ADAR enzymes.

b) Restriction of L1-RNP complex
In our study, we also reported that ADAR1 binds to the

basal L1 RNP complex, in particular ORF1p and the L1 RNA.30

The correct assembly of the L1 RNP complex is pivotal for ret-
rotransposon activity, thus it is plausible that ADAR1 binding
to the L1 RNP complex might directly or indirectly interfere
with its activity resulting in the inhibition of retrotransposition
(Fig. 1B). We first assayed whether ADAR1 binding to the L1
RNP complex might affect the intracellular accumulation of L1
RNA and ORF1p components, as shown for other L1 restric-
tion factors.53,61-64

We tested this hypothesis by measuring the levels of both
ORF1p (by Western Blot analysis) and L1 RNA (by RT-qPCR)
ectopically expressed from a retrotransposition cassette in
HeLa cells silenced for ADAR1 expression, but we did not find
any significant alteration in their levels compared with the con-
trols.30 This result indicates that in our experimental setting the
ADAR1 inhibition of L1 retrotransposition is not caused by a
decreased stability/accumulation of the L1 RNP components.
Nevertheless, silencing of ADAR1 expression in HeLa cells
causes an increase of the endogenous L1 transcripts (measured
by RT-qPCR, Orecchini et al. unpublished). We don’t know
the reason for this discrepancy and additional experiments are
required to explain it.

Furthermore, as mentioned above, we have shown the inter-
action between ADAR1 and some L1 RNP-associated pro-
teins.30 In particular, PABPC1 and nucleolin proteins were
previously reported to exert a positive effect on L1 retrotrans-
position.54-55 In fact, PABPC1 is critical for L1 RNP formation,
and alteration of its intracellular level affects retrotransposition
and subcellular localization of ORF1p.54 Moreover, nucleolin
likely acts as an IRES trans-acting factor to stimulate ORF2
translation of murine L1 RNA.55

Therefore, ADAR1 by interacting with these proteins and
other L1 RNP-associated factors may affect their stimulatory
activity thus impairing L1 retrotransposition (Fig. 1B).

Finally, we have preliminary results showing that ADAR1
may also impair Alu retrotransposition (Orecchini et al.,
unpublished). In particular, in HeLa cells silenced for ADAR1
expression and co-transfected with an Alu retrotransposition
cassette (pAlu-Neotet)65 together with an ORF2p expression
vector (pORF2NoNeo), an increase in Alu retrotransposition
was observed. This result suggests that ADAR1 regulates differ-
ent classes of retrotransposons. Since in this assay the Alu ret-
rotransposition can be achieved only through the
overexpression of the LINE-1 ORF2p protein, it would be of
great interest to test whether both the inhibition of L1 and Alu
retrotransposition mediated by ADAR1 occur through the dis-
ruption of ORF2p activity or by reducing its level as previously
shown for SAMHD1.66

c) Stress Granules as a site for L1 RNP sequestration
by ADAR1

It has been previously reported that the L1 RNA, ORF1p
and ORF2p proteins accumulate in stress granules (SGs) and in
the nucleoli of a small percentage of cells.67-69 SGs are assem-
blies of untranslating messenger ribonucleoproteins (mRNPs)
that form from mRNAs stalled at translation initiation, and
their formation modulates the stress response, viral infection,
and signaling pathways.70

Of note, ADAR1 p110 isoform is almost exclusively a
nuclear/nucleolar protein, while ADAR1 p150 is a shuttling
protein and accumulates in the cytoplasm and under partic-
ular stress localizes in stress granules (SGs).71 The Za
domain of ADAR1 p150 is required for such specific subcel-
lular localization.71 Moreover, we identified stress granule-
associated proteins G3BP2 and PABPC1 as novel interactors
of ADAR1.30

Therefore, it is conceivable that SGs and the nucleoli are the
subcellular compartments where the interaction between
ADAR1 and the L1 RNPs may take place. To address this issue,
we performed immunofluorescence experiments in 293T cells
transfected with a retrotransposition cassette containing the
full length L1 sequence with the ORF1p fused to a T7 tag
(pES2TE1; 69). We have preliminary results showing that the
endogenous ADAR1 co-localizes with ORF1p in cytoplasmic
granules; this localization is even more evident when cells are
treated with an inducer of SGs, such as sodium arsenite (Orec-
chini et al. unpublished).

Interestingly, other L1 RNP-associated factors localize in
SGs, such as MOV10, ZAP, PABPC1 and APOBEC3 pro-
teins.53,61,62,67,72 Notably, Hu and collaborators proposed a
novel mechanism whereby SAMHD1 enhances assembly of
cytoplasmic stress granules that then sequester L1 RNPs and
prevent their retrotransposition.73

Therefore, we cannot exclude that ADAR1, in particular the
p150 isoform, may suppress L1 retrotransposition through a
similar mechanism (Fig. 1C). In any event, co-localization of
ADAR1 p150 with the ORF1p protein suggests that this iso-
form may be critical for L1 restriction.

d) DNA/RNA hybrids
Finally, it has been recently demonstrated that ADARs can

deaminate 20-deoxyadenosines in the DNA strands of DNA/
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RNA hybrids in vitro, thus expanding the possible biologic
functions of ADARs.74 The RNA-DNA hybrid is an essential
intermediate of reverse transcription during the retrotransposi-
tion process of LINE-1, thus it can be envisioned that ADAR1,
by simply binding such RNA-DNA hybrids and/or by mutating
the L1 DNA sequence may affect retrotransposition (Fig. 1D).
Based on the results described above using the mutant of
ADAR1 lacking the deaminase domain we suppose that the
first hypothesis is more plausible.

Aicardi-Gouti�eres syndrome

Aicardi-Gouti�eres Syndrome (AGS) is an inflammatory
encephalopathy that exhibits a neurologic dysfunction charac-
terized by increased production of type I interferon (IFN).75

AGS can be caused by mutations in any of 7 genes (TREX1,
RNaseH2A, RNaseH2B, RNaseH2C, SAMHD1, ADAR1 and
IFIH1) that carry out diverse functions of intracellular nucleic
acid metabolism and sensing. A deficiency of these proteins is
thought to result in the accumulation of self-derived nucleic
acid species that are recognized as danger signals by sensors of
the innate immune system, triggering the pathogenic type 1
interferon (IFN) response.75

The source of endogenous nucleic acids that are hypothe-
sized to induce such a response remains uncertain, but may
relate to retroelements.

Indeed, the products of 6 out the 7 AGS-related genes
can be placed in a common pathway of metabolism of ret-
roelements. In TREX1-deficient cells, type I IFN activation
has been attributed to an increased amount of reverse tran-
scribed DNA derived from endogenous retroelements.76

Furthermore, it has been recently shown that TREX1 inhib-
its L1 retrotransposition by depleting ORF1p protein and
AGS-related TREX1 mutants are deficient in this activity.64

Moreover, SAMHD1 has been demonstrated to be a potent
inhibitor of L1 activity and importantly it was found that
AGS-related SAMHD1 mutants are defective in L1 retro-
transposition inhibition.66 It has been suggested that the
RNaseH2 may be involved in the suppression of endoge-
nous retroelements,77 and we recently demonstrated that
ADAR1 is an inhibitor of LINE-1 retrotransposition.30 In
addition, it has been reported that L1 activity is a potential
inducer of interferon expression and autoimmune disor-
ders,77-79 thus providing a link between the dysregulation of
L1 retrotransposition and the pathogenesis of AGS.

Therefore, we cannot exclude that in AGS patients contain-
ing mutations in ADAR1 (AGS6; 80), an increased level of L1
transcripts could trigger an aberrant IFN activation. However,
Mannion and collaborators44 analyzed repetitive element tran-
script levels by RNA-Seq in Adar1¡/¡ embryos and no substan-
tial differences were found compared with the control besides
an increased expression of individual members of ERV and
IAP families in the mutant mice. This result is in disagreement
with our results showing an increase of L1 transcripts in HeLa
cells silenced for ADAR1 expression, but it may suggest a gen-
eral role of this enzyme in the metabolism of different retroele-
ments. Therefore, it would be of paramount importance to
assay the transcript level of all the different classes of retroele-
ments (with particular attention to the HERV) in AGS6

patients to determine whether their expression is altered in that
specific context.

Concluding remarks

Recent studies have provided a deeper knowledge of the differ-
ent mechanisms causing the restriction of L1 retrotransposi-
tion. We found that ADAR1 is among the protein factors that
inhibit retrotransposition, probably at the post-transcriptional
level. Future investigations are required to shed light on the
mechanism through which ADAR1 inhibits retrotransposition
and to elucidate whether this enzyme is active against the mobi-
lization of other retroelements.
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