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KSHV infection skews macrophage polarisation towards
M2-like/TAM and activates Ire1 α-XBP1 axis up-regulating
pro-tumorigenic cytokine release and PD-L1 expression
Maria Saveria Gilardini Montani1, Luca Falcinelli1, Roberta Santarelli1, Marisa Granato1, Maria Anele Romeo1, Nives Cecere1,
Roberta Gonnella1, Gabriella D’Orazi2,3, Alberto Faggioni1 and Mara Cirone1

BACKGROUND: Kaposi’s Sarcoma Herpesvirus (KSHV) is a gammaherpesvirus strongly linked to human cancer. The virus is also able
to induce immune suppression, effect that contributes to onset/progression of the viral-associated malignancies. As KSHV may
infect macrophages and these cells abundantly infiltrate Kaposi’s sarcoma lesions, in this study we investigated whether KSHV-
infection could affect macrophage polarisation to promote tumorigenesis.
METHODS: FACS analysis was used to detect macrophage markers and PD-L1 expression. KSHV infection and the molecular
pathways activated were investigated by western blot analysis and by qRT-PCR while cytokine release was assessed by Multi-
analyte Kit.
RESULTS: We found that KSHV infection reduced macrophage survival and skewed their polarisation towards M2 like/TAM cells,
based on the expression of CD163, on the activation of STAT3 and STAT6 pathways and the release of pro-tumorigenic cytokines
such as IL-10, VEGF, IL-6 and IL-8. We also found that KSHV triggered Ire1 α-XBP1 axis activation in infected macrophages to
increase the release of pro-tumorigenic cytokines and to up-regulate PD-L1 surface expression.
CONCLUSIONS: The findings that KSHV infection of macrophages skews their polarisation towards M2/TAM and that activate Ire1
α-XBP1 to increase the release of pro-tumorigenic cytokines and the expression of PD-L1, suggest that manipulation of UPR could
be exploited to prevent or improve the treatment of KSHV-associated malignancies.
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BACKGROUND
Kaposi’s sarcoma herpes virus (KSHV) is an oncogenic virus
belonging to gammaherpesvirus family associated with several
human malignancies such as Kaposi’s sarcoma, primary effusion
lymphoma (PEL) and Castleman’s disease.1 KSHV encodes for many
proteins homologue to human proteins that favour oncogenesis,
counteract apoptosis and subvert immune response such as viral G-
protein-coupled receptors (GPCRs), viral Cellular FLICE-inhibitory
protein (FLIP) and viral interleukin 6 (IL-6). Among the strategies
through which KSHV induces immune suppression there is the
impairment of dendritic cell (DC)2,3 essential for anti-tumour
immune response4 or macrophage formation,5 to dysregulate the
release of cytokines by virus-infected DCs6 or endothelial cells,
promoting macrophage polarisation into M2-like/tumour associated
macrophage (TAM).7 Macrophages are plastic cells that can
undergo polarisation by shifting between pro-inflammatory M1
and anti-inflammatory M2 functional phenotypes.8 TAM are a
subgroup of M2 that among other cytokines may produce VEGF
that, besides reducing immune response promote angiogenesis
and tumour survival/progression9 or may release molecules
that contribute to extracellular matrix degradation.10 Even if

macrophages can be target of KSHV infection11 the impact of
KSHV infection on their polarisation has not been investigated yet.
In this study we investigated whether KSHV infection could skew
macrophage polarisation towards M2-like/TAM and co-opt these
cells to promote tumorigenesis, also considering that the virus has
been reported to induce the phosphorylation of Signal Transducer
and Activator of Transcription (STAT) 36 and STAT612 in other cell
types, pathways activated in M2-like/TAM macrophages.13–15 STAT3
and STAT6 phosphorylation may activate the unfolded protein
response (UPR), in particular the Inositol-requiring enzyme 1 (Ire1) α
endoribonuclease, in bone marrow-derived macrophages.16 Ire1α,
the most conserved signalling branch of UPR, is an endoplasmic
reticulum (ER) kinase that, among other functions, can induce
the splicing of X-box binding protein 1 (XBP1), generating
the transcription factor XBP1s. Ire1α, together with the other ER
kinase, such as protein kinase R (PKR)-like endoplasmic reticulum
kinase (PERK) and activating transcription factor 6 (ATF6), orches-
trate the UPR in response to ER stress. Besides by inducing STAT3
and STAT6 phosphorylation, KSHV could activate UPR by triggering
ER stress, as the cellular translation machinery is hijacked by viruses,
particularly during the replicative phase of their life cycle, to
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produce the large amount of proteins required for viral replica-
tion.17 Moreover, in the course of microbial infection, UPR could be,
independently of ER stress, activated by the pattern recognition
receptor (PRR) signalling.18 It is known that UPR, depending on the
intensity and duration of ER stress may up-regulate pro-survival
molecules such as binding immunoglobulin protein (BIP), promot-
ing the adaption to cell stress, or increase the expression of pro-
death molecules such as C/EBP homologous protein (CHOP).19

However, UPR may affect several cellular processes, i.e. it may affect
immune response even if the consequences of the activation of the
different UPR arms on immune cell function has just begun to be
investigated. For example it has been observed that ATF4 and
CHOP up-regulation, that mainly occurs downstream of PERK,
occurred in myeloid-derived suppressor cells (MDSCs) present in
the tumour environment.20 Ire1 α-XBP1 axis has been reported to
influence the function of dendritic cells21,22 or macrophages.16

Interestingly UPR, especially the most studied branches PERK and
Ire1α, may also influence cytokine production by immune cells.18,23

Therefore, in this study we next investigated whether KSHV
infection could activate Ire1α and PERK branches of UPR in
macrophages and if this effect increases the release of cytokines
promoting tumorigenesis. Finally the expression of programmed
death-ligand 1 (PD-L1), an immune check point inhibitor whose
expression has been reported to be influenced by UPR in tumour
cells24 and to occur in KSHV-infected monocytes,25 was evaluated in
KSHV-infected macrophages and correlated with Ire1α and PERK
activation. Unveiling the molecular mechanisms through which
KSHV dysregulates the immune response could allow specific
targeting of molecules promoting KSHV-associated malignancies.

METHODS
Monocytes isolation, macrophage differentiation and KSHV
infection
Monocytes isolated from human peripheral blood mononuclear
cells (PBMCs) of healthy donors as previously described26,27 were
cultured in RPMI 1640 (Euroclone, ECB9006L) containing 10% FCS,
2 mM L-glutamine, 100 U/ml penicillin and 100 mg/ml streptomy-
cin (complete medium) with the addition of 50 ng/ml recombi-
nant human macrophage-colony stimulating factor M-CSF
(Peprotech, 300-25) every two days for 6/7 days to differentiate
in macrophages. Macrophages were infected with KSHV, obtained
as previously described, at a multiplicity of infection (MOI) of 10
genome equivalents/cell for 1 h at 37 °C, or mock-infected and
then cultured for additional 24 h in 10% foetal calf serum (FCS)
RPMI 1640 medium.2,3 In some experiments, macrophages were
pre-treated for 1 h with the Ire1α inhibitor 4μ8c (30 μM, Sigma
Aldrich, SML0949) or the PERK inhibitor GSK 2606414 (1 μM,
Calbiochem, 516535) before infection. Macrophages were left
untreated (M0) or polarised towards M1 or M2 macrophages by
LPS and IFN gamma (100 ng/ml and 20 ng/ml) or IL-4 (25 ng/ml),
respectively, added for 24 h.
HUVECs cells cultured in endothelial cell growth medium (EBM,

CC-3121, Lonza) containing EGM SingleQuotes (CC-4133), were
KSHV-infected or mock-infected for 2 h at 37 °C and then plated in
complete medium supplemented or not with 0.22 μm filtered
supernatant of KSHV-infected, or UV-KSHV treated macrophages
for 96 h. UV-KSHV inactivation was carried out at 1500mJ in a
cross-linker for 10 min (Spectrolinker XL-1500 UV crosslinker).

RNA isolation and quantitative real-time PCR analysis
Total RNA was extracted from cells by using TRIzReagent
(Invitrogen, Carlsbad, CA, USA) in accordance with manufacturer’s
instructions. PCR analyses were carried out using the following
specific oligonucleotides:
LANA forw CGGAGCTAAAGAGTCTGGTG- LANA rev GCAGTCTCC

AGAGTCTTCTC

ORF50forwCACAAAAATGGCGCAAGATGA- ORF50revTGGTAGAG
TTGGGCCTTCAGTT
K8.1forw TAAACGGGACCAGACTAGCAGC- K8.1rev GTTTTCTGCG

ACCGGTGATACG
ACTforwTCACCCACACTGTGCCATCTACGA-Actrev CAGCGGAACC

GCTCATTGCCAAT GG. Transcripts were measured by real-time PCR
using the SYBR Green assay (Applied Biosystems, Carlsbad, CA,
USA) with a StepOne instrument and 7500 Fast Real-Time PCR
System (Applied Biosystems). All primer sets worked under
identical quantitative PCR cycling conditions with similar efficien-
cies to obtain simultaneous amplification in the same run. The
2−ΔΔCT method for relative quantitation of gene expression was
used to determine mRNA expression levels. β-actin gene
expression was used as endogenous controls to standardise
mRNA expression. All reactions were run in triplicate.

Cell viability
After 24 h of KSHV infection, a trypan blue (Euroclone) exclusion
assay was performed to assess cell viability of uninfected
(mock) or KSHV-infected macrophages. Live cells were counted
by light microscopy using a Neubauer haemocytometer. The
experiments were performed in triplicate and repeated at least
three times.

Immunofluorescence staining and FACS analysis
After 24 h, uninfected, KSHV-infected or UV-KSHV treated macro-
phages were stained with antibodies against CD86 (Miltenyi
Biotec, 130-094-877), CD163 (Santa Cruz Biotechnology, sc20066),
PD-L1 (Biolegend, 329706) and isotype control antibody (Miltenyi
Biotec, 130-095-897) and analysed by FACS Calibur flow cytometer
(BD Transduction Laboratories), using CELLQuest software (BD
Biosciences).28 Debris and dead cells were excluded from the
analysis, gating live cells in a forward versus side scatter (FSC vs
SSC) density plot. For each analysis 10.000 events were recorded.

Western blot analysis
In all, 1 × 106 uninfected or KSHV-infected cells were lysed, sub-
jected to electrophoresis and transferred to nitrocellulose
membranes, as previously described.29 Membranes were blocked
in PBS-0.1% Tween 20 solution containing 3% BSA, probed with
specific antibodies and developed using ECL Blotting Substrate
(Advansta). The following antibodies were used: mouse mono-
clonal antibody against Kb-ZIP (Santa Cruz Biotechnology, sc-
69797), pSTAT6 (1:100; Santa Cruz Biotechnology Inc., sc-136019),
STAT6 (1:100; Santa Cruz Biotechnology Inc., sc-1689), mouse
monoclonal anti-STAT3 (1:1000; BD Transduction Laboratories,
610189), mouse monoclonal anti-phospho-STAT3 (p-Tyr705,
1:100; Santa Cruz Biotechnology Inc., sc-8059), pSTAT1 (1:100;
Santa Cruz Biotechnology Inc., sc-136229), STAT1 (1:100; Santa
Cruz Biotechnology Inc., sc-464), mouse monoclonal anti-Ire1α
(1:100; Santa Cruz Biotechnology, sc-390960), XBP1s (NovusBio
NBP1-77681SS), ATF4 (R&D system, MAB7218), rabbit polyclonal
anti-BIP (1:100; Cell Signaling, 3177), mouse monoclonal anti-
CHOP (1:100; Santa Cruz Biotechnology, sc-7351), and anti-β-actin
(1:10000; Sigma Aldrich, A5441). Goat anti-mouse IgG-HRP and
anti-rabbit IgG-HRP (1:10.000 Santa Cruz Biotechnology Inc) were
used as secondary antibodies.

Chemiluminescent immunometric assay
After 24 hs of culture, supernatants from 4μ8c- and GSK 2606414-
pretreated or not KSHV-infected and mock control macrophages
were collected and Interleukin-10 (IL-10), vascular endothelial
growth factor (VEGF), Interleukin-8 (IL-8), Interleukin-6 (IL-6) and
Interferon gamma (IFN-γ) were measured by Magnetic Luminex
assay performed by R&D systems a Bio-Techne brand, using a
human pre-mixed multi-analyte kit (R&D systems Bio-Techne,
LXSAHM) according to the manufacturer’s instructions.
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Densitometric analysis
The quantification of proteins bands was performed by densito-
metric analysis using the Image J software, which was down-
loaded from NIH web site (http://imagej.nih.gov).

Statistical analysis
Data are represented by the mean ± standard deviation (SD) of at
least three independent experiments and two-tailed Student’s
t-test was used for statistical significance of the differences
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Fig. 1 KSHV infects macrophages and skews their phenotype towards an M2 phenotype. a K-bZIP expression in KSHV- and mock-infected
macrophages was evaluated after 24 h of infection by western blot and b the percentage of K-bZIP expressing cells was assessed by IFA. β-
actin (β-ACT) was used as loading control. A representative experiment out of three is shown. Histograms represent the mean plus S.D. of the
densitometric analysis of the ratio of K-bZIP/β-actin; c LANA, ORF50 and K8.1 mRNA were evaluated by qRT-PCR. The amount of target mRNA
was normalised towards the β-actin gene and analysed by comparing mock and KSHV-infected macrophages. Data are plotted in histograms
and standard deviation (SD)is also reported. *p-value < 0.05. d Cell viability of mock or KSHV-infected macrophages was studied by trypan blue
exclusion assay. Mean plus SD of three independent experiments is reported. *p-value < 0.05; e Morphology of M0, KSHV-infected, M1, M2 and
UV-KSHV-treated macrophages was observed utilising an optical microscope (×40 magnification); f FACS analysis of CD86 and CD163
expression of M0, KSHV-infected, M1, M2 and UV-KSHV-treated macrophages. A representative experiment is shown, and the mean of
fluorescence intensity is indicated. Grey peaks represent the isotype controls. g Histograms representing the mean plus SD of CD86 and
CD163 MFI (Mean fluorescence Intensity) are also reported. *p-value < 0.05.
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between treatment groups. Difference was considered statistically
significant when p-value was ≤ 0.05.

RESULTS
KSHV infection reduces the survival of macrophages and skews
their phenotype towards M2- like/TAM profile
Human primary CD14-positive monocytes, isolated from healthy
donors and differentiated into macrophages after 6 days of exposure
to M-CSF, were infected by KSHV, as previously described.3 After 24 h,
viral infection was demonstrated by detecting the expression of the
KSHV early lytic antigen K-bZIP by western blot (Fig. 1a) and by IFA
(Fig. 1b) and by qRT-PCR assessing the expression of latent, early lytic
and late lytic antigens, LANA, ORF50 and K8.1, respectively (Fig. 1c).
We then observed that viral infection reduced the survival of
macrophages (Fig. 1d) and investigated whether it could also affect
their polarisation, as macrophages are in a dynamic state of activation
that ranges from the classically activated M1 to a group of

alternatively activated cells called M2.8 As suggested by cell morpho-
logy (Fig. 1e) and by the expression of surface markers (Figs. 1f, g),
KSHV skewed macrophages polarisation towards M2-like/TAM profile.
Indeed these cells similarly to M2 displayed a more elongated
phenotype30 and up-regulated the expression of CD163, while slightly
affected CD86 expression. CD86 and CD163 are molecules expressed
mainly by M1 macrophages treated with LPS/IFN gamma or by M2
macrophages exposed to IL-4, respectively. UV-inactivated KSHV was
not able to alter macrophage phenotype, suggesting that infection
was required to induce the above-described effects (Fig. 1e–g). One of
the most important features through which macrophages shape
immune response is through the release of cytokines, therefore we
next evaluated their production by mock- and KSHV-infected
macrophages. As shown in Fig. 2a, viral infection increased the
released of pro-tumorigenic cytokines including the immune
suppressive IL-10 and VEGF and the pro-inflammatory cytokines IL-6
and IL-8. Interestingly, VEGF and IL-8 are known to exert also a strong
pro-angiogenetic effect31,32 and contribute to the pathogenesis of
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KS.33,34 On the other hand, we found that KSHV did not increase the
production of IFN-γ, cytokine that when released by macrophages35

can act in an autocrine fashion and stimulate their killing activity.36

These results suggest that the KSHV infection altered the pattern
of cytokine secretion by macrophages, increasing the release of
immune suppressive and pro-tumorigenic cytokines. To verify that the
cytokines released by infected macrophages could effectively
promote viral-driven tumorigenesis, we evaluated the effect of
supernatants derived from infected macrophages in the process of
KSHV-mediated transformation of HUVEC cells into spindle cells that
resemble Kaposi’s Sarcoma cells.37 We found that HUVEC acquired a
stronger spindle-like phenotype in the presence of supernatant of
KSHV-infected macrophages (Fig. 2b) and expressed higher level of
snail, a typical endothelial to mesenchymal transition marker (Fig. 2c),
whose expression is known to increase in these cells following KSHV-
infection.38 When the supernatants from KSHV-infected macrophages
or from UV-virus-exposed macrophages were used to treat unin-
fected HUVEC, we found that their morphology was only slightly
affected (Fig. 2b), suggesting that the factors released by KSHV-
infected macrophages were able to contribute to the virus-induced
transformation in spindle cells rather than alter per se the HUVEC
phenotype.

KSHV infection activates STAT3 and to a lesser extent STAT6 in
macrophages while slightly affects STAT1 phosphorylation
We investigated whether KSHV-induced M2-like/TAM polarisation
could correlate with the activation of the molecular pathways

usually activated in M2-like/TAM cells. We found that viral
infection increased the phosphorylation of STAT3 and to a lesser
extent of STAT6, molecules activated in M2 polarised macro-
phages (Fig. 3a, b). Conversely STAT1, phosphorylated in M1-
polarised macrophages exposed to LPS plus IFN-γ, was almost
unaffected by KSHV-infection (Fig. 3c). These results indicate that
the virus was able to phosphorylate somehow the molecular
pathways typically activated in M2-polarised macrophages.

KSHV activates UPR and up-regulates PD-L1 on the surface of
infected macrophages
STAT3 and STAT6 have been reported to activate Ire1α arm of
UPR and viral infection may trigger UPR by inducing ER stress or
even by engaging the PRRs.18 Therefore, we next investigated
whether KSHV could activate UPR in infected macrophages and
found that the expression of Ire1α and its target XBP1s as well as
ATF4 increased, suggesting that Ire1α and PERK branches of UPR
were activated. In correlation with the activation of these sensors,
an up-regulation of BIP and CHOP, the pro-survival and pro-death
molecules of UPR, was also observed (Fig. 4a, b). As UPR
triggering has been reported to up-regulate the expression of the
immune checkpoint inhibitor PD-L1,24 we next evaluated
whether KSHV could do so in infected macrophages. As shown
in Fig. 4c, d, FACS analysis indicated that the expression of PD-L1
increased in KSHV-infected cells in comparison to mock-infected
control, effect that may strongly contribute to the impairment of
immune response.
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The inhibition of Ire1α endoribonuclease activity counteracts the
release of pro-tumorigenic cytokines and PD-L1 up-regulation
induced by KSHV-infection
UPR activation may influence the cytokine release by macro-
phages,18 therefore here we next investigated the role of Ire1α
and PERK activation on the production of cytokines by KSHV-
infected macrophages. At this aim, we pre-treated macrophages
with 4μ8C Ire1α endoribonuclease inhibitor or with GSK 2606414
(GSK) PERK inhibitor before viral infection. We observed that the
release of either the immune suppressive IL-10 and VEGF and
the pro-inflammatory cytokines IL-6 and IL-8 was reduced by
4μ8C while GSK only reduced IL-6 production (Fig. 5a). Finally,
we found that PD-L1 surface expression was reduced by 4μ8C
pre-treatment while it was slightly influenced by GSK (Fig. 5b, e).
These results suggest that Ire1 α-XBP1 axis targeting could be
preferentially exploited to counteract several aspects of KSHV-
driven immune dysfunction and tumorigenesis. We finally
assessed that such inhibitors did not interfere with KSHV
infection (Fig. 5d) and evaluated whether GSK, although not
able to counteract PD-L1 expression, could efficiently reduce
ATF4 expression that mainly occurs downstream of PERK
activation (Fig. 5e).

DISCUSSION
In this study, we show for the first time that KSHV infection
phosphorylated STAT3 and to a lesser extent STAT6 pathways in
human primary macrophages and skewed their polarisation
towards M2-like/TAM profile. According to previous findings
showing that STAT3 and STAT6 transcription factors activated

the Ire1 α-XBP1 axis,16 here we found that the expression of
spliced XBP1 (XBP1s) increased following KSHV infection. How-
ever, ATF4, CHOP and BIP were also up-regulated, suggesting that
a more general ER stress/UPR was activated by viral infection in
macrophages. Previous studies have indicated that UPR could
regulate the function of immune myeloid cells such DCs and
macrophages.16,20–22 It has been also reported that elevated UPR
activation promoted M2-like polarisation of macrophages and
foam cell formation39 or that the treatment with LPS, that induced
M1 polarisation, could reduce GRP78/BIP and PERK expression.40

Furthermore, BIP up-regulation has been correlated with fatty acid
oxidation41 that may occur in M2 polarised macrophages.42 In the
last years, attention has been focused on the impact of UPR on the
cytokine release by immune cells, as UPR may influence their
production by activating PRR signalling or the cytokine transcrip-
tion factors.18 Interestingly in this study, we found that Ire1 α-XBP1
axis activation by KSHV in M2/TAM polarised macrophages
promoted the release of immunosuppressive as well as pro-
inflammatory cytokines, while PERK activation was involved only
in IL-6 production. KSKV infection of macrophages indeed
increased the release of cytokines such as VEGF and IL-8 that,
besides inducing immune suppression, promote angiogenesis and
may sustain tumour growth.33,34 These cytokines, together with IL-
10 and IL-6, whose release also increased following KSHV
infection, play an essential role in the pathogenesis of virus-
associated malignancies.43,44 Thus, it is possible that macrophages
could be infected also in vivo by KSHV, especially within the
tumour microenvironment, and the infected cells could then
strongly contribute to the onset and survival of virus-associated
malignancies. In support of this hypothesis, here we showed that
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the supernatants of virus-infected macrophages promoted
KSHV-driven transformation of HUVEC into spindle cells. This
result, together with previous findings showing that KSHV-
infected HUVEC release factors that promoted macrophages
polarisation into TAM, suggests that an active cross-talk between
viral-infected HUVEC and viral-infected macrophages may occur
in vivo, within the tumour bed of KS lesions. Indeed, most of the
cytokines released by KSHV-infected macrophages can act in an
autocrine and paracrine fashion and activate both in immune and
tumour cells transcription factors such as STAT3 that plays a dual
role, impairing the function of immune cells and concomitantly
sustaining the growth of tumour cells.45,46 Of note, the interplay
between STAT3 and Ire1α has been previously reported as STAT3,
together with STAT6, may activate Ire1α endoribonuclease
activity16 and Ire1α may in turn contribute to STAT3 phosphor-
ylation.47 Among the numerous targets of STAT3 there is
CD163,13 whose expression has been reported to increase in
macrophages undergoing ER stress,39 and PD-L1,48 molecules
found to be up-regulated on the surface of KSHV-infected
macrophages. The increase of PD-L1 that may strongly contribute
to viral-induced immune suppression,49 has been previously
reported to be up-regulated by KSHV25 as well as by EBV infection
in monocytes,48 suggesting that such effect may represent a
common strategy used by gammaherpesvirus to impair T cell
function.
In conclusions, in this study, we identified that UPR activation,

particularly the Ire1α arm, was a key mechanism leading to PD-L1
up-regulation and to the release of pro-tumorigenic cytokines
induced by KSHV in M2 like/TAM polarised macrophages. UPR
manipulation could thus allow to re-shape infected-macrophages
into a less pro-tumorigenic profile, considering that plasticity is an
intriguing characteristic of these cells that are able to shift back
and forth between the M1 and M2/TAM extremes, depending on
the different environmental conditions to which they are
subjected.50 This study suggests that UPR manipulation could be
a promising approach to counteract the pro-tumorigenic activity
of M2/TAM macrophages, besides improving the outcome of
several cytotoxic anti-cancer treatments.
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