
  

Foods 2020, 9, 101; doi:10.3390/foods9010101 www.mdpi.com/journal/foods 

Article 

Influence of Different Hot Air Drying Temperatures 

on Drying Kinetics, Shrinkage, and Colour of 

Persimmon Slices 

Wijitha Senadeera 1,*, Giuseppina Adiletta 2,*, Begüm Önal 2, Marisa Di Matteo 2 and Paola Russo3 

1 School of Mechanical and Electrical Engineering, Faculty of Health, Engineering and Sciences, Springfield 

Campus, University of Southern Queensland, 37 Sinnathamby Boulevard, Springfield Central QLD 4300, 

Australia  
2 Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II132, 84084 Fisciano, SA, 

Italy; bonal@unisa.it (B.Ö .), mdimatteo@unisa.it (M.D.M.) 
3 Department Chemical Engineering Materials Environment, Sapienza University of Rome, Via Eudossiana, 

18, 00184 Rome, Italy; Paola.Russo@uniroma1.it 

* Correspondence: wijitha.senadeera@usq.edu.au (W.S); gadiletta@unisa.it (G.A.); Tel.: +61-7-3470-4086 

(W.S.); +39-0-8996-4334 (G.A.) 

Received: 23 December 2019; Accepted: 14 January 2020; Published: 18 January 2020 

Abstract: Drying characteristics of persimmon, cv. “Rojo Brillante”, slabs were experimentally 

determined in a hot air convective drier at drying temperatures of 45, 50, 55, 60, and 65 °C at a fixed 

air velocity of 2.3 m/s. It was observed that the drying temperature affected the drying time, 

shrinkage, and colour. Four empirical mathematical models namely, Enderson and Pabis, Page, 

Logarithmic, and Two term, were evaluated in order to deeply understand the drying process 

(moisture ratio). The Page model described the best representation of the experimental drying data 

at all investigated temperatures (45, 50, 55, 60, 65 °C). According to the evaluation of the shrinkage 

models, the Quadratic model provided the best representation of the volumetric shrinkage of 

persimmons as a function of moisture content. Overall, higher drying temperature (65 °C) improved 

the colour retention of dried persimmon slabs. 

Keywords: persimmon; “Rojo Brillante”; hot air drying; shrinkage; empirical mathematical model; 

colour 

 

1. Introduction 

The persimmon (Diospyros kaki) belongs to the family Ebenaceae and it is commonly cultivated 

in warm regions of the world including China, Korea, Japan, Brazil, Spain, Turkey, Italy, and Israel 

[1,2]. “Rojo Brillante” is one of the main cultivars produced in the Mediterranean area, including 

Italy. Among the other and known persimmon cultivars, the “Rojo Brillante” is the most popular 

cultivar due to its high productivity and commercial quality [3,4]. This persimmon cultivar is seedless 

and ripens faster than the other cultivars. In addition, persimmon fruits contain large amounts of 

bioactive compounds, such as ascorbic acid, carotenoids, and condensed tannins with strong 

antioxidant activity, which also offer health promoting effects (i.e., anticarcinogenic, anti-

inflammatory, cardioprotective, and anti-hypercholesterolemic) [1,5–7]. Furthermore, persimmon 

fruits have a high content of sugars, as glucose and fructose, and moisture. For this reason, after the 

harvesting process, the fruits decay rapidly and they become very sensitive to microbial spoilage 

during storage. 

These undesirable adverse changes may result in low quality and short shelf life. Due to these 

reasons, feasible processing and preservation technologies have been proposed to extend the shelf 
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life of fresh fruits, reduce economic and environmental losses, valorise the traditional products, and 

increase their commercial value [3,6,8,9]. 

The persimmons are consumed in different forms, for example, fresh, frozen, canned, as well as 

their dehydrated form, and they can be stored for up to 6 month in a controlled or modified 

atmosphere. Dried persimmons have become an interesting product for consumers and global 

markets because they can be a valuable ingredient in different kinds of preparations including 

breakfast cereals, muesli, and snacks [1,3,10]. 

Drying is widely applied to fresh products as a preservation technique. The dehydration process 

prolongs the fruits and vegetables’ stability by reducing the water content and microbial growth and 

minimizing physicochemical changes. In addition, this process provides a better preservation of high-

value compounds of foodstuffs; prolongs shelf life; reduces packaging, storage, and transportation 

costs due to the decreased food product weight and volume; and allows for the possibility of 

persimmon consumption during all seasons [1,6,9,11]. Whole persimmons have been used 

traditionally for the dehydration process to obtain a product with good sensory properties, however, 

drying of whole persimmon fruits is difficult. Using smaller persimmon fruits could be an alternative 

application to reduce drying time [3,12]. Fruits and vegetables are usually dehydrated in sun light, a 

solar dryer, or in artificial dryers [13]. Another food drying technique is conventional hot air drying, 

which is well-known as a cheap method, offers hygiene, uniformity, simplicity, ease of handling, 

affordability, and it provides better dried food materials [6,9,14–16]. 

Mathematical modelling in fruit drying is crucial to estimate optimal drying process conditions 

for prolonging the shelf life of food materials. Mathematical models of the drying process are applied 

for designing and improving industrial drying systems to obtain high quality dried products [1,17]. 

Shrinkage of fruits and vegetables is a widely known physical phenomenon during the drying 

process and it affects the overall quality of dried foodstuffs. This negative phenomenon leads to 

volume reduction, changes in shape and porosity, hardness increase, and surface cracking. It may 

also modify the microstructure and change the heat and mass transfer and rehydration capabilities 

of dried fruits. From this viewpoint, the shrinkage phenomenon has to be avoided since this 

undesirable physical change may cause a negative impression on consumers [9,17,18]. 

The main objective of this research was to investigate the effects of air drying conditions 

(temperature and time) on the drying behaviour and colour of persimmon, cv. “Rojo Brillante”, slabs. 

Therefore, we decided to use a wide range of drying temperatures (from 45 to 65 °C) to deeply 

evaluate the drying process variables and achieve high quality dried persimmon snacks. 

Furthermore, to describe the observed changes in water content during the drying tests, the moisture 

ratios were fitted using empirical models found in the literature. The drying models used in this 

research can be very important tools to estimate the persimmon slabs’ behaviour under different 

drying conditions and to optimize the drying process. 

A good knowledge of the shrinkage phenomenon and the impact of process parameters on the 

mechanism of shrinkage are necessary to predict the shrinkage behaviour of fruits and vegetables. 

According to our knowledge, no scientific studies have been published related to the effect of the 

drying process on shrinkage of persimmon fruits nor the evaluation of shrinkage, including the 

mathematical models. To take into account the shrinkage effect on the quality of persimmon slabs 

during the drying process, volume changes were also measured and some empirical models of 

shrinkage were tested to describe the shrinkage behaviour during drying. 

We believe that this research will contribute to the literature by providing a better understanding 

of the shrinkage behaviour of persimmon slices, how to control and optimise the drying process 

conditions, and how to obtain nutritious dried persimmon slabs for the dried fruit market. 
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2. Materials and Methods 

2.1. Raw Materials 

Persimmon fruits, cv. “Rojo Brillante”, were harvested from ten trees at the ripening stage at a 

commercial orchard located in Francolise (Caserta-Italy). Fresh whole fruits were washed, peeled, 

and sliced (Figure 1). Slices of a cylindrical shape (diameter of 30 mm and thickness of 6 mm) were 

prepared from the internal part of the fruits, without seeds, using a suitable steel mould. Before the 

experiments, all slabs were collected from different peeled persimmons. Sample randomization was 

performed to avoid undesirable differences in the structure of persimmons that could negatively 

affect the analysis. 

 
(a) 

 
(b) 

Figure 1. (a) Whole persimmon fruit, cv. “Rojo Brillante”; (b) Internal view of the persimmon fruit, 

cv. “Rojo Brillante”. 

2.2. Drying Experiments 

Drying experiments of persimmon slabs were conducted in a convective dryer (FCV/E6L3, 

Zanussi, Pordenone, Italy) operating at a constant temperature. The dryer is comprised of a stainless-

steel chamber (86 cm × 86 cm × 76 cm) equipped with an electric heater to heat the air and a centrifugal 

fan to supply the air flow and re-circulate the air. 

The persimmon slabs were put on a plastic grid of mesh of size 0.01 m × 0.01 m in the dryer, and 

dried at 45, 50, 55, 60, and 65 °C at a centrifugal fixed air velocity of 2.3 m/s until the mass was constant 

(about 0.04 kg water/kg db). For drying kinetics, at suitable time intervals, some slices were taken out 

of the oven to calculate weight loss. 

Weight loss was measured by means of an external digital electronic balance (mod. E42, 

Gibertini, Milano, Italy). The procedure was repeated until the mass of the sample no longer changed. 

For each temperature, drying tests were repeated in three sets independently. Each set had three 

replicates, and the averages with standard deviations are shown. 

The results were reported as moisture ratio (Mt/M0) vs. time (min), where Mt was the moisture 

content (kg water/kg db) at a certain drying time and M0 (kg water/kg db) was its initial value [9]. 

2.3. Modelling of Drying Kinetics 

Simplified drying models have been applied for describing the drying kinetics of several food 

products. Four empirical mathematical models widely used for fruits were here utilized (Table 1) to 

find the most appropriate model to describe the drying behaviour. 

  



Foods 2020, 9, 101 4 of 12 

 

Table 1. Mathematical models applied to drying curves. 

Model Name Equation Reference 

Henderson and 

Pabis 

𝑀𝑡

𝑀0
= 𝑎 𝑒𝑥𝑝(−𝑘𝑡) 

Henderson and Pabis [19] (1961); Adiletta et al. 

[8] 2016 

Page 
𝑀𝑡

𝑀0
= 𝑒𝑥𝑝(−𝑘𝑡𝑛) Doymaz [1] (2012); Adiletta et al. [8] 2016 

Logarithmic 
𝑀𝑡

𝑀0
= 𝑎 𝑒𝑥𝑝(−𝑘𝑡) + 𝑐 Yagcioglu et al. [20] (1999) 

Two term 
𝑀𝑡

𝑀0
= 𝑎1 𝑒𝑥𝑝(−𝑘1𝑡) + 𝑎2 𝑒𝑥𝑝(−𝑘2𝑡) Henderson [21] (1974); Adiletta et al. [22] 2018 

The empirical constants for the drying models were obtained from normalized experimental 

drying data (moisture ratio Mt/M0 vs. time) at each investigated temperature. Nonlinear least square 

regression analysis was applied for the determination of the selected models’ parameters with the 

Levenberge–Marquardt procedure. For each model, the goodness of fit was assessed based upon the 

values of the following statistical parameters: the coefficient of determination (R2), the root mean 

square error (RMSE), and the reduced χ-square (χ2) [1,8,20,22]. 

These parameters were calculated as follows: 

𝑅𝑀𝑆𝐸 = [
1

𝑁
∑ (𝑀𝑅,𝑝𝑟𝑒,𝑖 − 𝑀𝑅,𝑒𝑥𝑝,𝑖)

2𝑁
𝑖=1 ]

1/2

and (1) 

𝜒2 =
∑ (𝑀𝑅,𝑝𝑟𝑒,𝑖−𝑀𝑅,𝑒𝑥𝑝,𝑖)

2𝑁
𝑖=1

𝑁−𝑧
, (2) 

where MR,exp,i and MR,pre,i are experimental and predicted dimensionless moisture ratios, respectively, 

N is the number of observations, and z is the number of constants. The χ2 is the mean square of the 

deviations between the experimental and calculated values for the models. The lower the value of χ2, 

the better the goodness of the fit. The RMSE explains the deviation between the predicted and 

experimental values and it is necessary to reach zero. 

The R2 was used as the primary comparison criteria for choosing the best model to consider the 

variation in the drying curves of dried fruits [1]. Its value should be higher and close to one. In 

addition to R2, χ2 and RMSE parameters were used to determine the quality of the fit [1,8,22]. The 

higher the value of R2, the lower the values of χ2 and RMSE, which were chosen as the criteria for 

goodness of fit [1,8,19]. 

2.4. Colour Evaluation 

Surface colour was determined by two readings on the two different symmetrical faces of the 

fresh and dried persimmon slices using a Minolta Chroma Meter II Reflectance CR-300 colorimeter 

(Minolta, Osaka, Japan). The instrument was calibrated with an international standard white 

calibration plate CR-A43. 

The repetitions of colour measurements were carried out in three sets independently for each 

temperature. Each set had six slices, and the averages of results were expressed with standard 

deviation. 

CIE L*a*b* colour parameters (L*, a*, and b*) were measured for all samples and the average 

values were calculated. The lightness parameter (L*) represents the lightness/darkness of the 

persimmon samples, a* and b* parameters indicate the redness/greenness and yellowness/blueness 

of samples, respectively. 

The Hue angle (H°) is how we perceive the colour of an object: green, orange, red, or blue; it was 

computed using the following equation [23]: 

H = 𝑡𝑎𝑛−1
b∗

a∗
 (3) 

The total colour difference (ΔE) was calculated according to Equation (4) [9]: 
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ΔE = √ (∆L∗)2 + (∆a∗)2  +  (∆b∗)22
 (4) 

The fresh persimmon slabs were used as a reference material, and higher values of ΔE indicated 

more colour change from the reference persimmons. 

2.5. Shrinkage Evaluation and Empirical Models 

The initial volume of each persimmon (V0) was determined by using a digital Vernier caliper 

(0.01 mm accuracy), and it was calculated from diameter and thickness measurements for each slab 

(about 20 slices). The thickness and diameter dimensions were measured on the same slabs at specific 

times during drying tests, and the volume (Vt) was calculated. Furthermore, the diameter and the 

thickness were measured at different sample positions to minimize the measurement error during 

drying, and their average values were estimated. The evaluation of shrinkage during drying was 

studied in terms of the mean volume shrinkage (Vt/V0) reported as a function of the relative moisture 

ratio (Mt/M0) [24]. 

An empirical correlation between shrinkage and moisture content can be used to model 

shrinkage during the drying process. Many empirical models are available in the literature and they 

are widely applied for vegetables and fruits [8,25,26]. The mathematical models taken for identifying 

the most suitable model to describe the shrinkage behaviour are reported in Table 2. Nonlinear least 

square regression analysis was used to evaluate the parameters of the selected model with the 

Levenberge–Marquardt procedure. 

Table 2. Shrinkage models. 

Model Name Equation References 

Linear  
𝑉𝑡

𝑉0

= 𝑎1 + 𝑎2 (
𝑀𝑡

𝑀0

)  Simal et al. [26] 

Quadratic  
𝑉𝑡

𝑉0

= 𝑎1 + 𝑎2 (
𝑀𝑡

𝑀0

) + 𝑎3 (
𝑀𝑡

𝑀0

)
2

  Mayor and Sereno [25] 

Exponential  
𝑉𝑡

𝑉0

= 𝑎1𝑒𝑥𝑝 (𝑘
𝑀𝑡

𝑀0

)  Mayor and Sereno [25] 

2.6. Statistical Analysis 

The means of experimental results and their standard deviations were calculated from three 

replicates. One-way analysis of variance (ANOVA) using Tukey’s test (p < 0.05) was conducted to 

compare the means in the case of colour. 

3. Results and Discussion 

3.1. Drying Kinetics: Experiments and Empirical Models 

The average moisture content of fresh persimmon fruits was 5.23 ± 0.19 g water/g db (83.94% 

wb). To evaluate the impact of different drying temperatures (45–65 °C) on persimmon drying 

kinetics, the curves of moisture ratio Mt/M0 vs. drying time (min) are presented in Figure 2a–e. It was 

clear that the moisture content decreased with increased drying time. As shown in Figure 2, the 

changes in moisture content at all investigated temperatures were more evident in the first drying 

stage; while at the final stage these changes became very small. 

The drying times of all samples needed to achieve an equilibrium moisture content (<0.05 kg 

water/kg db) were 540, 465, 420, 360, and 320 min at 45, 50, 55, 60, and 65 °C, respectively. From the 

investigated temperature range, as expected, these results showed that the drying time is the longest 

at 45 °C and shortest at 65 °C. In order to predict the water content as a function of drying time, the 

empirical equations, presented in Table 1, were fitted and statistical parameters and estimated model 

parameters are shown in Tables 3 and 4, respectively. 
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The coefficient of determination (R2), the reduced χ-square (χ2), and the root mean square error 

(RMSE) were used to describe the quality of the fit (Table 3). A good fitting among the experimental 

and theoretical data was connected to the highest R2 value and the lowest χ2 and RMSE values. 

All R2 values of Enderson and Pabis, Page, Logarithmic, and Two term models were higher than 

0.99, while χ2 and RMSE ranged from 0.0001 to 0.0015 and 0.0069 to 0.0382, respectively. 

The models’ parameters are presented in Table 4. For Enderson and Pabis, Page, and 

Logarithmic models, the drying constant k had a value of 0.003 to 0.016 and it increased with an 

increase in drying air temperature. Furthermore, for the Two term model, the drying constants (k1 

and k2) had a value of 0.009 to 0.017 and these values increased with an increase in drying 

temperature. 

From the models’ results, the Page model was found to be the most appropriate model to 

describe the persimmon drying curves at all investigated temperatures, with the highest R2 values 

and the lowest χ2 and RMSE values. On the other hand, the Two term model had the worst fitting for 

persimmon slabs dried in the range 45–65 °C. 

The experimental data and the results of the best-fitting model (Page model) are shown in Figure 

2a–e. The Page model was able to predict with sufficient accuracy the evolution of moisture content 

for persimmon slabs at each drying temperature. 

Doymaz [1] stated the suitability of the Page model to fit the experimental drying data of 

persimmon slices in comparison with other empirical models at 50, 60, and 70 °C. 

  

(a) (b) 

  
(c) (d) 
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(e) 

Figure 2. Experimental (symbols) and predicted (lines) drying curves in terms of moisture ratio 

(Mt/M0) of persimmon samples at (a) 45 °C, (b) 50 °C, (c) 55 °C, (d) 60 °C, and (e) 65 °C  

Table 3. Statistical parameters (coefficient of determination R2, the root mean square error RMSE, 

the reduced χ-square χ2) of the drying models. 

Model Name Parameters 
Temperatures (°C) 

45° 50° 55° 60° 65° 

Henderson and Pabis 

R2 9.9 × 10−1 1.0 × 100 1.0 × 100 1.0 × 100 1.0 × 100 

RMSE 3.3 × 10−2 1.5 × 10−2 1.6 × 10−2 1.4 × 10−2 1.8 × 10−2 

χ2 1.1 × 10−3 3.0 × 10−4 3.0 × 10−4 2.0 × 10−4 3.0 × 10−4 

Page 

R2 1.0 × 100 1.0 × 100 1.0 × 100 1.0 × 100 1.0 × 100 

RMSE 2.3 × 10−2 9.3 × 10−3 1.2 × 10−2 6.9 × 10−3 7.1 × 10−3 

χ2 4.0 × 10−4 1.0 × 10−4 1.0 × 10−4 1.0 × 10−4 1.0 × 10−4 

Logarithmic 

R2 9.9 × 10−1 1.0 × 100 1.0 × 100 1.0 × 100 1.0 × 100 

RMSE 2.8 × 10−2 1.1 × 10−2 1.4 × 10−2 1.5 × 10−2 1.9 × 10−2 

χ2 8.0 × 10−4 2.0 × 10−4 2.0 × 10−4 2.0 × 10−4 4.0 × 10−4 

Two term 

R2 9.9 × 10−1 1.0 × 100 1.0 × 100 1.0 × 100 1.0 × 100 

RMSE 3.8 × 10−2 1.8 × 10−2 2.0 × 10−2 1.8 × 10−2 2.3 × 10−2 

χ2 1.5 × 10−3 4.0 × 10−4 4.0 × 10−4 3.0 × 10−4 5.0 × 10−4 

Table 4. Model parameters (k, k1 and k2, the drying constants; a,a1, a2, c, n, the drying coefficients) of 

the drying models. 

Model Name Parameters 
Temperatures (°C) 

45° 50° 55° 60° 65° 

Henderson and 

Pabis 

a 1.0 × 100 1.0 × 100 1.0 × 100 1.0 × 100 1.0 × 100 

k 9.2 × 10−3 9.7 × 10−3 1.4× 10−2 1.6 × 10−2 1.7 × 10−2 

Page 
k 3.2 × 10−3 6.0 × 10−3 8.0 × 10−3 8.8 × 10−3 6.7 × 10−2 

n 1.2 × 100 1.1 × 100 1.1 × 100 1.1 × 100 1.2 × 100 

Logarithmic 

a 1.0 × 100 1.0 × 100 1.0 × 100 1.0 × 100 1.0 × 100 

k 8.4 × 10−3 9.2 × 10−3 1.3 × 10−2 1.6 × 10−2 1.6 × 10−2 

c −3.3 × 10−2 −2.0 × 10−2 −1.5 × 10−2 −6.1 × 10−3 −8.1 × 10−3 

Two term 

a1 5.2 × 10−1 5.1 × 10−1 5.1 × 10−1 5.1 × 10−1 5.1 × 10−1 

k1 9.2 × 10−3 9.7 × 10−3 1.4 × 10−2 1.6 × 10−2 1.7 × 10−2 

a2 5.0 × 10−1 5.0 × 10−1 5.0 × 10−1 4.9 × 10−1 4.9 × 10−1 

k2 9.2 × 10−3 9.7 × 10−3 1.4 × 10−2 1.6 × 10−2 1.7 × 10−2 
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3.2. Colour Evaluation 

Colour is well known as one of the most important quality parameters of fresh and dried fruits. 

It is widely utilized as a tool for foodstuff standardization, indicator of biological and/or 

physicochemical traits, quality properties, as well as consumer satisfaction. Unsuitable changes in 

colour of fruits and vegetables affect their quality and marketing value [27]. Colour is also a 

fundamental quality parameter in food choice and it influences the perception of the other sensorial 

attributes by consumers [3]. The effect of air drying temperatures on colour characteristics of fresh 

and dried persimmon samples are presented in Table 5 in which L*, a*, and b* value, Hue angle (H°), 

and total colour difference (ΔE) are presented. According to L* values, although the fresh 

persimmons had the highest L* values (71.70 ± 0.52), no significant differences (p > 0.05) were found 

between fresh and all dried persimmon slabs. This means that the drying process, particularly, air 

drying temperature, did not influence the lightness of the dried samples. There was not a remarkable 

reduction in brightness of persimmon fruits after the drying process. 

As shown in Table 5, the a* values of samples were affected by the drying conditions 

(temperature and time). Concerning the dehydrated samples, a* values increased after the drying 

process. The highest a* values were found in persimmon slabs dried at 45 °C (5.93 ± 1.51) and 50 °C 

(5.61 ± 0.31). These colour changes of redness (a* value) may be associated to browning reactions due 

to long drying times at low temperatures. There were no statistical differences (p < 0.05) in b* values 

observed among all dried persimmon slices. 

The derived indices from colour Hunter values (L*, a*, and b*), namely, Hue angle and total 

colour differences gave more information concerning the colour degradation of fresh and dried 

persimmons [28]. The best quality of dried persimmons may be correlated to low values of overall 

colour change (ΔE), which has an important role on the consumers’ acceptability. 

Furthermore, H° values of dried samples were different from fresh persimmon fruit (p < 0.05); 

the persimmon samples dried at 65 °C showed higher Hue angle values in comparison with the other 

dried samples. 

The drying process had a significant effect on the total colour differences of dried samples, and 

the lowest value of ΔE was found in the samples dried at 65 °C, indicating that the highest 

temperature (65 °C) could preserve the typical colour of the fresh persimmon fruits and contributed 

to reduced browning reactions during the drying process. 

These results may be explained by the long exposure time to the drying process at low 

temperature (45 °C) and the enzymatic browning reaction that occurred during the persimmon 

drying process, since the temperature and the time of the drying are crucial factors leading to colour 

deterioration. 

Table 5. Colour parameters (lightness/darkness L*; redness/greenness a*; yellowness/blueness b*; 

Hue angle H°; total colour difference E) for fresh and dried persimmon samples. 

Sample Drying Time (min) L* a* b* H° ΔE 

fresh persimmon  71.7 ± 0.5 a −1.6 ± 1.3 a 46.4 ± 1.1 a 92.0 ± 1.6 c - 

persimmon dried at 45 °C 540 67.8 ± 1.8 a 5.9 ± 1.5 d 53.6 ± 2.0 b 83.6 ± 0.0 a 18.9 ± 1.1 c 

persimmon dried at 50 °C 465 68.7 ± 2.4 a 5.6 ± 0.3 c,d 53.3 ± 1.1 b 84.0 ± 0.4 a 13.7 ± 0.7 b 

persimmon dried at 55 °C 420 67.4 ± 2.5 a 2.6 ± 1.1 b 57.7 ± 2.4 b 87.4 ± 1.1 a,b 12.8 ± 1.0 b 

persimmon dried at 60 °C 360 70.5 ± 1.9 a 3.0 ± 0.9 b,c 56.2 ± 1.1 b 87.0 ± 1.0 a,b 12.1 ± 0.7 b 

persimmon dried at 65 °C 320 70.3 ± 0.8 a 1.9 ± 0.8 b 55.7 ± 4.0 88.0 ± 1.6 b 9.2 ± 0.4 a 

Different superscript letters (a,b,c) in the same column show statistical differences between samples (p < 0.05). 

3.3. Shrinkage and Empirical Models 

The shrinkage phenomenon is known as one of the most important physical changes that 

negatively impacts the quality of the dried foodstuffs [9,25]. The effects of different air drying 

temperatures on the shrinkage of persimmon slabs’ were evaluated and the changes in volume ratio 

(Vt/V0) as a function of the moisture ratio (Mt/M0) are presented in Figure 3a–e. 
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(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure 3. Experimental data (symbols) and prediction (curves) of volume shrinkage in terms of 

volume ratio (Vt/V0) of persimmon samples during drying at (a) 45 °C, (b) 50 °C, (c) 55 °C, (d) 60 °C, 

and (e) 65 °C. 

A reduction of persimmon volume proportional to the moisture content decrease during the 

drying process at all evaluated temperatures was found. The lower the shrinkage, the higher the 

drying temperatures (60–65 °C). 

For the Linear, Quadratic, and Exponential models, which correlated shrinkage and moisture 

content, the statistical coefficients (R2 and RMSE) and the estimated model parameters are reported 

in Tables 6 and 7, respectively. 

The R2 values of the Linear, Quadratic, and Exponential models were all above 0.90. The 

estimations of statistical parameters demonstrated that R2 and RMSE values ranged from 0.8992 to 

0.99898, and 0.0103 to 0.1002, respectively (Table 6). The nonlinear model (Quadratic model) 

predicted the changes in the shrinkage of the persimmon slices significantly better than did the Linear 

and Exponential models for all drying conditions. Under the most ideal condition, the shrinkage is 

expressed as a linear function of the moisture ratio where a1 and a2 are coefficient and constant, 

respectively, of the model. On the contrary, in this study, the Linear model was found to be an 

inappropriate model for describing the persimmon shrinkage vs. moisture ratio at all investigated 

temperatures. Also, the volume ratio Vt/V0 and moisture ratio Mt/M0 had a poor exponential 
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relationship for all hot air dried persimmon slabs, with the lowest value of R2 (0.899) at 55 °C and the 

lowest value of the slope of this model, k, at 65 °C (Table 7). 

The Quadratic model was the best model to describe the volumetric shrinkage of all the 

persimmon samples as a function of moisture content at all the drying temperatures investigated, 

with the highest R2 values and the lowest RMSE values. 

These finding, in other words, the Quadratic model results for volumetric shrinkage with 

moisture ratio, were similar to those reported by Adiletta et al. [8] and Seerangurayar et al. [18] for 

convective air dried grapes and solar dried dates, respectively. Furthermore, Mayor and Sereno [25] 

found that the Quadratic model had a good fit to experimental data of volumetric shrinkage vs. 

moisture ratio for apples, carrots, and potato slabs during convective drying. 

In order to verify the proposed model, experimental and predicted shrinkage data are plotted in 

Figure 3 as a function of moisture ratio. It is clear that in the Quadratic model the predicted data had 

a good agreement (R2 > 0.994) with the experimental data. 

Table 6. Statistical coefficients (R2, RMSE) of the shrinkage models. 

Model Name Parameters 
Temperatures 

45 50 55 60 65 

Linear 
R2 1.0 × 100 9.9 × 10−1 9.7 × 10−1 1.0 × 100 9.9 × 10−1 

RMSE 2.0 × 10−2 3.0 × 10−2 5.2 × 10−2 1.3 × 10−2 2.9 × 10−2 

Quadratic 
R2 1.0 × 100 9.9 × 10−1 9.9 × 10−1 1.0 × 100 1.0 × 100 

RMSE 1.0 × 10−2 2.4 × 10−2 2.7 × 10−2 1.3 × 10−2 1.9 × 10−2 

Exponential 
R2 9.7 × 10−1 9.8 × 10−1 9.0 × 10−1 9.8 × 10−1 9.5 × 10−1 

RMSE 4.9 × 10−2 4.4 × 10−2 1.0 × 10−1 5.7 × 10−2 6.7 × 10−2 

Table 7. Model parameters (k, the shrinkage constant; a1, a2, a3, the shrinkage coefficients)of the 

shrinkage models. 

Model Name Parameters 
Temperatures 

45 50 55 60 65 

Linear 
a1 1.6 × 10−1 1.8 × 10−1 2.3 × 10−1 1.6 × 10−1 2.6 × 10−1 

a2 8.1 × 10−1 7.9 × 10−1 8.2 × 10−1 8.3 × 10−1 7.9 × 10−1 

Quadratic 

a1 1.6 × 10−1 1.9 × 10−1 2.1 × 10−1 1.7 × 10−1 2.5 × 10−1 

a2 6.5 × 10−1 6.0 × 10−1 1.2 × 100 7.7 × 10−1 1.0 × 100 

a3 1.8 × 10−1 2.1 × 10−1 −4.5 × 10−1 6.1 × 10−2 −2.4 × 10−1 

Exponential 
a1 2.1 × 10−1 2.1 × 10−1 2.7 × 10−1 2.1 × 10−1 2.9 × 10−1 

k 1.6 × 100 1.6 × 100 1.3 × 100 1.6 × 100 1.3 × 100 

4. Conclusions 

The effect of the drying process conditions on drying characteristics and on the colour of 

persimmon, cv. “Rojo Brillante”, slabs was investigated in this study. As expected, the drying process 

was shorter at higher drying temperatures. The experimental drying data were fitted to four empirical 

mathematical models, and the Page model described the best representation of the experimental drying 

values at all investigated temperatures (45, 50, 55, 60, and 65 °C). Furthermore, concerning the shrinkage 

phenomenon, the Quadratic model demonstrated an acceptable fit to the experimental data for all dried 

persimmon samples. Persimmon samples dried at 65 °C showed better colour preservation in terms of 

the higher Hue angle (H°) value and less total colour change (ΔE). The findings of this research may be 

important by providing information for understanding the drying behaviour and the drying process 

conditions of persimmon slabs from an industrial perspective. 
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