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Abstract  

We propose a capture–recapture model for estimating the size of a population 

of interest based on a set of administrative sources and/or surveys in the 

presence of out-of-scope units (false captures). Our Bayesian approach makes 

use of a certain class of log - linear models with a latent structure. We also 

address the presence of sources providing partial information implementing 

a Gibbs Sampler algorithm which generates from the posterior distribution of 

the population size in presence of missing data. The proposed method is 

applied to simulated data sets. 
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1. Introduction 

The use of administrative data for the production of official statistics is 

providing many new opportunities and methodological challenges. In 

estimating the size of the usual resident population by municipality, in almost 

all national statistics institutes the use of traditional censuses is gradually 

being replaced with the use of administrative sources, which provide “signs of 

life” for the population of interest. While undercoverage was the main issue in 

the former approach, overcoverage is the main concern with administrative 

data. By overcoverage we mean the erroneous inclusion in the lists of units 

which do not belong to our population, i.e., out-of-scope units. Of course, 

overcoverage can be encountered in surveys and census too, but almost 

always it consists of duplicated records generated by linkage errors, which are 

now commonly addressed even in capture–recapture contexts. In 

administrative data, on the other hand, linkage errors constitute just one of 

the factors, in a number of possible reasons for erroneous captures. In general, 

administrative data are gathered by other organizations for non-statistical 

purposes. Hence, units and variable definitions may not align perfectly. For 

example, the available information pertaining the registered events, their 

temporal description, their legal definition may vary in each source, and their 

harmonization can be difficult. As a consequence, each list may contain 

different subpopulations of out-of-scope units, and the assignment of the 

units to our target population may not be error free. Obviously, any piece of 
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available information should be included in the process of identification of the 

erroneous cases in the lists. Ideally, recognizing and deleting spurious cases 

should constitute a first phase of our analysis, after which some capture-

recapture technique might be used on the “cleaned” data. However, in many 

cases, the available information does not suffice to single out every false 

capture, and there will remain a certain portion of uncertainty for which we 

have no capability of discerning the cause of error. In practice, the main 

approach in official statistics is the following: all available administrative 

sources are integrated into a unique population statistical registers. The 

register is coupled with an ad-hoc coverage survey (in the same way as 

censuses were coupled with an additional post enumeration survey) to exploit 

a Dual Systems Estimator (DSE). Then, the overcoverage rate is estimated on 

the basis of the comparison between the (supposedly) error-free survey and 

the administrative data via some supervised model, and then used to “correct” 

the DSE in some way. An original approach, called Trimmed DSE, and 

proposed in Zhang et al (2017), consists in an iterative procedure which 

removes units and estimate a DSE until a stopping criterion is satisfied. The 

authors prove that, if the survey has no overcoverage, the procedure has some 

optimal properties of convergence. The Dual System approach, including the 

aforementioned, has the remarkable property of being partic¬ularly robust 

(see, e.g., Chao et al 2001), and it does not rely on any complex model 

specification. Our approach, on the converse, relies on a Multiple Record 

System, where one considers the various adminis¬trative sources separately, 

in order to exploit the information redundancy. There exist various proposals 

in literature which use complex model to deal with false captures in multiple 

lists, particularly in animal abun¬dance problems, see, e.g., da Silva (2009), 

Wright et al (2009), and Link et al (2010). However, in all those works, the false 

captures are essentially duplicate linkage errors. To our knowledge, the only 

contributions dealing with false captures with no restrictive hypothesis on the 

source of error in multiple record systems are Overstall et al (2014) and 

Fegatelli et al (2017). The former proposes a Bayesian log-linear model, the 

latter extends that work in order to include latent variables. However, in both 

cases, only a single source list is assumed to suffer from false captures. When 

considering administrative sources separately, a series of methodological 

issues arises: 

• It is necessary to take into account possible dependencies among 

the various sources. 

• While DSE is known to be robust with respect to violation of basic 

hypotheses (e.g., the homogene¬ity of capture probabilities), this 

is not true in general in Multiple Record Systems. 

• In our framework, administrative sources often target specific 

categories of citizens (e.g., people in a certain age range), leaving 

subset of the population with null probability of being captured. 



STS563 Davide Di Cecco et al. 

67 | I S I  W S C  2 0 1 9  

Our proposal relies on the following assumption: all possible erroneous 

captures are defined as random classification errors under a binary 

classification model. That is, we hypothesize two subpopulations: one 

comprising the out-of-scope units, and the other the in-scope units. Then a 

two-component latent class model would adequately describe our data. To 

model possible dependencies among captures of a same individuals in 

different sources, we relax the classic conditional independence assumption 

of latent class models and assume a general log-linear model for the joint 

distribution. To address the problem of subpopulations that are uncatchable 

for some sources, we treat the uncatchable units as missing information and 

develop an inferential approach to deal with missing data. This model has 

been proposed in Di Cecco et al (2018). Here we present a Bayesian approach 

to estimate the size of the population, addressing the challenges listed above. 

 

2. Methodology 

Assume k lists or capture occasions are available, and let Yi be the random 

variable indicating whether a unit is included in the i–th list, i = 1, ..., k (i.e., has 

been captured in the i–th occasion): 

 

Yi  = {
1 𝑖𝑓 𝑎 𝑢𝑛𝑖𝑡 𝑖𝑠 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑖 − 𝑡ℎ 𝑙𝑖𝑠𝑡;
0                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

Let Y = (Y1,... ,Yk) denote the capture profile of a unit, and let {P(Y = y) = py}y∈{0,1}k 

be the associated probability distribution. Let U (i) be the set of units that are 

catchable by list i, and let U be UiU (i). Let U1 be our target population, with 

U1 ⊂ U. The cardinality of U is N, the one of U1 N1. Let X be the latent variable 

identifying the units belonging to our target population: 

 

X  = {
1                          𝑖𝑓 𝑎 𝑢𝑛𝑖𝑡 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑈1 ;
0                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

Let ny be the number of units having capture profile y, of which nx,y belong to 

the latent class x so that n0,y + n1,y = ny. The total number of observed unit is 

nobs, while the units having capture history y = 0 = (0, . . . , 0) are unobserved, 

so that ∑y≠0 ny = nobs, and N = nobs + n0. Note that n1,0 is the number of units in 

U1 that are not captured, while n0,0 is the number of uncaptured units which 

are in U but not in U1. We are interested in estimating N1 = ∑y n1,y. The latent 

class model under the conditional independence assumption (CIA) can be 

equivalently expressed as the mixture model 
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where pyi|x indicates the conditional probability P(Yi = yi|X = x), or as in the 

log-linear model notation 

 

 

which reports only the higher order interactions (generators) of the model. 

Any additional interaction term in (2) represents a relaxation of the CIA. 

2.1 Prior distributions: The usual priors for log–linear models are based on 

Multivariate Gaussian distributions. Here we propose a different prior based 

on Dirichlet distributions. We find this approach easier in terms of elicitation 

of prior knowledge, and also from a computational point of view, since it 

allows us to develop a Gibbs sampler for obtaining a sample from the 

posterior distribution of N1, so avoiding the use of a Metropolis–Hastings 

algorithm. To illustrate our proposal we start with decomposable models. In 

this case the prior distribution is simply the product of Dirichlet densities. In 

Dawid et al (1993) it has been demonstrated that, if G is the dependence graph 

of the decomposable model, { L1,. ..,Lg} are the maximal cliques of G, and { L1,. 

..,Lg}  are defined as  

 

 

the joint distribution can be written as the product of conditional distributions: 

 
 

where p over a (sub)graph is the (marginal) distribution over the variables 

included in the (sub)graph. Let 𝜃  be the vector of parameters 𝜃  = 

 We define a prior distribution on 𝜃  as follows: for each 

 and for each value of  we set a Dirichlet distribution defined for each 

possible combination of values  of the variables in The 

Dirichlet densities are independent by construction, and this class of priors is 

conjugate to (3). In the case of a general log–linear model, we made use of the 

“Bayesian iterative proportional fitting” described in Schafer (1997) in order to 

sample from a “Constrained Dirichlet”. That is, we generate samples from a 

Dirichlet distribution which satisfies the constraints given by the log–linear 

model. This prior has been rarely utilized in literature, and, as far as we know, 

has never been utilized in capture–recapture analysis. Regarding N, in 
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accordance with the literature on Bayesian capture–recapture, sensible options 

include: 

i) Jeffreys’ prior, i.e. 𝜋(N) ∝ 1/N; 

ii) a hierarchical Poisson prior: N ∼ Poi(λ,), λ, ∼ Gamma(a, β); 

iii) Rissanen’s prior (Rissanen 1983), 𝜋(N) ∝ 2
− log*(N), where log∗(N) is the sum 

of the positive terms in the sequence {log2(N), log2(log2(N)), ...}. 

We further assume that N and 𝜃 are a priori independent. 

2.2 Missing data: We propose a strategy useful to properly include sources 

which do not operate over certain subpopulations (“incomplete lists”). In fact, 

if we treat the uncatchable units as sampling zeros, the final population size 

estimate would be biased. The idea is to treat the incomplete lists as Missing 

at Random (MAR) information, i.e. assuming that, if they could operate on the 

whole population, they would retain the same joint distribution as in the 

observed subpopulations. In addition, we assume that we can distinguish 

whether a unit has not been captured in a list by chance or because it is out 

of the scope of that list, i.e., we can divide the population in strata where 

different set of lists operates. Then, certain profiles of the captured units are 

considered as partially observed, and we develop a data augmentation 

algorithm that imputes the complete capture histories using the rest of the 

data given the model. We distinguish completely observed capture profiles, y, 

from the partially observed capture profiles ymis. In addition, for each stratum, 

we have a structural zero z consisting in a different combination of zeros and 

missing values. For example, in a 4-lists scenario with 2 strata, one where all lists 

operate and one where the first list does not operate, we have the structural 

zero n0,0,0,0 in the first strata, and n∗,0,0,0 in the second, where the asterisk denotes 

the missing information. Then, our Gibbs algorithm at iteration t + 1 has the 

following steps: 

(1) we sample the components of 𝜃(t+1) from their posterior conditional 

Dirichlet distributions (constrained or not); 

(2) for each observed y and ymis, we randomly divide all the observed 

values ny and nymis into the corresponding consistent complete 

sequences nx,y according to their conditional probabilities; 

(3) if we adopt π(N) ∝ 1/N, it has been demonstrated in Manrique-Vallier 

et al (2014) that we can sample all structural zero cells counts nz from 

a Negative Multinomial distribution. Otherwise, if we choose an 

informative prior for N, we can use a Metropolis-Hasting step to 

generate a value for N(t+1) and then conditionally sample the 

structural zero cells such that ∑z nz = N − nobs; 

(4) for each generated nz, we sample all complete sequences nx,y consistent 

with z. 
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3. Simulations 

We report the results of a simulation for empirically assessing the 

proposed algorithm. We considered 5 lists, A, B, C, D, E, and defined a scenario 

with three strata: one with all sources, one where 4 out of five sources operate, 

and another one where just three sources operate. We set N = 10000 and a 

proportion of out–of–scope units (both captured and non-captured) equal to 

40%, so that the desired total N1 is 6000 in expectation. The model parameters 

have been set in such a way that the proportion of unobserved units (both in–

scope and out–of–scope) is about 30%. 

Model selection is a critical issue for capture–recapture modeling as 

population size estimate can be sensitive to changes in the parameterization. To 

have a hint on the robustness of the procedure under mis-specification of the 

model, we generated a sample from model [XABC][XD][XE], and estimated N1 

under two different models: the CIA model [XA][XB][XC][XD][XE], and the (non – 

decomposable) model including all 15 second order interactions but no higher 

order parameters. Results regarding the second model can be viewed in Figure 

1, where one sees that the true value of N1 is comprised in the 95% credibility 

interval, despite 5 parameters are missing (those relative to [ABC], [XAB], [XAC], 

[XBC] and [XABC]). 

 
FIGURE 1. Posterior distributions of N1 under the generating model [XABC][XD][XE] (left) and 

under the all–second–order–interactions model (right). The orange line indicates the true 

value of N1, the gray area the 95% HPD. 
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FIGURE 2. Posterior distributions of N1 under the CIA model, flat 

priors(left) and informative priors (right). The orange line indicates the 

true value of N1, the gray area the 95% HPD. 

On the converse, the left panel of Figure 2 shows that the estimated 

posterior distribution of N1 under the CIA model is far from the real value. To 

evaluate the influence of the prior distributions to compensate for the model 

misspecification, we set an informative prior in the following way: we mimicked 

an informative context coming from an audit sample by taking a 5% sample 

of the generated complete population [XABCDE], and fixed the parameters of 

the Dirichlet prior equal to the observed counts in that sample. As one can see 

in the right panel of Figure 2, even though informative priors influence the 

posterior in the right direction, their contribution seems insufficient to even 

include the true value of N1 in the credibility interval. 
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