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Abstract: Gestational Diabetes Mellitus (GDM) is defined as glucose intolerance that develops in the
second or third trimester of pregnancy. GDM can lead to short-term and long-term complications
both in the mother and in the offspring. Diagnosing and treating this condition is therefore of
great importance to avoid poor pregnancy outcomes. There is increasing interest in finding new
markers with potential diagnostic, prognostic and therapeutic utility in GDM. Non-coding RNAs
(ncRNAs), including microRNAs, long non-coding RNAs and circular RNAs, are critically involved
in metabolic processes and their dysregulated expression has been reported in several pathological
contexts. The aberrant expression of several circulating or placenta-related ncRNAs has been linked to
insulin resistance and β-cell dysfunction, the key pathophysiological features of GDM. Furthermore,
significant associations between altered ncRNA profiles and GDM-related complications, such as
macrosomia or trophoblast dysfunction, have been observed. Remarkably, the deregulation of
ncRNAs, which might be linked to a detrimental intrauterine environment, can lead to changes in the
expression of target genes in the offspring, possibly contributing to the development of long-term
GDM-related complications, such as metabolic and cardiovascular diseases. In this review, all the
recent findings on ncRNAs and GDM are summarized, particularly focusing on the molecular aspects
and the pathophysiological implications of this complex relationship.

Keywords: non-coding RNA; microRNA; long non-coding RNA; circular RNA; gestational diabetes
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1. Introduction and GDM Overview

Gestational Diabetes Mellitus (GDM) is a metabolic disease diagnosed in the second or third
trimester of pregnancy [1]. This condition is increasingly frequent worldwide due to the large
spread of obesity [2]. Unless properly diagnosed and treated, GDM can lead to poor pregnancy
outcomes. Women with GDM are at increased risk of gestational hypertension and pre-eclampsia [3].
Shoulder dystocia, birth trauma and preterm delivery, due to excessive foetal growth, are common
birth complications [4]. Other short-term adverse outcomes include hypoglycaemia, hypoxia, risk of
stillbirth and respiratory distress syndrome [5]. Remarkably, the negative impact of GDM is observed
even later in life, both in the mother and in the offspring. Importantly, mothers previously diagnosed
with GDM display an increased risk of developing type 2 diabetes (T2D) and metabolic syndrome [6,7].
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Similarly, a higher risk of metabolic diseases and cardiovascular disease (CVD) has been reported in
children born to mothers affected by GDM over adulthood [8,9].

Current diagnostic criteria for GDM have been established by the International Association of
Diabetes and Pregnancy Study Groups (IADPSG). A strong link between high maternal glucose and the
occurrence of adverse pregnancy outcomes has emerged in longitudinal studies, helping individuate
the glycemic thresholds for GDM diagnosis [3]. According to the IADPSG recommendations, an
oral glucose tolerance test (OGTT) with 75 g-glucose is performed at 24–28 weeks of gestation.
Fasting, 1-h and 2-h plasma glucose are assessed and the cut-off values of glycaemia at OGTT are
5.1 mmol/L, 10 mmol/L and 8.5 mmol/L, respectively. One or more values exceeding or equaling
these thresholds establish the diagnosis of GDM [10]. Although the IADPSG does not recommend
routinely screening before 24–28 weeks of gestation, detecting GDM as early as possible is crucial to
avoid poor pregnancy outcomes. Accordingly, a screening approach that takes into account the main
GDM risk factors, such as obesity and previous GDM, might anticipate the diagnosis and prevent
complications [11–13]. In addition, lifestyle, such as diet, physical activity or emerging environmental
factors are likely to have an impact on the risk of developing GDM [13–15]. The identification of
phenotypic classes associated with adverse outcomes, defined by the presence of some risk factors,
turned out to be potentially useful in customizing and modulating the diagnostic and therapeutic
approach in GDM [16,17]. Preventing and treating this condition likely contributes to limiting the
burden of the disease. Accordingly, there is growing interest in identifying new markers with
diagnostic, prognostic and therapeutic uses in GDM. Non-coding RNAs (ncRNAs) are important
players in metabolic processes and their deregulated expression has been observed in several metabolic
diseases, including GDM.

Insulin resistance and β-cell dysfunction are the main pathophysiological features of GDM. Insulin
sensitivity significantly varies throughout pregnancy, constantly adapting to the energy demands of
the mother and the foetus. Overall, insulin sensitivity follows a biphasic trend in healthy pregnancy,
experiencing a sharp increase initially and a marked reduction as pregnancy evolves. The metabolic
adaptation observed in the initial phase (the first two trimesters) is aimed at storing essential sources of
energy, such as glucose and fatty acids, as fat deposits, necessary for the next stages of pregnancy [18].
Estrogens and progesterone synthesis progressively increases, together with other molecules of
placental origin, such as human placental lactogen and human placental growth hormone, contributing
to the progressive fall in insulin sensitivity. Thus, the insulin resistance state observed in physiological
pregnancy is an adaptive response that favors the rise in glucose and free fatty acid blood levels,
shifting energy sources from the mother to the foetus [19,20]. The pancreatic β-cell largely compensates
through an increased insulin release. Hypertrophy and hyperplasia of β-cell mass, explained by
enhanced proliferation and reduced apoptosis, have been reported in human pregnancy [21]. However,
if β-cell dysfunction occurs, the compensative effect is lost and GDM becomes manifest.

Insulin resistance is a consequence of impaired peripheral insulin signaling. Indeed, glucose
uptake is almost halved and insulin resistance is enhanced in GDM compared to healthy pregnancy [22].
Insulin signaling is affected by altered phosphorylation of the insulin receptor or insulin receptor
substrate (IRS)-1, although the number of receptors on the cell surface is preserved [23]. Remarkably,
pro-inflammatory cytokines contribute to the development of insulin resistance [24,25]. Adipose tissue
and gestational tissues are able to secrete pro-inflammatory cytokines, such as TNF-α, IL-1-β and IL-6,
that impair insulin signaling by inhibiting IRS-1 through serine phosphorylation [26,27].

As regards β-cell dysfunction, it has been observed that β-cell function is reduced by 30–70% in
GDM, indicating that β-cells are unable to compensate for the increase in insulin resistance, resulting
in the development of GDM [28].

The mechanisms underlying β-cell dysfunction are not fully uncovered, but are likely to overlap
those described in T2D. Largely, alterations at each step of insulin synthesis or secretion have
been described, and β-cell dysfunction is triggered by hyperglycemia and hyperlipidemia [29].
Oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress are well-established
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consequences of glucotoxicity and lipotoxicity, and impair insulin synthesis, secretion and β-cell
survival [30]. Pro-inflammatory cytokines further promote endoplasmic reticulum stress, and are able
to induce β-cell de-differentiation [31,32].

The aim of this review is to report recent evidence about the role of ncRNAs in GDM.
The understanding of their functions might help unravel the complex pathophysiological mechanisms
in GDM and contextually identify novel potential diagnostic biomarkers for the disease.

2. General Aspects of NcRNAs

NcRNAs represent about the 60% of the transcriptional production of human genome and play
central roles in pathways regulation, developmental and pathological processes [33–36].

On the basis of their length, ncRNAs are divided in two main categories: under 200 ribonucleotides
are termed small ncRNAs, such as microRNAs, while over 200 ribonucleotides are named long ncRNAs
(lncRNAs). Additionally, a new class of lncRNAs is represented by circular RNAs (circRNAs), derived
by a process of “back-splicing” of mRNA sequences with the covalent binding between the 3′ and 5′

ends [37,38].
MicroRNAs are small non-coding single stranded RNAs of about 22 nucleotides that function as

guide molecules in RNA silencing [39]. The latest miRbase version (version 22.1 released in October
2018) counts 2654 human mature microRNAs sequences [40]. Although the function of many of these
microRNAs needs to be defined, the high number of discovered microRNAs and their wide distribution
across species underline their pivotal role in gene regulation. Moreover, their dysregulation is involved
in various diseases, spanning from cancer to metabolic diseases [41,42].

MicroRNAs act by pairing to their target mRNA sequence and can be encoded by intronic regions
of coding or non-coding transcripts or, less frequently, by exonic regions [39]. RNA polymerase II
and, less commonly, RNA polymerase III transcribe microRNA genes. The long primary sequence
is capped at the 5′ and polyadenylated at the 3′ end. The derived pri-miRNA is recognized by the
Microprocessor complex, constituted by the nuclear protein Di George Syndrome Critical Region 8
(DGCR8) and the RNAse III Drosha. This first nuclear maturation step releases a precursor microRNA,
called pre-miRNA, translocated to the cytoplasm by the Exportin-5 protein. Into the cytoplasm
the pre-miRNA is cleaved by the RNAse III Dicer, producing a double strand microRNA of about
22 nucleotides, that is loaded onto Ago2, a member of the Argonaute (Ago) protein family, to form a
big ribonucleoprotein effector complex, termed RNA-induced silencing complex (RISC). The binding
with Ago2 favors the most stable strand. The passenger strand can be degraded to produce a mature
RISC or may sometimes act as another functional microRNA. In case of a complete sequence homology
between the microRNA and its target mRNA, this can be cleaved by Ago proteins, with the final event
of degradation of the target mRNA. Conversely, if there is no complete homology, the RISC complex
can induce translational repression [43,44].

As microRNAs, also lncRNAs do not have the capacity for protein coding. However, differently
from microRNAs, they are heterogeneous in size and share only few structural, functional and
mechanistic features [37,45], being localized in badly conserved genomic regions [46,47]. Moreover,
their expression is strictly regulated both in space and in time, therefore a dysregulated expression profile
is an important marker of disease or of an altered developmental state. Even though a wide number of
existing lncRNAs have been discovered, underlying their crucial role in numerous biological processes,
their functional significance has been defined only for a small fraction so far. LncRNAs are transcribed
by RNA polymerase II from intergenic, exonic or distal protein-coding regions of the genome and are
usually 3′-polyadenylated, 5′-capped and spliced, generating three types of lncRNAs: competitor,
recruiter or microRNA precursor, on the basis of their way of acting [48,49]. LncRNAs subcellular
localization is a reliable hint of their modes of action: nuclear lncRNAs are primarily involved in the
epigenetic gene regulation or in the maintenance of the nuclear architecture, while cytoplasmic lncRNAs
are especially involved in post-transcriptional gene regulation. Interestingly, lncRNAs may function
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as gene regulators by acting as microRNA sponges and modulating microRNA post-transcriptional
silencing [45,48].

Another interesting class of ncRNAs are circRNAs, lncRNAs that undergo a peculiar 5′- and
3′- processing with the production of a chemically circularized transcript that avoids exonucleolytic
degradation by RNase R [50]. The circRNAs identified in human cells are more than 100,000 and
can be generated through three different mechanisms that may require intron repetitive sequences
either a circularization induced by RNA binding proteins (RBPs) or an exon skipping circularization,
that produces the most studied type of circRNAs, called “ecircRNAs”. [38,49,51,52]. Since circRNAs
may regulate gene expression at multiple levels, such as by sponging microRNAs or interacting with
proteins, many studies started to evaluate their role in diseases, hypothesizing possible functions in
pathological contexts with clinical implications [38,49].

MicroRNAs, such as lncRNAs and circRNAs, are produced and act into the cellular compartment.
However, recent evidence demonstrated that they can be secreted and act into the extracellular
compartment too. Although their function and origins are not yet fully understood, one of the most
interesting and reliable hypothesis is that extracellular ncRNAs can mediate cell-to-cell communication,
both in physiological and pathological contexts [37,53,54]. Recent studies demonstrated that they can
be found in many biological fluids, including serum, plasma and urine. Specifically, ncRNAs can be
actively secreted by cells after packaging into shedding vesicles and exosomes or coupling with protein
complexes freely circulating in biological fluids. Otherwise they may be incorporated in apoptotic
bodies, derived by apoptotic cells, and passively secreted [55].

Interestingly, circRNAs are enriched in extracellular vesicles compared to their levels in producer
cells and their encapsulation into extracellular vesicles seems to be, at least partly, regulated by cellular
microRNAs [56].

Furthermore, one of the most interesting properties of circulating ncRNAs is their stability into the
extracellular environment: the association with protein complexes and/or the packing into extracellular
vesicles protects them from RNAses activity, sudden temperature changes and extreme pH values,
rendering them not only very stable as extracellular molecules, but also capable to act as diagnostic,
prognostic and therapeutic biomarkers [57–61].

3. NcRNAs: Insights into the Pathophysiology of GDM

3.1. Insulin Resistance and Metabolic Adaptations

Placenta and placenta-derived molecules play an essential role in pregnancy and in the
pathogenesis of GDM. Many studies addressed the role of placenta-derived microRNAs in healthy and
GDM pregnancies [62,63]. Interestingly, placenta-associated microRNAs have been described as major
regulators of peroxisome proliferator-activated receptors (PPARs). PPARs are a family of fatty acid
receptors with critical involvement in energy control, lipid homeostasis and inflammation and have
been already linked to T2D [64]. In 2014, Zhao et al. demonstrated a negative correlation between the
level of expression of miR-518d and PPARα. MiR-518d, a placenta specific microRNA [65], belongs
to the C19 MC cluster and has a higher expression at 37–40 weeks of gestation in placentas derived
from n = 40 women affected by GDM in respect to n = 40 healthy pregnant women. They further
demonstrated the direct control of miR-518d over the expression of PPARα [66]. A more recent study
investigated the expression and role of miR-143 in placental tissues from pharmacologically treated
GDM patients (n = 6), GDM patients treated only with diet (n = 6) and women with uncomplicated
pregnancy (CTRL, n = 6). Mir-143 was involved in the dysregulation of the mitochondrial function
observed in placentas from pharmacologically treated patients. Specifically, Muralimanoharan et al.
demonstrated that while miR-143 was significantly downregulated in pharmacologically-treated
patients in respect to diet-treated patients and CTRL women, the glycolytic enzymes, GLUT1, HK-2,
PFK and LDH, were significantly upregulated. Moreover, they showed that miR-143 directly regulated
HK-2, the first enzyme of the glycolytic pathway, and that miR-143 overexpression in trophoblast cells



Int. J. Mol. Sci. 2020, 21, 4020 5 of 23

derived from pharmacologically treated patients was able to partially rescue mitochondrial function
and reduce glycolytic enzymes [67].

Another interesting microRNA that is involved in T2D and in embryo implantation at the
beginning of pregnancy is miR-98 [68–70]. In 2016, Cao et al. demonstrated the involvement of miR-98
in GDM. Specifically, they showed that miR-98 expression was significantly higher in placental tissue
recovered at 37–40 weeks from GDM pregnant women (n = 193) than in normal pregnant women
(n = 202). Moreover, by using the human choriocarcinoma cell line JEG-3, they demonstrated that
miR-98 not only induced DNA methylation but also directly regulated Mecp2, which in turn targeted
Trpc3, a major regulator of insulin-mediated glucose uptake. These data confirm the role of miR-98 in
the regulation of glucose uptake in GDM [71].

The placenta has been widely demonstrated to promote the metabolic adaptations in pregnancy,
critically contributing to the onset of insulin resistance. Interestingly, it is believed that the metabolic
status of the placenta might be mirrored by the microRNA expression profile in placenta-derived
exosomes. Nair et al. explored the exosome microRNA expression by next generation sequencing
(NGS) in chorionic villi explants from 12 women with GDM and 12 CTRLs [72]. Overall, 13 microRNAs
were significantly upregulated, while 14 microRNAs were downregulated in GDM compared to
CTRLs. The authors further evaluated the expression of selected microRNAs (miR-22-3p, miR-125a-3p,
miR-197-3p, miR-99b-5p, and miR-224-5p) in skeletal muscle biopsies and in circulating exosomes,
highlighting different patterns of expression between GDM and CTRLs, which broadly reflected the
chorionic villi profile. Of note, the predicted target genes of the deregulated microRNAs were largely
involved in glucose metabolism. Specifically, the phosphatidylinositol 3-kinase (PI3K)/protein kinase
B (AKT) signaling pathway was targeted by several differentially expressed microRNAs. It is well
known that the activation of PI3K/AKT pathway by the insulin tyrosine kinase receptor promotes
glucose uptake, inducing the translocation of glucose transporter 4 (GLUT4) on the cell surface [73].
Hence, placenta-derived exosomes might play a role in the cross-talk between gestational tissues and
skeletal muscle, possibly modulating peripheral insulin action in GDM [63].

High insulin levels in a context of insulin resistance are thought to modulate circulating microRNA
expression. Stirm et al. observed significantly higher levels of miR-340 in whole blood cells (WBC) and
in lymphocytes in patients with GDM (n = 8) than in CTRLs (n = 8) at 24–32 weeks of pregnancy [74].
The mRNA of polyadenylate (poly(A))-binding protein (PABP)-interacting protein 1 (PAIP1) displayed
significant downregulation in WBCs, but not in lymphocytes, in patients with GDM, compared to
normal glucose tolerant (NGT) women. However, in lymphocytes, an inverse correlation between
miR-340 and PAIP1 protein expression was detected, suggesting that PAIP1 expression might be
regulated by miR-340. PAIP1 is a key promoter of translation, mainly studied in cancer contexts and
never evaluated before in GDM [75]. Human lymphocytes were cultured in high glucose, reproducing
in vitro fasting and after meal glycaemia. High glucose reduced miR-340 levels. The addition of insulin
to high glucose medium, reflecting a condition of high fasting glycaemia and insulin resistance, led to
a significant increase in miR-340 levels, compared to cells cultured without insulin, indicating a critical
effect of insulin on miR-340 expression. Accordingly, in vivo maternal fasting insulin levels were
positively associated with miR-340 expression in WBCs, indicating that high fasting insulin, observed
in insulin resistance states, might modulate microRNA expression in WBCs.

MicroRNA activity is critically regulated by circRNAs, acting as miRNA sponges for the modulation
of their target genes. The expression of circRNAs in placental villi has been explored in three GDM
and in three NGT women [76]. A large number of circRNAs turned out to be differentially expressed
in GDM and their predicted target genes were involved in glucose and lipid metabolism. The insulin,
the glucagon, the adenosine-monophosphate (AMP)-activated protein kinase (AMPK) and the cytokine
signaling pathways, crucial contributors in the pathophysiology of GDM, were targeted. Specifically,
AMPK has been found to phosphorylate key proteins and transcription factors, modulating glucose and
lipid metabolism. In particular, glucose and fatty acid uptake are promoted by AMPK in the skeletal
muscle and in the liver. Mitochondrial function and fatty acid oxidation are enhanced, whereas lipid
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and cholesterol synthesis are suppressed. Furthermore, it has been observed that AMPK inhibits
the pro-inflammatory NF-κB signaling pathway, one of the main modulators of gene expression in
pro-inflammatory responses. Notably, AMPK activity was reported to be significantly reduced in
adipose tissue and in skeletal muscle in women with GDM [77–79]. Furthermore, Muralimanoharan
described a downregulation of pAMPK in placenta from pharmacologically treated GDM patients,
that could be responsible for mTOR pathway activation and could be involved in the shift toward
aerobic glycolysis observed in GDM [67].

Less is known about the role of adipose tissue derived microRNAs in the pathogenesis
of GDM. Omental adipose tissue is associated with a more adverse metabolic risk profile than
subcutaneous adipose tissue [80] and could be involved in the development of insulin resistance [81].
To our knowledge, there is only one report that comparatively evaluated the microRNA expression
profile in omental adipose tissues from GDM (n = 3) and healthy pregnant women (n = 3) at caesarean
delivery. By using Affymetrix microRNA expression chips, Shi et al. identified 17 differentially
expressed microRNAs. However, they focused their attention only on the upregulated miR-222 in
order to study the relationship between its expression and insulin resistance in GDM. Specifically,
in the validation study, conducted on ten GDM and ten healthy pregnant women, they showed a
negative correlation between miR-222 levels, estrogen receptor (ER)-α and GLUT4 and an increase in
serum estradiol level in GDM women in respect to CTRLs. This correlation and the direct targeting of
miR-222 on ER-α were functionally validated in 3T3-L1 adipocytes. Since estradiol and ER-α, acting
on GLUT4, are critical regulators in obesity and insulin resistance [82–84] these results underline the
role of miR-222 in the modulation of ER-α expression in estrogen-induced GDM insulin resistance.

3.2. β-Cell Dysfunction

Maternal pancreatic β-cell dysfunction is critically involved in the pathogenesis of GDM. Only a
few studies have evaluated the relationship between ncRNAs and β-cell dysfunction in GDM so far.
Although still limited, evidence indicates a conceivable ncRNA-mediated cross-talk between placenta
and β-cells in GDM, enriching the complex pathophysiological picture in GDM.

The whole transcriptome expression has been profiled by high-throughput sequencing in placentas
from three women with GDM and three NGT, after caesarean section [85]. A large number of ncRNAs
(microRNAs, lncRNAs and circRNAs) were found to be upregulated or downregulated in GDM
compared to healthy pregnancy. Further validation by qRT-PCR confirmed the sequencing results.
Of note, the main predicted target genes of the differentially expressed ncRNAs were linked to
molecular pathways known to critically regulate glycolipid metabolism and β-cell function, such as
the sphingolipid [86], the Notch [87], the thyroid hormone receptor [88] and the prolactin signaling
pathways [89]. In particular, the sphingolipid signaling pathway is involved in the development of
lipotoxicity [86], regulating ceramide metabolism in peripheral tissues (skeletal muscle, liver and
adipose tissue) and in pancreatic β-cells. The accumulation of ceramides seems to play a role in the
development of insulin resistance and β-cell dysfunction [86]. As regards prolactin signaling, it has
been observed that its deletion in β-cells slows proliferation, therefore contrasting β-cell expansion,
a crucial compensation mechanism for peripheral insulin resistance in pregnancy [89].

Similarly, Li et al. evaluated microRNA expression in placental tissue from three GDM and three
CTRLs [90]. A significant downregulation of miR-96 was reported in GDM compared to CTRLs and an
inverse correlation between miR-96 expression and blood glucose emerged. Notably, under high glucose
condition the knockdown of miR-96 lowered insulin concentration and cell viability, and increased
apoptosis in INS-1 cells. PAK1 was found to be a direct target of miR-96. While miR-96 enhanced
β-cell function, PAK1 had opposite effects. Accordingly, a reduced β-cells mass was observed in
PAK1-deficient mice, compared to control mice [91]. These results suggest that miR-96 downregulation
might contribute to the impairment of β-cell function, by targeting PAK1.

Sebastiani et al. assessed microRNA expression in plasma samples from patients with GDM
(n = 21) and normal glucose tolerant women (n = 10) at 24–33 weeks of pregnancy [92]. A significant
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upregulation of miR-330-3p was found in GDM compared to CTRLs. In addition, within the GDM
group, the authors identified two age and BMI matched subgroups, based on miR-330-3p expression
levels. Interestingly, fasting insulin was lower in GDM with high miR-330-3p expression than in
GDM with low miR-330-3p expression, and exhibited significant inverse correlation with circulating
miR-330-3p levels only in GDM patients. A higher rate of caesarean section, related to pregnancy
complications (fetal macrosomia and polyhydramnios), was observed in the high miR-330-3p group
compared to the low miR-330-3p group, indicating that high miR-330-3p levels might label a more
aggressive GDM phenotype, with increased risk of adverse pregnancy outcomes. E2F transcription
factor 1 (E2F1) and Cell Division Cycle 42 (CDC42), known to be critical modulators of β-cell growth
and proliferation, were validated as target genes of miR-330-3p, being downregulated by miR-330-3p
over-expression. Notably, besides β-cell maintenance, E2F1 and CDC42 have been also shown to
regulate glucose-stimulated insulin secretion [93,94]. Remarkably, PAK1, another well-established key
regulator of β-cell mass and function, was involved in the predicted interaction network analysis.

An interesting preclinical study revealed important regulating aspects of β-cell function in
GDM [95]. The authors demonstrated the role of miR-410 in alleviating β-cell dysfunction in the
db/+ mouse model of GDM. Specifically, Mi et al. transfected the H1 human embryonic stem cell
(hESCs) line with miR-410, demonstrating its direct targeting of the lactate dehydrogenase A (LDHA),
normally repressed in β-cells. Conversely, the hyper-expression of LDHA has been reported to inhibit
glucose-stimulated insulin secretion [96]. The hESCs expressing miR-410 were then differentiated
in vitro into pancreatic endoderm (PE) and transplanted into db/+ female mice. The female mice
were followed for their levels of blood glucose, plasma insulin and body weight before and 4 weeks
after the transplant, as well as during pregnancy (at the beginning, at 10 days and at 20 days of
gestation). They demonstrated that miR-410 transplantation not only was able to improve β-cell
function, promoting insulin secretion and, consequently, reducing plasma glucose levels, but also
significantly improved pregnancy outcomes (reduction in miscarriage rate and foetal overgrowth,
increased survival at birth) in GDM pregnant mice [95].

4. NcRNAs as Candidate Circulating Biomarkers of GDM

Several studies have investigated the potential role of ncRNAs as circulating plasma/serum
biomarkers for GDM (Table 1).

In 2015, Zhu et al. conducted a pilot prospective study by collecting peripheral blood samples from
pregnant women at 16–19 weeks, that were subsequently diagnosed or not with GDM, and analysing
plasma microRNAs with high-throughput sequencing. They sequenced 187 microRNAs in women
that later developed GDM (n = 10) and 156 microRNAs in the control group (n = 10) identifying
32 differentially expressed microRNAs. Five of them (miR-16-5p, miR-17-5p, miR-19a-3p, miR-19b-3p
and miR-20a-5p), chosen on the basis of reads number and fold change, were upregulated in women
that developed GDM. These microRNAs, further validated by means of RT-qPCR, were associated
with insulin secretion, providing a microRNA aberrant signature that might predict GDM at an early
stage of pregnancy [97]. All these five microRNAs were further investigated in plasma collected from
n = 157 pregnant subjects, at first prenatal examination and then every 4 weeks until testing for GDM.
Among them, n = 85 women developed GDM and n = 72 were NGT at 24–28 weeks of pregnancy.
This analysis confirmed the significant upregulation of three microRNAs, namely miR-16-5p, miR-17-5p
and miR-20a-5p, in pregnant women that developed GDM and a positive correlation with insulin
resistance [98]. Furthermore, Wander et al. investigated the role of microRNAs as predictors of GDM
by selecting ten candidate biomarkers on the basis of their involvement in pregnancy complications or
pathophysiological pathway related to pregnancy complications. MicroRNAs were analysed on plasma
derived from peripheral blood samples collected within 16 weeks of pregnancy from a sub-cohort
of n = 116 women, enrolled in a larger pregnancy cohort study. The sub-cohort included n = 36
women that developed GDM at 24-28 weeks of pregnancy and n = 80 healthy subjects. Additionally,
pregnant women were classified as overweight/obese according to pre-pregnancy body mass index
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(BMI). Only few microRNAs were associated with increased risk of GDM. Specifically, two microRNAs
(miR-21-3p and miR-210-3p) were associated with a higher risk of GDM only in women who were
overweight/obese prior to pregnancy, while several microRNAs (miR-155-5p, miR-21-3p, miR-146b-5p,
miR-223-3p, miR-517-5p, miR-29-3p) were associated with an increased risk of GDM only in mothers
bearing male offspring [99].

Other authors observed significantly reduced levels of miR-21-3p in blood leukocytes in GDM
patients compared to NGT women at third trimester of pregnancy [100]. MiR-21-3p significantly
predicted GDM, although with rather low sensitivity. Evidence suggests that miR-21-3p is involved in
the mechanisms of β-cell compensation in response to insulin resistance in GDM [92].

Tagoma et al. explored microRNA expression profile in plasma samples obtained from women
with GDM (n = 13) and without GDM (n = 9) at 25–27 weeks of pregnancy [101]. Several microRNAs
were overexpressed in the GDM group compared to CTRLs, with miR-195-5p displaying the highest
level of upregulation. Evidence suggests that the predicted target genes of miR-195-5p are involved in
fatty acid synthesis and gluconeogenesis [102]. Notably, miR-195-5p upregulation has been linked to
the development of insulin resistance [103].

Furthermore, Tagoma et al. observed an upregulation of miR-222-3p in women with GDM
compared to healthy subjects. By contrast, Zhao et al. reported the opposite result [104]. However,
Zhao et al. explored microRNA expression in serum samples at a different stage of pregnancy
(16–19 weeks), when the metabolic adaptations are still not completely defined. In line with Zhao et al.,
a significantly decreased expression of miR-222-3p in sera of GDM patients (n = 53) compared to healthy
pregnant women (n = 28) was reported by Pheiffer et al. [105]. A decreased expression of miR-20a-5p
also emerged, and a role of miR-20a-5p as predictor of GDM, after adjustment for miR-222-3p levels,
age, BMI and risk factors for GDM was postulated.

Yoffe et al. detected the circulating microRNA profile in plasma samples in women with GDM and
in healthy pregnant subjects at first trimester [106]. MiR-223 and miR-23a were significantly upregulated
in GDM. Notably, in logistic regression analysis both microRNAs were significant predictors of GDM,
indicating that miR-223 and miR-23a are potential biomarkers for GDM in the first trimester.

It should be highlighted that the contrasting results and the inconsistencies among studies might be
explained by critical differences in many factors, such as the timing of sample collection, the biological
fluid analysed (serum/plasma), the ethnicity of the enrolled population. Furthermore, not all studies
have considered the effect of potential confounders, such as age and BMI.
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Table 1. Studies that evaluated circulating miRNAs in GDM.

Study Groups Stage of Pregnancy Source miRNA

Cao et al. [98] 85 GDM
16–28 weeks Plasma

miR-16-5p, miR-17-5p, miR-20a-5p (↑)
72 CTRL

Lamadrid-Romero et al. [107]

13 GDM
1st trimester

Serum

1st trimester:
12 CTRL miR-125b-5p, miR-183-5p, miR-200b-3p, miR-1290 (↑)
24 GDM

2nd trimester
2nd trimester:

24 CTRL miR-183-5p, miR-128-5p (↑)
miR-125b-5p in the (↓)

20 GDM
3rd trimester

3rd trimester:
miR-137 (↑)

miR-183-5p, miR-200b-3p (↓)

Wander et al. [99] 36 GDM
7–23 weeks Plasma

miR-155-5p, miR-21-3p, miR-210-3p, miR-146b-5p, miR-223-3p,
miR-517-5p, miR-29a-3p (↑)

80 CTRL

Zhu et al. [97] 10 GDM
16–19 weeks Plasma

miR-16-5p, miR-17-5p, miR-19a-3p, miR-19b-3p, miR-20a-5p (↑)
10 CTRL

Tagoma et al. [101] 13 GDM
25–27 weeks Plasma

miR-195-5p, miR-222-3p (↑)
9 CTRL

Sebastiani et al. [92] 21 GDM
24–33 weeks Plasma

miR-330-3p (↑)
10 CTRL

Zhao et al. [104] 24 GDM
16–19 weeks Serum

miR-29a, miR-123, miR-222 (↓)
24 CTRL

Pheiffer et al [105] 53 GDM
26–27 weeks Serum

miR-222-3p, miR-20a-5p (↓)
28 CTRL

Yoffe et al. [106] 23 GDM
9–11 weeks Plasma

miR-223, miR-23a (↑)
20 CTRL

GDM: gestational diabetes mellitus; CTRL: control subjects.
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Evidence about the biological functions and role of lncRNAs as potential biomarkers of GDM
are still limited (Table 2). Zhang et al. explored the potential relationship between three lncRNAs,
namely lncRNA MALAT1, lncRNA H19, and lncRNA p21, and GDM. They analysed serum samples
obtained between the 36th and the 40th week of pregnancy from n = 50 pregnant women affected by
GDM and n = 47 healthy pregnant women. They demonstrated a higher expression of the lncRNA
MALAT1 in GDM pregnant women, indicating a potential role of the lncRNA MALAT1, previously
reported to be involved in the induction of diabetic microangiopathy [108], as a serum biomarker of
GDM [109].

Table 2. Studies that evaluated the role and biological functions of lncRNAs in GDM.

Study Groups Stage of
Pregnancy

Source lncRNA Target miRNA Target
Pathway

Role/Biological
Function

Zhang et al. [109] 50 GDM
47 CTRL

36th–40th
week

Serum MALAT1 (↑) - - Circulating
biomarker of

GDM
Wang et al. [110] 13 GDM

15 PE
13 CTRL

Term Placenta PVT1 (↓) miR-10-5p
miR-423-5p

miR-374b-5p
miR-378b

miR-150-5p
miR-194-5p
miR-3184

PI3K/AKT Trophoblast
dysfunction

(↓ proliferation
and migration)

Ye et al. [111] 16 GDM
18 CTRL

Term HUVECs MEG3 (↑) miR-370-3p PI3K/AKT Endothelial
dysfunction

(↓ tube
formation and

migration)
Shi et al. [112] 30 GDM-M30

CTRL-M
Term Plasma

(HUVECs)
ENST00000552367

(↑)
- TADG51/IGF1 ↓ Apoptosis

Lu et al. [113] 150 GDM-M
150 CTRL-M

150 CTRL
150 Np

Early
pregnancy

Plasma XLOC_014172
(↑)

RP11-230G5.2
(↑)

- - Circulating
biomarkers of
macrosomia in

GDM

GDM: gestational diabetes mellitus; CTRL: control subjects; PE: Pre-eclampsia; PVT1: plasmacytoma variant
translocation 1; PI3K/AKT: phosphatidylinositol 3-kinase/protein kinase B; MEG3: maternally-expressed gene
3; HUVECs: human umbilical vein endothelial cells (HUVECs); TADG51: T cell death-associated gene 51;
IGF1: insulin-like growth factor 1; M: Macrosomia; Np: non-pregnant.

5. NcRNAs and GDM Complications

5.1. Short-Term Complications

Numerous studies have revealed a conceivable link between several dysregulated ncRNAs and
impairments in placenta development and functions in GDM.

Ding et al. uncovered a set of deregulated microRNAs by RNA sequencing and further qRT-PCR
validation in placental tissues from eight GDM women compared to eight CTRLs [114]. An integrative
evaluation of microRNA and mRNA expression was performed and the predicted biological functions
of the differentially expressed microRNA and mRNA were related to placenta morphology and
development. The authors selected miR-138-5p, which was significantly overexpressed in GDM,
for functional assays. Notably, the hyper-expression of miR-138-5p inhibited the migration ability and
the proliferative activity of HTR-8/SVneo trophoblast cells. MiR-138-5p targeted TBL1X, an oncogene
that activates WNT/β-catenin signaling, a key pathway, crucially involved in numerous placental
physiological processes, such as proliferation, differentiation and invasion [115,116].

Other authors revealed an association between the upregulation of miR-137 and hallmarks of
trophoblast dysfunction, possibly contributing to the development of adverse outcomes in GDM [117].
Protein kinase AMP-activated catalytic subunit α1 (PRKAA1) was decreased in placental tissues from
women with GDM (n = 11) compared to CTRLs (n = 11). In vitro, high glucose upregulated miR-137
and IL-6 in HTR-8/SVneo trophoblast cells and the overexpression of miR-137 decreased the levels of
PRKAA1, while increased IL-6. Overall, these modifications impaired the viability and the proliferation
activity of HTR-8/SVneo trophoblast cells.
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Wang et al. investigated the biological function of the lncRNA plasmacytoma variant translocation
1 (PVT1) in placental tissues from patients with GDM (n = 13), patients with pre-eclampsia (n = 15)
and healthy pregnant women (n = 13) [110]. A lower expression of PVT1 was observed in GDM and in
pre-eclampsia group, compared to normal pregnancy. In functional assays, the knockdown of PVT1
had detrimental effects on proliferation and migration of HTR-8/SVneo trophoblast cells. A decrease in
AKT phosphorylation also emerged. Notably, PVT1 regulates a large number of microRNAs, therefore
modulating the expression of their target genes in trophoblast cells. Bioinformatics analysis predicted
several microRNAs (miR-10-5p, miR-423-5p, miR-374b-5p, miR-378b, miR-150-5p, miR-194-5p and
miR-3184) that likely target the PI3K/AKT pathway.

Several ncRNAs have been linked to the development of endothelial dysfunction (ED) in
pregnancy complicated by GDM, possibly contributing to poor pregnancy outcomes. Peng et al.
observed significantly increased plasma levels of miR-137 in GDM (n = 11), compared to healthy
pregnant women (n = 12) at third trimester [118]. Accordingly, other authors consistently reported
higher expression of miR-137 in peripheral blood and placental tissue in patients with GDM, compared
to CTRLs [56,97,104]. Remarkably, miR-137 expression significantly rose in human umbilical vein
endothelial cells (HUVECs) in vitro after exposure to high glucose. The increased expression of
miR-137 in HUVECs was associated with impaired viability and angiogenesis. Contextually, a higher
expression of superficial markers, such as vascular cell adhesion molecule-1 (VCAM-1), intercellular
cell adhesion molecule-1 (ICAM-1) and E-selectin was detected, together with increased interleukin
IL-6 and reduced IL-8 expression [118]. Hence, a role of miR-137 as promoter of ED in GDM might be
speculated. Another study focused on the role of microRNA dysregulation in GDM in the context
of ED. In HUVEC cells derived from n = 22 GDM and n = 24 healthy pregnant women, Floris et al.
demonstrated that miR-101 level, whose role in controlling endothelial function and angiogenesis is
well described [119], was higher in GDM derived HUVECs (GDM-HUVECs) than in healthy HUVECs.
One of the main miR-101 targets is the histone methyltransferase enhancer of zester homolog 2 (EZH2).
EZH2 regulates angiogenesis [119–124], and Floris et al. demonstrated not only a reduction in its
β-isoform in GDM-HUVECs, but also a feedback loop between EZH2 and miR-101. Specifically,
the inhibition of miR-101 decreases EZH2 levels in GDM-HUVECs and the silencing of EZH2 in
GDM-HUVECs or the overexpression of EZH2- β in healthy HUVECs induced the increase in miR-101
expression. These results indicate a reciprocal regulation of miR-101 and EZH2 in HUVECs and suggest
that the imbalance observed in GDM might be responsible for the higher expression of miR-101 and
the functional alterations of endothelial cells, such as decreased survival and functional capacity [125].

Mounting evidence therefore indicates that foetal endothelial function is considerably impaired
in GDM pregnancies. Ye et al. reported a fall in proliferation and a rise in apoptosis, as well
as impaired tube formation and migration, in HUVECs obtained from GDM patients compared
to healthy women, under high glucose exposure [111]. Furthermore, a higher expression of the
lncRNA maternally-expressed gene 3 (MEG3) emerged in HUVECs from GDM compared to CTRLs.
MEG3 overexpression downregulated miR-370-3p and inhibited the PI3K/AKT pathway, which is
thought to be involved in hyperglycaemia-induced ED [126].

NcRNAs may also play important roles in regulating foetal growth during pregnancy [127,128].
Since one of the main complications of GDM is foetal macrosomia, the identification of dysregulated
ncRNAs that may be involved in this phenomenon could be of utmost importance. In 2015, two
studies addressed a link between ncRNAs and foetal macrosomia. Li et al. conducted a microarray
analysis to compare the microRNA profiles of placenta derived from healthy (n = 15) and GDM
(n = 15) pregnant women immediately after delivery. Interestingly, they identified miR-508-3p as the
most upregulated microRNA in GDM samples, and demonstrated its direct regulation of PIKfyve,
which was concordantly significantly downregulated. PIKfyve is a FYVE-containing phosphoinositide
3-phosphate-5-kinase that acts as a negative regulator of the epidermal growth factor receptor
(EGFR) [129]. Thus, the upregulation of miR-508-3p in GDM women contributes to the repression
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of PIKfyve and the aberrant activation of the EGFR/PI3K/AKT signalling, contributing to foetal
overgrowth [56].

Shi et al. evaluated the association between lncRNAs and macrosomia. They analysed the lncRNA
expression profile in plasma from umbilical cord vein in pregnancies with GDM-induced macrosomia
(n = 30) and with non-diabetic macrosomia (n = 30). In particular, they identified 349 significantly
upregulated lncRNAs and 892 significantly downregulated lncRNAs in the GDM-induced macrosomia
group, compared to the non-diabetic macrosomia group. They chose to validate only eight of these
differentially expressed ncRNAs, on the basis of the relationship of their target genes with foetal
growth, glucose and lipid metabolism. Interestingly, ENST00000552367, the most upregulated lncRNA
in the GDM group, targeted the T cell death-associated gene 51 (TADG51), which is involved in the
anti-apoptotic effect of insulin-like growth factor-1, an important regulator of cell proliferation and
GDM-induced macrosomia [112].

Lu et al. analyzed the lncRNA expression profile through microarray at an early stage of gestation,
in plasma samples from GDM patients with fetal macrosomia (n = 3), GDM patients without fetal
macrosomia (n = 3), pregnant healthy women (n = 3) and non-pregnant healthy controls (n = 3) [113].
Five lncRNAs (XLOC_014172, RP11-230G5.2, PCBP1-AS1, LOC149086 and RP11-160H22.5) resulted to
be associated with macrosomia in pregnancy. However, only XLOC_014172 and RP11-230G5.2 were
further validated in larger samples (150 subjects each group) and displayed moderate ability to predict
macrosomia in GDM pregnancy.

Mughal et al. evaluated the effect of GDM on myogenesis. They described a signaling network
that involves miR-133a, a microRNA expressed in all muscle lineages, implicated in muscle growth
and mitochondrial function regulation [130–132], together with the diacylglycerol-protein kinase C
(PKC) δ and the myocyte enhancer factor-2 (MEF2), involved in the development of mitochondrial
dysfunction in GDM. Specifically, in the presence of lipotoxicity, the repression exerted by MEF2 on
miR-133a is responsible for the increase in the expression, and subsequent activity, of Nix, a miR-133a
target belonging to the BCL-2 family, leading to the regulation of mitochondrial function in muscle
tissues [133]. Moreover, Nix and miR-133a might be involved in the development of cardiac hypertrophy
and diabetic cardiomyopathy [134–136], with a possible important role in heart failure progression
following cardiac injury [133].

Lamadrid-Romero et al. instead analyzed the modulation of fetal neural development related
to serum microRNA expression over the three trimesters of pregnancy in GDM patients (n = 13,
n = 24, n = 20 at first, second and third trimester, respectively) and in CTRLs (n = 12, n = 24, n = 16
at first, second and third trimester, respectively) with the aim to find reliable biomarkers for fetal
central nervous system (CNS) development. They also included a small cohort of non-pregnant
women (Np, n = 10), since only microRNAs expressed at very low level, or even absent, in Np may
be considered as possible biomarkers for the development of the fetal CNS. On this basis, they chose
12 microRNAs related to neural development and observed that GDM affected their levels differently in
each trimester. Among them, miR-183-5p, miR-200b-3p, miR-125b-5p and miR-1290 were upregulated
in GDM patients in respect to CTRLs in the first trimester of pregnancy. The number of differentially
expressed microRNAs was reduced during the second and the third trimester. Specifically, during the
second trimester, miR-183-5p was higher and miR-128-5p was lower in the GDM group in respect to
control group. In the third trimester miR-137 was higher, while miR-183-5p and miR-200b-3p were
lower in the GDM group. These differences underline that microRNAs might exhibit temporary
regulation during pregnancy and that GDM affects microRNA expression pattern with subsequent
possible effects on cell proliferation and neurogenesis, especially during the first trimester [107].

5.2. Long-Term Complications

Mounting evidence suggests that gene expression in the offspring might be altered by an adverse
intrauterine environment, even in the absence of underlying changes in DNA sequences, and the
variations in microRNA expression are believed to mediate this process [137].
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MicroRNAs are crucial regulators of endothelial function. ED is suspected to play a role in the
development of long-term GDM-related complications, such as metabolic diseases and CVD, both in
the mother and in the offspring. The imbalance between vasodilator and vasoconstrictor factors,
as well as the enhanced expression of adhesion molecules and growth factors, contribute to extensive
endothelial injury, therefore promoting the onset of atherosclerosis [73,138,139]. ED is further worsened
by the pro-inflammatory state that weights on GDM complicated pregnancy [140].

Strutz et al. isolated primary human arterial feto-placental endothelial cells (fpEC) from the
placenta of GDM (n = 14) and healthy pregnant women (n = 14) to explore microRNA expression profile
by NGS [141]. As the feto-placental endothelium is directly connected with foetal circulation, fpEC might
reflect the metabolic status in foetal environment. GDM significantly regulated 26 microRNAs,
compared to normal pregnancy. Remarkably, critical differences in microRNA expression emerged
when stratifying by foetal sex. Specifically, only four microRNAs were altered by GDM in fpEC from
male foetuses, whereas 22 microRNAs were differentially expressed in fpEC from female foetuses,
suggesting that the modifications in microRNA profile in GDM might be significantly addressed
by foetal gender. Interestingly, microRNA deregulation in GDM was more marked in female sex
than in male sex, suggesting that female-related fpECs are possibly more prone to develop metabolic
alterations in GDM.

Diaz-Perez et al. demonstrated a low expression level of both the cell adhesion molecule
ICAM-1 in primary human fpEC and its soluble form in the supernatant of fpEC derived from four
GDM women in respect to four CTRLs. Since miR-221 and miR-222 are two negative regulators of
ICAM-1 [142,143] and are significantly upregulated in fpEC cells derived from GDM in respect to normal
pregnancies, Diaz-Perez inferred that these microRNAs may determine the reduced ICAM-1 levels
observed in the feto-placental endothelium in GDM [144]. Another study compared the microRNA
expression in HUVECs derived from three infants from GDM women (IGDM) and from three infants
from normoglycaemic CTRLs. By using microarray analyses, followed by RT-qPCR validation
studies, Tryggestad et al. demonstrated that seven microRNAs (miR-30c-5p, miR-452-5p, miR-126-3p,
miR-130b-3p, miR-148a-3p, miR-let-7a-5p and miR-let-7g-5p) were upregulated in IGDM HUVECs in
respect to CTRLs. They focused on the microRNAs whose targets were involved in energy metabolism,
endothelial function and adipogenesis, and identified reduced levels of AMPKα1 and pAMPKα1,
known to be involved in the stimulation of glucose uptake and fatty acid oxidation in placentae from
both male and female IGDM offspring. In particular, they suggested that AMPKα1 decrease may
intervene in the fat oxidation reduction described in 1-month infants, and may also predispose the
offspring to future metabolic diseases [145].

Recently, microRNA expression was explored in skeletal muscle biopsies in the offspring (age
25–35 years) of mothers with previous GDM (n = 82), type 1 diabetes (n = 67) and healthy women
(n = 57) [146]. MiR-15a and miRNA-15b levels were significantly higher in skeletal muscle in offspring
from GDM mothers, compared to CTRLs, after adjustment for confounders. Overall, both microRNAs
were positively associated with offspring fasting glucose, 2-h post-load glycaemia and HbA1c. Moreover,
miR-15a levels showed significant positive correlation with maternal 2-h post-load glycaemia during
pregnancy, independently of confounders, suggesting that hyperglycaemia and microRNA deregulation
in pregnancy might contribute to the intrauterine fetal programming for metabolic disease later in
life. It has been observed that miR-15b downregulates the insulin receptor [147] and impairs insulin
signaling through an upregulation of the PI3K regulatory subunit 1 [148]. On the other hand, miR-15a
intervenes in the regulation of insulin synthesis and secretion. Remarkably, chronic exposure to high
glucose induced the downregulation of miRNA-15a, impairing insulin release in mouse β-cells [149].

A downregulation of miR-181a in umbilical-cord blood cells of newborns of GDM patients
compared to healthy pregnancies has been described [150]. It is well established that miR-181a is
involved in the modulation of insulin sensitivity and mitochondrial function in the liver, by regulating
the target gene BCL2 [151]. Accordingly, a downregulation of BCL2 both in umbilical-cord blood cells
of newborns from GDM and in peripheral blood cells in obese adults has been reported, suggesting
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that GDM neonates and obese subjects might share the same transcriptional alteration in BCL2 [150].
In this view, hyperglycemia in utero might promote transcriptional modifications that predispose the
offspring to the development of metabolic diseases later in life.

Finally, Fornes et al. evaluated the effect of metabolic alterations in GDM rats on both male and
female fetuses by analysing the fetal liver, a crucial organ in lipid metabolism regulation, after 21 days
of pregnancy. Interestingly, they demonstrated that GDM differently affects liver growth on the basis
of the fetal sex. Since PPARs are critical in the control of lipid metabolism, they focused their analysis
on PPARs and proposed that sex-dependent changes of microRNAs in GDM rats during pregnancy
are involved in PPARs regulation. Specifically, miR-130, which targets PPARγ, was upregulated only
in the liver of male fetuses from GDM rats, where PPARγ was downregulated. Conversely, miR-122
was downregulated, while its target PPARδ was upregulated. Interestingly, PPARδ level was increased
also in the liver of female fetuses from GDM rats, but in this case, it seemed to be under the control
of miR-9, that was downregulated. These results underline that early sex-dependent differences in
microRNAs could be able to determine different responses and adaptations to challenges in the life of
the offspring [152].

6. Conclusions and Future Perspectives

GDM is an increasingly common condition that can lead to severe and lifelong adverse
complications for the mother and the child. The pathophysiological features of GDM have been
revealed and mainly include maternal insulin resistance, placental dysfunction, ED and inflammation.
However, the molecular mechanisms involved in the pathophysiology of this condition, as well as in
the development of its complications, are not yet fully defined. There is great interest in the potential
roles of ncRNAs as regulators of biological processes, mediators of tissue cross-talk and biomarkers
of disease. Thus, a growing number of studies have characterized ncRNA expression in biological
fluids and in gestational tissues, highlighting their crucial involvement in the pathogenic mechanisms
of GDM, such as insulin resistance and β-cell dysfunction, and GDM-related complications, such as
trophoblast dysfunction and fetal macrosomia.

It is well established that early diagnosis and appropriate treatment are essential elements
to prevent poor pregnancy outcomes in GDM. According to current guidelines, GDM diagnosis is
generally performed in the late second trimester, when the metabolic alterations have already developed
and emerge at the OGTT. The identification of circulating biomarkers that might effectively predict
GDM at an earlier stage of pregnancy is therefore crucial to avoid mother and fetal complications
through prompt lifestyle and diet intervention. Evidence has suggested a potential function of several
circulating ncRNAs as early predictors of GDM. The remarkable stability in extracellular fluids and the
easy collection from peripheral blood samples are the main strengths of these molecules as putative
biomarkers for GDM. Although promising, data from current studies are still insufficient to draw firm
conclusions and some inconsistencies have emerged. The vast majority of the above mentioned studies
restricted blood collection for ncRNA analysis to the late second trimester of gestation, or explored
ncRNA expression profile in gestational tissues at term. Taken together, these findings have undeniably
given significant contribution to the field by helping understand the physiological and pathological
hallmarks and pathways in GDM. However, further research should explore ncRNA patterns earlier in
pregnancy, in order to significantly predict GDM and, consequently, prevent poor outcomes. Indeed,
the controversial results between studies might be partly explained by a differential expression of
ncRNA in different stages of pregnancy. Further evidence from prospective studies, evaluating ncRNA
patterns from the very early stage of pregnancy and then in different windows of time until delivery, is
therefore mandatory to ascertain the reliability of ncRNAs as independent predictors of GDM. Future
research might also consider detecting ncRNA in the amniotic fluid collected by invasive diagnostic
procedures, such as amniocentesis, performed early in pregnancy for prenatal diagnosis of aneuploidies.
Notably, the amniotic fluid might show distinct patterns of ncRNA expression, which could more
strictly reflect the metabolic status of the fetus.
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The identification of tissue and/or cell origin of circulating ncRNAs is another crucial point for
further research. Over the last decades, growing interest has emerged in characterizing ncRNAs
in tissue-specific vesicles, such as placenta-derived exosomes. Surely, advances in this field might
significantly contribute to dissect the crosstalk between tissues and biological fluids both in physiological
and in pathological contexts.

Discrepancies between studies might also be attributed to the heterogeneity of the enrolled
populations or to critical differences related to the analytical methods employed for ncRNA expression
profiling. An important issue that makes circulating ncRNA analysis particularly challenging is the
choice between plasma and serum samples. Detecting these molecules in plasma avoids bias linked to
coagulation. Indeed, the latter process promotes the release of ncRNA from activated platelets [153].

As for analytical methods, it would be of utmost importance in future studies to analyse ncRNAs
through absolute quantification and RNA identification. In this attempt, it would be very useful to
apply standardized analytical techniques for RNA extraction, such as automated extraction methods,
which should be always preferred to manual techniques, in order to reduce sample variability related
to manual and technical reasons. In addition, a crucial advance in analytical methodologies can be
obtained through performing highly multiplexed single molecule counting. Another relatively new
technique but with a great potential is the droplet-digital PCR (ddPCR), which overcomes qPCR in terms
of performance and accuracy and does not need replicate samples or reference genes for normalization,
giving an absolute quantification of the molecules of interest with an extremely high intra- and
inter-assay reproducibility, with the potential to be used both in research and diagnostics [154].

Finally, there are hints that an adverse fetal environment might have a significant impact on the
risk of developing T2D and CVD in adulthood. However, the underlying molecular mechanisms
remains not yet entirely defined. It is believed that fetal exposure to a hostile environment in GDM
pregnancy might induce modifications in ncRNA expression profile, therefore promoting changes
in gene expression in the offspring. Further research is needed in the field of epigenetics to unravel
the complex potential mechanisms and the involvement of ncRNAs in the fetal programming of T2D
and CVD.
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