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We perform the Hamiltonian analysis of several mimetic gravity models and compare our results with
those obtained previously by different authors. We verify that, for healthy mimetic scalar-tensor theories,
the condition for the corresponding part of the Hamiltonian to be bounded from below is the positive value
of the mimetic field energy density λ. We show that, for mimetic dark matter possessing a shift symmetry,
the mimetic energy density remains positive in time, provided appropriate boundary conditions are
imposed on its initial value, while in models without shift symmetry, the positive energy density can be
maintained by simply replacing λ → eλ. The same result also applies to mimetic fðRÞ gravity, which is
healthy if the usual stability conditions of the standard fðRÞ gravity are assumed and λ > 0. In contrast, if
we add mimetic matter to an unhealthy seed action, the resulting mimetic gravity theory remains, in
general, unstable. As an example, we consider a scalar-tensor theory with the higher-derivative term ð□φÞ2,
which contains an Ostrogradski ghost. We also revisit results regarding stability issues of linear
perturbations around the FLRW background of the mimetic dark matter in the presence of ordinary
scalar matter. We find that the presence of conventional matter does not revive dynamical ghost modes
(at least in the UV limit). The modes, whose Hamiltonian is not positive definite, are nonpropagating
(have zero sound speed) and are associated with the mimetic matter itself. They are already present in the
case in which the ordinary scalar fluid is absent, causing a growth of dust overdensity.
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I. INTRODUCTION

As was realized some time ago [1–4], a cold component
of dark matter (and dark energy) may be mimicked by
adding to general relativity (GR) a “perfect fluid of dust.”
Such a mimetic dark matter can be introduced [4] by
performing a noninvertible conformal transformation of the
GR metric, with a rescaling parameter being a kinetic term
for a (mimetic) scalar field

gμν ¼ −ðg̃αβ∂αφ:∂βφÞg̃μν: ð1Þ

The transformation is noninvertible in the sense that the
metric g̃μν cannot be fully expressed in terms of gμν and φ
due to the invariance of the right-hand side of (1) under the
conformal re-scaling of the metric g̃μν. In this way, one
obtains a conformally invariant theory. Later on, such a
noninvertible transformation (or its generalizations) has
been applied to wide classes of models including general

scalar-tensor theories, fðRÞ-gravity, vector-tensor theories
etc., resulting in mimetic versions of these models [5–16],
which is usually referred as ‘mimetic gravity’.
A natural question which arises is whether or not the

addition of mimetic matter may cause or cure instabilities in
these models. This problem has been studied in different
models by various authors. For instance, for the simplest
mimetic dark matter model, it was shown [5,7] that for the
system to be free of ghost instabilities the necessary
condition is that the energy density of the mimetic dust
should remain positive definite under time evolution, but
that this may not always be the case. References [13,14,
17–21] studied the behavior of a wide class of mimetic
gravity models under linear perturbations around certain
cosmological backgrounds (such as Friedmann-Lemaître-
Robertson-Walker (FLRW) ones) and argued that they
might be plagued with ghostlike and/or gradient instabil-
ities. In particular, Refs. [13,14] observed a ghostlike
instability of linear perturbations around the FLRW back-
ground in the presence of conventional scalar matter in a
unitary gauge in which the mimetic scalar is identified with
the time flow. In this respect, it is important to understand if
the source of the instability is the presence of the additional
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matter itself or whether it is intrinsic to the mimetic field
itself. For instance, the Jeans instability is well known to
appear around certain GR backgrounds in the presence of
conventional matter [22,23].
The main aim of this paper is to revisit these issues. To

check, in full generality, whether the mimetic field can
bring additional instabilities into a given gravity model one
should first perform a complete background independent
Hamiltonian analysis of a full nonlinear system and check
under which conditions different parts of the Hamiltonian
are bounded from below, which ensures the existence of
stable solutions. The Hamiltonian describing a wide class
of mimetic gravity models was derived in [13], together
with first and second class constraints which allowed to
count the number of physical degrees of freedom (d.o.f.).
However, the stability analysis of this Hamiltonian has not
been carried out therein. The full Hamiltonian analysis for a
simple mimetic dark matter model was carried out in [7,24]
and extended in [12] to mimetic gravity actions involving
an arbitrary function Fð□φÞ of the mimetic scalar field and
further generalized in [25]. As we already mentioned, the
main conclusion was that the stability of the mimetic
system requires that the energy density of the mimetic
dust is non-negative. In this paper, we will extend these
results to a wider class of mimetic gravity models including
conventional matter and also study the stability of their
linear fluctuations around the FLRW background, revisit-
ing results of [13,14].
In Sec. III, we analyze the stability conditions for mimetic

scalar-tensor theories by performing the full Hamiltonian
analysis and verifying that in all the cases a necessary
condition for the corresponding part of theHamiltonian to be
bounded from below is the positive value of the mimetic
field energy density λ.Wewill show that for themimetic dark
matter model possessing a shift symmetry ðφ → φþ cÞ the
mimetic energy density remains positive in time, provided
appropriate boundary conditions are imposed on its initial
value. For more general cases (without shift symmetry) the
positivity condition on mimetic energy density may be
imposed a priori by requiring, e.g., that λ ¼ eλ̂ with λ̂ being
an arbitrary scalar field.
In Sec. IV, we will revisit results of [13,14], where it

was observed (using the unitary gauge φ ¼ t) that, in
the presence of matter, linear perturbations of mimetic
gravity models around the FLRW background have an
Ostrogradski ghost. To better understand the nature of this
instability we will derive the corresponding second-order
action and Hamiltonian without gauge fixing local repar-
ametrization invariance and give the result in terms of
gauge-invariant variables. For comparison, we will also
present the results of the analysis of linear perturbations
for the pure mimetic matter, in the absence of conven-
tional matter, and vice versa. We will see, taking an
ultraviolet limit, that the presence of conventional matter
does not revive dynamical ghost modes. The modes, whose

Hamiltonian is not positive definite, are nonpropagating
(with zero sound speed) and are associated with the
mimetic matter itself, as in the case in which the conven-
tional scalar fluid is absent. Though, as we will show, at the
linearized level one cannot unambiguously identify the
nature of these modes, i.e., whether they are ghostlike or
tachyonlike, we will see that they cause the usual Jeans
instability of dust. On top of these, the conventional matter
brings about two propagating modes with positive definite
Hamiltonian.
In Sec. V, we consider a mimetic theory based on an

unhealthy primary seed action with a higher-derivative term
ð□φÞ2 and show that the mimetic constraint cannot, in
general, cure instability problems of the primary action. In
Sec. VI, we will also shortly discuss the stability con-
ditions, due to the mimetic constraint, for a bounded
Hamiltonian of the mimetic fðRÞ gravity. Finally, in the
Conclusions, we present a short summary of our analysis.
Some calculations are given in the Appendix.
In our paper, we are using the ð−;þ;þ;þÞ signature for

the metric. Greek indices run from 0 to 3 and latin indices
from 1 to 3. Further, we are working in units where the
speed of light and the reduced Planck mass is one.

II. A BRIEF SURVEY OF THE STRUCTURE OF
MIMETIC GRAVITY MODELS, ALSO IN VIEW OF
FRAMES IMPOSED BY THE GW170817 EVENT

As largely discussed in the literature [4–7,9,13,14,26],
mimetic gravity can be obtained upon performing a
disformal transformation [27] of the metric in an original
theory and then requiring that this transformation is non-
invertible. Such a noninvertible disformal transformation
can be written as a noninvertible conformal transformation
followed by an invertible disformal transformation [13,14].
The invertible disformal transformation does not change
the physical content of the theory, but the noninvertible
conformal transformation does change the theory, giving
rise to a mimetic gravity. Therefore, to arrive at mimetic
gravity from a given gravity model, one can always choose
the disformal transformation to be a Weyl transformation of
the metric

gμνðxÞ ¼ X̃ðxÞg̃μνðxÞ; ð2Þ

where X̃ðxÞ is the rescaling parameter. Upon this trans-
formation, a generic Lagrangian

L ¼ ffiffiffiffiffiffi
−g

p
fðη;φÞRþ Lmatterðgμν; η;φÞ; ð3Þ

including gravity, a scalar field φ and other matter fields η,
takes the following form
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L̃ ¼
ffiffiffiffiffiffi
−g̃

p
fðη;φ; X̃Þ

�
X̃ R̃þ 3

2
X̃−1g̃μν∂μX̃∂νX̃ − 3□X̃

�
þ Lmatterðg̃μν; η;φ; X̃Þ; ð4Þ

where we assumed that the fields φ and η do not transform
under the Weyl transformation. The generic X̃ is a non-
dynamical Stückelberg-like field which can be gauge fixed
to a constant by the inverse Weyl transformation upon
which we get back the initial Lagrangian (3). In other
words, as is well known, the Lagrangian (4) is invariant
under the local conformal (Weyl) transformations

g̃μν → ΩðxÞg̃μν; X̃ → Ω−1ðxÞX̃: ð5Þ

Let us now assume that X̃ðxÞ is not an independent field
but is proportional to the kinetic term of φ which may be
(or not) part of the Lagrangian Lmatterðg̃μν;φ; η; X̃Þ

X̃ ¼ −g̃μν∂μφ∂νφ: ð6Þ

If we substitute the expression (6) into (4) we see that the
field φ contributes to the Lagrangian with higher-derivative
terms. The Lagrangian is still invariant under the Weyl
rescaling (5) of the metric g̃μν, but now if we gauge fix the
Weyl symmetry by putting X̃ ¼ 1 we get the mimetic
constraint on the kinetic term of φ

g̃μν∂μφ∂νφ ¼ −1: ð7Þ

This implies that with the specific choice of X̃ as in (6) the
theory has a constrained mimetic scalar d.o.f. φ. This gauge
fixing can also be understood as a field redefinition [28]
(associated with a Weyl transformation) which eliminates
the Stückelberg field as follows. Let us, following [7],
introduce the relation (6) into the Lagrangian (4) as a
Lagrange multiplier term

Lλ ¼
ffiffiffiffiffiffi
−g̃

p
λ̃ðX̃ þ g̃μν∂μφ∂νφÞ: ð8Þ

Now let us make the following field redefinition
g̃μν ¼ X̃−1gμν, λ̃ ¼ X̃λ upon which the Lagrangian L̃þ
Lλ reduces to

L ¼ ffiffiffiffiffiffi
−g

p
fðη;φÞRþ Lmatterðgμν; η;φÞ

−
ffiffiffiffiffiffi
−g

p
λð1þ gμν∂μφ∂νφÞ; ð9Þ

which produces the mimetic constraint (7). Therefore,
when analyzing the theory, one can keep Weyl invariance
to a certain point and gauge fix it by imposing (7) at a later
stage, as e.g., in [7,13].
Alternatively, one can from the beginning add the

mimetic constraint (7) to the initial Lagrangian (3) as a
Lagrange multiplier term [29] and get (9). Note that in the

mimetic dark matter model [6] the field λ has actually a
clear physical meaning of being associated with mimetic
matter energy density. If the initial action in (3) contains the
kinetic term of the scalar field X ≡ −gμν∂μφ∂νφ and/or the
functions f, Lmatter etc. depend on X, this dependence can
always be removed by expanding these functions1 in
powers of X − 1 and adsorbing the (X − 1)-dependent
terms by the Lagrange multiplier λ. Therefore, as discussed
in [14], every higher derivative term of the scalar field φ in
the initial Lagrangian, which contains a covariant derivative
of X will effectively vanish upon the noninvertible con-
formal transformation leading to mimetic gravity. Hence,
the essential higher-derivative terms in the initial action
(depending on the second derivative of φ) which survive
upon the disformal Weyl transformation are of the follow-
ing schematic form χn ¼ gμν½φ�nμν.2 Consequently, the most
general scalar-tensor mimetic theory action (depending on
up-to-second-order derivatives of φ) can be taken in the
form

L ¼ ffiffiffiffiffiffi
−g

p
fðη;φÞRþ Lφðφ; η; χ1;…; χnÞ

þ Lmatterðgμν; η;φÞ −
ffiffiffiffiffiffi
−g

p
λðgμν∂μφ∂νφþ 1Þ: ð10Þ

The recent observation, from the binary neutron star
merging event GW170817 [30], that the speed of gravita-
tional waves is equal to the speed of light, to a very high
accuracy, restricts the class of viable healthy seed models.
In the absence of conventional matter, these are described
by the action [31]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðfðφÞR − VðφÞÞ

−
Z

d4x
ffiffiffiffiffiffi
−g

p
λðgμν∂μφ∂νφþ 1Þ: ð11Þ

This model is usually referred to as ‘generalized mimetic
scalar tensor theory’, while the original ‘mimetic dark
matter’model is a special case of the above action in which
f ¼ 1=2 and V ¼ 0.
To the action (11) we can add terms of the form Fð□φÞ,

which do not change the propagation speed of the gravi-
tational waves. While terms proportional to □φ can be
reabsorbed by a redefinition of VðφÞ (see the discussion in
[31]), higher-derivative terms, such as ð□φÞ2, or in general
Fð□φÞ, are commonly discussed in the literature on
mimetic gravity [6,12,17–19,32]. Terms of this kind are
interesting, since they provide a nonvanishing sound speed
[6], while in mimetic Horndeski models the sound speed
vanishes [10]. Further, they provide an interesting

1fðXÞ¼fðX−1þ1Þ¼fjX−1þðX−1Þf0þ1
2
ðX−1Þ2f00þ���

2Here, and in what follows, we use the notation of [14], where
n is the polynomial order of second-order derivatives, such that
φμ ≡ ∂μφ, φμν ¼ ∇μ∂νφ, χ1 ¼ gμνφμν, χ2 ¼ φμνφ

μν, χ3 ¼
φμνφ

μρφν
ρ etc.
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connection to the infrared limit of the projectable Hořava-
Lifshitz gravity [33–35]. However, in general, seed actions
containing terms of this kind contain an Ostrogradski ghost,
and, as we will see in Sec. V, with the example of action

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ

Z
d4x

ffiffiffiffiffiffi
−g

p ðGðφÞð□φÞ2

− λðgμν∂μφ∂νφþ 1ÞÞ; ð12Þ

the mimetic constraint, though it reduces by one the
number of independent d.o.f., it does not solve instability
issues.

III. HAMILTONIAN ANALYSIS OF THE MIMETIC
SCALAR-TENSOR THEORY

In this section, we discuss the stability conditions for the
mimetic scalar-tensor theory described above in (11), by
performing the full Hamiltonian analysis and checking
whether the Hamiltonian is bounded from below.
In order to simplify calculations, we will perform the

Hamiltonian analysis of the theory with the mimetic
constraint introduced via the Lagrange multiplier term.
As such, we will not deal with a first-class constraint
associated with the Weyl symmetry as in [7,13], but instead
with two second-class constraints associated with the
presence of the Lagrange multiplier, and the mimetic
constraint as the gauge-fixing condition.
The main goal is to analyze the stability conditions

associated with the presence of the mimetic matter and
compare them with those in the corresponding “nonmi-
metic” models.

A. ADM decomposition

To set our notation and conventions, we start with a
review of the well-known techniques for carrying out the
Hamiltonian analysis of the theories involving gravity.
For the foliation of spacetime, we are using the ADM

decomposition with metric

ds2 ¼ −N2dt2 þ hijðdxi þ NidtÞðdxj þ NjdtÞ; ð13Þ

where N is the lapse, Ni is the shift vector, and hij is the
three dimensional metric of the hypersurface of constant
time which is used to raise and lower spatial indices. The
Ricci scalar of the four dimensional metric gμν can be
decomposed as

R ¼ R̄þ KijKij − ðKi
iÞ2 þ 2∇μðnμ∇νnν − nν∇νnμÞ; ð14Þ

where R̄ is the three dimensional Ricci scalar, and Kij is the
extrinsic curvature

Kij ¼
1

2N
ð _hij − 2DðiNjÞÞ: ð15Þ

where 2DðiNjÞ≡DiNjþDjNi. Further, nμ ¼ N−1ð1;−NiÞ
is the normal vector to the hypersurface of constant time
and∇μ is the covariant derivative with respect to gμν. Using
the notation of [13] one can write the Lagrangian density
for the gravitational part (the first term of (11) as

Lgrav ¼
ffiffiffiffiffiffi
−g

p
fðφÞR ¼ N

ffiffiffi
h

p
½fðR̄þ KijKij − K2Þ

− 2Kf;φA⋆ − 2DiDif�; ð16Þ

where we have neglected total derivative terms. K ¼ Ki
i is

the trace of the extrinsic curvature, Di is the covariant
derivative with respect to the spatial metric hij, f;φ ≡ ∂φf
and

A⋆ ¼ nμ∇μφ ¼ N−1ð _φ − Ni∂iφÞ: ð17Þ

It is convenient to treat A⋆ as an independent variable, by
adding to the Lagrangian the condition (17) as a constraint,
via a Lagrange multiplier term. Thus, using

−gμν∇μφ∇νφ ¼ nμ∇μφnν∇νφ − hμν∇μφ∇νφ

¼ A2⋆ −DiφDiφ: ð18Þ

one can express the mimetic field part of the Lagrangian
(11) as follows

Lφ ¼ N
ffiffiffi
h

p
λðA2⋆ −DiφDiφ − 1Þ − N

ffiffiffi
h

p
VðφÞ

þ μ
ffiffiffi
h

p
ðNA⋆ þ NiDiφ − _φÞ: ð19Þ

B. Canonical momenta and constraints

Upon the ADM decomposition of the Lagrangian we can
calculate the canonical momenta. In view of the relation
(15), the canonical momentum of the metric hij is

πij ¼ δL

δ _hij
¼ 1

2N
δL
δKij

¼
ffiffiffi
h

p
fðKij − KhijÞ −

ffiffiffi
h

p
f;φA⋆hij:

ð20Þ

This equation can be inverted to get the expressions for the
extrinsic curvature and the time derivative of the metric hij
in terms of the momenta πij

Kij ¼ 1ffiffiffi
h

p
f

�
πij −

1

2
πhij

�
−
f;φ
2f

A⋆hij; ð21Þ

_hij ¼ Nffiffiffi
h

p
f
ð2πij − πhijÞ − N

f;φ
f

A⋆hij þ 2DðiNjÞ; ð22Þ
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where π ¼ πii is the trace of the canonical momentum.
These can be used to get the canonical Hamiltonian density
of the gravitational part of the theory

Hgrav ¼ _hijπij − Lgrav

¼ N

�
1ffiffiffi
h

p
f

�
πijπij −

1

2
π2
�
−

ffiffiffi
h

p
fR̄

− A⋆
f;φ
f

π −
ffiffiffi
h

p 3f2;φ
2f

A2⋆ þ 2
ffiffiffi
h

p
DiDif

�

− 2NiDjπ
j
i : ð23Þ

On the right-hand side of (23), we have performed a partial
integration with respect to the covariant derivative of the
momentum in the last term. Now, the canonical momenta of
all other fields are derived straightforwardly, resulting in
the following primary constraints

pφ ¼ δL
δ _φ

¼ −
ffiffiffi
h

p
μ; → p̄φ ¼ pφ þ

ffiffiffi
h

p
μ ≈ 0;

p⋆ ¼ δL

δ _A⋆
≈ 0; ð24Þ

pλ ¼
δL

δ_λ
≈ 0; pμ ¼

δL
δ _μ

≈ 0; ð25Þ

πN ¼ δL

δ _N
≈ 0; πi ¼ δL

δ _Ni

≈ 0; ð26Þ

where ≈ denotes weak equalities which are only valid on
the constraint surface of the phase-space [36].
The total Hamiltonian of the theory including the

primary constraints has the following form

HT ¼
Z

d3xðNHþ NiHi þ uλpλ þ u⋆p⋆ þ uφp̄φ

þ uμpμ þ uNπN þ uiπiÞ; ð27Þ

where the so-called Hamiltonian H and the momentum Hi
constraint are

H¼ 1ffiffiffi
h

p
f

�
πijπij −

1

2
π2
�
−

ffiffiffi
h

p
fR̄−A⋆

f;φ
f

π

−
ffiffiffi
h

p 3f2;φ
2f

A2⋆ þ 2
ffiffiffi
h

p
DiDif −

ffiffiffi
h

p
λðA2⋆ −DiφDiφ− 1Þ

þ
ffiffiffi
h

p
VðφÞ þpφA⋆; ð28Þ

Hi ¼ −2Djπ
j
i þ pφDiφþ p⋆DiA⋆ þ pλDiλþ pμDiμ:

ð29Þ

Note that the last three terms inHi vanish separately on the
constraint surface (24)–(26), but we keep them in this form

since it elucidates their role as generators of the spatial
transformations of the corresponding fields.
As the next step, as usual, we should require the time

conservation of the primary constraints. The time conser-
vation of πN and πi yields

_πN ¼ fπN;HTg ¼ H ≈ 0; _πi ¼ fπi; HTg ¼ Hi ≈ 0;

ð30Þ

as the conventional secondary constraints inherent to
diffeomorphism-invariant gravity theories. The time con-
servation of pλ and p⋆ leads to two additional secondary
constraints

_pλ ¼ fpλ; HTg ¼ N
ffiffiffi
h

p
ðA2⋆ −DiφDiφ − 1Þ≡ NCλ ≈ 0;

ð31Þ

_p⋆ ¼ fp⋆; HTg

¼ N

�
f;φ
f

π þ 3
ffiffiffi
h

p f2;φ
f

A⋆ þ 2
ffiffiffi
h

p
λA⋆ − pφ

�
≡ NC⋆ ≈ 0; ð32Þ

while the time conservation of pμ and p̄φ fixes the values of
Lagrange multipliers uφ and uμ in terms of other fields and
does not give rise to the secondary constraints. The time
conservation of the constraints Cλ and C⋆ fixes the values
of the Lagrange multipliers u⋆ and uλ, and also does not
produce new constraints.
Introducing the smeared Hamiltonian and momentum

constraint

H½ξ�≡
Z

d3xξH; ð33Þ

D½ξi�≡
Z

d3xξiHi; ð34Þ

(where ξðxÞ and ξiðxÞ are generic functions), one can
straightforwardly check that they generate the usual hyper-
surface deformation algebra of general relativity

fD½ξi�; D½ζj�g ¼ D½Lξiζ
j�;

fD½ξi�; H½ξ�g ¼ H½Lξiξ�;
fH½ξ�; H½ζ�g ≈D½hijðξ∂iζ − ζ∂iξÞ�; ð35Þ

where Lξi is the Lie derivative along the vector field ξi.
All in all, the constraints (24)–(26), (30), (31), and (32)

form the full set of the constraints of the system and split
into the first and second-class ones, as follows. The eight
constraints

πN; H; πi; Hi ð36Þ
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are of the first class, and the six constraints

p̄φ; p�; pλ; pμ; Cλ; C� ð37Þ

are of the second class. Note that the constraints pλ and Cλ

are associated with the mimetic matter constraint in the
Lagrangian. So, as expected in the formulation under
consideration, one does not have an extra first class
constraint which would appear in the Hamiltonian analysis
of the Weyl-invariant formulation of mimetic gravity, but
the two second-class constraints.
The second-class constraints can be regarded to be

satisfied in the strong sense, i.e., they can be solved to
express certain phase-space variables in terms of others. For
this to be consistent with the rules of the Hamiltonian
analysis, one should pass from the Poisson to the Dirac
brackets [36].
Let us briefly discuss the structure of the Dirac brackets.

The Dirac brackets between two phase-space functions
A and B are defined as

fA;BgD ¼ fA;Bg −
X
I;J

fA;CIgðΩ−1ÞIJfCJ; Bg; ð38Þ

where CI are the second-class constraints and

ΩIJ ¼ fCI; CJg: ð39Þ

Note that the Dirac brackets of the second-class constraints,
with any function of the dynamical variables, are identi-
cally zero. Hence, the second-class constraints which have
been used to construct the Dirac brackets are effectively
strongly zero.
Let us first make strongly zero the pair of constraints

ðp̄φ; pμÞ. Their Poisson bracket is

Ω ¼ fp̄φ; pμg ¼
ffiffiffi
h

p
; ð40Þ

and pμ Poisson-commutes with all the other constraints and
dynamical variables, except for μ. Therefore, the Dirac
brackets constructed with (40) of the phase-space functions
which do not depend on ðp̄φ; pμÞ are equal to their Poisson
brackets, and we can strongly set pμ ¼ 0 and μ ¼ − 1ffiffi

h
p pφ.

Thus, we are left with the four second-class constraints
pλ, p⋆, Cλ and C⋆. The corresponding matrix (39) has the
following schematic form,

ΩIJ ¼

0
BBBBB@

0 0 0 A

0 0 B C

0 −B 0 D

−A −C −D 0

1
CCCCCA; ð41Þ

and its inverse is

ðΩ−1ÞIJ ¼

0
BBBBB@

0 − D
AB

C
AB − 1

A
D
AB 0 − 1

B 0

− C
AB

1
B 0 0

1
A 0 0 0

1
CCCCCA: ð42Þ

Computing the Poisson brackets between the phase-space
variables φ, pφ, hij, πij and the constraints CJ

fpφ; CJg ¼ ð0; 0;⋆;⋆Þ; fhij; CJg ¼ ð0; 0; 0;⋆Þ;
fφ; CJg ¼ ð0; 0; 0;⋆Þ; fπij; CJg ¼ ð0; 0;⋆;⋆Þ;

where ⋆ stands for any nonweakly vanishing function, we
find that the Dirac brackets between the phase-space
variables φ, pφ, hij, πij coincide with their Poisson brackets
f; gD ¼ f; g. Hence, we can safely put all the second-class
constraints to be strongly zero, without modifying the
commutation properties of the rest of the dynamical
variables.
Having identified the number and the nature of the

Hamiltonian constraints, we are now in a position to
calculate the number of physical d.o.f. in our model. We
have 2 × 14 ¼ 28 canonical variables (2 × 10 ¼ 20 asso-
ciated with the gravitational field and 2 × 4 ¼ 8 associated
with the mimetic scalar φ, the auxiliary field A� and the
Lagrange multipliers μ and λ). The 8 first-class constraints
remove 16 canonical variables, and the 6 second-class
constraints remove another 6. So we are left with 6
Hamiltonian d.o.f., or 3 Lagrangian d.o.f., two of which
are physical modes of the gravitational field and one is the
mimetic scalar mode. This is in agreement with the results
of [7,13].

C. Stability analysis

D. Hamiltonian without the mimetic constraint

It is instructive to first look at the form of the
Hamiltonian without the mimetic constraint. In this case,
we do not have the canonical variables λ and pλ and
consequently the two second-class constraints pλ and Cλ

are absent. The second-class constraints are p⋆ ≈ 0 and
C⋆ ≈ 0. We can consider them satisfied in the strong sense
and solve C⋆ ¼ 0 for A⋆

A⋆ ¼
�
pφ −

f;φ
f

π

�
1

3
ffiffiffi
h

p f
f2;φ

: ð43Þ

Inserting this back into the Hamiltonian, we get
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H¼ 1ffiffiffi
h

p
f

�
πijπij−

1

2
π2
�
−

ffiffiffi
h

p
fR̄þ2

ffiffiffi
h

p
DiDifþ

ffiffiffi
h

p
VðφÞ

þ 1ffiffiffi
h

p 1

6f

�
π−

f
f;φ

pφ

�
2

: ð44Þ

Due to the time-reparametrization invariance, the
Hamiltonian is weakly zero. So to describe nontrivial field
configurations, the different contributions to the Hami-
ltonian cannot be all positive definite. However, for a stable
theory, each term should be bounded from below which
requires that f > 0, and VðφÞ andDiDif are bounded from
below, otherwise, for instance, the term DiDif might be a
source of gradient instabilities.3

Note that the first and the second term in (44) are not
positive definite. So, even if the above constraints on f and
VðφÞ are satisfied, one should still check that for the classical
solutions the Hamiltonian does not exhibit instabilities. The
positive energy theorem for general relativity, f ¼ 1=2,
V ¼ 0, indeed states that for asymptotically flat spacetimes
the total energy (ADM-mass) is positive (or zero for a flat
spacelike hypersurface) as long as the energy-momentum
tensor fulfills the dominant energy condition [37,38].

E. Hamiltonian with the mimetic constraint

Now, let us consider the theory with the mimetic
constraint. Assuming that the second-class constraints
p⋆, C⋆, pλ and Cλ are satisfied in the strong sense one
solves the constraint Cλ for A⋆ and C⋆ for λ getting

A⋆ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DiφDiφþ 1

q
; ð45Þ

λ ¼ 1

2A⋆
pφffiffiffi
h

p −
3

2

f2;φ
f

−
1

2A⋆
f;φ
f

πffiffiffi
h

p : ð46Þ

Upon inserting these expressions into the Hamiltonian
constraint we obtain

H¼ 1ffiffiffi
h

p
f

�
πijπij−

1

2
π2
�
−

ffiffiffi
h

p
fR̄þ2

ffiffiffi
h

p
DiDifþ

ffiffiffi
h

p
VðφÞ

þ
�
pφ−

f;φ
f
π−3

f2;φ
f

ffiffiffi
h

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DiφDiφþ1

q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DiφDiφþ1

q

þ3

2

f2;φ
f

ffiffiffi
h

p
ðDiφDiφþ1Þ; ð47Þ

where the positive solution for A⋆ was used. The choice of
the negative sign in (45) would lead to the same conclusion

about the positive definiteness of the mimetic matter
contribution into the Hamiltonian [7].
Comparing the Hamiltonian (47) with that of the non-

mimetic model (44) we see that the first four terms are
the same, but, instead of the quadratic term with the
difference of the two momenta, now there is the term
3
2

f2;φ
f

ffiffiffi
h

p ðDiφDiφþ 1Þ which is positive if f > 0 and there
are terms linear in the momenta pφ and π.
The term linear in the momentum pφ is expected since it

yields the equation of motion of φ subject to the mimetic
constraint. The presence of this term may generate a ghost
instability since the Hamiltonian is not necessarily bounded
from below. There is an instability if the term linear in the
momenta can evolve from positive values to negative ones
and eventually reach minus infinity.
Using Eqs. (45) and (46) we see that the term in question

is of the form 2λ
ffiffiffi
h

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DiφDiφþ 1

p
. Therefore, for the

mimetic part of the Hamiltonian to be bounded from below
λ should be non-negative. This condition has already been
obtained for the original mimetic dark matter model (with
f ¼ 1

2
) in [5,7]. Here, we have shown that it is valid for a

more general mimetic scalar-tensor theory as well.

F. Discussion

The choice of the condition λ > 0 can be understood by
directly looking at the action. If λ were negative, the field φ
would have the wrong (ghostlike) sign of its kinetic term.
In order to better understand the dynamics of λ and see

whether it may change sign with time evolution, let us
consider the case of the mimetic dark matter with f ¼ 1=2
and V ¼ 0 in (11). In this case, λ is interpreted as the dark
matter density, and its negative value would be unphysical.
In [7], it was argued that, even for the simple mimetic dark
matter model, the initial condition λ > 0 might not be
preserved in time, since there may exist solutions such that
λ evolves from positive to negative values and eventually
reaches minus infinity. This would mean that the theory
becomes unstable.
Let us elaborate on this issue. In the mimetic dark matter

model, there exists a conserved Noether current associated
with shift-symmetry φ → φþ const

∂μJμ ≡ ∂μð
ffiffiffiffiffiffi
−g

p
λgμν∂νφÞ ¼ 0: ð48Þ

If we fix the general coordinate invariance by imposing a
so-called unitary gauge φ ¼ t and Ni ¼ 0, in which
N2 ¼ 1, due to the mimetic constraint, Eq. (48) reduces to

∂tð
ffiffiffi
h

p
λÞ ¼ 0; ð49Þ

whose solution is

ffiffiffi
h

p
λ ¼ pφ=2 ¼ CðxiÞ: ð50Þ

3Note that the stability criteria here are actually similar to those
dynamical systems without reparametrization invariance for
which the total Hamiltonian is conserved, i.e., constant in time.
Namely, as it is done in the Ostrogradski ghost analysis, one
checks whether or not each of the different contributions to the
Hamiltonian (whose sum is constant) may tend to �∞.
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Therefore, the sign of λ is fixed by the choice of the value of
CðxiÞ at the initial Cauchy surface, which should be non-
negative by the stability requirement. Equivalently, the time
conservation of pφ could be directly obtained from the
Hamiltonian equation for pφ in this gauge. Physically it can
be interpreted as the conservation of the energy of the dark
matter. We conclude that in the unitary gauge the mimetic
dark matter contribution is bounded from below ifffiffiffi
h

p
λ ¼ CðxiÞ ≥ 0. This is consistent with the results of

[39,40], where the authors used the unitary gauge for
deriving a positive definite physical Hamiltonian.
Now, since under the diffeomorphisms λ transforms as a

scalar λ0ðx0Þ ¼ λðxÞ and in the gauge φ ¼ t and Ni ¼ 0 the
sign of λ is appropriately fixed and does not change in time,
we conclude that λ remains positive or negative for any
choice of gauge. In other words, once we found the initial
conditions for λ be positive in the given gauge, these will
determine the allowed choice of the initial conditions in the
other gauges.
In a generic mimetic gravity model with fðφÞ ≠ 1=2 and

VðφÞ ≠ 0, the shift-symmetry is broken, and there is no
conserved Noether current which ensures that the sign of λ
is fixed in time. As was argued in [7], there may exists
initial configurations that would make λ to evolve to
negative values. In order to avoid instabilities in the generic
case, one can, from the beginning, restrict λ to have non-
negative values by defining it, e.g., as λ ¼ eλ̂.4 Note,
however, that as in the case of the Hamiltonian (44) of
the GR plus conventional matter, the first two terms of (47)
are not positive definite. So the condition λ > 0 does not
a priori guarantee the absence of instabilities if, e.g., the
positive energy theorem of GR does not apply.

G. Presence of external matter

Indeed, the presence of instabilities in mimetic gravity
for linear perturbations around the FLRW background was
discussed in [13,14,17–20]. In particular, in [13,14] it was
argued that the introduction of additional (conventional)
matter into mimetic Horndeski-like theories make them
unstable around the FLRW background.
In this respect, it is useful to analyze, in the presence of

matter, the properties of the full nonlinear Hamiltonian
associated with the mimetic systems considered in [13,14].
To this end, let us add to the mimetic action (11) a perfect
fluid action [42]

Sm ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
PðYÞ≡

Z
d4x

ffiffiffiffiffiffi
−g

p ð−1=2gμν∂μη∂νηÞα;

ð51Þ

where Y ≡ −1=2gμν∂μη∂νη and α ¼ ð1þ ωÞ=ð2ωÞ fixes
the equation of state which describes the ratio between the
density ρ and the pressure p of the perfect fluid, p ¼ ωρ.
For simplicity, in the following analysis we will set α ¼ 1,
which describes stiff matter with an equation of state
ω ¼ 1, and later comment on the case of a generic α.
The contribution to the mimetic Hamiltonian [Eqs. (28) and
(29)] of the matter part has the following form

Hη ¼
Z

d3xðNHη þ NiHi
ηÞ; ð52Þ

where

Hη ¼
1

2

p2
ηffiffiffi
h

p −
1

2

ffiffiffi
h

p
hij∂iη∂jη; ð53Þ

Hi
η ¼ pηhij∂jη: ð54Þ

So that the total Hamiltonian and momentum constraint
become

Htot ¼ HþHη; ð55Þ

Hi
tot ¼ Hi þHi

η: ð56Þ

The structure of the constraints Cλ and C⋆ [Eqs. (31) and
(32)] does not change since the matter is minimally coupled
to the metric and not to the field φ. From the physical point
of view, a coupling between the scalar field φ and the
conventional matter would introduce interactions between
the standard-model particles and the cold dark matter,
which have not been observed so far and are normally not
considered in the literature.
It is straightforward to see that the usual hypersurface

deformation algebra (35) is still fulfilled. There is now one
additional d.o.f. due to the matter fluid as in the case of
standard GR. Solving again the second-class constraints
one gets the Hamiltonian constraint in the following form

H ¼ 1ffiffiffi
h

p
f

�
πijπij −

1

2
π2
�
−

ffiffiffi
h

p
fR̄þ 2

ffiffiffi
h

p
DiDif

þ
ffiffiffi
h

p
VðφÞ þ 1

2

p2
ηffiffiffi
h

p þ 1

2

ffiffiffi
h

p
hij∂iη∂jη

þ
�
pφ −

f;φ
f

π −
3

2

f2;φ
f

ffiffiffi
h

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DiφDiφþ 1

q �

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DiφDiφþ 1

q
: ð57Þ

The restriction λ > 0 [see Eq. (46)] again ensures that the
contribution of the mimetic matter to the Hamiltonian is
bounded from below and the presence of matter does not
change this property.

4Another possibility is to replace λ with λ2 as was considered
by [41] who, in addition, promoted λ to a dynamical field for
obtaining a caustic free completion of pressureless perfect fluid
and k-essence models.
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The above analysis can be extended to a more general
case with α ≠ 1. In general, the derivation of an explicit
form of the Hamiltonian will be more involved, but if
the matter field η is not coupled to the mimetic field φ, the
Hamiltonian of the matter part will never change the
structure of the mimetic Hamiltonian. We will discuss this
more general case for linear perturbations around the
FLRW background.
To summarize, the presence of matter (which does not

directly couple to the mimetic scalar) does not change the
stability requirement λ > 0 of the mimetic-gravity theory.
On the other hand, instabilities may also arise due to the
nonpositive definiteness of the first two terms in the
Hamiltonian (57). This is what happens for linear pertur-
bations around the FLRW background [13,14]. As we will
show, in this case, the instability is caused by a growth of
mimetic dust overdensity and is thus of a Jeans type.

IV. LINEAR ANALYSIS AROUND
THE FLRW BACKGROUND

In this section, we will revisit results of [13,14], where
it was observed (using the unitary gauge φ ¼ t) that,
in the presence of matter, linear perturbations of mimetic
gravity models around the FLRW background have an
Ostrogradski ghost.
Above we have shown that the mimetic matter contri-

bution to the full Hamiltonian of gravity plus matter (57) is
bounded, for λ > 0.
However, the contributions from the pure gravity part are

not necessarily bounded, and one has to check the on-shell
value of the Hamiltonian explicitly. To identify the origin of
the instabilities around the FLRWbackground in themimetic
dark matter model in the presence of matter described by the
generic action (51), wewill derive the corresponding second-
order action and Hamiltonian without gauge fixing local
reparametrization invariance and give the result in terms of
gauge-invariant variables. As a comparison, we present the
results for GR with the same matter fluid.
For simplicity, we only consider linear scalar perturba-

tions around the FLRW background whose metric has the
following form

ds2 ¼ −ð1þ 2ΦÞdt2 þ 2a∂iBdxidtþ a2ðð1 − 2ΨÞδij
þ 2∂i∂jEÞdxidxj; ð58Þ

where aðtÞ is the scale factor and ΦðxÞ, ΨðxÞ, BðxÞ and
EðxÞ are scalar perturbations. We will denote the perturba-
tions of the matter scalar field as δη, while η will stand for
its background value and similar δφ and φ for the mimetic
scalar field.

A. General relativity in the presence of external matter

Before discussing the mimetic matter, it is instructive to
consider just GR with the matter fluid described by the
action (51). By using the background equations,

3H2 ¼ 2α − 1

2α
_η2P0; ð59Þ

3H2 þ 2 _H þ P ¼ 0; ð60Þ

∂
∂t ða

3 _ηP0Þ ¼ 0; → ∂tð_ηP0Þ ¼ −3H _ηP0; ð61Þ

where H ¼ _a=a is the Hubble parameter, we can bring the
second-order action into the form

S ¼
Z

d3xdta3
�
3α _R2 −

3α

ð2α − 1Þa2 ð∂iRÞ2

þ ðα − 1Þ3H2ðΦ̂Þ2 − Φ̂
�
6αH _R −

2ΔB̃
a2

��
; ð62Þ

where we have introduced

Φ̂ ¼ Φþ
_Ψ
H

−
_ηP0

2H
δη; ð63Þ

R ¼ ΨþH
_η
δη; ð64Þ

B̃ ¼ 2Ψþ 2Ha2 _E − 2HaB: ð65Þ

The action (62) has a gauge symmetry under which the
field Ψ gets shifted by an arbitrary function Ψ → Ψþ ϵðxÞ,
while the other fields transform in such a way that the
variables R, B̃, Φ̂, are gauge invariant. Yet, one more local
symmetry shifts the scalar fields E and B as follows E →
Eþ b and B → Bþ a _b. These symmetries can be used to
fix Ψ ¼ 0 and E ¼ 0, without loss of generality.
After solving the EOM for B̃, we obtain

S ¼
Z

d3xdta3
�
3α _R2 −

3α

ð2α − 1Þa2 ð∂iRÞ2
�
: ð66Þ

We can observe that this action leads to a positive definite
second-order Hamiltonian. However, instead of using the
gauge-invariant curvature perturbation R one could equiv-
alently use another gauge-invariant variable

R ¼ zðtÞu; ð67Þ

where zðtÞ is a time-dependent function. In this case, the
second-order action takes the form

S ¼
Z

d3xdta3z2
�
3α _u2 − 3α

∂tða3 _zÞ
a3z

u2

−
3α

ð2α − 1Þa2 ð∂iuÞ2
�
: ð68Þ
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Now, we can observe that, for any function zðtÞ which
fulfills

∂tða3 _zÞ
a3z

< 0; ð69Þ

there is a tachyonlike instability. Indeed, the Hamiltonian
density obtained from (68) has the form

H ¼ a3
�

1

12αz2
p2
u

a6
þ z

∂tða3 _zÞ
a3

u2 þ 3α

2α − 1
z2
ð∂iuÞ2
a2

�
;

ð70Þ

with pu ¼ 6αz2 _u.
The reason of this ambiguity is related to the fact that

the Hamiltonian of a system in a time-dependent back-
ground is not a conserved quantity, and even if it is
positive definite for one choice of phase-space variables,
a time-dependent canonical transformation can make it
unbounded from below. Hence, the stability behaviour
of the system depends, in general, on the choice of
observables (for a more detailed discussion of this issue
see [43]. The tachyonic instability which showed up in the
Hamiltonian (70) could be interpreted as the usual Jeans
instability due to the in-falling matter, which vanishes in the
ultraviolet limit. This is in accordance with a discussion in
[44] that the Jeans instability of standard matter can be
disguised and can be even seen as an infrared ghost
instability, and with the suggestion of [45] to distinguish
the Jeans instability from other (dangerous ghost and
gradient) instabilities by looking at the ultraviolet limit.
In the case of the mimetic matter (“dust”), we will show

that the Jeans instability is seen as a ghost instability at all
scales since there is no scale-dependence (due to vanishing
sound speed).

B. Adding the mimetic matter

Now let us consider the linear perturbations of mimetic
matter in the FLRW background, in the presence of the
same external matter fluid. The background equations take
the form

3H2 ¼ 2α − 1

2α
_η2P0 þ 2λ; ð71Þ

3H2 þ 2 _H þ P ¼ 0; ð72Þ

∂
∂t ða

3λÞ ¼ ∂
∂t ða

3 _ηP0Þ ¼ 0 → ∂tð_ηP0Þ ¼ −3H _ηP0

→ η̈ ¼ −
3

2α − 1
H _η; ð73Þ

and the second-order action for the system under consid-
eration can be written as

S ¼
Z

d3xdta3
�
−3_ξ2 þ 2α − 1

2
P0 _χ2 − 3_ηP0 _ξχ þ ð∂iξÞ2

a2

−
1

2
P0 ð∂iχÞ2

a2
þ ΔB̃

a2
ð2_ξþ _ηP0χÞ

þ Φ̂2

�
−3H2 þ 2α − 1

2
_η2P0 þ λ

�

þ Φ̂
�
−2

Δξ
a2

− 2H
ΔB̃
a2

− 2λδm

þ 6H_ξ − _ηP0ð2α − 1Þ_χ
��

; ð74Þ

where we have introduced the gauge-invariant variables

ξ ¼ −Ψ −Hδφ; δm ¼ δλ

λ
þ 3Hδφ; χ ¼ δη − _ηδφ;

Φ̂ ¼ Φ − δ _φ; B̃ ¼ δφþ aB − a2 _E; ð75Þ

with δm having the physical meaning of dark matter
overdensity.
As for GR and the external matter fluid, in Eq. (62) the

action has two gauge symmetries which can be used to fix
e.g., the unitary gauge δφ ¼ 0 and E ¼ 0 without loss of
generality.
The variation of the action with respect to δm implies that

Φ̂ ¼ 0, while the variation with respect to Φ̂ expresses δm
in terms of other variables

λδm ¼ −
Δξ
a2

−H
ΔB̃
a2

þ 3H_ξ −
1

2
_ηP0ð2α − 1Þ_χ; ð76Þ

where we have used Φ̂ ¼ 0. Therefore, the second line of
the action (74) can be consistently dropped out and we are
left with the action

S ¼
Z

d3xdta3
�
−3_ξ2 þ 2α − 1

2
P0 _χ2 − 3_ηP0 _ξχ þ ð∂iξÞ2

a2

−
1

2
P0 ð∂iχÞ2

a2
þ ΔB̃

a2
ð2_ξþ _ηP0χÞ

�
; ð77Þ

whose form coincides with that derived in [13,14] in the
unitary gauge, but now it is formulated in terms of the
gauge-invariant variables.

1. Pure mimetic matter

Before we derive the Hamiltonian for the general case, it
is instructive to first elaborate on the case of mimetic matter
without the additional matter fluid considered in [6].
In this case, we have one d.o.f. which is, however, not

propagating in the sense that its sound speed is zero.
Indeed, the action (77) reduces to
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S ¼
Z

d3xdta3
�
−3_ξ2 þ 2

ΔB̃
a2

_ξþ ð∂iξÞ2
a2

�
: ð78Þ

The equation of motion of B̃ is

Δ_ξ ¼ 0; ð79Þ

implying that Δξ is time independent, and the equation of
motion of ξ is

Δ∂tðaB̃Þ ¼ 3∂tða3 _ξÞ − aΔξ: ð80Þ

Before doing the Hamiltonian analysis let us integrate by
parts the second term in (78). Then we have

S ¼
Z

d3xdta3
�
−3_ξ2 − 2

_̃B
a2

Δξ − 2HB̃
Δξ
a2

þ ð∂iξÞ2
a2

�
:

ð81Þ

Upon performing the change of variable,

Σ ¼ B̃þ 1

a

�Z
adt

�
ξ ¼ B̃þ 2

5H
ξ; ð82Þ

[where, in the second step, we have used the background
equations to calculate explicitly the integral (a ∝ t2=3)], one
gets the second-order action in the following form:

S ¼
Z

d3xdta3
�
−3_ξ2 − 2

Δξ
a2

_Σ − 2HΣ
Δξ
a2

�
: ð83Þ

From this action, we get the canonical conjugate momenta

pξ

a3
¼ −6_ξ; pΣ ¼ −2aΔξ; ð84Þ

where the latter is the primary constraint. Consequently, the
canonical Hamiltonian density is given by

H ¼ a3
�
−

1

12

p2
ξ

a6
þ 2H

Δξ
a2

Σ
�
; ð85Þ

and the secondary constraint is

CΣ ≡ Δpξ ≈ 0: ð86Þ

Assuming suitable initial conditions for pξ we can solve the
constraints by setting pξ ¼ 0 and pΣ ¼ −2aΔξ. Then the
Hamiltonian reduces to

H ¼ −HpΣΣ: ð87Þ

We have thus arrived at an Ostrogradski term, which
implies that Σ is either a ghost (having a negative kinetic

energy but a positive mass-squared term) or a tachyon
instability. This can be seen by rewriting the Hamiltonian as

H ¼ H
4
½ðpΣ − ΣÞ2 − ðpΣ þ ΣÞ2�: ð88Þ

We can now perform a canonical transformation and call
either the first or the second phase-space variable the new
canonical momentum or, respectively, the coordinate

p ¼ 1ffiffiffi
2

p ðpΣ ∓ ΣÞ; q ¼ 1ffiffiffi
2

p ðΣ� pΣÞ: ð89Þ

Depending on the choice, the Hamiltonian (88) has a
tachyon or a ghost instability. At the free level one cannot
distinguish between the two, since they just correspond to
the canonical transformation which exchanges the role of
the generalized coordinate and the canonical momentum
and leads to the same equations of motion. So, to under-
stand the nature of the instability it is necessary to extend
the consideration to the interacting level. See, for instance,
[46] for a more detailed discussion about the difference of
the ghost and the tachyon instability by considering the
one-particle exchange amplitude and [43] for a general
discussion of ghost instabilities in a similar context.
Solving the Hamiltonian equations of motion

_pΣ ¼HpΣ → pΣ ¼ aC1ðxÞ; _Σ¼ −HΣ→ Σ¼ C̃2ðxÞ
a

;

ð90Þ

using the Eqs. (76), (82), (84) and defining C2ðxÞ≡
2ΔC̃2ðxÞ, we get the expression for the gauge-invariant
matter overdensity δm

δm ¼ −
C1ðxÞ
6H2a2

�
1 −

H
a

Z
da
H

�
−
C2ðxÞ
6Ha3

¼ −
C1ðxÞ
10H2a2

−
C2ðxÞ
6Ha3

: ð91Þ

These are the usual growing and decaying modes as in
GRþ dust, as discussed in [1,6,10]. The growing mode
scales with δm ∼ t2=3 leading to instabilities in the linear
perturbation theory. However, the instability is quite slow.
It can be interpreted as the usual Jeans instability due to the
infalling matter (dust) fitting to our observed tachyon
instability. Further, we can note that the condition for a
positive Lagrange parameter, λþ δλ > 0 or equivalently
δm > −1 (in the unitary gauge), requires the integration
functions C1 and C2 to be negative. However, this does not
remove the growing modes.
Summarizing, even if the necessary condition of the

positive definiteness of the Lagrange multiplier field λ is
satisfied, in the FLRW background the linear fluctuations
of the mimetic matter have a ghost or tachyon instability
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(depending on the choice of phase-space variables), caus-
ing the usual Jeans instability of dust which is unstable at
all scales.

2. Mimetic dark matter in the presence of external matter

By adding the external matter fluid, we get two dynami-
cal d.o.f. From the action (77), we get the canonical
conjugate momenta of ξ and χ

pξ

a3
¼ −6_ξþ 2

ΔB̃
a2

− 3_ηP0χ; ð92Þ

pχ

a3
¼ ð2α − 1ÞP0 _χ; ð93Þ

while the momentum pB ¼ 0 is a primary constraint. Then
the canonical Hamiltonian has the form

H ¼ a3
�
−

1

12

�
pξ

a3
þ 3_ηP0χ

�
2

þ 1

3

pξ

a3
ΔB̃
a2

þ 1

2ð2α − 1ÞP0
p2
χ

a6
−
1

3

�
ΔB̃
a2

�
2

−
ð∂iξÞ2
a2

þ 1

2
P0 ð∂iχÞ2

a2

�
: ð94Þ

Further, the time conservation of the primary constraint
yields the secondary constraint

CB ≡ fpB;Hg ¼ −
2

3

ΔΔB̃
a4

þ 1

3

Δpξ

a5
≈ 0: ð95Þ

The constraints pB and CB are of the second class. Upon
solving the second-class constraints, one can bring the
Hamiltonian to the following form

H ¼ a3
�
−
1

2

_ηP0

a3
pξχ þ

1

2ð2α − 1ÞP0
p2
χ

a6
−
3

4
_η2P02χ2

−
ð∂iξÞ2
a2

þ 1

2
P0 ð∂iχÞ2

a2

�
: ð96Þ

In accordance with the results of [13,47], there is an
Ostrogradski ghost instability due to the first term which
is linear in the momentum pξ.
The Hamiltonian (96) equations of motion are

_ξ ¼ −
1

2
_ηP0χ; ð97Þ

_pξ ¼ −2aΔξ; ð98Þ

_χ ¼ 1

ð2α − 1ÞP0
pχ

a3
; ð99Þ

_pχ ¼
1

2
_ηP0pξ þ

3

2
a3 _η2P02χ þ aP0Δχ: ð100Þ

Using the equations of motion we can express the phase-
space variables in terms of ξ and its time derivatives

χ ¼ −
2

_ηP0 _ξ; ð101Þ

pχ ¼ −
2ð2α − 1Þa3

_η
̈ξ −

6ð2α − 1Þa3H
_η

_ξ; ð102Þ

pξ ¼ −
4ð2α − 1Þa3

_η2P0 ξ
���
− a3

�
24H
_η2P0 ð2α − 1Þ þ 12H

_η2P0

�̈
ξ

þ 4

_η2P0 aΔ_ξ −
�
18H2a3

_η2P0 ð2αþ 1Þ − 3ð4α − 1Þa3
α

�
_ξ:

ð103Þ

These can be used to derive the fourth-order differential
equation for the curvature perturbation ξ

ξ
���
þ ξ

����
12H þ 6H

2α − 1

�
−

Δ ̈ξ
a2ð2α − 1Þ

−
4Hð2α − 1Þ þ 3H

ð2α − 1Þ2
Δ_ξ

a2
−

_η2P0

2ð2α − 1Þ
Δξ
a2

þ ̈ξ
�
9ðð3αþ 2Þð2α − 1Þ þ 1ÞH2

ð2α − 1Þ2 −
3ð4α − 1Þ_η2P0

2ð2α − 1Þα
�

þ _ξ

�
54ðαþ 1ÞH3

ð2α − 1Þ2 −
ð54αþ 9Þ_η2P0H

4ð2α − 1Þα
�

¼ 0: ð104Þ

The same equation can be obtained directly from the
variation of the action (77) and taking into account the
constraint (97).

3. Dispersion relation in the UV-limit

Similar to [48] we use the ansatz

ξðx; tÞ ¼ ξ0e
{ð
R

ωdt−kixiÞ; ð105Þ

where { is the imaginary unit. We are only considering the
ultraviolet limit (UV-limit) in which H, λ, _η ≪ k. Further,
we are assuming that ω evolves very slowly in time and one
can approximate the time evolution by _ω=ω ∼ gðH; _η; λÞ ≪
k in the UV-limit with some arbitrary function g and similar
for higher derivatives. Later, we will check that this
assumption is indeed valid. Using the UV-limit, we can
derive the dispersion relation
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ω4 − 6{ω2 _ω − {ω3
6ð4α − 1ÞH

2α − 1
−
�

k2

a2ð2α − 1Þ þ
9ðð3αþ 2Þð2α − 1Þ þ 1ÞH2

ð2α − 1Þ2 −
3ð4α − 1Þ_η2P0

2ð2α − 1Þα
�
ω2

þ {

�
k2

a2ð2α − 1Þ þ
9ðð3αþ 2Þð2α − 1Þ þ 1ÞH2

ð2α − 1Þ2 −
3ð4α − 1Þ_η2P0

2ð2α − 1Þα
�
_ω

þ {

�
Hð8α − 1Þ
ð2α − 1Þ2

k2

a2
þ 54ðαþ 1ÞH3

ð2α − 1Þ2 −
ð54αþ 9Þ_η2P0H

4ð2α − 1Þα
�
ωþ _η2P0

2ð2α − 1Þ
k2

a2
¼ 0: ð106Þ

We can see that the dispersion relation in the UV-limit has dependence only on ω and its first derivative. Using now
_ω ¼ gðH; _η; λÞω, we can solve the dispersion relation in the UV-limit in powers of k. Since it is a fourth-order polynomial
equation there are four solutions, which split into two propagating modes and two purely damped/growing modes

ω1;2 ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2α − 1

p k
a
þ {

�
H

�
4þ 3

2ð2α − 1Þ
�
þ 5

2
g1;2

�
þOðk−1Þ; ð107Þ

ω3;4 ¼ {
g3;4ð2α − 1Þ þHð8α − 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg3;4ð2α − 1Þ þHð8α − 1ÞÞ2 − 2ð2α − 1Þ2 _η2P0

q
2ð2α − 1Þ þOðk−1Þ: ð108Þ

The unknown function g can be solved iteratively. At k →
∞ for the two propagating “matter” modes we have ω ∝
k=a and hence _ω=ω ¼ g1;2ðH; _η; λÞ ¼ −H, which confirms
our previous assumption that _ω=ω ≪ k in the UV-limit.
It yields

ω1;2 ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2α − 1

p k
a
þ {H

3α

ð2α − 1Þ þOðk−1Þ: ð109Þ

The modes are damped (α > 1, HðtÞ > 0) and propagate
with the sound speed of the matter fluid cm ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2α − 1

p
.

Let us now consider the two nonpropagating “dust”
modes. Now the form of g is already relevant at leading
order, and so the solution is more involved. The leading
order of k is evaluated from the terms of the dispersion
relation which are proportional to k2=a2. For the later
discussion, we do not need the exact relation, but we are
only interested in the main behaviour. Therefore, let us
consider just two specific limits.
At first, let us analyze the case in which the dust

dominates over the external matter fluid, i.e., λ ≫ _η2P0.
From the dispersion relation, we can directly evaluate that
one solution is trivial (zero) and another one is
_ω=ω ¼ g3;4ðH; λÞ ¼ _H=H ≃ −3H=2, thus resulting in

ωdust
3;4 ¼ {

Hð10αþ 1Þ �Hð10αþ 1Þ
4ð2α − 1Þ þOðk−1Þ: ð110Þ

In regimes in which the dust dominates, one of the dust
modes is constant while the other one is purely damped.
As another limit let us now consider the regime in which

the external fluid dominates, i.e., _η2P0 ≫ λ. In this limit, the

background equation reduces to _η2P0 ∝ H2, implying that
_ω=ω ¼ g3;4ðH; λÞ ¼ _H=H ≃ −3αH=ð2α − 1Þ and hence

ωext
3;4 ¼ {

Hð5α − 1Þ �Hðαþ 1Þ
4ð2α − 1Þ þOðk−1Þ: ð111Þ

Now both modes are purely damped. As for the matter
modes, ω slowly evolves in time with _ω=ω ∝ H ≪ k in the
UV-limit, in accordance with our assumption.
Summarizing, we can conclude that in both limits the

two dust modes are nonpropagating and are just purely
damped or constant. However, even if the curvature
perturbation is linearly stable, this does not imply that
there are no linear instabilities for all physical observables.
One can straightforwardly check that the constant dust
mode in the dust domination phase leads to a growing
matter overdensity mode δm, as in the case without
external matter.
As a next step, we should look at the properties of the on-

shell Hamiltonian for the different modes independently.
Considering only the terms with the highest power of k,
we obtain the on-shell Hamiltonian for the two matter
modes (109)

Hω1;2
on−Shell ≃ a3

�
−

2

_η2P0
ð∂i

_ξÞ2
a2

þ 6ð2α − 1Þ
_η2P0 ̈ξ2

�

¼ 8k4

að2α − 1Þ_η2P0 ξ
2; ð112Þ

which is positive definite. On the other hand, the on-shell
Hamiltonian for the two nonpropagating dust modes (108)
in the UV-limit is given by
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Hω3;4
on−Shell ≃ a3

�
4

_η2P0
Δ_ξ

a2
_ξ −

ð∂iξÞ2
a2

þ 2

_η2P0
ð∂i

_ξÞ2
a2

�

≃ −a3
�
−

2

_η2P0
ð∂i

_ξÞ2
a2

−
ð∂iξÞ2
a2

�

≃ ak2ξ2
�
−1 −

2ð{ω3;4Þ2
_η2P0

�
: ð113Þ

The on-shell Hamiltonian is negative definite, as long as
ω3;4 is purely imaginary in the UV-limit, which we have
explicitly checked for both the limits of dust and external
matter domination.
Summarizing, there are two damped propagating modes

with the usual sound speed of the matter fluid, and there are
two purely damped nonpropagating modes representing the
dust. While the propagating modes have a positive definite
on-shell Hamiltonian, the two dust modes have a negative
definite ghostlike Hamiltonian.
At the classical level, there are no linear instabilities for

the curvature perturbation. However, for instance, the dust
matter overdensity δm has an unstable mode, which grows
as a power-law in time for the constant dust mode in the
matter domination phase. Further, the nonpropagating
ghost modes from the dust can be problematic if we take
into account higher-order interaction terms, since, as
discussed e.g., in [49] the (in)stability may depend on
the values of the interaction coupling constants. Such an
analysis is beyond the scope of this paper.
We have thus elaborated on previous results of [13,14]

and have found that the presence of matter does not revive
dynamical ghost modes (at least in the UV limit). The ghost
modes are nonpropagating (with zero sound speed) and are
associated with the mimetic matter itself, as in the case in
which the conventional scalar fluid is absent. As discussed
in Sec. IVB1, these ghost/tachyon modes cause the usual
Jeans instability of dust.

V. MIMETIC GRAVITY WITH HIGHER-
DERIVATIVE TERMS

The observed constraints on the speed of gravitational
waves have banned the presence of any higher-derivative
term in the theory except for Fð□φÞ terms [31]. Therefore,
as outlined in Sec. II, we would also like to study the
stability properties of mimetic gravity models containing
this type of terms.
The Hamiltonian analysis of mimetic gravity with a

generic term Fð□φÞ in the action has been carried out in
[12,25]. However, since it is only possible to write down the
Hamiltonian implicitly in terms of a general inverse
function of F, it is quite involved to analyze its stability
properties. So in what follows we will restrict our consid-
eration to the stability analysis of the case Fð□φÞ ¼ ð□φÞ2
described by the action (12). Details of the calculations are

given in the appendix A and we mention here just the
main results.
The action (12) can be recast into an equivalent second-

order form by introducing two scalar fields ϵðxÞ and χðxÞ:5

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ

Z
d4x

ffiffiffiffiffiffi
−g

p ðGðφÞχ2 þ ϵðχ −□φÞ

− λðgμν∂μφ∂νφþ 1ÞÞ;

¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ

Z
d4x

ffiffiffiffiffiffi
−g

p ðGðφÞχ2 þ ϵχ

þ gμν∂μϵ∂νφ − λðgμν∂μφ∂νφþ 1ÞÞ: ð114Þ

The Hamiltonian and the momentum constraint have the
following form

H ¼ Hgr − λ
p2
ϵffiffiffi
h

p −
pϵpφffiffiffi

h
p þ λðhij∂iφ∂jφþ 1Þ

−
ffiffiffi
h

p
GðφÞχ2 −

ffiffiffi
h

p
ϵχ −

ffiffiffi
h

p
hij∂iϵ∂jφ; ð115Þ

Hi ¼ Hgr;i þ pφ∂iφþ pϵ∂iϵþ pλ∂iλþ pχ∂iχ; ð116Þ

where Hgr and Hgr;i are the usual Hamiltonian and
momentum constraint of GR. Together with πN and πi
they form the set of eight first class constraints. Further,
there are six second-class constraints

pλ ≈ 0; ð117Þ

pχ ≈ 0; ð118Þ

Cð1Þ
λ ¼

�
−

ffiffiffi
h

p
ðhij∂iφ∂jφþ 1Þ þ p2

ϵffiffiffi
h

p
�
≈ 0; ð119Þ

Cχ ¼
ffiffiffi
h

p
ð2GðφÞχ þ ϵÞ ≈ 0; ð120Þ

Cð2Þ
λ ¼

�
−

pϵϵ

GðφÞ − 2
pϵffiffiffi
h

p ∂ið
ffiffiffi
h

p
hij∂jφÞ

þ 2
ffiffiffi
h

p
hij∂iφ∂j

�
pϵffiffiffi
h

p
�
þ 4πij∂iφ∂jφþ 2π

�
≈ 0;

ð121Þ

5Alternatively, one could rewrite (114) by introducing only one
auxiliary scalar field instead of two as follows GðφÞð□φÞ2 →
GðφÞð2χ□φ − χ2Þ.
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Cð3Þ
λ ¼ pϵðpφ þ 2λpϵÞffiffiffi

h
p

�
1

GðφÞ− 3

�
þ ϵχ

ffiffiffi
h

p �
3−

1

GðφÞ
�

þ 1

2

ffiffiffi
h

p
R̄−

ffiffiffi
h

p
ϵ
G0ðφÞ
G2ðφÞ þ 3

ffiffiffi
h

p
χ2GðφÞ

− 3
π2ffiffiffi
h

p þ 6
πijπijffiffiffi

h
p þVð∂iφ; hij;πij; λ;pφ;φ; ϵ; pϵ;χÞ;

ð122Þ

where in the last constraint we have collected in
Vð∂iφ; hij; πij; λ; pφ;φ; ϵ; pϵ; χÞ all the terms depending
on the spatial derivatives of φ, whose explicit form is given
in (A13). Therefore, the model has three d.o.f. one of which
is that of the mimetic field φ. We see that the higher-
derivative term does not introduce an extra d.o.f., as was
shown in [12,13,25].6 The question is whether the mimetic
constraint can cure the instability of the higher-derivative
theory. So, before discussing the stability conditions for the
mimetic theory it is useful to have a look at the original
theory without the mimetic constraint.

A. Hamiltonian without the mimetic constraint

In this case, we have eight first-class constraints and two
second-class ones:

pχ ≈ 0; Cχ ¼
ffiffiffi
h

p
ð2GðφÞχ þ ϵÞ ≈ 0: ð123Þ

Therefore, we now have four d.o.f. due to the higher-
derivative term. The extra d.o.f. is expected to be an
Ostrogradski ghost. Indeed, after solving the second-class
constraints we get the following Hamiltonian

H ¼ Hgr þ
1

4

ffiffiffi
h

p ϵ2

GðφÞ −
pϵpφffiffiffi

h
p − hijDiφDjϵ: ð124Þ

In this Hamiltonian, in general, the last two terms are not
bounded from below and may cause ghost and gradient
instabilities.

B. Hamiltonian with the mimetic constraint

Now, solving the second-class constraints (118)–(120),
one observes that the following conditions remove ϵ and pϵ

as independent phase-space variables

pϵ ¼ �
ffiffiffi
h

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hij∂iφ∂jφþ 1

q
; ð125Þ

χ ¼ −
ϵ

2GðφÞ ; ð126Þ

ϵ¼� 2GðφÞffiffiffi
h

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hij∂iφ∂jφþ1

q ð�
ffiffiffi
h

p
hij∂iφ∂j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hij∂iφ∂jφþ1

q

þ2πij∂iφ∂jφþπÞ−2
GðφÞffiffiffi

h
p ∂ið

ffiffiffi
h

p
hij∂jφÞ; ð127Þ

while the constraint (122) produces (with the use of the
above expressions and choosing there, for convenience, the
negative sign) the relation between λ amd pφ

2
ffiffiffi
h

p
λ ¼ pφ þ

GðφÞ
3GðφÞ − 1

�
1

2

ffiffiffi
h

p
R̄ −

π2ffiffiffi
h

p ð3GðφÞ þ 1Þ

þ 6
πijπijffiffiffi

h
p þ 2

G0ðφÞ
GðφÞ π

�
þ Ṽð∂iφ; hij; πij; λ; pφ;φÞ; ð128Þ

where we again collected all the terms containing the
derivatives of φ into Ṽð∂iφ; hij; πij; λ; pφ;φÞ. Now
inserting the above expressions into the Hamiltonian
(115) we get

H ¼ Hgr þ
1

4

ffiffiffi
h

p ϵ2ðπij;φ; hijÞ
GðφÞ þ pφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hij∂iφ∂jφþ 1

q

þ
ffiffiffi
h

p
hkl∂kφ∂l

"
2GðφÞffiffiffi

h
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hij∂iφ∂jφþ 1
q ð−

ffiffiffi
h

p
hij∂iφ∂j

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hij∂iφ∂jφþ 1

q
þ 2πij∂iφ∂jφþ πÞ

þ 2GðφÞffiffiffi
h

p ∂ið
ffiffiffi
h

p
hij∂jφÞ

#
: ð129Þ

The second term is bounded from below if GðφÞ > 0. At
the same time, as in the scalar mimetic models considered
in Sec. III, one observes in (129) the presence of the
characteristic term linear in pφ. However, in contrast to the
similar term in Eq. (47) which is proportional to λ and is
positive definite if λ > 0, now we have pφ which is not
positive definite, as one can see from the structure of the
relation (128). Hence the linear term in the Hamiltonian
(129) is, in general, not bounded from below.
In summary, we conclude that, in general, the mimetic

model described by the action (12) has three d.o.f., but may
have ghost or gradient instabilities, in agreement with the
results of [13,14,17–20], where this issue was discussed
using linear perturbations around the FLRW background.

6A comment here is in order. As one can see from Eq. (121),
the model has a singular point GðφÞ ¼ 1

3
(observed and discussed

in detail e.g., in [25]), in which the first two terms vanish. This
results in the fact that in homogeneous backgrounds in which φ is
identified with the time flow (φ ¼ t) the number of the d.o.f. in
this model reduces from three to two. We will not elaborate on
this issue here and assume that GðφÞ ≠ 1

3
.
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VI. MIMETIC f ðRÞ GRAVITY

The mimetic fðRÞ gravity is broadly discussed in the
literature [8,50–55]. Its action can be written in the
following form

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ −

Z
d4x

ffiffiffiffiffiffi
−g

p ðλðgμν∂μφ∂νφþ 1Þ

þ VðφÞÞ: ð130Þ

There are several ways to derive the Hamiltonian of the
fðRÞ theory, which are equivalent up to canonical trans-
formations (see [26] for a detailed discussion). Here, we
rewrite the action as that of a scalar-tensor theory, by
introducing two extra scalar fields χðxÞ and μðxÞ

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½fðχÞ þ μðR − χÞ�

−
Z

d4x
ffiffiffiffiffiffi
−g

p ðλðgμν∂μφ∂νφþ 1Þ þ VðφÞÞ: ð131Þ

After the usual foliation of spacetime, one gets the
following Hamiltonian and momentum constraint (see
Appendix B for details)

H ¼ Hgrav þHφ;

where

Hgrav ¼
2ffiffiffi
h

p
μ

�
πijπij −

1

2
π2
�
þ 1

3
ffiffiffi
h

p
μ
ðμpμ − πÞ2

−
1

2

ffiffiffi
h

p
μR̄þ 1

2

ffiffiffi
h

p
μχ −

1

2

ffiffiffi
h

p
fðχÞ þ

ffiffiffi
h

p
DaDaμ;

ð132Þ

and

Hφ ¼ p2
φ

4
ffiffiffi
h

p
λ
þ

ffiffiffi
h

p
λðhij∂iφ∂jφþ 1Þ þ VðφÞ; ð133Þ

and

Hi ¼ −2Djπ
ij þ pμ∂iμþ pχ∂iχ þ pφ∂iφþ pλ∂iλ:

ð134Þ

We have the usual eight (gravity) first-class constraints πN ,
H, πi and Hi, and four second-class constraints

pχ ≈ 0; Cχ ¼
ffiffiffi
h

p
ðμþ f0ðχÞÞ ≈ 0; pλ ≈ 0;

Cλ ¼ −
p2
φ

4
ffiffiffi
h

p
λ2

þ
ffiffiffi
h

p
ðhij∂iφ∂jφþ 1Þ ≈ 0; ð135Þ

Therefore, we obtain the expected result that the theory has
four d.o.f.
Upon solving the second-class constraints we get the

following Hamiltonian

H ¼ Hgrav þHφ ¼ Hgrav þ pφ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hij∂iφ∂jφþ 1

q
þ VðφÞ;

ð136Þ

which, as in previous cases, has a term linear in

pφ ¼ 2λ
ffiffiffi
h

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hij∂iφ∂jφþ 1

q
. Again, requiring that λ > 0

we ensure that the mimetic scalar field part of the
Hamiltonian is bounded from below. In addition to this
mimetic constraint, one has the usual stability conditions on
the fðRÞ gravity theory, which remain unaltered.
Note, that the gravity part of the Hamiltonian (132) is

equivalent to the Hamiltonian of the scalar-tensor theory
(44) with the identifications

f̃ðμÞ ¼ μ

2
; ṼðμÞ ¼ 1

2
μχðμÞ − 1

2
μfðχðμÞÞ; ð137Þ

where χðμÞ is the formal solution of the second class
constraint Cχ for χ in terms of the scalar field μ. This
confirms the well-known relation between standard fðRÞ
gravity and a scalar-tensor theory.
From the above consideration, one can easily conclude

that the obtained results can be generalized to any scalar-
vector-tensor theory of the form

S ¼ Sðgμν; χ1;…; χn; A
μ
1;…; Aμ

mÞ

−
Z

d4x
ffiffiffiffiffiffi
−g

p ðλð∂μφ∂μφþ 1Þ þ VðφÞÞ; ð138Þ

where χn and Aμ
m are scalar and vector fields which are not

directly coupled to the mimetic scalar φ.
The Hamiltonian of this model has a form similar to

(136). Hence, the stability requirements for the initial fðRÞ
theory without the mimetic field remain unaltered by the
presence of the latter, if λ > 0.

VII. CONCLUSIONS

In this paper, we have carried out the stability analysis of
the full Hamiltonian for several mimetic gravity models.
The mimetic contribution to the Hamiltonian of the most
general mimetic scalar-tensor theory, restricted to a healthy
primary seed action compatible with the constraint that the
speed of gravitational waves equals the speed of light [31],
has been shown to be free of any dangerous instability, if
the mimetic energy-density field λ is positive definite
λ > 0. This is in agreement with the results of [5,7] for
the original mimetic dark matter model, in which case, as
we have shown, the shift-symmetry of the mimetic scalar
field φ ensures that the sign of λ is not changed in time.
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In general, one should a priori impose the condition λ > 0
into the mimetic action. We have also discussed the role of
conventional matter for the stability of the mimetic scalar-
tensor theory. Using the example of a fluid, we have shown
that the necessary stability condition λ > 0 of the mimetic
gravity also persists in the presence of matter, at least if it
does not mix with the mimetic sector. However, in general,
the gravity part of the Hamiltonian is not bounded from
below and can lead to instabilities if the Positive Energy
Theorem of GR does not apply.
The same result also applies to mimetic fðRÞ gravity,

which is healthy, if the usual stability conditions of the
standard fðRÞ gravity are assumed and λ > 0.
In contrast, if we add mimetic matter to an unhealthy

seed action, the resulting mimetic gravity theory remains,
in general, unstable. As an example, we have considered a
scalar-tensor theory with a single higher-derivative term
ð□φÞ2, which contains an Ostrogradski ghost. The addition
of the mimetic constraint on φ eliminates one d.o.f., as
discussed by [12,13], however, the mimetic theory contains
instabilities anyway.
We have also revisited results of [13,14] regarding

stability issues of linear perturbations around the FRLW
background of the mimetic dark matter in the presence of
scalar matter. We have found that the presence of conven-
tional matter does not revive dynamical ghost modes (at
least in the UV limit). The modes with nonpositive
Hamiltonian are nonpropagating (with zero sound speed)
and are associated with the mimetic matter itself, as in the
case in which the conventional scalar fluid is absent. These
ghost/tachyonlike modes cause the usual Jeans instability
of dust. To trace the fate of this instability one should go to
the interaction level, which is beyond the scope of
this paper.
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APPENDIX A: CALCULATIONS FOR MIMETIC
GRAVITY WITH HIGHER-DERIVATIVE TERMS

The starting action is

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ

Z
d4x

ffiffiffiffiffiffi
−g

p ðGðφÞð□φÞ2

− λðgμν∂μφ∂νφþ 1ÞÞ: ðA1Þ

Using the notation from [12], this can be rewritten as

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ

Z
d4x

ffiffiffiffiffiffi
−g

p ðGðφÞχ2 þ ϵðχ −□φÞ

− λðgμν∂μφ∂νφþ 1ÞÞ

¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ

Z
d4x

ffiffiffiffiffiffi
−g

p ðGðφÞχ2 þ ϵχ

þ gμν∂μϵ∂νφ − λðgμν∂μφ∂νφþ 1ÞÞ: ðA2Þ

The ADM decomposition yields

L ¼ N
ffiffiffi
h

p �
1

2
ðKijKij − K2 þ R̄Þ − λð−∇nφ∇nφ

þ hij∂iφ∂jφþ 1Þ þ GðφÞχ2

þ ϵχ −∇nϵ∇nφþ hij∂iϵ∂jφ

�
; ðA3Þ

where we used the notation ∇nφ ¼ ð _φ − Ni∂iφÞ=N. The
canonical conjugate momenta are

πij ¼ δL

δ _hij
¼ N

ffiffiffi
h

p
ðKij − hijKÞ; ðA4Þ

pφ ¼ δL
δ _φ

¼
ffiffiffi
h

p
ð2λ∇nφ −∇nϵÞ; ðA5Þ

pϵ ¼
δL
δ_ϵ

¼ −
ffiffiffi
h

p ∇nφ: ðA6Þ

The other momenta are primary constraints πN ¼ πi ¼
pλ ¼ pχ ¼ 0. The extended Hamiltonian can be written as

HT ¼
Z

d3xðNHþNaHa þ uλpλ þ uiπi þ uNπN þ uχpχÞ

ðA7Þ

with the Hamiltonian and momentum constraint having the
following form,

7https://www.wolfram.com/mathematica/
8http://www.xact.es/
9http://www2.iap.fr/users/pitrou/xpand.htm
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H ¼ Hgr − λ
p2
ϵffiffiffi
h

p −
pϵpφffiffiffi

h
p þ λðhij∂iφ∂jφþ 1Þ

−
ffiffiffi
h

p
GðφÞχ2 −

ffiffiffi
h

p
ϵχ −

ffiffiffi
h

p
hij∂iϵ∂jφ; ðA8Þ

Hi ¼ Hgr;i þ pφ∂iφþ pϵ∂iϵþ pλ∂iλþ pχ∂iχ; ðA9Þ

where Hgr and Hgr;i are the usual Hamiltonian and
momentum constraint from GR.
The time conservation of the primary constraints πN and

πi yields the usual Hamiltonian and momentum constraints,
while, due to the conservation of pλ and pχ , one obtains

_pλ ¼ fpλ; HTg

¼ N

�
−

ffiffiffi
h

p
ðhij∂iφ∂jφþ 1Þ þ p2

ϵffiffiffi
h

p
�

≡ NCð1Þ
λ ≈ 0; ðA10Þ

_pχ ¼ fpχ ; HTg ¼ N
ffiffiffi
h

p
ð2GðφÞχ þ ϵÞ≡ NCχ ≈ 0: ðA11Þ

The time conservation of the secondary constraint Cχ fixes

the Lagrange parameter uχ while the conservation of Cð1Þ
λ

yields a tertiary constraint

_Cλ ¼ fCλ; HTg ≈ N

�
−

pϵϵ

GðφÞ − 2
pϵffiffiffi
h

p ∂ið
ffiffiffi
h

p
hij∂jφÞ þ 2

ffiffiffi
h

p
hij∂iφ∂j

�
pϵffiffiffi
h

p
�
þ 4πij∂iφ∂jφþ 2π

�
≡ NCð2Þ

λ ≈ 0; ðA12Þ

where the constraints Cλ and Cχ were used. The time conservation of Cð2Þ
λ yields a further constraint, namely,

Cð3Þ
λ ≡ 1

N
fCð2Þ

λ ; HTg

≈ λ

�
−6

p2
ϵffiffiffi
h

p þ 2p2
ϵ

GðφÞ ffiffiffi
h

p − 2
ffiffiffi
h

p
hij∂iφ∂jφ

�
þ pϵpφffiffiffi

h
p

�
1

GðφÞ − 3 − 2DiφDiφ

�
þ 1

2

ffiffiffi
h

p
R̄

þ ϵχ
ffiffiffi
h

p �
3 −

1

GðφÞ þ 2DiφDiφ

�
þ 4

pϵffiffiffi
h

p DiDipϵ − 4
ffiffiffi
h

p
χDiDiφþ 6

πffiffiffi
h

p DiφDipϵ

−
ffiffiffi
h

p 1

GðφÞDiφDiϵþ
ffiffiffi
h

p
DiφDiϵþ

ffiffiffi
h

p
R̄DiφDiφþ 4

πklπklffiffiffi
h

p DiφDiφ −
ffiffiffi
h

p
ϵ
G0ðφÞ
G2ðφÞ

þ
ffiffiffi
h

p
χ2GðφÞð3þ 2DiφDiφÞ − π2

2
ffiffiffi
h

p ð6þ 4DiφDiφÞ þ 8
pϵffiffiffi
h

p DiφDjπ
j
i þ 8

pϵπ
ijffiffiffi
h

p DiDjφ

þ 2
ffiffiffi
h

p
ðDiDiφÞ2 − 4

ffiffiffi
h

p
DiφDjDjDiφ − 16

πki πjkffiffiffi
h

p DiφDjφ − 2
ffiffiffi
h

p
DiφDiϵDjφDjφ

− 2
pϵπffiffiffi
h

p DiDiφþ 6
πijπijffiffiffi

h
p − 16

πijffiffiffi
h

p DipϵDjφþ 8
ππijffiffiffi
h

p DiφDjφ − 2
ffiffiffi
h

p
DiDjφDiDjφ; ðA13Þ

where we have used the previous constraints to simplify the
expression. The new constraint Cð3Þ

λ explicitly depends on λ
and consequently the time conservation of it fixes the
Lagrange parameter uλ for the primary constraint pλ.
By a straightforward calculation one can check that the

usual hypersurface deformation algebra is fulfilled,

fD½ξi�; D½ζj�g ¼ D½ξi∂iζ
j − ζi∂iξ

j�;
fD½ξi�; H½ξ�g ¼ H½Lξiξ�;
fH½ξ�; H½ζ�g ≈D½hijðξ∂iζ − ζ∂iξÞ�: ðA14Þ

The Dirac matrix ΩIJ ¼ fCI; CJg, where CI are the six

second class constraints pλ, pχ , Cχ , C
ð1Þ
λ , Cð2Þ

λ and Cð3Þ
λ , and

its inverse can be expressed as

ΩIJ ¼

0
BBBBBBBBB@

0 0 0 0 0 A

0 0 B 0 0 C

0 −B 0 D E F

0 0 −D 0 G H

0 0 −E −G I J

−A −C −F −H −J −K

1
CCCCCCCCCA
;

ðΩ−1ÞIJ ¼

0
BBBBBBBB@

⋆ ⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆ 0

⋆ ⋆ 0 0 0 0

⋆ ⋆ 0 I
G2 − 1

G 0

⋆ ⋆ 0 1
G 0 0

⋆ 0 0 0 0 0

1
CCCCCCCCA
: ðA15Þ
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By using the Poisson brackets between the remaining
phase-space variables and the constraints

fpφ;CIg¼ð0;0;⋆;⋆;⋆;⋆Þ; fφ;CIg¼ð0;0;0;0;0;⋆Þ;
fhij;CIg¼ð0;0;0;0;⋆;⋆Þ; fπij;CIg¼ð0;0;0;⋆;⋆;⋆Þ;

ðA16Þ

we can see that the structure of the Dirac brackets is in
general different from that of the Poisson brackets. Only for
the case of the scalar field φ the Dirac bracket coincides
with the Poisson bracket. Further, for the Dirac brackets

only the terms G ¼ fCð1Þ
λ ; Cð2Þ

λ g and I ¼ fCð2Þ
λ ; Cð2Þ

λ g are
relevant.

APPENDIX B: CALCULATIONS FOR MIMETIC
f ðRÞ GRAVITY

The action for mimetic gravity can be written as (131)

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½fðχÞ þ μðR − χÞ�

−
Z

d4x
ffiffiffiffiffiffi
−g

p ðλðgμν∂μφ∂νφþ 1Þ þ VðφÞÞ: ðB1Þ

Using the standard ADM mechanism, one can decompose
the Lagrangian for the gravitational part

Lgrav ¼
1

2
N

ffiffiffi
h

p
ðfðχÞ þ μðKijKij − K2 þ R̄ − χÞ

− 2K∇nμ − 2DiDiμÞ: ðB2Þ

The same can be done for the part of the mimetic constraint

Lφ ¼ −N
ffiffiffi
h

p �
λ

�
−

_φ2

N2
þ 2

Ni

N2
_φ∂iφ

þ
�
hij −

NiNj

N2

�
∂iφ∂jφþ 1

�
þ VðφÞ

�
: ðB3Þ

The canonical conjugate momenta are

πij ¼ δL

δ _hij
¼ 1

2

ffiffiffi
h

p
μðKij − hijKÞ − 1

2

ffiffiffi
h

p
hij∇nμ;

pμ ¼
δL
δ _μ

¼ −
ffiffiffi
h

p
K; πi ¼ δL

δ _Ni ¼ 0;

pφ ¼ δL
δ _φ

¼ 2

N

ffiffiffi
h

p
ð _φ − Ni∂iφÞ; pχ ¼

δL
δ_χ

¼ 0;

pλ ¼
δL

δ_λ
¼ 0; πN ¼ δL

δ _N
¼ 0: ðB4Þ

From these, we get the expressions for the velocities

_μ¼ 2N

3
ffiffiffi
h

p ðpμμ− πÞ þNi∂iμ; _φ¼ N

2
ffiffiffi
h

p
λ
pφ þNi∂iφ;

_hij ¼
Nffiffiffi
h

p
�
4
πij
μ
−
4

3
hij

p
μ
−
2

3
hijpμ

�
þ 2DðiNjÞ: ðB5Þ

The extended Hamiltonian is

HT ¼
Z

d3xðNHþNaHaþuλpλþuχpχþuiπiþuNπNÞ

ðB6Þ

with H ¼ Hgrav þHφ, where

Hgrav ¼
2ffiffiffi
h

p
�
πijπij
μ

−
1

3

π2

μ
−
1

3
πpμ þ

1

6
μp2

μ

�

−
1

2

ffiffiffi
h

p
μR̄þ 1

2

ffiffiffi
h

p
μχ −

1

2

ffiffiffi
h

p
fðχÞ þ

ffiffiffi
h

p
DaDaμ;

ðB7Þ

Hφ ¼ p2
φ

4
ffiffiffi
h

p
λ
þ

ffiffiffi
h

p
λðhij∂iφ∂jφþ 1Þ þ VðφÞ; ðB8Þ

and

Hi ¼ −2Djπ
ij þ pμ∂iμþ pχ∂iχ þ pφ∂iφþ pλ∂iλ: ðB9Þ

We obtain the usual Hamiltonian constraint H ≈ 0 and the
momentum constraintHi ≈ 0, due to the time conservation
of πN and πi.
The conservation of pλ and pχ yields

_pλ ¼ fpλ; HTg

¼ −N
�
−

p2
φ

4
ffiffiffi
h

p
λ2

þ
ffiffiffi
h

p
ðhij∂iφ∂jφÞ

�
≡ −NCλ ≈ 0;

ðB10Þ

_pχ ¼ fpχ ; HTg ¼ −
1

2
N

ffiffiffi
h

p
ðμþ f0ðχÞÞ≡ −

1

2
NCχ ≈ 0:

ðB11Þ
The time conservation of Cλ fixes the Lagrange parameter
uλ, while the time conservation of Cχ fixes the Lagrange
parameter uχ if f00ðχÞ ≠ 0, which will be assumed in the
following.
It is straightforward to check that the hypersurface

deformation algebra is fulfilled

fD½ξi�; D½ζj�g ¼ D½ξi∂iζ
j − ζi∂iξ

j�;
fD½ξi�; H½ξ�g ¼ H½Lξiξ�;
fH½ξ�; H½ζ�g ≈D½hijðξ∂iζ − ζ∂iξÞ�: ðB12Þ

From the four second-class constraintsCI ¼ fpλ; pχ ; Cλ;
Cχg, we get the Dirac matrix ΩIJ ¼ fCI; CJg and its
inverse,
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ΩIJ ¼

0
BBB@

0 0 A 0

0 0 0 B

−A 0 D 0

0 −B 0 0

1
CCCA; ðΩ−1ÞIJ ¼

0
BBBBB@

D
A2 0 − 1

A 0

0 0 0 − 1
B

1
A 0 0 0

0 1
B 0 0

1
CCCCCA: ðB13Þ

Since the remaining phase-space variables φ, pφ, hij, πij commute with C1 ¼ pλ and C2 ¼ pχ , the Dirac brackets coincide
with the Poisson brackets.
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