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Sourcing the immune system to induce immunogenic cell death
in Kras-colorectal cancer cells
Mara Cirone1, Lavinia Vittoria Lotti1, Marisa Granato1, Livia Di Renzo1, Ida Biunno2, Monica Cattaneo2,8, Fabio Verginelli3,
Simone Vespa4, Derek Davies5, Valerie Wells6, Renato Mariani-Costantini4 and Livio Mallucci7

BACKGROUND: Current approaches aimed at inducing immunogenic cell death (ICD) to incite an immune response against cancer
neoantigens are based on the use of chemotherapeutics and other agents. Results are hampered by issues of efficacy,
combinatorial approaches, dosing and toxicity. Here, we adopted a strategy based on the use of an immunomolecule that
overcomes pharmachemical limitations.
METHODS: Cytofluorometry, electron microscopy, RT-PCR, western blotting, apotome immunofluorescence, MLR and xenografts.
RESULTS: We report that an ICD process can be activated without the use of pharmacological compounds. We show that in Kras-
mut/TP53-mut colorectal cancer cells the 15 kDa βGBP cytokine, a T cell effector with onco-suppressor properties and a potential
role in cancer immunosurveillance, induces key canonical events required for ICD induction. We document ER stress, autophagy
that extends from cancer cells to the corresponding xenograft tumours, CRT cell surface shifting, ATP release and evidence of
dendritic cell activation, a process required for priming cytotoxic T cells into a specific anticancer immunogenic response.
CONCLUSIONS: Our findings provide experimental evidence for a rationale to explore a strategy based on the use of an
immunomolecule that as a single agent couples oncosuppression with the activation of procedures necessary for the induction of
long term response to cancer.
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BACKGROUND
To avoid cancer recurrences, cancer neoantigens from re-
emerging tumours must be presented to the immune system.
To this end, much study during the past decade has been
directed towards the search for agents that by inducing
immunogenic cell death (ICD), an apoptotic program which
includes procedures that incite an immunogenic response against
cancer neoantigens, would consequently establish a state of
tumour specific immunosurveillance.1 Yet, how to effectively
mobilise these processes therapeutically remains an indetermin-
able task as there is no rationale for the a priori selection of drugs
or other pharma products that by killing cancer would secure long
term protection.
Anti-cancer drugs, toxic agents and a variety of other agents

have been experimented1–4 but, despite results of interest, only a
few of the compounds have been found to fulfil all canonical
requirements for ICD induction and fewer still to have the ability
to be both therapeutical and to induce ICD, hence calling for
combinatorial approaches which have reflection on toxicity,
dosing and therapeutical scheduling.1–4

Here we hypothesised that if an ICD process is an integral part
of a natural cancer surveillance program, the candidate element(s)
that induce ICD may be transposed to therapeutic use without the
uncertainties and the collaterals of pharmacological agents. To
test this hypothesis, we have adopted a strategy centred on the
use of a molecular component of the immune network with a
candidate role in cancer immunosurveillance.5

We have utilised the15kD β-galactoside-binding protein (βGBP)
a molecule primarily produced by activated CD8+ T cells, by
CD8+ memory cells and by activated CD4+ T cells,6 which has
cytostatic properties and selective anti-tumour properties.7–11

While arrested normal cells preserve the ability to resume
proliferation after βGBP treatment,7 arrested cancer cells regard-
less of mutational load undergo apoptotic death.5,8–11 βGBP
operates through mechanisms that involve high affinity receptor
binding (Kd ~ 1.5 × 10−10 mol/L7) and molecular interactions
leading to functional inhibition of the p110 class1A and class 1B
PI3K catalytic subunits.12 Consequent downregulation of PI3K
activity has two major outcomes which are reversible in normal
cells but not in cancer cells: suppression of Ras-GTP loading
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leading to block of ERK activation12 and negation of akt gene
expression leading to loss of Akt10 function, conditions that either
by blocking the ability of cancer cells to proliferate or by impairing
their ability to survive can block oncogenicity. These effects
highlight two fundamental properties: a direct and selective
anticancer action transferable into therapy and a physiological
participation in cancer surveillance. Therapeutically human βGBP
has been proven to strongly reduce human Kras-mut/TP53-mut
colorectal cancer xenograft growth as a single agent11 and, as a
single agent, to drive to apoptotic death a variety of cancer cells
from solid tumours, including cells sourced from colon, pancreas,
prostate and breast which bear Kras mutations and tumour
suppressor deficiency.5

Here we have investigated key canonical events which are
fundamental to ICD induction. We have focused on endoplasmic
reticulum (ER) stress, autophagy,13–15 calreticulin (CRT) transfer
from the lumen of the ER to the surface of the cancer cell and
the release of ATP by the dying cancer cell16–19 and, consequent
to these events, we have assessed dendritic cell (DC) activation,
and found that the stated requirements for ICD induction
were met.
Our data provide a rationale for exploring a new strategy based

on the use of a physiological component of the immune network
that as a single agent couples oncosuppression with the activation
of procedures that lead to ICD induction.

METHODS
Cell lines and recombinant βGBP
SW620 and SW480 human colorectal cancer cells from the
American Type Culture Collection were authenticated and
cultured as detailed previously.11 Human recombinant βGBP was
expressed in Escherichia coli BL21 (DE3) using hGal-1 cDNA in
PET21a, purified by lactose-agarose (Sigma) affinity chromatogra-
phy and purity assessed by matrix-assisted laser desorption/
ionisation time of flight (MALDI-TOF).

In vivo experiments
SW620 xenografts were grown in thymectomised CD-1 female
nude mice (Charles Rivers Laboratory). 5x106 cells were
implanted s.c. and grown to a tumour size of approximately
40 mm3. Mice were injected s.c. in the tumour area with 150 μl of
βGBP from a 5 μM stock solution, or PBS in controls, six times
each week and sacrificed after 5 weeks. Experimental details,
ethical guidelines and authority approval have been reported
previously.11

Electron microscopy
Samples were fixed in 2% glutaraldehyde in PBS for 24 h at 4 °C,
post fixed in 1% osmium tetroxide for 2 h and stained for 1 h in 1%
uranyl acetate. Samples dehydrated in acetone were then
embedded in Epon-812. Ultrathin sections (60 nm) were cut with
a Reichert ultramicrotome, counterstained with uranyl acetate and
lead citrate, and examined with a Philips CM10 transmission
electron microscope.

RT-PCR
RNA extraction, reverse transcription method, specific primers and
conditions for PCR amplification of CHOP, BiP, XBP-1 and HPRT
have been reported in previous work.20

Western blotting
Cells were lysed, and protein concentrations were assessed
according to standard procedures. Anti-p62/sequestosome1
antibody (BD Transduction Laboratories) followed by horse-
radish peroxidase-conjugated goat anti-mouse antibodies
(Santa Cruz) was used to evidence the p62/sequestrosome1
protein.

Immunofluorescence and autofluorescence
Cells were fixed in 4% paraformaldehyde and to visualise LC3, an
anti-LC3 polyclonal antibody (Abgent) followed by FITC-
conjugated goat anti-rabbit antibodies (Life Technologies) was
used. Calreticulin polyclonal antibodies (Affinity Bioreagents) and
Texas Red-conjugated goat anti-rabbit polyclonal antibodies
(Jackson Immunoresearch Laboratories) were used to visualise
calreticulin. FITC-labelled wheat germ agglutinin was used for cell
surface staining and CD1a monoclonal antibody (BD Pharmingen)
followed by FITC-conjugated goat anti-mouse antibody (Life
Technologies) was used to visualise the CD1a glycoprotein. In
live cells monodansylcadaverine (Molecular Probes) was used as
an autofluorescent vital dye. DAPI (Sigma Aldrich) was used to
visualise nuclei. At least three independent experiments were
carried out according to standard and manufacturer’s recom-
mended procedures and analysed using ApoTome Axio Observer
Z1 inverted microscope (Zeiss) equipped with an AxioCam MRm
Rev.3. Co-localisations were assessed with Axio Vision software,
release 4.6.3 (Zeiss).

ATP detection
Cells were cultured with or without βGBP for 48 h in the presence
of ATPase inhibitor ARL 67156 (Sigma Aldrich), centrifuged at
1500 rpm for 5 min, supernatants recovered, and extracellular ATP
levels measured by the luciferin-based ENLITEN ATP assay
(Promega) according to manufacturer’s instructions.

Interactions between tumour cells and DCs
To generate monocyte-derived DCs, human peripheral blood
mononuclear cells (PBMC), obtained under informed consent from
healthy donors, were isolated by Fycoll-Paque gradient (Pharma-
cia). CD14+monocytes were positively selected using anti-CD14
antibody-conjugated magnetic microbeads (Miltenyi Biotec). To
generate immature DCs, purified monocytes were then cultured in
12-well plates for 6 days, at a density of 106 cells/3 mL in RPMI
1640 containing 10% FCS, 2 mM L-glutamine, 100 U/mL penicillin
G, 100 mg/mL streptomycin, 50 ng/mL recombinant human
granulocyte-macrophage colony-stimulating factor (GM-CSF) and
20 ng/mL interleukin-4 (IL-4) (Miltenyi Biotec). Cytokines were
replenished every other day, along with 20% fresh medium.
SW480 cells grown on coverslips treated or mock treated with
βGBP for 48 h were washed three times in PBS to remove βGBP,
co-incubated with DC’s for 4 h at 4 °C (1/3 ratio) and finally washed
in PBS to remove unbound DCs. The cells were fixed with 4%
paraformaldehyde in PBS for 30 min at 25 °C, stained for CRT
(Affinity Bioreagents) or the CD1a DC marker (Miltenyi Biotec) and
observed as above.

Cytofluorometry
Analysis of apoptosis (annexin, TMRE and caspase 3 activity)
has been reported previously.11 Expression of CRT was monitored
using mouse monoclonal antibody (Santa Cruz) and
phycoerythrin-conjugated anti-mouse antibodies (Becton Dickin-
son) for 30 min at 4 °C followed by twice washing in PBS. DCs were
stained with FITC-conjugated anti-CD86 and anti-CD83 antibodies
(Becton Dickinson) for 30min at 4 °C followed by two washes in
PBS. Cells were gated according to FSC and SSC parameters.
Appropriate isotype-matched control antibodies were included in
the assessments and propidium iodide staining was used to
evidence dead cells. At least 5,000 viable cells were acquired in
each experiment. Acquisitions were performed on an EPICS XL
flow cytometer (Coulter).

Mixed Lymphocyte Reaction
MLR was performed on immature DCs incubated for 24 h with
βGBP treated or mock treated SW480 cells extensively washed and
irradiated (3000 rad) and then cultured with allogeneic PBMCs for
5 days before adding 3H-thymidine (1 μC/ml in a 96 well plate) for
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the last 16 h. In other experiments immature DCs treated or mock
treated with βGBP (2 nM) for 24 h, were cultured with allogeneic
PBMC for 5 days before adding 3H-thymidine (1 μCi/ml in a 96 well
plate) for the last 16 h.

RESULTS
For our investigations we selected SW620 cells derived from a
human metastatic colorectal cancer and SW480 cells from the
primary isogenic parent tumour, both carrying a Kras-G12V
mutation and biallelic mutations in TP53 (R273H and P309S) and
both unresponsive to current therapeutic attacks but responsive
to βGBP treatment that arrests their proliferation and forces them
into programmed cell death.5,11 In our experiments we have used
the lowest therapeutically effective dose of human recombinant
βGBP (2 nM) that induces growth arrest and apoptosis,11 a dose
about fifty-fold lower than that required (~100 nM) for βGBP to act
as a down-regulatory cytokine during the silencing phase of a
T cell immune response.6

βGBP induces cell arrest, ER stress, autophagy and apoptotic death
First, we looked for growth arrest, time related expression of
apoptotic parameters and cellular death, along with evidence of
ER stress and autophagy, obligatory determinant factors for ICD
induction. Figure 1a shows that an imposed phase of cell arrest
(left graphs) preceded events relevant to the apoptotic cell
death process as shown by changes of lipid plasma membrane
orientation (Annexin), loss of mitochondrial membrane potential
(TMRE) and an increase in caspase-3 activity (cytofluorometry
plots), and by the surge of the apoptotic population (right
graphs). Of particular interest we found that during the phase of
cell arrest, within a time window of 48 h, evidence of ER stress
and evidence of autophagy, established pre-conditions for ICD
induction, had become fully manifest. Clear morphological
evidence of ER stress as indicated by dilatation of the ER and
Golgi is shown in Fig. 1b (arrowheads). Figure 1c shows clear
evidence of autophagic structures as represented by severe
cytoplasmic vacuolization and double-membraned cytoplasmic
vacuoles (arrowheads).
Next, we investigated whether βGBP treatment would affect

the unfolded protein response (UPR), a prominent part of ER
stress-induced events which activates autophagy.21–23 Using (q)
RT-PCR, we monitored the expression of CHOP (also known as
GADD153) and BiP (Grp78), major UPR functional indicators24

and splicing of XBP-1 mRNA, for which a splice variant specific
activation of the UPR has been demonstrated.25 As shown in
Fig. 2a (blots and scanning ratios in table below) CHOP was
clearly upregulated by 24 and 48 h in both cell lines. BiP was
upregulated by 1.4 times at 48 h in the SW620 and upregulated
in the SW480 cells by 1.65 times and 2.4 times at 24 and 48 h,
respectively. XBP-1 splicing in the SW620, detected at 24 h was
most prominent at 48 h. Splicing in the SW480 was clearly
evident at 24 h.
To further ascertain the occurrence of autophagy we used

monodansylcadaverine (MDC), an autofluorescent vital dye that
selectively accumulates in autophagic vacuoles. Within the first
48 h of treatment we found evidence of MDC in the cytoplasmic
vacuoles of βGBP-treated cells (Fig. 2b, arrows). By immuno-
fluorescence we detected the presence of microtubule-
associated protein1 light chain 3 (LC3), a marker of autophagy
that binds to the autophagosomal membranes.26,27 Compared
to controls, a conspicuous increase in the number and size of
LC3 dots was observed in the βGBP-treated cells (Fig. 2c). These
results, together with the degradation of the p62/sequestosome
1 protein (Fig. 2d) which specifically occurs during a complete
autophagic process, suggest that during the 48-h growth arrest
period prior to the detection of an apoptotic population (Fig. 1a,
right graphs), an autophagic flux had been promoted.

Having detected evidence for ER stress and autophagy, based
on previous evidence showing that βGBP has strong therapeutic
efficacy against SW620 xenograft development, to investigate
whether the autophagic effect that we had observed in cultured
cells could be detected in the in vivo model where tumour mass
development is strongly inhibited by βGBP,11 we looked
for evidence of autophagic structures in histological sections
of SW620 xenografts. In Fig. 2e is shown that numerous
autophagosomes and autolysosomes (arrowheads) were present
in xenograft samples from mice treated with βGBP in contrast to
the evidence from control xenografts. All together our results
sustain a model where βGBP induces ER stress and promotes
autophagy in cultured cells and in vivo.

βGBP induces CRT exposure and ATP release
Activation of ICD requires changes in the composition of the
cancer cell surface and the release of soluble mediators, processes
where shifting of CRT from the ER to the cell surface, a process
induced by ER stress,16,28,29 and the release of ATP,17,18 a process
induced by autophagy,17,27 are necessary events. We, therefore,
investigated whether βGBP treatment had affected the expression
of CRT and ATP. Using immunofluorescent detection, we found
early evidence of CRT exposure at the cell surface. Figure 3a shows
that by hour 24 of treatment in both cell lines CRT was evidenced
mostly on the cell surface membrane (arrowheads) while localised
within the cytoplasm in the controls. The surface location of CRT in
the βGBP-treated cells was further confirmed by its co-localisation
with fluorescent-labelled wheat germ agglutinin (WGA), a plasma
membrane marker (Fig. 3a merge). These findings were further
supported by cytofluorometry which revealed that at hour 24, 56
and 40% respectively of the treated SW620 and SW480 cells
expressed surface CRT (Fig. 3b right peaks, black lines), versus
8 and 15% in the corresponding controls (Fig. 3b right peaks,
grey lines). Further evidence of the rise in surface CRT is shown
in Fig. 3c.
Next, we looked for evidence of ATP release and found that by

hour 48 there was clear evidence that ATP had been released by
both the SW620 (about a fivefold increase) and the SW480
treated cells (about an eightfold increase) (Fig. 3d). Thus,
together with changes in CRT location release of ATP had also
occurred.

βGBP treatment leads to DC activation
As CRT and ATP operate on dendritic cell receptors to activate
dendritic cells (DCs) and support the presentation of tumour
antigens to cytotoxic T cells17,18 we looked for evidence of
dendritic cell activation by investigating whether dendritic cells
would interact with cells that had been treated with the βGBP
molecule. For this purpose, the tumour cells were stained with
antibodies to CRT (red) and the DCs stained with a monoclonal
antibody to the CD1a activation marker (green). As shown in
Fig. 4a within 48 h of treatment DCs were found to have adhered
to the βGBP-treated tumour cells while the majority had been
removed by washing in the controls. These experiments were
more successful using the SW480 cells than the SW620s where
possible geometric restrictions, minor adhesion area of the more
spherical metastatic SW620 cells facilitated removal by washing.
Notably, however, comparative investigation by cytofluorometry
on whether SW620 treated cells could activate DCs upon co-
culture showed that monocyte-derived DCs co-cultured with
SW620 cells pre-treated for 24 h underwent, within 48 h, an
increase in surface membrane expression of the CD86 activation
marker from 20 to 50% (ratio 2.5) which is a similar fold increase to
the 13 to 30% of the SW480s (ratio 2.3) (Fig. 4b left half of the
panel). To obtain further evidence of DC activation we assessed
the expression of the CD83 DC maturation marker. We found
CD83 expression to be increased from 5 to 15% in the SW620
(ratio 3.0) and from 10 to 27% (ratio 2.7) in the SW480 cells
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Fig. 1 βGBP-induced apoptotic death is preceded by cell arrest, ER stress and autophagy. a Left graphs: growth response of SW620 and
SW480 cells to βGBP (2 nM). Values are means of triplicate cultures ± SEM. Central panels: cytofluorometry plots, box (a) live cells, box (b) cells
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(Fig. 4b, right half of the panel). These findings together confirm
that in both cell types, metastatic and primary, DCs had been
similarly activated.
Next, to determine whether DC activation by βGBP-induced ICD

could activate T cells, tumour cells were pre-treated with βGBP for
24 h, washed and co-incubated with DCs in a mixed lymphocyte
reaction (MLR). Figure 4c shows that T cell activation was
noticeably greater than in the mock treated cells.
Finally, in addition to the above investigations, to substantiate

the premise that, as a physiological molecule, unlike pharmaco-
logical inducers which carry associated toxicity, βGBP has no
harmful properties, we pre-treated DCs with βGBP for 24 h and
carried out a mixed lymphocyte reaction (MLR). Figure 4d shows
that the βGBP-treated DCs had not undergone detrimental effects

as they instead displayed an increased capacity to stimulate T cell
proliferation.

DISCUSSION
Therapeutic induction of ICD, a process aimed at inciting the
immune system into a response against cancer neoantigens
requires the activation of an apoptotic program which through a
sequence of events spanning from ER stress to autophagy, to CRT
cell surface exposure and ATP release, leads to the activation of
dendritic cells.1

Here we found that a native element of the immune network
which acts as an ad hoc therapeutic against aggressive, otherwise
therapy resistant cancer cells, is a physiological inducer of
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procedures that lead to ICD. We show that the apoptotic process
induced by the βGBP molecule includes a time-space of growth
arrest where ER stress and autophagy take place, where CRT
moves to the cell surface and ATP is released, and where DC
activation, a necessary step for priming T cells into an anticancer
immunogenic response, is occurring. This conclusion is based on
the rise of CD86, a specific DC activation marker, on the increase of
CD83, a DC maturation marker, on experiments where dendritic
cells interacted with cancer cells that had been treated with the
βGBP cytokine and on the evidence that DCs co-cultured with
βGBP-treated cancer cells positively affected T cell proliferation.
Also, we show that unlike pharmacological inducers that carry
associated toxicity, βGBP, a physiological ICD mediator, had no
harmful properties, as revealed by MLR experiments where βGBP-
activated DCs displayed an increased capacity to stimulate T cell
proliferation.
Current practices for ICD induction are based on the use of

cancer chemotherapeutics and a variety of other agents but,
although encouraging results at preclinical and clinical level have
been reported,2,4 of the many drugs and agents experimented,
only a few have so far been found to fulfil all canonical
requirements for ICD induction, and fewer still to have the ability

to be both therapeutical and to induce immunogenic cell death
as single agents, hence calling for combinatorial approaches
which have reflection on toxicity, dosing and therapeutical
scheduling.2–4

Also, which given compound can be a potential ICD inducer
cannot be predicted. The number and the variety of agents
experimented so far1–4 suggests that chance plays a part both in
drug selection and in respect of the drug’s efficacy as it is probably
impossible to copy with drugs or other agents the modality of
events as they occur when ICD is induced by a T cell effector, as in
our study. Unlike drugs and other foreign agents, βGBP, a natural
immunomodulator, operates through biological mechanisms and
functions that proceed according to a program. They initiate with
high affinity βGBP receptor binding followed by PI3K down-
regulation and signalling hence,5,7,10–12 events that result in
cancer cell death through a graded process that allows procedures
that lead to ICD to take place.
The past decade has witnessed a major development in anti-

cancer therapies, but strategies that further to killing cancer could
also secure long-term protection by instating a state of cancer
specific immune surveillance are still missing. Our data provide
direct experimental evidence for a rationale to explore the
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agglutinin (green). Scale bars: 10 μm. Images are representative of at least three independent experiments. b Detection of CRT at the cell surface
by flow cytometry using CRT polyclonal antibody at hour 24 of treatment with βGBP (2 nM). Right peaks represent percent expression of CRT in
treated cells (black line) and in controls (grey line). Left peaks (grey infill) represent non-specific antibody binding: isotype controls. Data are
representative of at least three independent experiments. c Time course of CRT expression on SW620 and SW480 βGBP and mock treated cells.
Propidium iodide (PI) exclusion was used to stain dead cells. Values are means of three independent experiments ± SD. d ATP release at 24 and
48 h by 2 × 105 SW620 and SW480 cells as percentage of total cellular ATP. Black histograms mock treated cells, white histograms βGBP-treated
cells (2 nM). ATP release assessed with ATPlite assay. Values are means of triplicate experiments ± SEM

Sourcing the immune system to induce immunogenic cell death in. . .
M Cirone et al.

773



SW480a

b

c d

SW620
CD86 CD83

CD86 CD83

Control

Control

Control

C
ou

nt
C

ou
nt

C
ou

nt
C

ou
nt

20%

13%
30%

10%
27%

1000

100 100 100 100

1000 1000 1000
FL1-H

FL1-H

14,000

25,000

20,000

15,000

10,000

5000

0

Control

βGBP

Control

βGBP
12,000

10,000

8000

6000

4000

2000

03 H
-T

hy
m

id
in

e 
in

co
rp

or
at

io
n 

(c
pm

)

3 H
-T

hy
m

id
in

e 
in

co
rp

or
at

io
n 

(c
pm

)

50% 5% 25%

βGBP

βGBP Control βGBP

βGBP

Control

C
R

T
 C

D
1a

 D
A

P
I

βGBP βGBP

SW480

Fig. 4 βGBP treatment promotes tumour cell-DC interaction and leads to dendritic cell activation. a SW480 cells after 48 h treatment with βGBP
(2 nM) were extensively washed and incubated with DCs for 4 h at 4 °C. Unbound DCs were removed by extensive washing with PBS. Cells were
fixed in 4% paraformaldehyde and then DCs were stained with monoclonal antibody anti-CD1a, while an anti-calreticulin antibody was used to
assess calreticulin translocation on the cell surface. Arrow points to tumour cell/DC interaction in βGBP-treated cells. Images are representative of
at least three independent experiments. Scale bars: 10 μm. b Flow cytometry profiles at 48 h of treatment with βGBP (2 nM). DCs expressing the
CD86 activation marker and CD83 maturation marker were identified with FITC-conjugated anti-CD86 and anti-CD83 antibodies. Left half of the
panels: DCs expressing the CD86 activation marker. Right half of the panels: CD83 maturation marker. Black lines: anti-CD86 and anti-CD 83; grey-
infill: isotype controls. Histograms are representative of a least three independent experiments. c Mixed Lymphocyte Reaction (MLR) showing
that DCs co-cultured with βGBP-treated cells (extensively washed prior to starting co-culture) more efficiently activate T cell proliferation in
comparison to DCs co-cultured with mock treated cancer cells as indicated by levels of 3H thymidine incorporation. d βGBP treatment (2 nM) of
immature DCs for 24 h prompts DCs to increase T cell proliferation. Histograms are from three independent experiments ± SD

Sourcing the immune system to induce immunogenic cell death in. . .
M Cirone et al.

774



potential of a strategy based on the use of a natural
immunomolecule with no innate toxicity that as a single agent
acts as a tumour suppressor and an activator of procedures
necessary for the induction of long term protection against cancer.
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