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SUMMARY

Neurons in prefrontal cortex (PF) represent mne-
monic information about current goals until the ac-
tion can be selected and executed. However, the
neuronal dynamics underlying the transition from
goal into specific actions are poorly understood.
Here, we show that the goal-coding PF network is
dynamically reconfigured from mnemonic to action
selection states and that such reconfiguration is
mediated by cell assemblies with heterogeneous
excitability. We recorded neuronal activity from PF
while monkeys selected their actions on the basis
of memorized goals. Many PF neurons encoded the
goal, but only a minority of them did so across both
memory retention and action selection stages. Inter-
estingly, about half of this minority of neurons
switched their goal preference across the goal-ac-
tion transition. Our computational model led us to
propose a PF network composed of heterogeneous
cell assemblies with single-state and bistable local
dynamics able to produce both dynamical stability
and input susceptibility simultaneously.

INTRODUCTION

During natural behavior, multiple processes need to be coordi-

nated so that specific goals can be accomplished. The prefrontal

cortex (PF), by means of its connection with many other areas of

the brain, plays a pivotal role in this cognitive challenge (Desi-

mone and Duncan, 1995; Heidbreder and Groenewegen, 2003;

Miller and Cohen, 2001; Squire et al., 2013; Tanji and Hoshi,

2008). Neurons in PF represent various task-related information

that goes from the coding of sensory stimuli to the specific goals

and actions (Averbeck et al., 2006; Falcone et al., 2016; Genove-

sio et al., 2006, 2008, 2012, 2014b; Genovesio and Ferraina,

2014; Genovesio and Tsujimoto, 2014; Hussar and Pasternak,

2009; Marcos and Genovesio, 2017; Saito et al., 2005). Among

such information, special interest has been placed on sustained
Cel
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representations of stimuli and goals that are no longer present

(Fuster and Alexander, 1971; Wilson et al., 1993). However, the

specific neural dynamics underlying the transition from these

mnemonic representations to an action are not well understood.

Here, we investigate how the mnemonic trace of the goal

changes or persists when the related action can be finally

selected and executed.

In recent years, lateral PF functions have been investigated

by adopting multiple paradigms that aimed at temporally

separating the different signals that lead to action selection

(Cai and Padoa-Schioppa, 2014; Markowitz et al., 2015; Sigala

et al., 2008; Takeda and Funahashi, 2004; Yamagata et al.,

2012). Imagine, for example, that you go to the market to

buy an apple (goal). You need to hold the goal in memory until

you can finally find it and select the proper action to take it.

This goal-directed behavior can be roughly divided into two

stages: the active maintenance of a goal in memory and the

later selection of an action. Considerable effort has been

made toward the description of the action selection process

embedded in the context of sensory-motor transformation, in

which PF neurons play an important role (Markowitz et al.,

2015; Takeda and Funahashi, 2004; Zhou et al., 2016). In

this case, a high proportion of PF neurons participate both

in the coding of sensory-related information and in its transfor-

mation into the proper motor response (Zhou et al., 2016).

Neurons in PF are also actively involved in the maintenance

of goals in working memory (Genovesio and Tsujimoto,

2014; Genovesio et al., 2012; Tsujimoto et al., 2008). However,

the neural dynamics underlying the transition between the two

stages have remained widely unaddressed, as a conundrum

challenges their full understanding. Indeed, the active mainte-

nance of a goal in memory requires an enhanced stability of its

neuronal representation as opposed to the flexibility needed to

produce the network state transition behind the conversion of

the goal into a proper action. A key question, then, is whether

the neurons actively representing the goal in memory

contribute to the goal-action transformation process or, by

contrast, whether the process requires a more complex recon-

figuration of the network activity.

Our recordings of the PF activity in a distance discrimination

task (Genovesio et al., 2011) were ideal to investigate the neural
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Figure 1. Experimental Setup and Neural Recordings Sites

(A) Sequence of task events within a trial. Gray and cyan rectangles indicate the phases in which we focused our analyses.

(B) Penetration sites. Composite from both monkeys, relative to sulcal landmarks.
substrate of such transition. As in our real-life example, in our

experiment, the information about the ongoing task needed to

bemaintained inmemory before the correct behavioral response

could be selected and performed. Here we show that the neu-

rons coding for the goal during the working memory period are

unlikely to be involved in the subsequent goal-action transforma-

tion process. Only a minority of them code for the goal in both

stages by changing or maintaining their selectivity preference

between periods with equal probability. This poses a tight

constraint on the possible strategy adopted by the PF network

to express simultaneously both the stability and the flexibility

needed to perform this task. Previous work has considered the

PF network as being composed of bistable ‘‘flip-flops’’ (McCor-

mick, 2005) in which two high- and low-firing attractor states are

locally expressed and combined to stably encode both digital

and analog information (O’Reilly, 2006). In this framework, the

goal-action transformation process might include an update

phase facilitated by a strong exogenous input (Churchland

et al., 2010; Litwin-Kumar and Doiron, 2012) or by an increase

of gain modulation of local bistable modules (Durstewitz et al.,

2000b; O’Reilly, 2006). Alternative studies rely on the hypothesis

that the local cortical modules composing the PF network

display a wide spectrum of diverse activity levels resulting in a

mixed selectivity to task-relevant information (Rigotti et al.,

2010, 2013). This response heterogeneity can be the result of a

suited degree of randomness in the synaptic connectivity lead-

ing to high-dimensional neuronal representations, without the

need for exogenous shaping of the network dynamics. In this

representational space, the network is then able to encode

more than one piece of information at a time (goal, context, ac-

tion to execute) in a distributed manner and support arbitrary

stimulus-driven state transitions such as goal-action transforma-

tions. Here we show that besides relying on the high dimension-

ality of inner representations due to synaptic connectivity with a

low degree of redundancy, the collective dynamics in the PF

network are further enriched by the presence of local cell assem-

blies with heterogeneous excitability (Mattia et al., 2013). Indeed,

the availability of single-state and bistable components associ-

ated to different levels of excitability can synergistically

contribute to express in PF both dynamical stability and

susceptibility.
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RESULTS

Two monkeys were trained to discriminate which of two stimuli

sequentially presented on a screen was located farther from

the center (Figure 1A) (Genovesio et al., 2011). A delay period

(working memory period) separated the second stimulus from

the reappearance of the two stimuli (targets onset or ‘‘go’’ signal)

randomly assigned to the right and left screen positions. Hence,

monkeys had to maintain in memory the goal (blue or red stim-

ulus) before they could reach it. Note that only after targets onset

could the goal location be determined and the action planned

and executed. Neurons were recorded from the PF of the two

monkeys (Figure 1B), and task accuracy was high for both mon-

keys, with mean scores of 77% and 80% of correct responses

for monkey 1 and monkey 2, respectively. Easier discrimination

was associated with higher accuracy and faster reaction times

(see Genovesio et al. (2011)).

Neural Coding of Goal
To study the evolution of goal coding, we first identified the neu-

rons that represented the goal just before targets onset (pre-go

period). We identified a total of 182 pre-go goal neurons

(22.4%) that modulated their activity, as shown by the activity

differences between preferred and nonpreferred goal trials, at

least from 975 ms (start of the plot) before targets onset until

125 ms after it (Figure 2, black). Thus, these neurons ceased

coding the goal shortly after the appearance of the targets.

Then we asked whether that was the end of goal coding or

whether another group of neurons represented the goal after tar-

gets onset. To allow for a possible delay in the transition, we

analyzed the activity of the neurons in the interval from 200 ms

after targets presentation to the end of movement onset. We

classified 187 neurons (23%) as post-go goal neurons (see

STAR Methods). In contrast to the pre-go goal neurons, the

preferred and nonpreferred goal activities for post-go goal neu-

rons (Figure 2, cyan) started to differ significantly 125 ms after

targets onset. Thus, when the information about the action to

perform was available, the PF network reconfigured to represent

the goal through a different neural population. In other words,

two different network states encoded the same goal-related in-

formation in two different epochs of a trial: the memory period



Figure 2. Pre-go and Post-go Goal Neural Population Responses

Mean firing rate of neurons (± SEM) coding the goal (blue or red) before (n =

182; black) and after (n = 187; cyan) targets onset. The time interval shown

includes part of S2 presentation, the whole D2 duration (400 or 800 ms), the

choice and action phase, and part of the intertrial interval. Filled gray and cyan

rectangles indicate the time interval used for the statistical analyses (one-way

ANOVA) performed to identify the two group of neurons. The gray rectangle

shows the�350 to 0 ms period before targets onset, used to define the pre-go

goal neurons, whereas the cyan rectangle indicates the time interval between

200 ms after targets onset and movement end (451.0 ± 1.7 ms [SEM]). For

illustration purposes, the cyan rectangle’s right border corresponds to

the mean movement time calculated across sessions. Black and cyan hori-

zontal lines indicate the consecutive time periods in which the popula-

tion activity difference was significant (Wilcoxon’s matched-pairs signed

rank test with Bonferroni correction, ***p < 0.001; pre-go goal neurons,

p = [0,0.00005], Z = [4.84,11.59]; post-go goal neurons, p = [0,0.0004],

Z = [4.40,11.52]).
and during the goal-action transformation process. Importantly,

this transition between network states was neither an artifact of

the passage of time (Figure S1A) nor a consequence of the

period used to identify the pre-go goal neurons (Figure S1B).
Neural Coding Dynamics
To investigate the microscopic organization of this network tran-

sition, we directly inspected single-cell activities, finding three

categories of neurons (Figure 3): those that showed pre-go

goal selectivity, post-go goal selectivity, or both. The neurons

with goal selectivity in both periods could be further divided

into neurons with either a consistent (non-switch) or an inconsis-

tent (switch) goal preference before and after targets onset.

Although the population analysis reflected the dynamics of the

former two categories of neurons, it did not show any signature

of switch and non-switch neurons, as their contribution averaged

out because of the change of preference of some of them.

Figure 3A shows an example of a pre-go goal neuron with the

highest activity for the blue goal before targets onset. Its goal

selectivity persisted during the D2 period, ceasing 135 ms after
targets onset. The post-go goal neuron shown in Figure 3B

increased its activity for the blue goal 105 ms after targets onset.

Figures 3C and 3D show two neurons classified as encoding the

goal during both pre-go and post-go periods. The neuron in Fig-

ure 3C maintained the same blue goal preference across trial

epochs (non-switch neuron). In contrast, the neuron in Figure 3D

showed a blue goal preference before targets onset that

switched to the red goal 75 ms after the ‘‘go’’ signal (switch

neuron). Altogether, this diversity in individual dynamics sug-

gests that the apparent sequential transition from one population

of neurons coding the goal in memory to another coding the

same goal after targets onset was actually an oversimplification.

Next, we quantified the number of neurons belonging to each

category (Figure 3E). Among the 182 goal neurons previously

classified as pre-go goal neurons, 72 (39.6%) were also goal se-

lective in the post-go period, 70 (38.5%) were also action selec-

tive (see STAR Methods), and 39 (21.4%) belonged to the three

categories. On the other hand, among the 187 neurons identified

as post-go goal neurons, 83 (44.4%) were also action selective.

Surprisingly, almost half of the neurons with both pre-go and

post-go goal selectivity (n = 72) showed a switch of their goal

preference across epochs (n = 35 [48.6%]; switch neurons),

whereas the other half shared the same goal preference in

both periods (n = 37; non-switch neurons). Interestingly, we

found that the switch in goal preference occurred only during

the post-go period, as a signature of the goal-action transition

(Figure S2).

From Goal to Action Coding
We have shown that there is a rapid transition between different

PF network states when the information about the goal must be

used to select and execute the proper action. Then we investi-

gated when the action representation actually emerged from

the neural network coding the goal after targets onset. For this

purpose, we examined the neurons with a combined post-go

goal and action selectivity. A paradigmatic example is the

same post-go goal neuron shown in Figure 3B. In Figure 4A, its

activity plotted across trials and sorted by the performed action

makes apparent that the neuron had a preference for movement

to the left. Such selectivity initiated about 255 ms after the ‘‘go’’

signal and 150 ms after the onset of the goal selectivity (Fig-

ure 4A, bottom). At the population level, the goal coding started

125 ms after targets onset and preceded by 50 ms the action

coding (Figure 4B). Interestingly, the goal representation did

not vanish when the action representation emerged, but rather

the representation of both variables widely overlapped, decaying

together around the end of the movement. Similar time latencies

between goal and action coding were observed when looking at

the entire population of post-go goal neurons and post-go action

neurons (Figure 4C). Taking all results together, it appears that

the goal information carried by the goal-selective neurons during

the D2 period was not directly translated into an action. Instead,

it seems to be transferred first to another network of post-go goal

neurons, which are differentiated in two subpopulations of pure

goal, and goal and action neurons. It is noteworthy that the

same neurons coding the goal could also code the action later

in time while still coding the goal. This heterogeneous set of

goal- and action-selective neurons were similarly distributed
Cell Reports 27, 2909–2920, June 4, 2019 2911



Figure 3. Raster Plot of Four Example Neu-

rons and Venn Diagram of Classified Neurons

(A–D) Top panels inside each figure showmean firing

rate activity of the neurons sorted by blue or red goal

trials. Bottom panels show the spike times observed

during individual trials. Black marker indicates the

end of movement.

(A) Neuron showing a higher response during the

period before targets onset, but not later, for the blue

goal than for the red one.

(B) Neuron with a blue goal preference after targets

onset but not before.

(C) Neuron with a preference for the blue goal

consistently before and after targets onset.

(D) Neuron switching goal preference after targets

onset passing from a blue to a red goal preference.

Pre-go and post-go periods are indicated in (A)

(bottom arrows) and were used to classify goal-se-

lective neurons.

(E) Number of neurons classified as pre-go

goal, post-go goal, or action neurons. Right sub-

panel: subdivision of the neurons both pre-go and

post-go into cells switching and non-switching goal

preference.
across the probed brain areas with only one exception: switch

neurons were located predominantly in area 8 (Figure S3). This

tendency could be associated with the role of this area in the

selection between competing visual stimuli (Petrides, 1985).

Preference Switching Due to Neuronal Flexibility
The finding of such a high proportion of switch neurons raised a

question about their role in the goal representation and in the

goal-action transformation process, as well as whether they re-

flected any specific neuronal dynamics determining such activity

profile. To address these questions, we modeled the above

single-neuron experimental evidence relying on two main as-

sumptions. First, we assumed that neurons were embedded in

recurrently coupled cell assemblies, and hence their spiking

activity reflected the ongoing firing rate of the network they be-

longed to. The other assumption relied on the observation that

preference switching occurred always at an almost fixed time

lag from targets onset (167 ± 12 ms, mean ± SEM for the 35

switch neurons; see Figure 3D as an example). This is suggestive

of a local activity change driven by a sudden event-triggered

variation of the synaptic input. Following these guidelines, we
2912 Cell Reports 27, 2909–2920, June 4, 2019
devised and simulated three model net-

works composed of excitatory and inhibi-

tory integrate-and-fire neurons capable

of reproducing the experimental observa-

tions but expressing different collective

dynamics. These cortical modules were

picked up from a continuum of model net-

works differing only in their excitability,

here modulated by the relative strength of

their glutamatergic recurrent coupling,

similarly to what previously found in mon-

key premotor cortices (Mattia et al., 2013)

(see STARMethods). Indeed, by increasing
such synaptic coupling, the susceptibility of the output firing rate

to sudden changes in the input current received from other mod-

ules (i.e., areas) raised almost exponentially (Figure 5A, left, black

curve). Additionally, the same parameter governed the number

of available attractor states (stable activity levels) (Amit and Bru-

nel, 1997; Wang, 1999), such that both single-state and bistable

modules could populate the PF network. The same synaptic self-

excitation determined also the firing rate variability, giving rise to

a non-monotonic trend of the activity fluctuations, which were

maximized by a suited level of the strength of the recurrent excit-

atory synapses (Figure 5A, left, green curve). This maximization

of fluctuation size was due to the coexistence of two preferred

activity levels randomly visited by the network: a dynamic regime

that can be associated with some degree of flexibility of the

network, as small input variations can determine relatively large

changes of the firing rate. On the other hand, such flexibility can

be counterbalanced by the presence of more stable modules

such as those with weak and strong self-excitation. Interestingly,

in the latter highly excitable module (dark gray circle), such sta-

bility underlies the capability to implement a short-term ‘‘work-

ing’’ memory (Figure 5A, right), as a strong enough input could



Figure 4. Neural Representation of Goal and

Action

(A) Response of the example neuron shown in Fig-

ure 3B for action selection. Top: neural response for

trials sorted by right (black) and left (gray; preferred)

action. Same conventions as in Figure 3. Bottom:

activity difference between preferred and non-

preferred goals (cyan) and preferred and non-

preferred actions (blue).

(B) Activity difference between preferred and non-

preferred goal (cyan) and action (blue), averages

across neurons selective to both post-go goal and

action (n = 83). Shaded areas indicate SEM.

(C) Average activity difference between preferred

and nonpreferred goal for neurons that are selective

to the post-go goal (n = 187; light green) and be-

tween preferred and nonpreferred action for action-

selective neurons (n = 236; dark green). Shaded

areas indicate SEM.
drive the activity of the module toward a high-firing state persist-

ing even in the absence of the external stimulation (Amit and Bru-

nel, 1997; Wang, 1999). A cortical module such as this would

keep trace of the goal during the delay period preceding the

‘‘go’’ signal. Downstream modules in turn could receive as input

such goal-related information together with additional synaptic

currents due to the onset of other relevant events such as the

‘‘go’’ signal (Figure 5A, middle). In the modeling framework we

adopted, a cortical module was composed of several selective

pools, as in Amit and Brunel (1997) and Wang (1999), and for

simplicity only one pool in each module was involved in the

task (see STAR Methods and Figure S4) by receiving from the

pools of other modules the input changes depicted in Figure 5.

In this rather simplifiedmulti-modular configuration (Figure 5A,

middle), we investigated the pre-go dynamic features of two

downstream modules endowed with different levels of excit-

ability, with the idea that this three-modular set is a critical

component of the PF network underlying the goal-action trans-

formation (see Discussion for further details). One of these down-

stream modules had a moderately strong excitatory synaptic

reverberation (Figure 5B, dark gray circle), chosen to spontane-

ously display the large activity fluctuations highlighted in Fig-

ure 5A (left) and to be not too far from the bifurcation point

(white-gray border). Under suited stimulation conditions, a mod-

ule such as that would react to small input changes with strong

susceptibility because of its intrinsic bistability (i.e., the coexis-

tence of two attractor states at low and high firing rates;

Figure 5B, top). Here we modeled the onset of the targets as a

sudden positive or negative input variation to be added to the

synaptic current provided by the upstream working-memory

module (Figure 5B, bottom). In this bistable cortical module, an

input variation reshaped the representative energy landscape

(Mattia et al., 2013) (Figure 5B, top) such that around the ‘‘go’’

signal the preferred and nonpreferred states (deepest and high-

est valleys, respectively) were exchanged.

In the second downstream module (Figure 5C, left, light gray

circle), glutamatergic recurrent coupling was weaker, bringing
to a linearization of the current-to-rate amplification and thus

reducing its susceptibility to the input. In this case, only a single

valley (i.e., attractor) state is available at a time. With the same

weak input variation used in Figure 5B, no switches of firing rates

resulted (Figure 5C, left). Moreover, the mean difference FRp �
FRnonp between the pre-go activities related to preferred and

nonpreferred goals is expected to be significantly lower in this

case (compare firing rate densities in the right insets of Figures

5A, 5B, and 5C, left). In this network, to produce a switch of pref-

erence, the variation of the input needed to be considerably

stronger (Figure 5C, right). Thus, under weak input modulation,

single-state modules are rather stiff neuronal components.

Such stiffness is also present in the strong bistable ‘‘working-

memory’’ modules (Figure 5A) when trapped in the high-firing

state. As a result, under the hypothesis that in the PF network

the input to different cell assemblies has similar and relatively

small variations in time, only bistable modules would be capable

of displaying a preference switching. This leads us to make

another prediction: if for correct and incorrect trials the input

received by the goal-coding modules is presumably strong and

weak, respectively, the response of the modules in these two

conditions would be different. During incorrect trials, which are

generally those more difficult (Genovesio et al., 2011), the input

received by the neural networks might be weak but still sufficient

to activate the bistable modules (Figure 5B), similar to what

would happen during correct, and less difficult, trials. On the

contrary, same weak input might lead only to a moderate modu-

lation of single-state modules (Figure 5C).

A further expectation suggested by this theoretical framework

is that in the hypothesized condition of a relatively weak input, a

bistable network wanders randomly across its double-well en-

ergy landscape, hopping by chance from high- to low-firing

states and vice versa (Cao et al., 2016; Durstewitz and Deco,

2008; Litwin-Kumar and Doiron, 2012). As a result, from trial to

trial the inter-spike intervals (ISIs) should display a bimodal dis-

tribution, with more frequent short and long ISIs (Cao et al.,

2016; Latimer et al., 2015; Zipser et al., 1993) accumulating
Cell Reports 27, 2909–2920, June 4, 2019 2913



Figure 5. Neuronal Dynamics Underlying Switching of Goal Preference

(A) Left: susceptibility (black curve) to input variations (DInput; sudden small change in the spike rate from an external pool of excitatory neurons) of cortical

modules with different strengthw of the excitatory (glutamatergic) synaptic reverberation, and the activity variability measured in simulation as the product of the

inter- and intra-trial coefficient of variability cv (green curve) of the firing rate (FR) under the same stimulation condition (see STAR Methods). Depending on w,

cortical modules can access only one stable activity state (white region) or can display a bistable dynamics either in the presence (light gray region) or in the

absence (dark gray region) of an external stimulation. Small circles only qualitatively represent the excitability level of the cortical modules simulated. Middle:

sketch of a small feedforward network of the heterogeneous modules tested in simulations and possibly composing the PF network. Right: working-memory

features of the bistable cortical module with maximal synaptic self-excitation (black module). Raster plot and density of the spikes emitted by an example neuron

of the network showing the persistence or not of high-firing activity when the input related to a preferred or nonpreferred goal is received before the pre-go delay

period (black and gray, respectively). Histograms of firing rates on the right are from the pre-go interval (shaded area) under the two activity conditions. Error bars

indicate SD.

(B) A cortical module (dark gray in A) endowed with moderately strong excitatory self-excitation (thick arrow in the top sketch) expressing bistable dynamics with

two preferred activity states at low and high firing rates. An increase (decrease) of the received input (bottom) amplifies (reduces) the module excitability,

deepening the high (low) activity valley (top right red and blue energy landscapes, respectively). Raster plot and density of the spikes from an example neuron of

the network displaying both transitions (black and gray, respectively). Input current changes (bottom) aim at modeling the switching of goal preference observed

in experiments (Figure 3D).

(C) The same as (B) for a single-state cortical module (light gray in A). This network has a relatively weak synaptic coupling (thin arrow in top sketch), and its

stimulus response is quasi-linear. Under this condition, a weak input change does not result in a switch of goal preference (left). Switching of goal preference

similar to (B) is obtained only as a response to a larger input change (right).

(D) Bursts and pauses detection algorithm. Left: an example of burst and pauses detected in four simulated trials. Right: density of bursts and pauses observed

within 2 s before the targets onset for 100 simulated neurons randomly sampled from the cortical modules in (B) and (C) (dark red and green, respectively).

Bursts and pauses are significantly more often found in switch than in non-switch neurons (Mann-Whitney U test, ***p < 0.001; p = 0.00057 and Z = 3.25 for bursts,

p = 0 and Z = 12.4 for pauses). Dashed lines indicate the means of the distributions.

2914 Cell Reports 27, 2909–2920, June 4, 2019



Figure 6. Evidence of Different Neuronal Dy-

namics Underlying Coding Flexibility

(A) Left: mean firing rate for preferred (black) and

non-preferred (gray) goal of switch (n = 35; top) and

non-switch neurons (n = 37; bottom panel) aligned

to the ‘‘go’’ signal presentation. Shaded areas

are SEM. Right: density of average firing rates of

each population calculated in the pre-go period

(gray area) and differences between preferred and

non-preferred conditions computed in the pre-go

period. (Mann-Whitney U test, *p < 0.05; p = 0.04

and Z = 2.01). Dashed lines indicate themeans of the

distributions.

(B) Difference between the activity in the preferred

and nonpreferred goal conditions calculated in the

pre-go period for non-switch and switch neurons,

grouped by correct (dark colors) and incorrect (light

colors) trials separately (Wilcoxon signed rank test,

*p < 0.05; non-switch neurons, p = 0.028, Z = 2.20;

switch neurons, p = 0.077, Z = 1.77).

(C) Frequency of bursts and pauses occurrence

within 2 s before targets onset calculated for switch

(n = 35; dark red) and non-switch (n = 37; green)

neurons. Bursts and pauses are significantly more

often found in switch than in non-switch neurons

(Mann-Whitney U test, *p < 0.05, **p < 0.01; p =

0.035 and Z = 2.11 for bursts, p = 0.001 and Z = 3.23

for pauses). Dashed lines indicate the means of the

distributions.
when the network was in high- and low-firing states, respec-

tively. Such ISI variability is recognizable in the raster plot in Fig-

ure 5B, in which an excess of bursts and pauses is apparent,

while they are almost absent in the spiking pattern of neurons

of both single-state (Figure 5C) and working-memory (Figure 5A,

right) modules. Indeed, for the same weak input, a single energy

valley does not allow wide fluctuations of the firing rate (Cao

et al., 2016; Mattia et al., 2013), thus leading to almost-Poisso-

nian spike trains in which neither bursts nor pauses outnumber

intermediate ISIs (Figure 5D; see STAR Methods).

Evidence of Flexible Dynamics behind Preference
Switching
To test the above model predictions, we further inspected our

in vivo recordings. According to the above theoretical frame-

work, we found that switch neurons had a larger difference of

firing rate between preferred and nonpreferred conditions in

the pre-go period than the one exhibited by non-switch neurons

(Figure 6A). This result supported the hypothesis that non-switch

neurons are more likely picked from single-state modules rather

than from working-memory modules, as the latter are expected

to have the largest difference between preferred and nonpre-

ferred conditions (Figure 5A, right). Next, we used the samemea-

sure to compare correct and incorrect trials. In accordance with

the model, a significant difference in the activity was found only

for non-switch neurons (Figure 6B). Last, we quantified the num-

ber of bursts and pauses detected in the activity of switch and

non-switch neurons. Consistent with the model, switch neurons

exhibited a significantly higher frequency of bursts and pauses in

the pre-go period (Figure 6C). This behavior is rather apparent in

the example switch neuron shown in Figure 3D, which exhibited
�1.8 times more bursts per second and �3.6 more pauses per

second than the non-switch cell in Figure 3C. Although firing

rate and frequency of bursts and pauses are highly correlated

(R = 0.76–0.83, with p < 10�4 in all cases), firing rate alone could

not explain the difference in the frequency of bursts and pauses

between the neuronal types (Figure S5). The qualitative resem-

blance between this experimental evidence and the theoretical

framework we propose supports the hypothesis that neurons

switching goal preference after targets onset were those more

easily activated or damped down. In principle, such susceptibil-

ity could facilitate the switching neurons and related modules to

have a leading role in determining the transitions between inner

mental states, such as the goal-action transformation, thus form-

ing a reservoir of flexible units capable of shaping the whole PF

network dynamics.

DISCUSSION

In the present study we examined the evolution of goal coding

in PF from its maintenance (memory) to its use in the goal-

action transformation process in a distance discrimination task

ideally suited to disentangle in time the underlying neuronal

computation. We found a peculiar reconfiguration of the network

activity after the beginning of the transformation process. At the

population level, the encoding of goal in memory abruptly

ceased within 125 ms after the goal location was revealed. In

the same time window, the goal selectivity emerged in the activ-

ity of a new ensemble of neurons, which remained active until the

action was performed. Intriguingly, further inspection of the

response dynamics at single-neuron level revealed that this

network transition from memory to action developed as a
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peculiar orchestration between distinct subsets of neurons.

Indeed, although the majority of goal-related neurons (225 of

297) were selective either before or after targets onset, others

were selective across both task periods, either maintaining (37

of 72) or switching their goal preference (35 of 72). The diversity

in their coding scheme balanced out their contribution at the

population level, supporting the abrupt population transition.

We interpret all these results as a signature of an activity recon-

figuration of the PF network because of a transition between

different collective states sequentially coding the goal in memory

and the goal in the goal-action transformation process.

Such PF activity reconfiguration, which does not disrupt goal

information but rather transforms it, seems to be implemented

by a heterogeneous cortical network. Goal-related neurons se-

lective during the pre- or post-go period, but not both, do not

directly contribute to this passage of information, while switch

and non-switch neurons seem to do so relying on two different

dynamics: bistable and single-state activity dynamics, respec-

tively. This heterogeneity can result from relatively strong and

weak excitatory strength of local synaptic reverberation (Amit

and Brunel, 1997; Mattia et al., 2013; Wang, 1999). In this

computational framework, the changes in the synaptic input

representing the transitions across the different stages of the

task can be relatively weak, whereby a sudden reaction can

be elicited only in the most excitable modules (the bistable

ones). Because of such input susceptibility, these modules

are ideally suited to implement the flexibility of the PF network,

needed to encode relevant variations of the environment. The

least sensitive to such changes of the single-state cortical

modules can instead contribute to the stability features ex-

pected to be expressed by the PF network. This heterogeneity

of the local dynamics of cortical modules would solve the sta-

bility-sensitivity conundrum. This solution offers an alternative

strategy compared with those in which network stability is

driven exogenously by sensory-related input (Churchland

et al., 2010; Litwin-Kumar and Doiron, 2012) or by dopami-

nergic gain modulations (Durstewitz et al., 2000a; O’Reilly,

2006). The reservoir of differently flexible units would also com-

plement the computational advantages expected in presence

of some degree of random connectivity between modules

needed to implement mixed selectivity (Rigotti et al., 2010,

2013).

Role of Local Heterogeneity and Its Computational
Advantages
Given the existence of cortical modules with heterogeneous

excitability levels, one may ask about the advantage of having

a network composed of such diverse computational units. To

answer this question, here we sketch a paradigmatic network

of such modules (Figure 7A) capable of autonomously solving

the task performed by the monkeys. We tested two example tri-

als having the same ‘‘go’’ signal with the blue and red targets on

the left and right sides of the screen, respectively. The trials differ

only in the goal to encode: in Figure 7B the blue circle is farther

from the reference point than the red square, while in Figure 7C

the opposite condition holds.

The working-memory module of the network selectively en-

codes the ‘‘blue circle’’ goal; that is, it has a preferred response
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to S2 in trial 7B but not in 7C and keeps it in memory during delay

D2 after stimulus removal. This happens thanks to the stability of

its high-firing state, such that even in the absence of the S2-

related external excitatory input (red empty arrow) encoding

the winning goal, a sustained activity reverberation persists

(see firing rate in the top row of Figure 7B). Such memory trace

is absent in Figure 7C, as the winning goal associated with a

weak input (white cross) does not elicit a sufficiently high

response of the working-memory module (Zipser et al., 1993;

Amit and Brunel, 1997; Wang, 1999). As a result, the state of

this network unit eventually biases the activity of the downstream

bistable modules in a goal-dependent way. More specifically,

during S2 and D2, bottom and top bistable modules have firing

rates that strongly correlate and anti-correlate, respectively,

with the activity of the upstream working-memory module. This

occurs because the connections between the upstream and

the bottom and top downstream modules in Figure 7A are cho-

sen to be positive (red) and negative (blue), respectively. Thus,

at targets onset, the whole network is in two distinct distributed

states: the top bistable module is the only one active when the

red goal wins (Figure 7C), whereas the bottom bistable module

is the only one active in the case of blue goal selection

(Figure 7B).

At targets onset, another stimulus-driven external excitatory

input is delivered to the two bistable modules. This external input

aims to model the specific targets presentation on the screen

and is assumed to be weak, as discussed in the Results, and

the same for both trials. The single-state module (Figure 7A,

bottom) also receives a similar external input at that time. This

module is inactive before targets onset, as the upstream inputs

are anti-correlated and cancel each other because of the

positive and negative feedback they provide. The single-state

module is not very susceptible, and its reaction to the weak

external input is almost imperceptible. However, in bistable

modules, the same external input primes a chain reaction guided

by their high susceptibility. For instance, in Figure 7B, the

external input destabilizes the metastable low-activity state of

the top bistable unit and a sharp upward transition occurs, fol-

lowed by a dampening of the overshoot because of spike-

frequency adaptation. Consequently, because of the inhibitory

connections between the bistable modules, the bottom one is

destabilized, and a sharp transition toward the low-activity state

follows. This switch of activity levels and the presence of the

external excitatory input eventually lead to a net increase of

the synaptic input received by the single-state module, which

is now large enough to elicit a significant increment of its firing

rate. In Figure 7C, a similar chain of activity changes occurs.

Here, the transformation is primed by the low to high firing rate

transition in the bottom bistable module. This leads to an inacti-

vation of the other bistable module and eventually to a significant

increase of the firing rate of the single-state module. In this trial,

the activity level reached by the latter module is lower than the

one reached when the winning goal is ‘‘blue’’ (Figure 7B).

These chains of local transitions occurring in both trials (Fig-

ures 7B and 7C, red and blue dotted vertical arrows), and elicited

by the same ‘‘go’’ signal, lead to different reconfigurations of the

multi-modular network activity. This can be read out as two

different movements once combined with the information in



Figure 7. Plausible Neural Network of Heterogeneous Modules and Time Latency of Their Activation and Inactivation

(A) A proposal of a simple network of heterogeneous modules capable to reproduce the experimental data. Blue and red lines represent inhibitory and excitatory

connections, respectively.

(B andC) Two example of trials with blue (B) or red (C) stimulus as goal. Red empty arrows represent external excitatory inputs associated to different task-related

stimuli as the goal to encode and target to touch (stimulus type is represented by the bracket content following lightning). Different rows schematically represent

the expected time course of the firing rates of the four modules on the left. Vertical blue and red dotted lines, inhibitory and excitatory events eliciting transitions in

other modules.

(D) Goal coding latency of post-go goal, but not pre-go goal, neurons (n = 115; cyan) and switch neurons (n = 35; red) calculated with the activity aligned to

movement onset (Mann-Whitney U test, *p < 0.05; p = 0.038, Z = 2.08).

(E) Transition times of the activity level (high and low, preferred and nonpreferred goal, respectively) in switch neurons (n = 35). Low-to-high and high-to-low

transitions are dark and light red distributions, respectively (Wilcoxon signed rank test, *p < 0.05; p = 0.029, Z = 2.19).
the ‘‘go’’ signal about the position of the targets: toward the left

(Figure 7B) and the right (Figure 7C) when the selected goal is

‘‘blue’’ and ‘‘red,’’ respectively. The post-go action neurons

should be part of the network reading out the information en-

coded by this newborn neuronal representation. Thus, in this

theoretical framework it should not be surprising to see in Fig-

ures 4B and 4C that the activation of post-go goal neurons on

average anticipates the transition time occurring in the post-go

action neurons.

To conclude, the multi-modular network we sketched has the

ability to autonomously translate the selected goal into the cor-

rect action to perform, without the help of other modules from

different brain areas. Furthermore, the heterogeneity of the

cortical modules found in our data implies a hierarchical organi-

zation of the goal-action transformation determined by the excit-

ability of the involved units. Indeed, in the chain of local transi-

tions we predict, the firsts are those happening in the more
susceptible bistable modules found in a metastable low-activity

state. Instead, the lasts are the activations of the less excitable

single-state modules. Remarkably, we found such excitability-

driven hierarchy of time lags also in our data. On average, tran-

sition times in switch (bistable) neurons preceded by 31 ms the

activation of post-go, but not pre-go, goal (single-state) neurons

(Figure 7D). Furthermore, low-to-high post-go transitions in

switch neurons, on average, occurred before the inactivation

(high-to-low transitions) in the samegroupof neurons (Figure 7E).

Interestingly, a similar fine structure of the cortical network re-

configuration has been also found in dorsal premotor cortex of

monkeys performing a motor decision task (Mattia et al., 2013).

This seems to suggest a common computational strategy adop-

ted by cortical networks to perform global state changes in

which a subset of cortical modules, the bistable ones, can play

a pivotal role in shaping the whole PF network dynamics, even

if the input is small.
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Coding Flexibility and Coding Independence
Our study extends the understanding of the flexible goal coding

in PF (Fuster and Alexander, 1971; Hoshi et al., 2000; Rainer

et al., 1999). Previous studies have shown that PF neurons

change their selectivity from retrospective visual stimulus to pro-

spective goal objects (Rainer et al., 1999) and from visual cues to

object goal signals (Hoshi et al., 2000), but neither study reported

switches of preference. We had previously assumed that the

neurons coding prospectively the goal lead directly to the action

by maintaining the same goal selectivity in the action period

(Genovesio et al., 2009). Contrary to such assumption, by exam-

ining the goal coding at the time of the goal-action transforma-

tion, we observed a remarkable dissociation between goal-

maintenance and goal-action transition.

It has been shown that the same prefrontal neurons can

encode multiple types of information even within the same task

period (Cai and Padoa-Schioppa, 2014; Genovesio et al.,

2005; Hoshi et al., 2000; Yamagata et al., 2012) and use different

coding schemes depending on the task (Rao et al., 1997). With

our task, we present a further type of coding flexibility by inves-

tigating the coding dynamics of exactly the same information, as

represented by the goal in different task periods, and showing

how it can flexibly change as a result of a reconfiguration of

the network activity. The goal representation is transmitted to a

new neuronal ensemble, as in a relay race when the baton is

passed between runners. Information transmission between

subnetworks can be seen as an effective way to implement

working memory, similar to the sequence-based circuit dy-

namics recently found in rodent parietal cortex (Harvey et al.,

2012).

Although PF coding flexibility is well documented, it is still not

clear what can generate it or to what degree it must be consid-

ered a general attribute of PF neurons. In a recent study, Yama-

gata et al. (2012) investigated the transformation of the relative

position to choose one of two targets into a planned action.

The results showed that different group of neurons coded the

relative position before and after the targets were presented.

However, it was not clear whether the dissociation represented

a special transition or if, in contrast, it simply reflected the pas-

sage of time or the appearance of a new event (Marcos et al.,

2016).

Our study shows that the neurons coding the goal in memory

and the neurons involved in the goal-action transformation are

similarly distributed in the prefrontal areas of our recordings.

However, by dividing switch and non-switch neurons, we

observed a tendency for the switch neurons to be located espe-

cially in area 8. Monkeys with lesions in the periarcuate cortex,

including areas 8 and 6 but not 46, fail to choose one of two visual

stimuli on the basis of a conditional rule (Petrides, 1985), and

inactivation of the frontal eye field (FEF) generated a deficit to

direct the saccades to a location instructed by the color of a

cue (Keller et al., 2008). In these experiments, a stimulus in-

structed the future goal to select in the presence of two or

more alternatives. Considering our results in the context of these

neuropsychological studies, the presence of switch neurons

predominantly in area 8 might have a key role in the process of

visual stimulus selection on the basis of the goal color (the

farthest visual stimulus) (Passingham and Wise, 2012).
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Goal-Action Transformation
One of the main results we report is the fundamental role of the

post-go goal coding in the goal-action transformation. However,

we cannot identify the specific function carried out by the neu-

rons, that is, whether it represented attention for action (Lau

et al., 2004; Lebedev et al., 2004), target selection (Hoshi et al.,

2000), motor planning (Marcos et al., 2015; Takeda and Funaha-

shi, 2004), or confidence about the decision (Marcos et al.,

2013). The action usually involved congruent eye and hand

movements, and thus we could not investigate the possible

interaction between the two in the signal carried out by the neu-

rons in PF (Thura et al., 2008).

We have shown that a network of cortical modules, with hetero-

geneous sensitivity to the input, gives rise to an augmented dy-

namic richness that allows simultaneously for both change of

the global network state as well as retention of the information

about previous events. This can be achieved without the need

of unspecific excitabilitymodulation because of the dopaminergic

system (Durstewitz et al., 2000a; O’Reilly, 2006; Seamans and

Yang, 2004). Nevertheless, one could argue that activity fluctua-

tions of switching neurons in bistable modules are due to fluctu-

ations of the input they receive. In the theoretical framework we

propose (Figures 5 and 7), these input changes could be provided

only fromoutside the probedPF network, as single-statemodules

are passive units unable to autonomously produce activity fluctu-

ations. This would imply that both bistable and single-state mod-

ules fluctuate in the same way, driven by the same external input

changes. However, our data show that this is not the case, further

supporting the hypothesis that activity fluctuations before goal-

action transformation are endogenously produced.

Altogether our findings show that goal information kept in

working memory did not directly lead to action, hence pointing

away from a unitary view of goal representation. Rather, the rep-

resentation of the ‘‘goal in memory’’ is reconfigured into another

network activity, which is perhaps specifically suited for being

read out to produce specific actions (i.e., ‘‘goal for action’’).

Recently, Brincat and Miller (2016) suggested a shift of PF net-

works from external to internal modes along with the progress

of associative learning. Our findings may concur with this shift

but differ in at least two ways: (1) the opposite direction (i.e.,

shifting from internal to external stages) and (2) with a shorter

time window (i.e., within a trial). The PF may have a general

scheme of reconfiguration between external and internal coding

networks supported by a mix of single-state and bistable cell

assemblies, thereby allowing us to adapt to a complex

environment.
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EXPERIMENTAL MODEL AND SUBJECTS DETAILS

Two adult male rhesusmonkeys (Macacamulatta), 8.5 and 8.0 kg, served as subjects in this study. All procedures followed the Guide

for the Care and Use of Laboratory Animals (1996, SBN 0-309-05377-3) and were approved by the National Institute of Mental Health

Animal Care and Use Committee.

METHODS DETAILS

Surgery and data collection
Recording chambers were implanted over the exposed dura mater of the left frontal lobe, along with head restraint devices, using

aseptic techniques and isofluorane anesthesia (1–3%, to effect). Monkey 1 was implanted with two 18-mm-diameter chambers,

one placed over the caudal PF cortex, the other over the dorsolateral PF cortex; Monkey 2 had a single 27 3 36 mm chamber en-

compassing both areas (Figure 1B). No monkeys had received prior surgery. The animals were individually or pair-housed and kept

on a 12 h/12 h light/dark cycle. The experiments were conducted during the light cycle of the day.

We used an infrared oculometer (Arrington Recording) to record eye position. We recorded single-cell activity using quartz insu-

lated platinum-iridium electrodes (0.5–1.5M_at 1 kHz) positioned by a 16-electrode drive assembly (Thomas Recording). The elec-

trodes were arranged in a concentric recording head with 518 mm spacing. We discriminated single-unit potentials online with the

Multichannel Acquisition Processor (Plexon) and confirmed each isolated waveform carefully using the Off Line Sorter (Plexon). The

offline verification of unit isolation was based on principal component analysis, minimal interspike intervals, and clearly differentiated

waveforms inspected individually for every isolated neuron. Inadequately isolated potentials were eliminated from the dataset before

performing any additional analysis. Eye position was not placed under experimental control because of the tendency of both mon-

keys to saccade to each stimulus when it appeared.

Near the end of recordings, we made electrolytic marking lesions (15 mA for 10 s). Ten days later, the monkeys were deeply anes-

thetized and perfused through the heart with 10% formol saline. After sectioning the brain and staining the section for Nissl sub-

stance, we plotted the recording sites by reference to the marking lesions, pins inserted at the time of the perfusion, and structural

magnetic resonance images (MRI) taken periodically before and between recording sessions.

Behavioral task
Neurons from PF were recorded from two male rhesus monkeys while they performed a spatial discrimination task (Figure 1A; see

Genovesio et al., 2011). The neurons were predominantly recorded from area 8, area 46 and a small population of area 12 (Figure 1B).

Monkeys were required to select from two visual stimuli, sequentially displayed on the screen, the one that had been presented

farther from the screen’s central point. They sat on a primate chair 29 cm from a screen, with their head fixed. Three 3x2 cm infrared

switches were used as an interface between the monkeys and the experimental task. Each trial started when the monkeys touched

with their left hand the central switch that led to the presentation of a central reference point for 400-800ms after which a first stimulus

(S1), either a blue circle or a red square, appeared for 1.0 s above or below the reference point. After a first delay (D1) of 400 ms or
Cell Reports 27, 2909–2920.e1–e4, June 4, 2019 e1
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800 ms, a second stimulus (S2) appeared for another 1.0 s. S2 was a blue circle if S1 was a red square and a red square otherwise. If

the first stimulus was presented above the reference point, the secondwas presented below and vice versa when the first was below.

A second delay (D2) of either 0 ms, 400 ms or 800 ms followed S2 offset and preceded the simultaneous representation of the two

stimuli as targets, in this case acting as potential goals, which served as a ‘‘go’’ signal. The monkeys had to select, within 6.0 s, the

one that was presented farther from the reference point by pressing either the left or the right switch based on the position of the

chosen goal on the screen (7.8� to the left or to the right of the reference point). The distance between the reference point and S1

and S2 ranged from 8 mm to 48 mm, in steps of 8 mm. This range is equivalent to values of 1.6� to 9.4� of visual angle. Correct re-
sponses were rewarded with 0.1 mL of juice whereas incorrect responses were followed by an acoustic signal. An intertrial interval of

700–1000ms separated the end and the start of two consecutive trials. All the variables of the experiment, such as color and shape of

the stimuli and their left or right position during their reappearance, were pseudorandomly assigned. On average, there were 37.69

trials (±0.44, SEM) with the blue goal as the correct choice and 35.20 trials (±0.43, SEM) with the red goal as the correct choice.

QUANTIFICATION AND STATISTICAL ANALYSIS

Neural analyses
From the original database (Genovesio et al., 2011), we selected the neurons that had at least a mean of 1 spike/s when considering

the time period between the beginning of the trial and the end of the movement onset (N = 814/974).

To select the neurons that encoded the chosen goal (red square or the blue circle) in the D2 period before targets onset, we consid-

ered a pre-go period from 350-0 ms before targets onset. We performed a one-way ANOVA using the red and blue goals as factor.

Same analysis but in the period between 200ms after targets onset until movement end, designated as post-go period, allowed us to

identify the neurons classified as post-go goal neurons. A one-way ANOVA with action direction (left and right) in the post-go period

as a factor was performed to identify the neurons modulated by action selection. Unless otherwise specified the analyses did not

include trials with D2 of 0 ms duration and were performed on correct trials. An alpha level of 0.05 was used for all ANOVAs.

In all cases, the preferred goal condition was identified as the one with the highest mean activity and the nonpreferred condition as

the other one. The average neural firing rate of the different neural populations was calculated as the mean firing rate of each indi-

vidual mean neural activity. We used a temporal window of 50 ms and a sliding window of 5 ms. The significance test (Wilcoxon’s

matched-pairs signed-rank test with Bonferroni correction) between preferred and nonpreferred conditions was computed using

a non-overlapping window of 50 ms. The time reported refers to the middle point of the temporal window in which the statistical

test was performed.

Bursts and pauses were detected using the Robust Gaussian Surprise (RGS) method (Ko et al., 2012) which simultaneously

searches for burst and pause in a given spike train. In brief, the RGS method identifies the interspike intervals within the spike trains

of an individual neuron that are significantly (p < 0.05) lower (burst) or higher (pause) than a central distribution calculated with the

pooled data of all trials of the neuron. To calculate the central distribution, we divided the data by preferred and nonpreferred

conditions.

For individual neurons, we estimated the goal coding latency as the time at which the mean activity difference between preferred

and nonpreferred goal conditions reached the 20% of the maximum difference within the period of analysis. The goal coding la-

tencies of the post-go goal, but not pre-go goal, neurons (n = 115) and the switch neurons (n = 35) were calculated using the neural

activity observed in the period from the ‘‘go’’ signal to movement onset with the data aligned to movement onset. We restricted the

analyses to only those neurons that were recorded during more than 20 trials with blue and red goal conditions (73% of post-go goal,

but not pre-go goal, neurons and 90% of switch neurons) in order to ensure a good estimate of the neural activity difference between

conditions.We used a temporal window of 50msmoving in steps of 5ms. These samewindowswere used to plot themean firing rate

activity of individual neurons.

Besides, we estimated the time at which themean activity of switch neurons for the preferred goal condition changed from a low to

a high level and the time at which the activity of the same neurons for the nonpreferred condition changed froma high to a low level. To

do so, we calculated the timewhen the activity reached 80%of its maximum andwhen themean activity of a neuron fell to the 20%of

its maximum, respectively. In both cases, we used the activity observed during the RT period with the data aligned to the ‘‘go’’ signal.

Additional classification of neurons
Apart from the neural classification presented in the main text, we further identified two additional groups of neurons to control the

main results: neurons coding the goal in the early pre-go period (from 750 ms to 400 ms before targets onset) and neurons coding

the goal in both the pre-S2 offset (from 350ms to S2 offset) and the post-S2 offset (from 50ms to 400ms after S2 offset). We used the

neural activity observed in those periods to perform a One-way ANOVA using the red and blue goals as factor.

Goal selectivity index
The goal selectivity index (GI) of each neurons was calculated as:

GI=
Nblue � Nred

Nblue +Nred
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where N is the mean count of spikes for blue goal or red goal selection conditions. The GI is a value within�1 and 1, with 0 indicating

non-selectivity. The GI values were calculated using the neurons coding the goal in the pre-go and post-go periods (n = 72), in the

early pre-go and pre-go periods (n = 96) and in the pre-S2 offset and post-S2 offset periods (n = 102).

Models and simulations
Simulated cortical modules were networks of leaky integrate-and-fire (LIF) neurons similar to those introduced in (Cao et al., 2016;

Mattia et al., 2013). Briefly, a cortical module was composed of 1000 LIF neurons (80% excitatory and 20% inhibitory) fully con-

nected. As stationary baseline background noise, the neurons received a Poissonian spike train at 2400 Hz frequency (modeling

the firing of 800 external neurons firing at rate FRext = 3 Hz), which was further modulated in order to simulate the different task con-

ditions (see below) and to affect neuronal membrane potential via synapses with efficacy JE,ext = 0.429 mV and JI,ext = 0.560 mV

(E and I stay for excitatory and inhibitory post-synaptic neurons, respectively). Membrane potential decay constants were

tE = 20 ms and tI = 10 ms, and refractory periods were 2 ms and 1 ms for excitatory and inhibitory neurons, respectively. Emission

thresholds Vthr = 20 mV and reset potential after spike emission Vres = 15 mV were the same for both neuron types. Spike-frequency

adaptation was included in excitatory neurons, as they received an after hyper-polarizing (AHP) current increasing by 20 mV/s

and 90 mV/s at every emission of a spike in the networks of Figures 6A–6C, respectively, eventually decaying to 0 mV/s with a

time constant tAHP = 100 ms.

Excitatory neurons were structured in 8 equally sized pools of 100 cells each (see inset in Figure S4), by setting the intrapool syn-

aptic efficacy between neurons to Jintra = {0.652, 0.644, 0.541} mV and the inter-pool one to Jinter = {0.397, 0.397, 0.413} mV in the

bistable, working-memory and single-state modules, respectively. Although the former bistable model had a stronger synaptic self-

excitation (Jintra) than the working-memory one, its excitability level was smaller due to a larger aforementioned self-inhibitory (AHP)

current (90mV/s and 20mV/s, respectively). Indeed, network excitability can be reduced either by decreasing the glutamatergic syn-

aptic strength or by increasing the ionotropic inhibitory currents. We chose a mixed strategy (i.e., an increased self-inhibition to

change working-memory modules into weakly bistable ones, and a reduced synaptic self-excitation to transform the weakly bistable

modules into the single-state ones) as a stronger activity-dependent AHP current leads to an overshoot of activity in response to a

sudden increase of the external input both in bistable and single-state modules, a temporal activity profile that better matches the

post-go firing rate of many recorded neurons (see for instance Figures 2 and 3). The settings for the simulated bistable and work-

ing-memory modules allowed us to have a winner-take-all network in which an unspecific inactive Down state (all neurons fire at

low firing rate) coexisted with other 8 stable Up states where only the neurons belonging to the same pool reverberated at a relatively

high firing rate (Amit and Brunel, 1997; Wang, 1999). The other weaker synaptic couplings allowed us to set up a network with only

one attractor state at a time, as shown in Figure S4A. All the networks had instantaneous synaptic transmission from excitatory to

inhibitory neurons with an average efficacy JIE = 0.560 mV, while those from inhibitory neurons were JEI = JII = –1.50 mV. Other

network settings were as in Mattia et al. (2013).

To produce the activity patterns emulating a switch neuron both in bistable and single-state network, the baseline external Pois-

sonian input (corresponding to 100%) to the stimulated pool (the first of the 8 available) was set to have spike rate of 2340 Hz and

2726 Hz, respectively. In working-memory modules this rate was reduced to 2 kHz in order to keep the low-firing state stable in all

excitatory pools (see pre-stimulus activity between �2.5 and �2.0 s in Figure S4). Finally, for each cortical module, burst and pause

detection analysis was performed on 100 randomly sampled neurons of the stimulated pool in 5 replicas of bistable and single-state

cortical modules. Replicas of the same module differed only from a random selection of the synaptic efficacies, keeping unchanged

mean and standard deviations of the Js. Responses to preferred and nonpreferred stimuli for the associated selective pool (E1 in Fig-

ure S4) was simulated by delivering relatively large and small increases in the frequency of external spike rates, respectively. A

preferred stimulus, elicited a large response of the selective pool (Figure S4A) amplified by the strong glutamatergic synaptic rever-

beration, while a nonpreferred stimulus (Figure S4B) did not lead to the threshold activity capable to elicit the nonlinear amplification

of the pool. Different repetitions of this stimulation protocol represented different trials, and the spiking activity shown in Figure 5 was

from a single neuron chosen between those composing the selective pool. Before the beginning of each simulated trial, the network

was prepared in a specific activity state (initial condition). For instance, in the working-memory module this initial condition led all the

8 excitatory pools to fire at the same low average firing rate. In the bistablemodule including the switching neurons, the selective pool

was alternatively prepared to stay in the asymptotic firing rate elicited by the input level set at the beginning of the trial (low and high

firing rate states, light and dark gray conditions, respectively). Different stimulations are shown in Figure 5, aiming at modeling

different trial stages/conditions. In Figure 5A (right) the input change to the selective pool modeled the S2 phase, while in Figures

5B and 5C, the input change modeled the ‘‘go’’ signal. In the multi-modular setting sketched in Figure 7, the synaptic connections

between modules represent effective excitatory (red) and inhibitory (blue) couplings between local pools selectively engaged in the

task. In other words, a link between an upstream (presynaptic) module and a downstream (postsynaptic) one actually can represent a

potentiated or a depressed synaptic connection between selective pools.

The susceptibility plotted in Figure 5A was measured directly from the simulations as the ratio DFR/DFRext, where DFR was the

firing rate increase in an excitatory pool due to an increment DFRext = 0.05 FRext of the external neuron spike frequency. We admin-

ister the same stimulation protocol to each of the 16 cortical modules devised with different excitatory synaptic strengths. The pro-

tocol consisted of 20 trials with the same stimulation time course as the one shown in Figure 6A (right). External firing rate increase

occurred after 500 ms from the beginning of the activity sampling and persisted for one second. Activity fluctuations were computed
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for each module as the product between the coefficient of variation cv (standard deviation over mean) of the firing rate across and

within trials sampled in the last 500 ms of stimulation. More specifically, cv = cv
(intra) cv

(inter) where cv
(intra) was the the average across

trials of the firing rate cv, while cv
(inter) was the cv of the dataset composed of the mean firing rates in the different trials. In this way cv

wasmaximal (minimal) when fluctuations occurred (were dampened) bothwithin and across trials. Tested networkswere the same as

the aforementioned working-memory module but with different strengths in the recurrent excitatory synapses Jintra =w 0.361, where

w was the relative synaptic efficacy ranging from 125% to 155%. Jinter was set accordingly in order to keep unchanged the activity

level of the low-firing state. More specifically, if F(FR, Jintra, Jinter) is the input-output gain function of the excitatory neurons in the

network (Amit and Brunel, 1997) Jinter(Jintra) is the implicit function satisfying the self-consistency equation F(FRDown, Jintra, Jinter) =

FRDown, where the Down state firing rate was FRDown = 3 Hz. As a final step needed to avoid spontaneous escapes from the

Down state due to the endogenous activity fluctuations, the frequency FRext was also decreased from 100% to 80% within the

spanned range of w.

All simulations results were obtained using custom-made MATLAB (Mathworks) and C code (Mattia and Del Giudice, 2000).

Statistical analysis
Our sample size was not pre-determined but it is similar to the ones generally used in the field. Consistent with our previous work

(Genovesio et al., 2011, 2014a), a one-way ANOVA was performed to identify the neurons with goal or action selectivity. An

ANOVA is not sensitive to slight deviation from normality (Glass et al., 1972). For the rest of analyses, we used non-parametric tests

because normality was not satisfied. All the analyses were performed using MATLAB (MathWorks).
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