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Abstract — This paper deals with the problem of target 

detection in coherent radar systems exploiting polarimetric 

diversity. We resort to a parametric approach and we model the 

disturbance affecting the data as a multi-channel autoregressive 

(AR) process. Following this model, a new polarimetric adaptive 

detector is derived, which aims at improving the target detection 

capability while relaxing the requirements on the training data 

size and the computational burden with respect to existing 

solutions. A complete theoretical characterization of the 

asymptotic performance of the derived detector is provided, 

using two different target fluctuation models. The effectiveness 

of the proposed approach is shown against simulated data, in 

comparison with alternative existing solutions.   
 

Index Terms — polarimetric radar, adaptive signal detection, 

parametric approach, multi-channel auto-regressive process 

I. INTRODUCTION 

OLARIZATION diversity has been widely employed to 

improve radar systems performance, see e.g. [1]-[28] and 

the reference therein. The additional information 

conveyed by different polarimetric channels can be fruitfully 

exploited in order to improve the system detection, 

recognition and classification performance. A multitude of 

works in the open literature have considered the use of 

multiple polarizations for a variety of applications, such as 

MIMO radar [7]-[11] , weather radar [12]-[14], or imaging 

radar [15]-[19], among others. More recently, the exploitation 

of such diversity has been considered for target classification 

based on the polarimetric micro-Doppler signature [20]-[23] 

as well as an effective way to improve the performance of 

passive radar systems [24]-[28]. 

With particular reference to the target detection stage, a 

number of detectors that exploit a set of polarimetric-temporal 

(or polarimetric-temporal-spatial) observations has been 

conceived and extensively studied, e.g. [4]-[9]. Traditional 

approaches to this problem devised for coherent polarimetric 

radar systems operating against Gaussian disturbance 

components are fully adaptive polarimetric detectors, such as 

the polarimetric generalized likelihood ratio test (GLRT) in 

[4]-[5] and the polarimetric adaptive matched filter (AMF) in 

[6]. 
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These methods exploit all the available degrees of freedom to 

perform disturbance cancellation without requiring any 

underlying spectral model. Therefore, they are based on the 

availability of a large amount of target-free training data, that 

allow to estimate and invert the unknown disturbance 

covariance matrix. In fact, a number of secondary data that is 

at least twice the size of the data is needed for the adaptive 

detector to be used. This requirement becomes an issue in 

applications where the number of adaptive degrees of freedom 

is large, as well as in heterogeneous environment where the 

available secondary data are not representative of the 

disturbance in the cell under test. In such cases, the 

requirement on such large amount on training data typically 

cannot be met, thus preventing the conventional adaptive 

polarimetric detectors to be used.  

To alleviate the training data requirement, several 

approaches have been pursued in the open literature 

leveraging some prior knowledge about the disturbance 

covariance matrix, see e.g. [29]-[37] and the references 

therein. Among them, the authors in [30] and [31] exploit the 

Toeplitz structure to derive a covariance matrix estimator and 

the corresponding radar detector. The persymmetric structure 

of the interference covariance matrix is exploited in [32]-[35], 

to derive a maximum likelihood (ML) estimate [32], and 

corresponding detectors for both Gaussian data [33],[34] and 

for non-Gaussian clutter modelled by spherically invariant 

random vectors [34],[35]. In [36], a ML estimator is derived 

when a constraint on the condition number is imposed, 

modelling the disturbance as a sum of colored interference 

plus white disturbance; in [37] a rank-constrained ML 

estimator is developed. 

Another way to effectively address this issue and reduce 

the computational burden is to resort to parametric (or model-

based) approaches [38]-[54]. Specifically, parametric 

approaches have been first employed in single-channel radar 

systems [41]-[46], where only the temporal domain is 

exploited for clutter cancellation and target detection. Later 

on, model-based strategies have been extended to multi-

channel radar systems [47]-[54]. In this framework, the 

possibility to model the disturbance contribution as a multi-

channel autoregressive (AR) process and exploit it for the 

target detection has been proved to be a successful solution, 

useful in a multitude of applications, such as space-time 

adaptive processing (STAP) [49]-[54]. 

P 
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In this work, we resort to this approach for radar systems 

equipped with multiple polarimetric channels and we develop 

an effective solution that aims at improving the target 

detection capability while relaxing the requirement on the 

training data size and the computational burden. Specifically, 

we design a polarimetric adaptive detection scheme based 

upon a two-stage procedure: first, we derive the GLRT based 

upon the primary data only, assuming that the disturbance 

characteristics are a priori known, then we make the derived 

detector fully adaptive by substituting the maximum 

likelihood estimation of the disturbance parameters, based 

upon a set of target-free training data, into the clairvoyant 

detector in place of its unknown values. Consequently, the 

derived detector will be referred to as AR model based 

polarimetric adaptive matched filter.  

For the derivation of the proposed detector, we use a 

partially structured model for the target, namely we assume 

that the target returns are known up to an unknown amplitude 

in the temporal domain, but they involve unknown nonlinear 

signal parameters in the polarimetric domain. This 

assumption, which will be further discussed in Section II, 

makes the devised detector different from existing parametric 

approaches previously proposed for multi-channel radar 

systems, where typically a fully structured model is used for 

the target component, e.g. [49],[52]. The general case of a 

multi-rank subspace target model was recently considered in 

[54] where a subspace parametric Rao test has been used to 

handle the detection problem. However, in this work, the 

target component has a special structure which is peculiar of 

polarimetric radar. In this case, a GLRT approach can be used 

to derive the sought detector. Consequently, a dedicated 

performance characterization is also required. 

In Part I of this two-part study, we derive the proposed 

polarimetric adaptive target detector and we present closed-

form mathematical expressions for its asymptotic 

performance, both assuming a non-fluctuating and fluctuating 

model for the target echoes to be detected. Moreover, we carry 

out an extensive analysis of its performance against simulated 

data for training sets of finite size. The reported analyses 

prove the superiority of the proposed detection scheme when 

a limited number of secondary data is employed.  Throughout 

this work we assume that the input disturbance process exactly 

matches the multi-channel AR model exploited for the 

derivation of the proposed detector. The case of an input 

disturbance that does not match the adopted spectral model 

will be the object of the companion paper [55]. In [55], also 

the application of the proposed scheme against experimental 

data is considered following the encouraging preliminary 

results obtained in [56] for the case of a passive radar system. 

The remainder of this manuscript is organized as follows. 

In Section II prior work on polarimetric adaptive detector is 

detailed. The proposed AR model based polarimetric adaptive 

detection scheme is derived in Section III. The asymptotic 

performance of the proposed detector is illustrated in Section 

IV while an extensive numerical analysis is reported in 

Section V to assess the performance of the derived detection 

strategy. Finally, concluding remarks are given in Section VI 

while mathematical details are reported in the Appendices. 
 

Notation: Throughout this manuscript, matrices (vectors) 

are set in boldface, with uppercase (lowercase) letters. The 

subscripts (∙)T, (∙)* and (∙)H mean transpose, conjugate and 

Hermitian (or conjugate transpose), respectively. The 

Kronecker product is denoted by ⨂ while u(∙) indicates the 

unit step function. Identity and null (N×N) matrices are 

denoted by IN and 0N, respectively while 0N×M indicates the 

null (N×M) matrix. | ∙ | means determinant for matrices and 

modulus for scalars while tr(∙) denotes the trace of a 

matrix.  ℜ(∙) and ℑ(∙) indicate the real and imaginary part, 

respectively and 𝒞𝒩(𝛎, N) denotes the multivariate complex 

Gaussian distribution with mean vector 𝛎  and covariance 

matrix N. The expectation operator is indicated by E{∙}. 

II. FULLY ADAPTIVE POLARIMETRIC DETECTORS 

Let us consider a polarimetric radar system that collects 

signals from L polarimetric channels. These are typically 

obtained by exploiting multiple receiving channels connected 

to differently polarized antenna elements. A quite typical case 

is attained by exploiting two linearly cross-polarized antennas, 

making L = 2 polarimetric channels available. The number of 

equivalent polarimetric channels can be further increased if 

the transmitter is able to emit signals using different 

polarizations. For instance, by alternatively transmitting 

bursts of radar pulses at the two linear polarizations (H and V) 

and simultaneously collecting the corresponding back-

scattered echoes at both polarizations, a maximum of L = 4 

polarimetric channels can be obtained in a pulse radar, namely 

HH, VV, HV and VH channels. Assuming reciprocity 

between HV and VH returns [2], whose compliance could be 

verified using the approach proposed in [57], the number of 

independent channels is L = 3.  

For a generic L value, we arrange in a L–dimensional 

vector 𝐱0(𝑚)  the samples collected at the available 

polarimetric channels at the m-th temporal observation: 

𝐱0(𝑚) =  [𝑥0
(0)
(𝑚)… 𝑥0

(1)
(𝑚)…𝑥0

(𝐿−1)
(𝑚)]

𝑇
 (1) 

In this paper, temporal observations might refer to 

consecutive pulses emitted by a pulse radar transmitter; in this 

case the samples are extracted at a given range cell after an 

appropriate range compression stage, e.g. matched filter. 

Alternatively, they might refer to samples of the backscattered 

echo signal for a continuous wave radar transmission. The 

subscript ‘0’ in (1) refers to primary data, namely the data in 

which the detection of a target echo is sought. In fact, 𝐱0(m) 

is the sum of a useful target component 𝐬(m) and a vector 

𝐝(m) collecting the disturbance contributions, which might 

include clutter and noise: 

𝐱0(𝑚) = 𝛾𝐬(𝑚) + 𝐝(𝑚) (2) 
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being 𝛾  = 0 under the null hypothesis 𝐻0 (target absent) and 

𝛾  = 1 under the alternate 𝐻1 hypothesis (target present). 

We arrange M consecutive temporal observations in a 

LM×1 vector 

𝐱0 = [𝐱0
𝐻(0)  𝐱0

𝐻(1)… 𝐱0
𝐻(𝑀 − 1)]𝐻 (3) 

Following (2), it can be decomposed as  𝐱0 = 𝛾𝐬  + d, 

where 𝐬  and d are arranged as 𝐱0 . Specifically, the target 

component can be written as: 

𝐬 = 𝐭⊗ 𝛂 (4) 

where  

• 𝐭  is the vector of expected temporal returns for a unit 

amplitude target echo. It is assumed known at the receiver, 

however its definition depends on the employed radar 

system. For an active radar system exploiting a coherent 

train of M pulses, 𝐭 is typically referred to as the temporal 

steering vector and it is given by  𝐭 =

[1, 𝑒−𝑗2𝜋𝑓𝑑 , … , 𝑒−𝑗2𝜋(𝑀−1)𝑓𝑑]
𝐻

, being 𝑓𝑑  the target 

Doppler frequency normalized to the pulse repetition 

frequency (PRF). In contrast, when a CW radar is 

considered and the temporal observations represent 

consecutive samples of the backscattered echo, 𝐭  might 

include a 𝑀-samples fragment of the transmitted signal.  

• 𝛂 = [𝛼0, … , 𝛼𝐿−1]
𝑇 contains the unknown complex target 

amplitudes at the different polarimetric channels. As is 

apparent, a partially structured model is assumed for the 

target.  In fact, its returns are assumed to be known up to 

an unknown amplitude in the temporal domain, namely at 

the l-th polarimetric channel, l = 0, …, L – 1, they are 

obtained as 𝛼𝑙𝐭, with known t. In contrast, target returns 

involve unknown nonlinear parameters in the polarimetric 

domain, being the target echoes at a given time instant 

provided by  t𝑚  𝛂, m = 0, …, M – 1, with unknown 𝛂.   

Vector 𝐱0  is typically modelled as a complex Gaussian 

random vector with covariance matrix M, zero mean vector 

under the null hypothesis 𝐻0  and mean vector  𝐬  under the 

alternate hypothesis  𝐻1, i.e. 𝐱0|𝐻𝛾~𝒞𝒩(𝛾𝐬,𝐌).   

The LM×LM covariance matrix M encodes the 

polarimetric and spectral characteristics of the disturbance 

affecting the received vector and it has a block structure: 

𝐌 = [

𝐌0,0 ⋯ 𝐌0,𝑀−1
⋮ ⋱ ⋮

𝐌𝑀−1,0 ⋯ 𝐌𝑀−1,𝑀−1

] (5) 

where the generic L×L block 𝐌𝑚,𝑝  is the cross-covariance 

matrix of the polarimetric vectors extracted at times m and p, 

namely 𝐌𝑚,𝑝 = {𝐱0(𝑚)𝐱0
𝐻(𝑝)|𝐻0} .  

As is well known, under these hypotheses and assuming 

the covariance matrix M known, the optimum detection test, 

referred to as the polarimetric matched filter (Pol-MF), is 

obtained as [6] 

𝑇𝑃𝑜𝑙−𝑀𝐹 = 𝐱0
𝐻𝐌−1𝐓[𝐓𝐻𝐌−1𝐓]−1𝐓𝐻𝐌−1𝐱0 

𝐻1
≷
𝐻0

 𝜂𝑀𝐹  (6) 

where 𝜂𝑀𝐹 is the detection threshold and 𝐓 = 𝐭⊗ 𝐈𝐿 . 
However, adaptive approaches must be considered to 

obtain a practical receiver for real radar scenarios where the 

covariance matrix is unknown. To this end, along with the 

primary data  𝐱0 , the authors in [4]-[6] assume a set of P  

vectors  𝐱𝑝 , p = 1, …, P, to be available, referred to as 

secondary (or training) data. They are assumed target-free, 

independent and identically distributed (i.i.d), sharing the 

same statistic of 𝐱0 under the 𝐻0 hypothesis. 

Two different adaptive detection schemes can be obtained 

by resorting to either a two-stage GLRT strategy or a plain 

GLRT approach. 

Specifically, in the former case, the detection test is 

obtained by substituting in (5) the ML estimate of the 

covariance matrix based upon P secondary data, namely �̂� =
1

𝑃
∑ 𝐱𝑝𝐱𝑝

𝐻𝑃
𝑝=1  , thus writing [6]: 

𝑇𝑃𝑜𝑙−𝐴𝑀𝐹 = 𝐱0
𝐻�̂�−1𝐓[𝐓𝐻�̂�−1𝐓]

−1
𝐓𝐻�̂�−1𝐱0 

𝐻1
≷
𝐻0

 𝜂𝐴𝑀𝐹 (7) 

where 𝜂𝐴𝑀𝐹   is a properly modified detection threshold. 

This will be referred in the following as the Polarimetric 

adaptive matched filter (Pol-AMF). 

Alternatively, by resorting to the plain GLRT approach, 

the polarimetric GLRT (Pol-GLRT) has been derived in [4] 

and [5] as 

𝑇𝑃𝑜𝑙−𝐺𝐿𝑅𝑇 =
𝐱0
𝐻�̂�−1𝐓[𝐓𝐻�̂�−1𝐓]

−1
𝐓𝐻�̂�−1𝐱0

𝑃 + 𝐱0
𝐻�̂�−1𝐱0

=
𝑇𝑃𝑜𝑙−𝐴𝑀𝐹

𝑃 + 𝐱0
𝐻�̂�−1𝐱0

 

𝐻1
≷
𝐻0

 𝜂𝐺𝐿𝑅𝑇 

(8) 

𝜂𝐺𝐿𝑅𝑇  being the detection threshold that guarantees the desired 

false alarm probability. 

As it is apparent, the above detectors adaptively exploit all 

the available degrees of freedom to perform the whitening of 

the data 𝐱0  in both the polarimetric and temporal domains. 

While being theoretically optimum under the assumption of a-

priori known disturbance characteristics, this approach might 

be computationally intensive and might suffer of significant 

adaptivity loss in practical cases, especially when a limited 

number of training data is made available. As is well known, 

a number of secondary data P ≥ 2ML is required for the 

aforementioned adaptive detectors to yield limited adaptivity 

loss. This could result in severe limitations when L and M are 

large, as it may be difficult to obtain the required amount of 

training data with the desired characteristics (target-free and 

i.i.d). 
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To overcome these issues, in the next Section we exploit a 

parametric method to develop a new polarimetric adaptive 

detector by modeling the disturbance as a multi-channels AR 

process. 

III. AR MODEL-BASED POLARIMETRIC  

ADAPTIVE DETECTOR 

One effective way to reduce the computational load and 

training data size requirements is to model the disturbance as 

a multi-channel AR process and exploit it for the development 

of the target detection test. This approach has been effectively 

applied in several radar applications including STAP and 

other array processing applications. 

Here this approach is employed to the considered 

polarimetric radar where the multi-channel system is intended 

to capture the polarimetric information from both the target 

and the competing disturbance. 

Specifically, the adopted disturbance model is described in 

sub-section III-A. This is then exploited in sub-section III-B 

to derive the GLRT detection test based on primary data only, 

namely by assuming known the disturbance parameters.  

Finally, the AR-based adaptive detection test is presented in 

sub-section III-C, based on the result in III-B and a two-stage 

GLRT approach. 

A. Multi-channel Autoregressive Model 

We model the disturbance as a 𝐿–channel AR process of 

known order (Q – 1), denoted as AR(Q – 1) and exploit it for 

signal detection. 

Accordingly, the vector random process d(m) satisfies the 

following relation [38]: 

d(m) = ∑ 𝐀𝐻(𝑞)𝐝(𝑚 − 𝑞)𝑄−1
𝑞=1  + w(m) (9) 

where  {𝐀(𝑞)}𝑞=1
𝑄−1

 are complex-valued L×L matrix 

parameters encoding the regression coefficients at different 

polarimetric channels, and w(m)~𝐶𝑁 (0,R) is the driving 

white noise sequence, R being the L×L polarimetric 

covariance matrix.  

Note that the single-channel AR model has been widely 

adopted in radar signal processing. For instance, different 

authors demonstrated that it can be used to reasonably 

approximate the spectral characteristics of different types of 

clutter [58]-[62], e.g. sea, ground, atmospheric. In this work, 

we extend this model by also considering the existing 

correlation between the available polarimetric channels. The 

model in (9) will be used in this paper for the theoretical 

derivation of an appropriate detector. Then, its suitability in 

practical applications will be verified in Part II of this two-part 

paper against both simulated and experimental data.  

Based on this model, the approximate (actually 

conditional) probability density function (pdf) of the data 

[43][44][63][64] under the 𝐻0 hypothesis can be written as: 

𝑓0(𝐱0| 𝐑, {𝐀(𝑞)}𝑞=1
𝑄−1) = (𝜋𝐿|𝐑|)−(𝑀−𝑄+1) × 

exp {− ∑ [𝐱0(𝑚) −∑𝐀𝐻(𝑞) 𝐱0(𝑚 − 𝑞)

𝑄−1

𝑞=1

]

𝐻
𝑀

𝑚=𝑄

 

× 𝐑−1  [𝐱0(𝑚) −∑𝐀𝐻(𝑞) 𝐱0(𝑚 − 𝑞)

𝑄−1

𝑞=1

]} 

(10) 

being 𝐱0 defined in (3).  

We note that the conditional pdf in (10) well approximates the 

actual pdf of the data for the large-sample case [63][64]. 

Therefore, as in [51][52], we use (10) in the following to 

derive the sought detector and to perform the ML estimation 

of the AR parameters. A similar expression can be provided 

under 𝐻1, by replacing each instance of 𝐱0(m) with 𝐱0(m) – 

𝐬(m).  

To simplify the notation, we arrange the matrix parameters 

of the AR(Q – 1) process in a L(Q – 1)×L matrix A = [AH(Q – 

1)  AH(Q – 2)  …  AH(1)]H. In addition, we define the vectors 

�̃�0(𝑚) =  [𝐱0
𝐻(𝑚)  𝐱0

𝐻(𝑚 + 1) …𝐱0
𝐻(𝑚 + 𝑄 − 1)]𝐻 ,  m = 0, 

…, M – Q , which collect Q consecutive snapshots of the data 

starting from the m-th sample.  

Finally, we arrange these vectors into matrix 𝐗0(LQ × L(M 

– Q + 1)): 

𝐗0 = [�̃�0(0)  �̃�0(1) … �̃�0(𝑀 − 𝑄) ] (11) 

The same definitions are extended to the target 

components, yielding the following matrix structures: 

𝐒 = [�̃�(0)  �̃�(1) … �̃�(𝑀 − 𝑄) ] (12) 

�̃�(𝑚) =  [𝐬𝐻(𝑚)  𝐬𝐻(𝑚 + 1)… 𝐬𝐻(𝑚 + 𝑄 − 1)]𝐻

= �̃�(𝑚)⊗ 𝛂 
(13) 

where �̃�(𝑚)  collects a Q–dimensional sub-vector of the 

temporal steering vector starting from the m-th sample. 

Consequently, the likelihood of the data under hypothesis 

𝐻γ (γ = 0,1) can be rewritten as: 

𝑓γ(𝐗0| γ𝛂, 𝐑, 𝐀) = (𝜋
𝐿|𝐑|)−(𝑀−𝑄+1) 

× exp{−tr[(𝐗0 − γ𝐒)
𝐻𝐏 (𝐗0 − γ𝐒)]} 

(14) 

where 𝐏 = [𝐇𝐻𝐑−1𝐇],  𝐇 = [−𝐀𝐻 𝐈𝐿], and tr(M) denotes 

the trace of matrix M. 

B. AR model based Polarimetric Matched Filter 

We derive the polarimetric adaptive detector by resorting 

to a two-step GLRT design criterion. Specifically, in this 

section we assume that the parameters of the AR(Q – 1) 

model, say R and A, are known, and we derive the GLRT 

detection test based on primary data. Then, in the next sub-
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section, a fully adaptive detector is obtained by replacing the 

unknown matrices with their ML estimates. 

The test statistic of the GLRT based solely on primary data 

is given by: 

max𝛂{𝑓1(𝐗0| 𝛂, 𝐑, 𝐀)}

𝑓
0
(𝐗0|𝐑, 𝐀)

𝐻1
≷
𝐻0

𝜂0 (15) 

where 𝜂0 is the detection threshold.  

By maximizing the numerator over 𝛂  and after some 

algebraic manipulations (see Appendix A), we obtain the 

following test statistic: 

𝑇𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹

= ∑ �̃�0
𝐻(𝑚) 𝐏 𝚺(𝑚) 

𝑀−𝑄

𝑚=0

[
1

2
∑ 𝚺𝐻(𝑚)𝐏 𝚺(𝑚)

𝑀−𝑄

𝑚=0

]

−1

 

×  ∑  𝚺𝐻(𝑚) 𝐏 �̃�0(𝑚)

𝑀−𝑄

𝑚=0

𝐻1
≷
𝐻0

𝜂𝐴𝑅−𝑀𝐹 

(16) 

where 𝚺(𝑚) = �̃�(𝑚) ⊗ 𝐈𝐿 . The detection scheme in (16) will 

be referred to in the following as the polarimetric AR model 

based matched filter (Pol-AR-MF).  

The test statistic above can be interpreted by defining the 

matrices 𝐖 =
1

2
∑ 𝚺𝐻(𝑚)𝐏 𝚺(𝑚)𝑀−𝑄
𝑘=0  and 𝐕(𝑚) = 𝐏 𝚺(𝑚) , 

m = 0, …, M – Q, which allows us to rewrite (16) as: 

𝑇𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹 = ∑ �̃�0
𝐻(𝑚) 𝐕(𝑚) 

𝑀−𝑄

𝑚=0

𝐖−1   

× ∑  𝐕𝐻(𝑚) �̃�0(𝑚)

𝑀−𝑄

𝑚=0

𝐻1
≷
𝐻0

𝜂𝐴𝑅−𝑀𝐹 

(17) 

We observe that 𝐕(𝑚)  (LQ×L) includes the filter 

coefficients to be applied at the k-th sub-coherent processing 

interval (CPI) to obtain the temporally whitened sequence of 

L–dimensional vectors 𝐲0(𝑚) = 𝐕
𝐻(𝑚) �̃�0(𝑚), m = 0, …, M 

– Q. The summation across consecutive samples provides the 

coherent integration of target echoes in time domain, which 

yields 𝐳0 = ∑ 𝐲0(𝑚)
𝑀−𝑄
𝑚=0 . Notice that, assuming a block based 

implementation of the detection scheme, the exploitation of an 

order Q – 1 for the AR model implies a loss of Q – 1 samples 

on the sequence 𝐲0(𝑚), namely the summation is limited to M 

– Q + 1 samples. This might be responsible of limited loss as 

observed in the results reported in Section V. However, other 

implementations are possible based on lattice filters operating 

across the slow time. 

Finally, the test statistic is evaluated as  𝑇𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹 =
𝐳0
𝐻𝐖−1𝐳0  that encodes the polarimetric whitening followed 

by the non-coherent integration of target echoes across the 

polarimetric channels. This is a direct consequence of the 

partially unstructured model adopted for the target component 

(see (4) and subsequent positions). 

Notice that, if 𝐭 represents the temporal steering vector, 

namely the vector that encodes the target echo phase shifts 

across consecutive radar pulses, we can rework and simplify 

the expression in (17). To this purpose, we observe that 

�̃�(𝑚) = 𝑒𝑗2𝜋𝑓𝑑𝑚 �̃�(0) and, consequently, we can write: 

𝑇𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹 = ∑ 𝑒𝑗2𝜋𝑓𝑑𝑚 �̃�0
𝐻(𝑚)𝐕(0) 

𝑀−𝑄

𝑚=0

𝐖−1   

× ∑  𝑒−𝑗2𝜋𝑓𝑑𝑚 𝐕𝐻(0)�̃�0(𝑚)

𝑀−𝑄

𝑚=0

𝐻1
≷
𝐻0

𝜂𝐴𝑅−𝑀𝐹 

(18) 

where W =  
1

2
(𝑀 − 𝑄 + 1) 𝚺𝐻(0)𝐏 𝚺(0).  

Therefore, in this case, a constant filter can be applied to 

obtain the whitened sequence  𝐲0
′(𝑚) = 𝐕𝐻(0) �̃�0(𝑚) , 

provided that the phase shift across consecutive sub-CPIs is 

compensated for before coherent integration. The above 

simplification also allows an alternative implementation of the 

temporal whitening stage as the filtering by matrix 𝐕(0) and 

the summation could be performed in reverse order to limit 

the computational burden.  

As a last remark, we notice that the test statistic in (17) can 

be expressed as a quadratic form in 𝐱0 as:  

𝑇𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹 = 𝐱0
𝐻𝐁 𝐂 𝐂𝐻𝐁𝐻𝐱0

𝐻1
≷
𝐻0

𝜂𝐴𝑅−𝑀𝐹 (19) 

where 

𝑩 = [𝐁0 𝐁1 … 𝐁𝑀−𝑄]     
 

with 𝐁𝑚 = [

𝟎𝐿𝑚×𝐿
𝐕(𝑚)

𝟎𝐿(𝑀−𝑄−𝑚)×𝐿

]   m = 0, …, M – Q 
(20) 

 

𝐂 = (𝟏𝑀−𝑄+1×1⊗𝐖−
1
2) (21) 

Under the assumptions adopted in (18), the blocks of 

matrix B are shifted versions of the first block, being the shift 

by L elements row-wise, whereas 𝐂 = (𝐭̅ ⊗𝐖−
1

2)  where 𝐭 ̅
includes the first M – Q + 1 elements of the steering vector t. 

C. Adaptive implementation 

To make the derived detector fully adaptive, matrix P, and 

hence matrices A and R, must be replaced with their ML 

estimates. These are obtained from the secondary data 𝐱𝑝, p = 

1, …, P, for which the same assumptions adopted in Section 

II hold (i.i.d. and target free). Specifically, in this case we 

assume that the disturbance in the secondary data follows an 

AR(Q – 1) model with same parameters of the disturbance 

affecting the primary data. 

By applying the same reordering strategy as for 𝐗0 (see 

(11)) to the secondary data vectors, we obtain P matrices 𝐗𝑝, 

p = 1, …, P, that are then collected in a larger matrix 𝐗 =
[𝐗1…𝐗𝑃] of dimensions  QL×P(M – Q + 1).  

The joint likelihood of the secondary data is then written as: 
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𝑓0(𝐗| 𝐑, 𝐀)

= (𝜋𝐿|𝐑|)−𝑃(𝑀−𝑄+1) exp{−tr(�̅�𝐻𝐏 𝐗)} 
(22) 

Based on (22), proper approximation of the ML estimates 

of A and R are readily obtained as (see Appendix B): 

�̂� =  �̂�00
−1�̂�01 (23) 

and 

�̂� =
1

𝑃(𝑀 − 𝑄 + 1)
(�̂�11 − �̂�01

𝐻 �̂�00
−1�̂�01) (24) 

where �̂�00 (L(Q–1)× L(Q–1)),  �̂�01 (L(Q–1)×L), �̂�11 (L×L) 

are blocks of the following matrix: 

�̂�  = �̅� 𝐗𝐻 = [
�̂�00 �̂�01
�̂�01
𝐻 �̂�11

] (25) 

Notice that a similar result was obtained in [51]-[52],[54] 

since this is independent of the adopted model for the target 

components.  

We observe that the LQ×LQ matrix �̂�  represents an 

estimate of the disturbance covariance matrix within a sub-

CPI, namely any LQ×LQ block on the main diagonal of matrix 

M. This benefits from a joint average over secondary data and 

consecutive (overlapped) sub-CPIs within the CPI: 

�̂�  = ∑∑ �̃�𝑝(𝑚)�̃�𝑝
𝐻(𝑚)

𝑀−𝑄

𝑚=0

𝑃

𝑝=1

 (26) 

The need for a smaller number of parameters to be 

estimated and the possibility to improve the estimation stage 

based on consecutive temporal observations formed within the 

CPI allow to limit the adaptivity loss compared to the 

detection schemes in Section II [4]-[6].  

By using (23) and (24) in (16), we obtain the test statistic 

for the polarimetric AR model based adaptive matched filter 

(Pol-AR-AMF) as 

𝑇𝑃𝑜𝑙−𝐴𝑅−𝐴𝑀𝐹

= ∑ �̃�0
𝐻(𝑚) �̂� 𝚺(𝑚) 

𝑀−𝑄

𝑚=0

[
1

2
∑ 𝚺𝐻(𝑚)�̂� 𝚺(𝑚)

𝑀−𝑄

𝑚=0

]

−1

× ∑  𝚺𝐻(𝑚) �̂� �̃�0(𝑚)

𝑀−𝑄

𝑚=0

𝐻1
≷
𝐻0

𝜂𝐴𝑅−𝐴𝑀𝐹  

(27) 

being �̂�  = [�̂�𝐻�̂�−1�̂�]  and  �̂� = [−�̂�𝐻 𝐈𝐿] . Similarly, the 

adaptive versions of the test statistics in (18)-(19) can be easily 

obtained. 

IV. ASYMPTOTIC PERFORMANCE  

In this Section, by proceeding as in [52], we derive the 

asymptotic performance achievable with the proposed 

detector, i.e. under the assumption that �̂�  and �̂� are 

asymptotic estimates obtained from an infinite number of 

secondary data [64]. Basically, we neglect the adaptivity loss 

due to the estimate fluctuations and, provided that the pdf in 

eq.(10) correctly approximates the actual pdf of the data for 

the large-sample case, we assume that the asymptotic ML 

estimates of A and R coincide with the actual values of the 

AR parameters. This analysis is useful since it might be 

representative of the performance of its adaptive version for 

large number of training data. 

A. False alarm probability 

Let us consider the test statistic in (19) and define the L–

dimensional vector �̆�0 = 𝐂
𝐻𝐁𝐻𝐱0 , namely �̆�0  represents the 

data after both polarimetric and temporal filtering, which then 

undergoes the non-coherent integration across the 

polarimetric channels and the test statistic in (19) can be 

written as 𝑇𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹 = ‖�̆�0‖
2. 

If the input disturbance process exactly matches the AR (Q 

– 1) model exploited for the derivation of the proposed 

detector, the filtering of data 𝐱0 via matrices B and C, based 

on asymptotic estimates of the relevant parameters included 

therein, provides a perfect whitening in both the polarimetric 

and the temporal domain. Under the 𝐻0  hypothesis, �̆�0  is a 

complex Gaussian random vector with zero-mean and 

covariance matrix 2IL, i.e.  �̆�0|𝐻0~𝒞𝒩 (0L×1, 2IL). See 

Appendix C for demonstration.  

Thus, the asymptotic distribution of the test statistic of the 

adaptive detector is given by   

𝑇𝑃𝑜𝑙−𝐴𝑅−𝐴𝑀𝐹  
𝑎𝑠𝑦𝑚𝑝.

→     𝑇𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹  ~ 𝜒2𝐿
2 (0) (28) 

where 𝜒2𝐿
2 (0) denotes the central Chi-squared distribution 

with 2L degrees of freedom. Correspondingly, we can write 

the asymptotic false alarm probability 𝑃𝑓𝑎 as  

𝑃𝑓𝑎 = ∑
 𝜂𝑙

 2𝑙  Γ(𝐿 − 𝑙)

𝐿−1

𝑙=0

𝑒− 
𝜂
2 (29) 

where Γ(∙) is the Gamma function and 𝜂 is the threshold that 

guarantees the desired 𝑃𝑓𝑎. Eq. (29) gives an exact threshold 

𝜂𝐴𝑅−𝑀𝐹  for the clairvoyant detector in (19) whereas, as the 

number P of secondary data increases, it provides a good 

approximation of the threshold 𝜂𝐴𝑅−𝐴𝑀𝐹  to be adopted for the 

adaptive detector in (27). 

The asymptotic distribution of 𝑇𝑃𝑜𝑙−𝐴𝑅−𝐴𝑀𝐹  under 𝐻0  is 

independent of the unknown parameters. Consequently, the 

𝑃𝑓𝑎 in (29) depends only on the test threshold and the number 

of polarimetric channels, and these are design parameters. It 

is then evident that the proposed detector asymptotically 

exhibits the CFAR property. 
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B. Probability of detection  

1) Non-fluctuating target model (Swerling 0) 

For a non-fluctuating target model, namely a Swerling 0 

target [65], and assuming know the disturbance parameters, 

vector �̆�0 under hypothesis 𝐻1 is a complex Gaussian random 

vector, with mean vector 𝛖 = 𝐂𝐻𝐁𝐻𝐬 and covariance matrix 

2IL, i.e.  �̆�0|𝐻1~𝒞𝒩(𝛖, 2IL), and the asymptotic distribution of 

the test statistic is given by  

𝑇𝑃𝑜𝑙−𝐴𝑅−𝐴𝑀𝐹  
𝑎𝑠𝑦𝑚𝑝.

→     𝑇𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹  ~ 𝜒2𝐿
2 (ς) (30) 

where 𝜒2𝐿
2 (ς) denotes the noncentral Chi-squared distribution 

with 2L degrees of freedom and noncentrality parameter ς =

∑ |𝜐𝑙|
𝐿−1
𝑙=0

2
= ‖𝛖‖2.  

From (30), we can write the asymptotic detection 

probability 𝑃𝑑  expression using the Marcum Q-function, as 

follows  

𝑃𝑑 = 𝑄𝐿(√ς,√𝜂)

= ∫ 𝑥 (
𝑥

√ς
)

𝐿−1

exp (−
𝑥2 + ς

2
)

∞

√𝜂

𝐼𝐿−1(√ς𝑥) 𝑑𝑥 
(31) 

𝐼𝐿−1(√ς𝑥) being the modified Bessel function of order L – 1. 

Eqs. (31) and (29) extend the results in [50] that were 

obtained for the case of a structured model for the space-time 

target components. That model basically yields a coherent 

summation over the whitened sequences and, in turn, results 

in a 𝜒2
2(𝛾ς) asymptotic distribution for the test statistic under 

H𝛾  ( 𝛾 = 0,1). 

2) Fluctuating target model (Swerling I) 

Assuming a Swerling I model for the target [65], namely 

considering a target complex amplitude distributed as a zero-

mean Gaussian random variable with covariance matrix 𝐌𝑡 =
𝐸{𝛂𝛂𝐻} , vector �̆�0  turns into a complex Gaussian random 

variable with zero-mean vector and covariance matrix 𝐃0 =
2𝐈𝐿 + 𝐂

𝐻𝐁𝐻 (𝐭𝐭𝐻⨂𝐌t) 𝐁𝐂.  

Therefore, in this case, we look for a closed form 

expression for the asymptotic 𝑃𝑑 ≜ Prob{‖�̆�0‖
2 > 𝜂 |𝐻1} , 

with  �̆�0|𝐻1~𝒞𝒩(𝟎𝐿×1, 𝐃0).  To this purpose we can use some 

recent results from the theory of indefinite quadratic forms in 

Gaussian random variables [67]. To this end, let 𝜆0…𝜆𝑁−1 

denote the N≤L distinct non-zero eigenvalues of   𝐃0 , each 

with multiplicity 𝜇𝑛, n = 0, …, N – 1. Following the approach 

in [67], we can write the 𝑃𝑑  expression as follows (see 

Appendix D for the derivation): 

𝑃𝑑 = ∑ ∑
−𝑒

−
𝜂
 𝜆𝑛  𝜂𝑘

Γ(𝑘 + 1)

𝜇𝑛−1

𝑘=0

𝑁−1

𝑛=0

𝛿𝑘,𝑛 (32) 

where 𝜂 is the threshold, and the coefficients 𝛿𝑘,𝑛 definition is 

detailed in eq. (56) of Appendix D. The expression above 

takes simplified forms for the special cases of either a unique 

eigenvalue (𝜆0) with multiplicity L or L distinct eigenvalues. 

Specifically, in the former case we obtain 

𝑃𝑑 = ∑
𝜂𝑙

𝜆0
𝑙  Γ(𝑙 + 1)

𝐿−1

𝑙=0

𝑒
− 
𝜂
𝜆0  (33) 

which corresponds to a Gamma distributed test statistic, i.e. 

𝑇𝑃𝑜𝑙−𝐴𝑅−𝐴𝑀𝐹  
𝑎𝑠𝑦𝑚𝑝.

→     𝑇𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹  ~ Γ(𝐿, 𝜆0) (34) 

whereas, in the case of L distinct eigenvalues, we have  

𝑃𝑑 =∑
𝜆𝑙
𝐿−1

∏ (𝜆𝑙 − 𝜆𝑖)
𝐿−1
𝑖=0
𝑖 ≠𝑙

 

𝐿−1

𝑙=0

e
−
𝜂
𝜆𝑙 (35) 

which yields, for the test statistic, the following asymptotic 

probability density function (pdf): 

𝑇𝑃𝑜𝑙−𝐴𝑅−𝐴𝑀𝐹  
𝑎𝑠𝑦𝑚𝑝.

→      

 𝑇𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹  ~ ∑
𝜆𝑙
𝐿−2

∏ (𝜆𝑙 − 𝜆𝑖)
𝐿−1
𝑖=0
𝑖 ≠𝑙

𝐿−1

𝑙=0

 e
−
𝜂
𝜆𝑙 

(36) 

V. NUMERICAL RESULTS 

In this Section, we investigate the performance of the 

proposed detector via numerical examples.   

To this aim, we generate the disturbance signal as a L–

channel AR(Q – 1) process and matrices A and R and we carry 

out Monte Carlo (MC) simulations with proper number of 

trials. In particular, we consider an order Q – 1 = 3 for the AR 

process with L = 3 (HH, VV, HV) polarimetric channels.  

The AR(Q – 1) parameters A and R are set so that the auto- 

and cross- spectra of the available channels are those reported 

in Fig. 1 [68]. Specifically, Fig. 1 shows that, in the considered 

example, the disturbance at channels HH and VV has identical 

spectral characteristics and equal power level, i.e. 𝜎𝑑,𝐻𝐻
2 =

𝜎𝑑,𝑉𝑉
2 = 𝜎𝑑

2, deliberately set to 𝜎𝑑
2= 1. 

  

 

Fig. 1 Power spectra of a L-channel AR(3) process 
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The cross-spectrum between the HH and VV channels reveals 

a good correlation between the corresponding signals yielding 

a correlation coefficient equal to 𝜌𝐻𝐻/𝑉𝑉   = 0.9. The 

disturbance affecting the HV channel is generated with power 

level 20 dB lower than in HH and VV, i.e. 𝜎𝑑,𝐻𝑉
2  = 0.01 𝜎𝑑

2. 

Moreover, the cross-polarized components are assumed 

independent from the co-polarized ones, i.e. 𝜌𝐻𝑉/𝐻𝐻 =

𝜌𝐻𝑉/𝑉𝑉 = 0 thus resulting in null cross-spectra.  

In Fig. 2 we study the capability of the derived expression 

to control the false alarm rate as a function of the number of 

training data. Specifically, for a given desired 𝑃𝑓𝑎 = 10-3, we 

select the threshold according to the asymptotic expression in 

(29). Then, we perform MC simulations with 106 trials and 

different P values, and we evaluate the actual 𝑃𝑓𝑎  obtained 

when using the theoretical threshold. 

The results are reported for different numbers L of 

polarimetric channels in Fig. 2 (a) whereas in Fig. 2 (b) we 

compare the curves obtained for different numbers M of 

temporal observations as provided by a coherent train of 

pulses (an active pulse radar system is assumed in the reported 

examples).  

By observing Fig. 2  the following considerations are in order. 

• In all considered cases, the actual 𝑃𝑓𝑎 tends to the nominal 

false alarm used to set the threshold (𝑃𝑓𝑎 = 10
−3) as the 

number P of secondary data increases. This on one hand 

confirms the correctness of the asymptotic expression in 

(29) and on the other hand demonstrates that the detection 

threshold obtained from (29) could be exploited in practice 

when the number of secondary data is sufficiently high. 

When this condition does not hold, adaptivity loss prevails, 

which yields a false alarm rate higher than the desired one. 

• By keeping the number of pulses constant (M = 32 in Fig. 

2 (a)), the higher the number of polarimetric channels is the 

higher is the number of training data required to have 

acceptable adaptivity loss. This is because a bigger (QL 

×QL) matrix must be estimated, being Q = 4 in the 

considered case study.  

• However, we observe that, in this case, a number P of 

training data equal to QL is typically enough to guarantee 

the ‘asymptotic’ condition since the matrix estimation 

benefits from the average performed across the temporal 

observations within the CPI. 

• The consideration above is confirmed in Fig. 2 (b) where 

we kept the number of polarimetric channels constant (L = 

2), while comparing the results obtained for different 

values of M. In fact, as the number of pulses increases, the 

training data required to have a good false alarm rate 

control decrease. This is because a higher number of 

consecutive temporal observations is available to estimate 

the same number of unknown parameters.  

The detection performance of the proposed detector is 

analyzed in Fig. 3 and Fig. 4, by comparison with the Pol-

GLRT [4]-[5] in (8) and the Pol-AMF [6] in (7). 

First, a Swerling 0 target model is considered in Fig. 3, namely 

the target complex amplitudes are assumed deterministic [65]. 

As an example, in the considered case study, they are set as 

𝛂 = 𝑎𝑡[1 e𝑗Δ𝜙𝐻𝐻/𝑉𝑉 √𝜉𝑡e
𝑗Δ𝜙𝐻𝐻/𝐻𝑉]

𝑇
, where 𝜉𝑡  = 0.1, 

Δ𝜙𝐻𝐻/𝑉𝑉 = 𝜋/4, and Δ𝜙𝐻𝐻/𝐻𝑉 = 𝜋/2. The results are reported 

as a function of the signal-to-clutter ratio (SCR) at the first 

polarimetric channel, i.e. SCR=|𝑎𝑡|
2/𝜎𝑑

2.  

We consider M = 32, target normalized Doppler frequency 

𝑓𝑑  = 0.25 and different numbers of polarimetric channels. 

Specifically, in Fig. 3(a) we use L = 1 (HH) while in Fig. 3(b) 

we consider L = 3 (HH, VV, HV). We note that, when L = 1, 

the proposed detector falls within the single-channel 

parametric approaches [41]-[46] that only exploit the temporal 

domain for clutter cancellation and target detection.  
Then, the same case studies are considered in Fig. 4 except 

that a fluctuating target model is used according to a Swerling 

I model [65]. Note that, in both cases, the employed 

parameters yield a ratio between the powers on the different 

polarimetric channels similar to that used in [5]. Specifically, 

the target complex amplitudes vector 𝛂 is generated as a zero-

mean Gaussian random vector, with the following covariance 

matrix 

 𝐌𝑡 = 𝜎𝑡
2 [

1 𝜌𝑡 0
𝜌𝑡 1 0
0 0 𝜉𝑡

] (37) 

 
(a) 

 
(b) 

Fig. 2 Measured 𝑃𝑓𝑎 versus P when 𝑃𝑓𝑎 = 10
−3  for 

(a) different polarimetric channels and (b) different pulses 
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denoting 𝜌𝑡  as the cross-correlation coefficient between the 

two co-polarized target amplitudes. In this analysis, 𝜌𝑡 = 0 and 

𝜉𝑡 = 0.1. Again, Fig. 4(a) and Fig. 4(b) have been obtained for 

L = 1 (HH) and L = 3 (HH, VV, HV) polarimetric channels, 

respectively. In all figures, the Pol-MF is considered as a 

benchmark of our performance evaluation and its performance 

are reported in dash-dot red. The performance of the Pol-

GLRT and the Pol-AMF are reported in dotted black and grey, 

respectively, and both are operated using P = 2ML.  

The theoretical asymptotic 𝑃𝑑   for the proposed detector is 

reported in continuous dark blue line while the results of the 

MC simulation for the clairvoyant Pol-AR-MF (with 104 

independent MC trials) are reported in dark blue dots. The 

MC simulation results obtained when applying the adaptive 

detector Pol-AR-AMF, with P secondary data are reported in 

dashed magenta. 

 The 𝑃𝑓𝑎  has been chosen to be 10−3  and, for a fair 

comparison, the detection threshold of the Pol-AR-AMF has 

been numerically adjusted to guarantee the desired false alarm 

rate even in non-asymptotic regime.  

By observing Fig. 3 and Fig. 4, the following 

considerations apply.  

• The Pol-MF sets the performance bounds, that improve 

moving from a system equipped with single polarimetric 

channel to a fully polarimetric system employing L = 3 

channels, thanks to the enhanced capability to discriminate 

target echoes from disturbance. The improvement is larger 

for the Swerling I target model since the polarimetric 

channels combination also allows the amplitude 

fluctuations to be averaged out thus removing some of the 

target fades. 

• The Pol-GLRT and the Pol-AMF yield a non-negligible 

detection loss (3-4 dB) with respect to their clairvoyant 

version (Pol-MF) employing all the available degrees of 

freedom for disturbance removal. This is due to the need to 

estimate a very high number of unknown parameters when 

 

  
(a) (b)  

Fig. 3 𝑃𝑑 versus SCR for M = 32, 𝑃𝑓𝑎 = 10
−3,Swerling 0 target model and different polarimetric channels: 

(a)  (HH), (b)  (HH, VV, HV) 

  

(a)  (b)  

Fig. 4 𝑃𝑑 versus SCR for M = 32, 𝑃𝑓𝑎 = 10
−3,Swerling I target model and different polarimetric channels: 

(a) L = 1 (HH), (b) L = 3 (HH, VV, HV) 
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no model is adopted for the disturbance spectral 

characteristics. As expected, the Pol-GLRT shows a slight 

advantage over the Pol-AMF. However, the number of 

secondary data for both detectors has been adjusted so that 

P = 2ML, which yields P = 64 and P = 192 for L = 1 and L 

= 3, respectively. In practical cases it may be difficult to 

obtain the required amount of training data with the desired 

characteristics so that further degraded performance is 

expected for both the fully adaptive detection schemes.  

• Whilst it exploits a reduced number of temporal degrees of 

freedom for clutter cancellation, the Pol-AR-MF shows 

comparable performance with respect to the Pol-MF 

provided that the number Q of taps matches the actual order 

of the AR process modelling the disturbance. The case of a 

possible mismatch between the disturbance spectral 

characteristics and the order of the AR process used to build 

the detector is addresses in the accompanying paper [55].  

• The slight loss observed in Fig. 3 and Fig. 4 is due to the 

border effect arising from a block-based implementation of 

the detection scheme as discussed in Section III-B. In fact, 

according to this implementation, the summation across the 

sequence 𝒚0 (m) is limited to M – Q – 1 consecutive 

samples thus a loss of (Q – 1)/M is obtained for the 

corresponding integration gain over the available CPI. 

Incidentally, we recall that other implementations are 

possible, e.g. based on lattice filters, where this loss might 

be avoided by processing partially overlapped data batches. 

• The theoretical asymptotic  𝑃𝑑   expressions perfectly 

match with the MC simulation results, implying that the 

obtained expressions can accurately describe the detection 

performance of the Pol-AR-MF both under the 

deterministic and stochastic target models. 

• The Pol-AR-AMF yields remarkable detection 

performance with only a limited adaptivity loss with 

respect to its clairvoyant version Pol-AR-MF. As expected, 

this loss increases as L increases, since a bigger (QL× QL) 

matrix must be estimated and the number of training data 

has been kept constant (P = 4 in all considered cases). 

• Nevertheless, the Pol-AR-AMF outperforms the other 

polarimetric adaptive detectors, even using much fewer 

training data. This advantage clearly demonstrates its 

suitability for practical applications. 

In Fig. 5(a-c), we show the probability of detection for a 

Swerling I target model and L = 2 polarimetric channels (HH, 

VV), when using a number M of pulses equal to 16, 32, and 

64, respectively. In all cases, the Pol-AR-AMF is applied with 

P = 4 training data while both the Pol-GLRT and the Pol-AMF 

use P = 2ML, namely P = 64, 128 and 256. Similar 

considerations apply as for the results reported in Fig. 3 and 

Fig. 4. 

In addition, by comparing Fig. 5(a-c), we further notice 

that, as the number M of pulses increases: 

• all target detection strategies benefit from the increased 

number of temporal observations that at least provides an 

increased coherent integration gain. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 5 𝑃𝑑 versus SCR for 𝑃𝑓𝑎 = 10
−3, L = 2 (HH, VV) and 

different pulses: (a) M = 16, (b) M = 32, (c) M = 64 
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• Moreover, the observed loss of the Pol-AR-AMF with 

respect to the Pol-MF due to the border effect decreases 

since the number of samples excluded from the coherent 

integration (Q – 1) becomes less significant with respect to 

M. 

• To parity of training data, the adaptivity loss shown by the 

Pol-AR-AMF decreases thanks to the higher number of 

temporal observations available to estimate the same 

number of parameters (QL). In this regard, we observe that, 

even operating with P = 4, in the considered case study, the 

Pol-AR-AMF substantially reaches its asymptotic 

detection performance for M ≥ 32. 

• In contrast, the conventional polarimetric adaptive 

detection schemes, i.e. the Pol-GLRT and the Pol-AMF, 

require a progressively higher number of secondary data in 

order to control the adaptivity loss, making such detection 

strategies unsuitable for real application. This conclusion is 

further reinforced by considerations relevant to the 

computational burdens required by these detectors. 

• Overall, the advantage of the Pol-AR-AMF over the Pol-

GLRT and the Pol-AMF increases as M increases showing 

that the number of temporal degrees of freedom to be 

employed adaptively can be kept constant thus easing the 

training/computational burden while guaranteeing the 

desired disturbance removal. In fact, the Pol-AR-AMF 

allows the additional temporal observations to be 

effectively exploited to reduce the adaptivity loss and to 

enhance the coherent integration of target echoes.  

Note that, although the devised comments specifically refer to 

the considered case study, similar considerations apply to 

alternative cases obtained with a different choice of the 

relevant parameters. For instance, we plot in Fig. 6 the results 

obtained when considering the same scenario used in Fig. 5(b) 

but assuming that the cross-correlation coefficient between 

the target amplitudes at channels HH and VV is equal to 𝜌𝑡 = 

0.99. 

 

 
As it is apparent the performance of all the considered 

detection schemes degrade since the target echoes at the two 

co-polarized channels are correlated, so that the target fade 

average is much less effective than in the former case in which 

𝜌𝑡 = 0. Moreover, the target echoes are also partially cancelled 

by the clutter cancellation stage of the adaptive detectors 

which is intended to mitigate polarimetric correlated signals. 

However, we highlight that the comparative analysis between 

different adaptive detectors remains unchanged and the Pol-

AR-AMF still outperforms the fully adaptive detectors even 

operating with a much smaller training data size. 

The considerations above are confirmed by Fig. 7 (a-b), 

where we study the detection performance depending on the 

selected Doppler frequency and target polarimetric cross-

correlation coefficient. In Fig. 7(a), we consider SCR = – 35 

dB and 𝑃𝑓𝑎 = 10
−3,  and we report the 𝑃𝑑 obtained with the 

proposed Pol-AR-MF for the same scenario used in Fig.6 as a 

function of 𝜌𝑡 and 𝑓𝑑. In Fig. 7(b), we compare it with the Pol-

GLRT operated using P = 2ML = 128 and with the Pol-AR-

AMF operated using P = 4, for 𝜌𝑡 = 0 and 𝜌𝑡 = 0.99. In both 

Fig. 7 (a) and (b), a logarithmic scale has been used to enhance 

the difference at high 𝑃𝑑  values. As expected, as the target 

polarimetric correlation coefficient decreases, the cancellation 

notch obtained with all the considered approaches 

 

Fig. 6 𝑃𝑑 versus SCR for 𝑃𝑓𝑎 = 10
−3, L = 2 (HH, VV), 

 M = 32 and 𝜌𝑡 = 0.99. 

 

 
(a) 

 
(b) 

Fig. 7 𝑃𝑑 for SCR = – 35 dB, 𝑃𝑓𝑎 = 10
−3, L = 2 (HH, VV), M = 32: 

(a) 𝑃𝑑 for Pol-AR-MF as a function of 𝑓𝑑 and 𝜌𝑡  
(b) 𝑃𝑑 versus 𝑓𝑑 for 𝜌𝑡 = 0 and 𝜌𝑡= 0.99. 
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progressively narrows allowing a better discrimination of the 

target echo against the polarimetric correlated disturbance. 

However, for both the considered 𝜌𝑡 values, the proposed Pol-

AR-AMF operating with P = 4 nearly reaches its asymptotic 

detection performance thus remarkably outperforming the 

conventional Pol-GLRT. Specifically, it provides a target 

detection probability improvement up to 20% in the 

considered scenario. 

VI. CONCLUSION 

In this work, we derived a novel polarimetric adaptive 

detector based on a multi-channel AR process for the 

disturbance. The authors derived asymptotic expressions for 

the performance of the proposed detector and its effectiveness 

has been investigated via numerical analysis. We have shown 

that the devised approach is able to improve the target 

detection capability with respect to traditional detection 

schemes when both single-pol and multi-pol radar systems are 

considered. Moreover, based on the adopted parametric 

method, the proposed detection scheme also allows to relax 

the requirement on the number of target-free training data and 

on the computational effort, that are key points in applications 

where the number of adaptive degrees of freedom is large as 

well as in heterogeneous environment.  

These conclusions are indeed valid when the input 

disturbance strictly follow the underlying model adopted for 

the detector design. In real-world scenario this is rarely the 

case therefore it is of high practical interest to understand the 

behavior of the proposed detection scheme when applied 

against disturbance components with diverse spectral 

characteristics. The interested reader is referred to Part II of 

this work for a detailed study of these aspects [55].  

APPENDIX A 

DERIVATION OF AR MODEL BASED  

POLARIMETRIC DETECTOR 

We maximize the numerator of (15) over the unknown 

target amplitude vector 𝛂, where the likelihood of 𝐗0 under 

the H1 hypothesis is defined in (14). The maximization yields:  

�̂� = argmin
𝛂

 {tr(𝐒𝐻𝐏𝐒) − 2ℜ[tr(𝐗0
𝐻𝐏𝐒)]} (38) 

Taking into account the definitions of matrices 𝐗0  and 𝐒 

provided in sub-section III-A, we can further develop the 

expression above as 

�̂� = argmin
𝛂

{∑ 𝛂𝐻𝚺𝐻(𝑘)𝐏 𝚺(𝑘)

𝑀−𝑄

𝑘=0

𝛂

− 2ℜ [∑ �̃�0
𝐻(𝑘)𝐏𝚺(𝑘)

𝑀−Q

𝑘=0

𝛂]} 

(39) 

where 𝚺(𝑘) = �̃�(𝑘) ⊗ 𝐈𝐿 . By defining 𝐔 =

∑ 𝚺𝐻(𝑘)𝐏 𝚺(𝑘)𝑀−𝑄
𝑘=0  and 𝐯 = ∑ �̃�0

𝐻(𝑘)𝐏𝚺(𝑘)
𝑀−Q
𝑘=0 , (39) 

becomes 

�̂� = argmin
𝛂

{𝛂𝐻𝐔𝛂 − 2ℜ[𝐯𝛂]} (40) 

that yields the following ML estimate for the target amplitude 

vector:  

�̂� =   𝐔−1𝐯𝐻 (41) 

Eventually, by substituting (41) in (15) we obtain  

max𝛂{𝑓1(𝐗0| 𝛂, 𝐑, 𝐀)}

𝑓
0
(𝐗0|𝐑, 𝐀)

= 2ℜ[�̂�𝐻 𝐯𝐻] − �̂�𝐻𝐔�̂�

= 𝐯𝐔−1𝐯𝐻
𝐻1
≷
𝐻0

ln (η0) 

(42) 

which, scaled by a constant factor 2, similarly to [52], is 

converted in (16).  

APPENDIX B 

ML PARAMETER ESTIMATION 

The joint pdf of the secondary data is given by (22). We 

first look for matrix A that maximizes (22) or, equivalently, 

that minimizes tr(𝐗𝐻𝐏 𝐗),  where P = 𝐇𝐻𝐑−1𝐇  and𝐇 =
[−𝐀𝐻 𝐈𝐿].  To this purpose, we define matrix �̂� = 𝐗𝐗𝐻  that 

is decomposed in blocks as 

�̂� = [
�̂�00 �̂�01
�̂�01
𝐻 �̂�11

] (43) 

where �̂�00 and �̂�11 are square blocks with dimensions L (Q – 

1)×L(Q – 1) and  L×L respectively, whereas �̂�01 is a L(Q – 

1)×L block.  

With this definition, we can write: 

tr(�̅�𝐻𝐏 𝐗) = tr(�̂� 𝐇𝐻𝐑−1𝐇 ) 

= tr(�̂�00𝐀𝐑
−1𝐀𝐻 − �̂�01𝐑

−1𝐀𝐻              

− �̂�01
𝐻 𝐀𝐑−1 + �̂�11𝐑

−1) 

(44) 

and using well known identities for trace derivatives [66], we 

have:  

𝜕

𝜕𝐀∗
{tr(𝐗𝐻𝐏 𝐗)} = �̂�00𝐀𝐑

−1 − �̂�01𝐑
−1 (45) 

that is equated to zero to obtain the ML estimate of matrix A:  

�̂� = �̂�00
−1�̂�01 (46) 
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Now, by substituting (46) in (22) we obtain 

max
𝐀
{𝑓0(�̅�| 𝐑, 𝐀)}

= (𝜋𝐿|𝐑|)−𝑃(𝑀−𝑄+1) exp{−tr(�̂� �̂� �̂�𝐻𝐑−1)} 
(47) 

that can be then maximized with respect to 𝐑 thus yielding: 

�̂� =
1

𝑃(𝑀 − 𝑄 + 1)
�̂� �̂� �̂�𝐻 

=
1

𝑃(𝑀 − 𝑄 + 1)
 (�̂�11 − �̂�01

𝐻 �̂�00
−1�̂�01) 

(48) 

where �̂�11 − �̂�01
𝐻 �̂�00

−1�̂�01 =  [�̂�
−1]

𝑄,𝑄

−1
 is the inverse of the 

last L×L block on the main diagonal of the inverse of  �̂�. We 

note that the derived expressions for matrices �̂�  and �̂� 

reported in (46) and (48), respectively, are approximations of 

the actual ML estimates of the AR parameters, given that the 

pdf in eq. (10) is the approximate (actually conditional) pdf of 

the data. However, the approximation is quite accurate for 

large data records, provided that the actual pdf can be well 

approximated by the conditional pdf [63][64]. 

APPENDIX C 

PDF OF �̆�0 UNDER THE H0 HYPOTHESIS  

In this Appendix, we look for the pdf of vector �̆�0, defined 

as �̆�0 = 𝐂
𝐻𝐁𝐻𝐱0 , under the H0 hypothesis, provided that 

matrices B and C are known. Based on its definition and 

eq.(10), it is easy to observe that �̆�0|𝐻0~𝒞𝒩(𝟎𝐿×1, 𝐃0) , 

denoting 𝐃0 as the disturbance covariance matrix that will be 

derived in the following .  

From (17), we write �̆�0 as �̆�0 = ∑ �̆�0,𝑚
𝑀−𝑄
𝑚=0 , namely as the 

sum of M – Q – 1 vectors �̆�0,𝑚 = 𝐖
−1/2 𝐕𝐻(𝑚) �̃�0(𝑚), each 

being a L×1 zero-mean complex Gaussian variable with cross-

covariance matrix  

𝐸{�̆�0,𝑚�̆�0,𝑛
𝐻 }

= 𝐖− 
1
2 𝐕(𝑚)𝐻𝐸{�̃�0(𝑚)�̃�0

𝐻(𝑛)} 𝐕(𝑛) 𝐖− 
1
2 

 

(m, n = 0, …, M – Q) 

(49) 

where 𝐸{�̃�0(𝑚)�̃�0
𝐻(𝑛)} is a QL×QL block of the disturbance 

covariance matrix 𝐌, whose diagonal is coincident with the 

main diagonal of 𝐌 only if m = n. 

Using the definition of matrices 𝐕(𝑚) = 𝐏 𝚺(𝑚) and P = 

𝐇𝐻𝐑−1𝐇, (49) becomes  

𝐸{�̆�0,𝑚�̆�0,𝑛
𝐻 }

= 𝐖− 
1
2 𝚺(𝑚)𝐻𝐇𝐻𝐑−1𝐇 𝐸{�̃�0(𝑚)�̃�0

𝐻(𝑛)} 𝐇𝐻

× 𝐑−1𝐇 𝚺(𝑛)𝐖− 
1
2 

 

(m, n = 0, …, M – Q) 

(50) 

According to the employed multi-channel AR model in 

(9), we write the product 𝐇𝐸{�̃�0(𝑚)�̃�0
𝐻(𝑛)}𝐇𝐻 as 

𝐸 {[𝐇 �̃�0(𝑚)] [�̃�0
𝐻(𝑛) 𝐇𝐻]}

=  𝐸 {𝐰(𝑚 +  𝑄 –  1)𝐰𝐻(𝑛 +  𝑄 –  1)}

=  𝐑 𝛿(𝑚 –  𝑛) 

(51) 

denoting δ(·) as the Dirac delta function.  

Finally, by substituting (51) into (50), we easily obtain  

𝐸{�̆�0,𝑚�̆�0,𝑛
𝐻 }

= { 𝐖
−
1
2 𝚺𝐻(𝑚) 𝐏 𝚺(𝑚) 𝐖−

1
2            𝑚 = 𝑛

𝟎𝐿                                                          𝑚 ≠ 𝑛
 

(52) 

Therefore, the sought covariance matrix 𝐃0 is 

𝐃0 = 𝐖
−
1
2 [∑ 𝚺𝐻(𝑚)𝐏 𝚺(𝑚)

𝑀−𝑄

𝑚=0

]𝐖−
1
2 =  2𝐈𝐿  (53) 

Based on (53), we can conclude that �̆�0|𝐻0~𝒞𝒩(𝟎𝐿×1, 2𝐈𝐿). 

APPENDIX D 

DERIVATION OF THE ASYMPTOTIC PD FOR 

FLUCTUATING TARGET MODEL   

In this Appendix, we look for Prob{‖�̆�0‖
2 > 𝜂}, assuming 

that vector �̆�0  is a complex Gaussian random variable with 

zero-mean vector and covariance matrix D0, i.e. 

 �̆�0|𝐻1~𝒞𝒩(𝟎𝐿×1, 𝐃0) . In particular,  𝐃0 = 2𝐈𝐿 +

𝐂𝐻𝐁𝐻 (𝐭𝐭𝐻⨂𝐌t) 𝐁𝐂   , where  𝐌𝑡  is the target amplitudes 

covariance matrix. To this end, we follow the main steps of 

the procedure reported in [67], with reference to the problem 

under consideration. In order for the results in [67] to be 

directly applied, we rewrite the test statistic as 𝑇𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹 =

𝐡𝐻 𝐃0𝐡 , where 𝐡 = (𝐃0
−1/2

)
𝐻
 �̆�0 is the whitened version 

of �̆�0, i.e. h~𝒞𝒩(0L×1,IL).  

Let 𝜆0…𝜆𝑁−1  denote the N≤L distinct non-zero 

eigenvalues of matrix D0, each with multiplicity 𝜇𝑛, n = 0, …, 

N – 1. Without loss of generality, we assume that no 

eigenvalue of matrix D0 is equal to zero. To see why this is the 

case, let us consider the eigenvalues decomposition of matrix 

D0, i.e. D0 = K𝚲KHand let us assume that 𝚲 is organized so 

that 𝚲 = [
�̿� 𝟎𝑁×(𝐿−𝑁)

𝟎(𝐿−𝑁)×𝑁 𝟎(𝐿−𝑁)×(𝐿−𝑁)
], where �̿� is a N×N block 

with the non-zero eigenvalues on its main diagonal. Therefore, 

the test statistic could be simply reworked as 𝑇𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹 =

�̿�𝐻�̿��̿�, where �̿� = 𝚯𝐻(𝐊𝐻𝐡), 𝚯 = [𝐈𝑁  ⋮ 𝟎𝐿×(𝐿−𝑁)]
𝐻

. 

Based on the employed model, we can write the 

cumulative distribution function (CDF) of 𝑇𝑃𝑜𝑙−𝐴𝑅−𝑀𝐹  as 

follows [67] 

𝐹0(𝑡) =
1

2𝜋
∫

𝑒𝑡(𝑗𝜔+𝛽)

|𝐈𝐿 + (𝑗𝜔 + 𝛽)𝚲| (𝑗𝜔 + 𝛽)

∞

−∞

𝑑𝜔 

 

(β > 0) 

(54) 
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To evaluate this integral, first we resort to a partial fraction 

expansion for the fraction that appears in (54), obtaining [67] 

1

|𝐈𝐿 + (𝑗𝜔 + 𝛽)𝚲| (𝑗𝜔 + 𝛽) 
= 

∑ ∑
𝛿𝑘,𝑛

[
1
𝜆𝑛
+ (𝑗𝜔 + 𝛽)]

𝑘+1

𝜇𝑛−1

𝑘=0

𝑁−1

𝑛=0

+
1

 (𝑗𝜔 + 𝛽)
 

(55) 

where the coefficients 𝛿𝑘,𝑛 are given by 

𝛿𝑘,𝑛 =
∏ 𝜆

𝑗

−𝜇𝑗𝑁−1
𝑗=0

Γ(𝜇𝑛 − 𝑘)
  𝑦𝑛

(𝜇𝑛−𝑘−1)(𝑠)|
𝑠=−

1
𝜆𝑛

 

 

(n = 0, …, N – 1 , k = 0, …, 𝜇𝑛 – 1) 

(56) 

being 𝑦𝑛
(𝜇𝑛−𝑘−1) (s) the (𝜇𝑛  – k – 1)-th derivative of 𝑦𝑛 (s), 

defined as   

𝑦𝑛(𝑠) =∏(𝜁𝑗 + 𝑠)
−𝜇𝑗

𝑁

𝑗=0
𝑗≠𝑛

 (57) 

with 𝜁𝑛 =
1

𝜆𝑛
 , n = 0, …, N – 1, 𝜁𝑁 = 0 and 𝜇𝑁 = 1. 

One can evaluate the coefficient 𝑦𝑛
(𝜇𝑛−𝑘−1)  in 𝛿𝑘,𝑛  

differentiating the logarithm of  𝑦𝑛(𝑠) , i.e.  
𝑑

𝑑𝑠
log[𝑦𝑛(𝑠)] =

1

𝑦𝑛(𝑠)
𝑦𝑛
(1)(𝑠), that yields 

𝑦𝑛
(1)(𝑠) = −𝑦𝑛(𝑠)∑𝜇𝑗(𝜁𝑗 + 𝑠)

−1
𝑁

𝑗=0
𝑗≠𝑛

 (58) 

Subsequently, Leibniz’s rule for differentiation of 

products may be applied to evaluate the p-th order derivative. 

  𝑦𝑛
(𝑝)(𝑠) =  

𝑑𝑝−1

𝑑𝑠𝑝−1
𝑦𝑛
(1)(𝑠)

= −∑(
𝑝 − 1
𝑟
) 𝑦𝑛

(𝑟)(𝑠)

𝑝−1

𝑟=0

×
𝑑𝑝−1−𝑟

𝑑𝑠𝑝−1−𝑟

[
 
 
 

∑𝜇𝑗(𝜁𝑗 + 𝑠)
−1

𝑁

𝑗=0
𝑗≠𝑛 ]

 
 
 

 

(59) 

Thus, the required quantities are obtained using the 

following recursion formula 

  𝑦𝑛
(𝑝)(𝑠)|

𝑠=−𝜁𝑛

=∑∑𝜇𝑗 (
𝑝 − 1
𝑟
)
(−1)𝑝−𝑟Γ(𝑝 − 𝑟)

(𝜁𝑗 − 𝜁𝑛)
𝑝−𝑟

𝑁

𝑗=0
𝑗≠𝑛

𝑦𝑛
(𝑟)(𝑠)|

𝑠=−𝜁𝑛

𝑝−1

𝑟=0

 

 

(p ≥ 1) 

(60) 

  𝑦𝑛
(0)(𝑠)|

𝑠=−𝜁𝑛
=   𝑦𝑛(−𝜁𝑛) =∏(𝜁𝑗 − 𝜁𝑛)

−𝜇𝑗

𝑁

𝑗=0
𝑗≠𝑛

  

By substituting the results in (60) into (56), the coefficients 

𝛿𝑘,𝑛  are obtained and can be used to evaluate the partial 

fraction expansion in (55). Finally, this result can be employed 

in (54) to solve the integral and to obtain, after some 

calculations 

𝐹0(𝑡) = 1 +∑ ∑
𝑒
(−

𝑡
𝜆𝑛
)
 𝑡𝑘

Γ(𝑘 + 1)

 𝜇𝑛−1

𝑘=0

𝑁−1

𝑛=0

𝛿𝑘,𝑛 

 

(t ≥ 0) 

(61) 

From the CDF in (61), the derivation of the 𝑃𝑑 expression 

in (32) is straightforward  

𝑃𝑑 = 1 − 𝐹0(𝜂) = ∑ ∑
−𝑒

(−
𝜂
𝜆𝑛
)
 𝜂𝑘

Γ(𝑘 + 1)

 𝜇𝑛−1

𝑘=0

𝑁−1

𝑛=0

𝛿𝑘,𝑛 (62) 

In the special case of only one eigenvalue (N = 1) equal to 

𝜆0 with multiplicity 𝜇0 = L, the residues in (56) can be 

simplified as 

𝛿𝑘,0 = −𝜆0
−𝑘 (63) 

from which the 𝑃𝑑  in (33) is obtained. 

In the dual special case when no eigenvalue is repeated, 

namely when N = L and 𝜇𝑛 = 1, n = 0, …, N – 1 the residues 

in (56) can be simplified as 

𝛿0,𝑛 = −𝜆𝑛∏(𝜆𝑛 − 𝜆𝑗)
−1
 

𝐿−1

𝑗=0
𝑗≠𝑛

 (64) 

Using (64), we easily obtain the 𝑃𝑑 expression in (35). 
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