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Highlights: 

 

 Chronic alcohol consumption determines metabolic and pathological alterations mainly due to the 

oxidative stress in the mouse. 

 Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a non-flavonoid phenol with antioxidant properties. 

 Resveratrol consumption prevents free oxygen radicals’ formation measured in the serum of 

alcohol dependent mice. 

 Resveratrol metabolites counteracts alcohol-induced alteration of BDNF in the liver, a target tissue 

of alcohol intoxication. 
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Abstract 

Objective: uncontrolled ingestion of alcohol has dramatic consequences on the entire 

organism also associated with the oxidation process induced by alcohol by elevating radical oxygen 

species (ROS). Resveratrol, a non-flavonoid phenol, shows well-documented antioxidant properties. 

We investigated the potential antioxidant ability of this natural compound in a mouse model of 

alcohol addiction.  

Methods: we administered (per os) for two months 10 mg/kg/day of resveratrol in alcoholic 

adult male mice. Oxidative stress was evaluated by measuring serum free oxygen radicals defense 

(FORD) and free oxygen radicals (FORT) levels. Resveratrol metabolites were measured in the 

serum of mice administered with resveratrol. Finally, the effect of resveratrol on alcohol-induced 

alteration of BDNF in the liver was investigated. 

Results: prolonged consumption of resveratrol strongly counteracts serum ROS formation 

caused by chronic alcohol intake, without effects on natural, free oxygen radical defense. The 

presence of resveratrol metabolites only in the serum of animals supplemented with resveratrol 

potentiates the evidence that the antioxidant effect observed is due to the ingestion of the natural 

compound. Moreover, resveratrol supplementation can counteract alcohol-induced BDNF elevation 

in the liver, the main target of organ alcohol-induced damage. 

Conclusion: the consumption of resveratrol through metabolite formation may play a 

protective role, by decreasing free radical formation, and by modulating BDNF involved in hepatic 

disruption induced by chronic alcohol consumption. Further investigation about the mechanism 

underlying the protective effect could reinforce the potential use of resveratrol as a dietary 

supplement to prevent damage associated with chronic alcohol abuse. 

 

Keywords: addiction; alcohol use disorders; antioxidant; polyphenols; resveratrol; 

BDNF. 
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Introduction 

Chronic alcohol consumption represents, in many countries, a social and public health 

problem. Scientific research has constantly focused on finding solutions not only for the 

management of psychological dependence but also for the treatment of the numerous pathologies 

resulting from the abuse of alcohol [1–3].  

Uncontrolled and continuous ingestion of alcohol has dramatic consequences on the entire 

organism. Indeed, long-term alcohol abuse can cause several clinical conditions, including cirrhosis 

of the liver, chronic pancreatitis, epilepsy, polyneuropathy, heart disease, nutritional deficiencies 

and neuro-behavioral problems [4–13]. 

In human adults, ethanol is oxidized to acetaldehyde using NAD+, mainly via the hepatic 

enzyme alcohol dehydrogenase (ADH). In fetuses and adults, ethanol is metabolized by different 

enzymes (cytochrome P-450 superfamily, in particular by CYP2E1). In the presence of ethanol and 

oxygen, CYP2E1 releases superoxide radicals and induce the oxidation of polyunsaturated fatty 

acids to toxic aldehyde products. Acetaldehyde is a compound highly unstable and quickly forms 

free radicals that are highly toxic if not extinguished by antioxidants [13,14]. In the fetus, these free 

radicals can damage embryonic neural crest cells and can lead to severe birth defects, mental 

retardation and physical abnormalities in the newborns (Fetal Alcohol Spectrum Disorder, FASD) 

[15,16].  

In chronic alcoholics, prolonged exposure of the kidney and liver to these compounds can 

lead to severe damage. Acetaldehyde is transformed into acetic acid by aldehyde dehydrogenase 

(ALDH2). Finally, the acetic acid is transformed in acetyl-CoA by acyl-CoA synthetase and by 

acetyl-CoA-synthase-2 localized in the mitochondria. Once acetyl-CoA is formed, it enters the 

normal citric acid cycle [13,14].  

In human adults, the excess of both acetate and NADH cofactor inhibits the normal aerobic 

metabolism of the Krebs cycle, shifting towards lipid metabolism, with the synthesis of 
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triglycerides, leading to the steatosis of the liver [14]. These alterations are generally associated 

with the oxidation process of alcohol and more particularly with the oxidative stress resulting in the 

production of free radicals and lipid peroxidation [17]. As consequences, these processes result in 

an excessive production of acetaldehyde, formation of adducts at the level of cellular proteins, 

inactivation of enzymes, interference with the mechanisms of DNA repair and depletion of 

antioxidant systems [13]. The oxidative stress in cells, derived from alcohol consumption and 

associated with the altered lipidic metabolism, also induces morphological and functional 

alterations both in different brain regions [18,19] and in peripheral tissues [7–11].  

Neurotrophic factors, like Brain-Derived Neurotrophic Factor (BDNF), have been largely 

studied for their involvement in neuronal development and plasticity. It’s well known that they also 

regulate responses to drug abuse, including alcohol [20,21]. Numerous experimental pieces of 

evidences show that ethanol alters the expression of different neurotrophins in various brain areas 

[21,22], however little is known about the alcohol effects in non-neuronal tissues.  

Epidemiological evidence supports the hypothesis that modifiable lifestyle-related factors are 

associated with neurological impairments, opening new avenues for the prevention of central 

disorders [23]. In particular, the contribution of diet has become the object of intense research and, 

as recently suggested, some of the neurodegenerative processes associated with central nervous 

system disorders may be influenced by a targeted diet [24,25]. Indeed, great attention focused on 

the role of different dietary constituents in the prevention or in counteraction of brain disorders [26]. 

Between dietary components, antioxidants are considered of interest in the context of alcohol-

related disorders. We have recently demonstrated in mice that polyphenols, organic molecules of 

natural origin, widely present in the plant reign, produce beneficial effects to counteract the damage 

induced by chronic ethanol consumption, because of the antioxidant and anti-inflammatory 

properties [27–31]. 

Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a non-flavonoid phenol, is one of the 

phytoalexins naturally produced by several plants (Table 1), as a defensive mechanism against 
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pathogenic agents. Resveratrol shows a plethora of well-documented favorable actions in humans, 

as well as in experimental models. Anti-inflammatory [32–34] and protective vessel/endothelium 

[35,36] properties are of great interest for managing different pathological conditions. 

 The present study aimed to investigate the effect of oral administration of resveratrol in a 

mouse model of chronic alcohol addiction. We have evaluated the potential antioxidant ability of 

this natural compound, by measuring serum Free Oxygen Radicals Defense (FORD) and Free 

Oxygen Radicals Test (FORT) levels, in mice chronically addicted to alcohol. Moreover, we 

assessed the serum levels of resveratrol metabolites to support the hypothesis that the effects 

observed could be related to the compound. Finally, the effects of resveratrol on alcohol-induced 

alteration of BDNF in the liver, the main target tissue of alcohol intoxication, were investigated. 
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Methods 

Animals 

CD-1 outbred male mice were used in this experiment. All animals were three months old and 

housed in groups of 5 mice at the beginning of the experiments in Plexiglas cages (33 x 13 x 14 cm) 

under standardized conditions with pellet food (enriched standard diet purchased from Mucedola, 

Settimo Milanese, Italy). Food (Purina Lab Chow # 5015) and water were available ad libitum. A 

12 L:12 D lighting regime was used. 40 male CD-1 mice were randomly divided into four groups: 

(i) a group of mice (CTR, n =10) received sucrose dissolved in water at equivalent caloric intake of 

the ethanol group and was used as control group; (ii) another group of mice (EtOH, n = 10) received 

ad libitum, as only source of liquid, after an habituation period, ethanol 11% dissolved in water for 

60 days; (iii) the third group of mice (Resv, n =10) received resveratrol (10mg/Kg/day) dissolved in 

sucrose; and (iv) a further group of mice (EtOH+Resv, n = 10) received resveratrol (10mg/Kg/day) 

dissolved in ethanol 11% (again following an habituation period). The control and the ethanol 

groups were established, according to indication previously released [27]. 

Ethanol used for the preparation of the drinking solution was obtained from Sigma-Aldrich 

(St. Louis, Missouri, USA) and was of analytical grade. Fluid intake was measured regularly and 

the amounts consumed were calculated according to methods previously established [37]. All 

groups received pellet food ad libitum as above. Food intake was measured regularly and the daily 

amounts consumed were calculated. Two months after treatment, mice were sacrificed for the 

experiments. All efforts were made to minimize and reduce animal suffering and for limiting the 

number of animals used. All animal experiments were carried out following the procedure described 

by the guidelines of the European Community Council Directive of 24 November 1986 

(86/609/EEC). Permission number 08-2014 of February 3, 2014. 
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Drugs 

Resveratrol (3,5,4'-trihydroxy-trans-stilbene) was purchased from Sigma-Aldrich (Italy) and 

freshly prepared by suspending in water just before administration.  

 

Blood and tissues preparation 

Animals were sacrificed by a guillotine. The blood was collected in vials and quickly 

centrifuged at 10000 rpm for 15 min for serum preparation (n = 5 per group) or in heparin vials for 

the measurement of blood ethanol levels (n = 5 per group). Serum aliquots were then stored at -

80°C, while heparin vials were stored at 4°C. Tissue samples were homogenized by ultrasonication 

in RIPA buffer (50 mM Tris–HCl, pH 7.4; 150 mM NaCl; 5 mM EDTA; 1% Triton X‐100; 0.1% 

SDS; 0.5% sodium deoxycholate; 1 mM PMSF; 1 mg/mL leupeptin), kept in a cold room on a 

rotary shaker for 2 h to allow the complete tissue disaggregation and cell lysis, and then centrifuged 

at 10,000 g for 30 min at 4°C. The supernatant was stored at -80°C till the day of analyses. 

 

Blood ethanol levels by gas chromatography/head space procedure 

Gas chromatography/Head Space procedure was applied in this research to determine blood 

alcohol concentration in whole blood samples (n 1⁄4 5 for each group). In this research, a Clarus 

600 Gas Chromatography Perkin Elmer and a TurboMatrix 40 Trap HeadSpace Sampler Perkin 

Elmer with FID detector were used. Analytical conditions were set up and the method was validated 

by a previous study [12]. From each blood sample was collected 100 mL of whole blood with a 

micropipette and transferred this volume into a gas chromatography vial. The gases which are 

formed inside gas chromatography vial were collected to be analyzed. If the sample was not 

analyzed in the same day as its collection, it was important to firmly close the vial to prevent the 

evaporation of ethanol during the time and to conserve the vial inside of a refrigerator. Standard 

solutions were set up for calibration curve at 100 mg, 50 mg, 25 mg, 12.5 mg, 6.2 mg, and 3.1 mg 

of ethanol and were obtained by consequent dilutions of pure ethanol in distilled water. 
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Free Oxygen Radicals Defense (FORD) and Free Oxygen Radicals Test (FORT)  

FORD and FORT tests were carried out using two specific kits (both purchased by Callegari, 

Parma, Italy) following the instruction provided by the manufacturer with minor modification 

[38,39].  

Briefly, this test uses a preformed stable and colored radical and determines the decrease in 

absorbance that is proportional to the antioxidant concentration of the sample according to Lambert 

Beer’s law [40]. In the presence of an acidic buffer (pH= 5.2) and a suitable oxidant (FeCl3) the 

chromogen, which contains 4-amino-N,N-diethylaniline sulfate forms a stable and colored radical 

cation photometrically detectable at 505 nm. Antioxidant compounds in the sample reduce the 

radical cation of the chromogen quenching the color and producing a discoloration of the solution, 

which is proportional to their concentration. The absorbance values obtained for the samples are 

compared with a standard curve obtained using Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-

carboxylic acid), a water-soluble analogue of vitamin E commonly used as a reference. By contrast, 

FORT test allows the determination of free oxygen radicals (ROSs) through a colorimetric assay 

based on the ability of transition metals, such as iron, to catalyze the breakdown of hydroperoxides 

(ROOH) into derivative radicals, according to Fenton’s reaction (Pavlatou MG, 2009). Briefly, 

when 20 mL of the blood serum sample was dissolved in an acidic buffer, the hydroperoxides 

reacted with the transition metal ions liberated from the proteins in the acidic medium and were 

converted to alkoxy- (RO-) and peroxy- (ROO-) radicals. The radical species produced by the 

reaction interact with an additive (phenylendiamine derivative (2 CrNH2)) that forms a colored, 

fairly long-lived radical cation evaluable by spectrophotometer at 505 nm (linear kinetic-based 

reaction, 37°C). The intensity of the color correlates directly to the quantity of radical compounds 

and to the hydroperoxide concentration and, consequently, to the oxidative status of the sample 

according to the Lambert-Beer law (Form CR 2000; Callegari, Parma, Italy). 
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Serum Resveratrol Metabolites Measurement 

The serum for resveratrol metabolites measurement was immediately prepared by 

centrifugation at 1500g for 30 min at 20°C. Serum aliquots were acidified at pH 3 adding formic 

acid and stored at -80°C. 50 µl of samples were added with 150 µl ice-cold acetonitrile (ACN) and 

with 5 µl of Internal Standard (ethyl gallate 0.3 mg/ml). After vortexing, the samples were 

centrifuged at 14000 rpm for 10 min at 4°C. The supernatants were filtered through 0.20-μm 

syringe PVDF filters before MS analysis. 

Quantitative on-line HPLC-ESI-MS/MS analyses were performed using HPLC system 

interfaced to an Applied Biosystems (Foster City, CA, USA) API3200 Q-Trap instrument working 

with triple quadrupole analyzer in Multiple Reaction Monitoring (MRM) mode. LC analyses were 

conducted using a system equipped with a 200-binary pump (Perkin-Elmer, USA). Samples were 

injected (15 µl) into an Ultra II Aqueous C18 (Restek) (100 x 2.1 mm i.d., 3µm) and eluted at a 

flow rate of 0.25 ml min
-1

. Mobile phase A was H2O containing 0.1% formic acid while mobile 

phase B was acetonitrile containing 0.1% formic acid. Elution was carried out using a gradient 

commencing at 90% A for 7 min, then changing to 20% A in 6 min, remaining at 20% A for 9 min, 

and finally returning to 90% A in 10 min. The column was kept at 30 °C, using a Peltier Column 

Oven Series 200 (Perkin Elmer). The flow from the chromatograph was injected directly into the 

ESI source. The API 3200 ES source was tuned by infusing solutions of Resveratrol and ethyl 

gallate (1 µg ml
-1

 in methanol 50%) into the source at a flow rate of 10 ml min
-1

. The MS operated 

with an electrospray voltage at -4500V and with source temperature of 500°C.  Nitrogen was used 

as ion spray (GS1), drying (GS2) and curtain gas at 40, 20 arbitrary units, respectively. The 

declustering potential (DP), collision energy (CE) and entrance potential (EP) for resveratrol and 

ethyl gallate were; -45, -35, -7; while for resveratrol metabolites they were: 45, -25, -7. Resveratrol 

sulfate, dihydro-resveratrol glucuronide dihydro resveratrol sulfate and ethyl gallate were detected 

with MRM transition of 307/227, 405/228, 309/229 and 197/124 [M-H], respectively. Data 
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acquisition and processing were performed using Analyst software 1.5.1. The quantification of 

resveratrol metabolites was performed by using a calibration curve of Resveratrol.  

 

BDNF determination 

BDNF evaluation was carried out with ELISA kit ‘‘BDNF EmaxTM ImmunoAssay System” 

number G7611 by Promega (Madison, WI, USA) following the instructions provided by the 

manufacturer [41]. The colorimetric reaction product was measured at 450 nm using a microplate 

reader (Dynatech MR 5000, PBI International, USA). BDNF concentrations was determined, from 

the regression line for the BDNF standard (ranging from 7.8 to 500 pg/ml purified BDNF) 

incubated under similar conditions in each assay. The BDNF sensitivity of the assay was about 15 

pg/ml of wet tissue and cross-reactivity with other related neurotrophic factors (NGF, neurotrophin-

3 and neurotrophin-4) was less than 3%. Data are represented as pg/mg total proteins and all assays 

were performed in duplicate which were averaged for statistical comparison. 

 

Statistical analysis 

Data were analyzed by two-way analysis of variance (ANOVA) considering as main factors 

ethanol and resveratrol administration. Post-hoc comparisons were performed using the Tukey’s 

HSD test. Data are illustrated as mean ± SEM. Statistical significance was accepted at a P value of 

less than .05. 
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Results 

Blood ethanol levels and Resveratrol effects on food, liquid intake and body weight:  

Under the present experimental conditions, ANOVA did not show significant changes in body 

weight during two months of treatment and at the end of the treatment between groups. Moreover, 

food and liquid intake during two months of treatment were comparable between groups. The 

ethanol blood levels in the ethanol groups ranged from 3.2 to 21.2 mg/100 mL [27]. 

 

Oxidative stress evaluation 

In order to evaluate whether prolonged consumption of resveratrol might exert an antioxidant 

effect in alcohol addicted mice, we analyzed FORT and FORD levels in the serum. We found that 

FORT levels in blood serum were significantly higher in EtOH mice as compared to controls, 

p<0.01 in the ANOVA. Quite interestingly, the consumption of resveratrol partially counteracted 

this effect, Fig. 1A for post-hoc comparisons. However, the levels of FORD in blood serum were 

significantly lower in ethanol-treated mice (EtOH and Resv + EtOH) as compared to CTR group, 

p<0.01 in the ANOVA, see Fig. 1B for post-hoc comparisons. However, resveratrol consumption 

did revert the effect of ethanol on the endogenous defense system as disclosed by FORD ANOVA 

data. 

 

Serum Resveratrol metabolites 

Table 2 shows the mean values of resveratrol metabolites expressed as µg/ml: resveratrol 

sulfate (RVS), dihydro resveratrol glucuronide (DHRVG), dihydro-resveratrol sulfate (DHRVS) in 

each experimental group. In the serum of CTR mice and EtOH mice, no resveratrol metabolites 

were observed. As predicted, the presence of RVS, DHRVG and DHRVS was observed in the 

serum of Resv and Resv + EtOH groups. 
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BDNF determination 

Figure 2 shows the BDNF data in the liver. Chronic alcohol consumption increases BDNF 

levels p<0.05 in the ANOVA. Resveratrol per se did not modify endogenous BDNF liver levels, 

however, Resveratrol partially counteracted this increment as revealed by post-hoc comparisons.   
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Discussion 

In this study, we demonstrated that prolonged consumption of Resveratrol strongly 

counteracts serum-free oxygen radical formation, caused by chronic alcohol intake, without 

influencing the natural free oxygen radical defense in a mouse model of alcohol addiction. We did 

also demonstrate for the first time that the presence of resveratrol metabolites only in the serum of 

animals supplemented with resveratrol, strongly supports the evidence that the antioxidant effects 

observed are due to the ingestion of this natural compound. 

Although the medical use of natural compounds is of very ancient origin, only recently the 

availability of studies conducted with the scientific method has allowed to rigorously and 

reproducibly document the efficacy of some substances supplemented in the diet. 

Concerning ethanol addiction, it is well known that the chronic consumption of alcoholic 

drinks causes not only psychological dependence [42], but it severely compromises physical health 

[18]. Among factors that influence alcoholic liver disease (the main side effect of alcohol abuse), 

the role of oxygen is certainly relevant [43]. The normal production of molecular fragments 

containing oxygen represents the side effects of many metabolic reactions and is neutralized by 

antioxidant compounds present inside the cells (such as glutathione and vitamin A and E). When the 

production of free radicals is in excess or the anti-oxidant defenses are inadequate, the aggression of 

the radicals leads to lipids peroxidation in the cellular membranes. Based on this consideration, the 

use of antioxidants in the diet could be a quite useful tool to counteract the formation of free 

radicals. In a previous study, we have demonstrated that olive polyphenols supplementation may 

partially counteract the alcohol pro-oxidant effects in a mouse model of alcohol addiction [27]. A 

powerful antioxidant action [44–46] is common to the chemical class of polyphenols also 

containing resveratrol; this makes resveratrol an extremely interesting compound for its potential 

use in pathological conditions where the redox system is altered [44]. 

The present studies confirm and extend other investigations [47,48] describing the antioxidant 

effect of resveratrol in rodent models of ethanol addiction. In particular, oxidative stress modulation 
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together with anti-inflammatory properties of resveratrol significantly prevented cognitive deficits 

induced by chronic ethanol exposure in different brain regions of ethanol-treated rats. Also in 

alcohol-addicted mice, resveratrol ameliorated ethanol-induced oxidative challenges and 

angiogenesis processes [47].  

However, the route of administration for resveratrol chosen in our experimental protocol 

(drinking water) allowed us to mimic a widely accepted method of intake in humans. In this sense, 

we do strongly believe that the results obtained in our study may provide translational confirmations 

for a potential for use in humans. 

In the present experimental conditions of a chronic alcohol addiction in the mouse, for the 

first time, serum metabolites of resveratrol have been measured, demonstrating that i) resveratrol 

may be completely absorbed by the gastrointestinal tract; ii) the beneficial antioxidant properties 

observed might be, also, due to the effects of the Resveratrol metabolites. The absence of 

resveratrol or its metabolites in the serum of control mice indicates that resveratrol is rapidly 

metabolized and transformed in its main products: resveratrol sulfate, dihydro resveratrol 

glucuronide, dihydro-resveratrol sulfate. Indeed, recent crucial findings support the hypothesis that 

the resveratrol metabolites may play a key role in the pharmacological effect of resveratrol. In 

particular, glucuronide and sulfate conjugates show antioxidant and anti-inflammatory activities, 

but also cytotoxicity against various cancer cell lines [49]. Furthermore, another study clearly 

demonstrated that resveratrol metabolites may elicit comparable functions to those induced by 

resveratrol further demonstrating their critical roles in contributing to the in vivo biological 

activities of the parent molecule. Finally, some anti-inflammatory properties of the metabolites of 

resveratrol have been disclosed in the regulation of chemokine levels in macrophages activated by 

LPS in vitro [50].  

Another novel interesting finding of the present work regards the modulation of BDNF in 

peripheral tissues. BDNF, as other neurotrophic factors, is primarily involved in the development 

and maintenance of neuronal integrity and functionality [51–53], but its role also in non-neuronal 
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sites is growing. A recent research shows an altered level of BDNF in the brain and in the liver of 

patients affected by different psychiatric disorders, suggesting that these abnormalities could 

participate in the pathophysiology of such central diseases [54]. Also, diet could modulate BDNF 

levels in the hepatic gland. As previously shown, the brain and liver of mice fed with different fat 

content in the diet, present altered BDNF expression with circadian oscillation, supporting its role in 

the pathogenesis of feeding disorders, as obesity [55].  It’s well known that chronic alcohol 

consumption has a dramatic impact on the CNS, target for direct and indirect consequences of 

alcohol abuse [56]. While it is well established that drug and alcohol consumption may cause also 

severe disruptions in neurotrophic factors levels, but only a few studies investigated their impact on 

peripheral tissues. Concerning alcohol addiction, we previously demonstrated that, in a mouse 

model of FASD, offspring of addicted mice were characterized by alterations in BDNF and other 

growth factors expression in the liver [37,57]. In the present work, we evidence a BDNF 

modulation induced by resveratrol in the liver, the main target organ of alcohol-induced injury. 

BDNF binding to hepatocytes leads to the activation of catabolic pathways, such as fatty acid 

oxidation and gluconeogenesis inhibition [58]. Additionally, a recent work of Berna et al. shows 

how BDNF could prevent the apoptosis of cells in the liver and kidney, and increasing cell survival 

and contributing to tissue integrity [59]. Hepatic stellate cells were found to express BDNF and 

TrkA but not TrkB [60] demonstrating that the liver is a powerful source of several neurotrophins 

and neurotrophin receptors. These findings correspond with the known involvement of hepatic 

stellate cells in liver remodeling, in the production of extracellular matrix components and in cell 

proliferation in acute necrotizing liver pathology. In analogy with findings in other organs and 

systems, neurotrophins are hypothesized to play a role in the pathophysiology of liver diseases. 

Based on these considerations, the increased BDNF levels found in the liver of alcohol-addicted 

mice are in line with the postulation of a compensatory system that attempts to react to the hepatic 

damage induced by alcohol consumption [60]. The consumption of resveratrol may play a hepato-

                  



17 

 

protective role also through preventing the increase in neurotrophic factors in peripheral sites 

potentiating the maintenance of a physiological homeostatic balance. 

Most of the current research lines are focused on the use of natural products as adjuvants in 

the treatment of different conditions that alter the body's homeostasis. Among these, certainly anti-

oxidant compounds receive the attention of the scientific community for their potential wide use in 

multiple pathological circumstances. The results of the present work confirm and extend many other 

experimental pieces of evidence on the use of resveratrol, as well as of other antioxidant 

polyphenols, capable to prevent oxidative imbalance induced by chronic alcohol consumption 

[28,29]. Resveratrol is present in red wine whose consumption in moderate doses was speculated, 

although strongly debated [61], to elicit beneficial cardiovascular effects [62]. Indeed, the French 

paradox summarizes the apparently paradoxical epidemiological observation that French people 

have a relatively low incidence of coronary heart disease while having a diet relatively rich in 

saturated fats, in apparent contradiction to the widely held belief that the high consumption of such 

fats is a risk factor for coronary heart disease. As a first difference compared to the other European 

populations, it was speculated that the greater consumption of wine, mainly the red one, could bring 

greater antioxidant content, in particular by resveratrol, capable of playing a protective antioxidant 

role and therefore fundamental for the prevention of cardiovascular diseases. However, the amount 

of resveratrol needed to manifest these effects cannot be achieved through moderate wine 

consumption or throughout the consumption of other natural sources of resveratrol (see Table 1). 

Indeed, total resveratrol contained in red wine (1.90-12.60 mg/L) is not at all sufficient to carry out 

a cardiovascular protection effect, however, it could contribute significantly. Quite interestingly, 

previous studies on a FASD mouse model showed differences in ethanol-induced toxicity (but not 

enough to remove the alcohol damage) when ethanol is administered alone or in the red wine 

demonstrating a sort of minimal neurotrophic/neurobehavioral protection by red wine probably 

because containing compounds with antioxidant properties as polyphenols [37,57,63,64]. Anyway, 

those studies always stressed the point that women must avoid drinking alcohol during gestation. 

                  



18 

 

In conclusion, the present findings strongly provide evidence that resveratrol consumption 

may elicit powerful antioxidant properties. Accordingly, resveratrol could be considered an 

interesting and valuable adjuvant compound in those conditions where the alteration of the redox 

state plays a decisive role in determining a pathological circumstance. Furthermore, these basic 

research data may be also of interest to those researchers working in the fields of human 

dependence. 
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Figure Captions 

 

 

Figure 1 

FORT (A, expressed as FORT unit; see Methods) and FORD levels (B, expressed as mmol/Trolox 

eq; see Methods) in blood serum of control or alcoholic mice treated or not with 10mg/kg/day 

resveratrol for 60 days. The vertical lines in the figures indicate pooled standard error means (SEM) 

derived from appropriate error mean square in the ANOVA. Asterisks indicate significant 

differences between groups (**P < 0.01); in panel B asterisks indicate significant differences 

between EtOH treated groups and the other experimental groups. 
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Figure 2 

Liver BDNF expressed as pg/mg total proteins of control or alcoholic mice treated or not with 10 

mg/kg/day resveratrol for 60 days. The vertical lines in the figures indicate pooled standard error 

means (SEM) derived from appropriate error mean square in the ANOVA. Asterisks indicate 

significant differences between groups (*P < 0.05; **P<0.01). 

 

Table 1: Resveratrol concentration found in some natural sources. 

Source Resveratrol concentration References 

Bilberries ≈ 16 ng/g [65] 

Blueberries ≈ 32 ng/g [65] 

Cocoa powder 0.28 – 0.46 mg/cup [66–68] 

Cranberry raw juice ≈ 0.2 mg/L [65] 

Green peanuts 0.087 µg/g [69] 

Peanut butter 0.04-0.13 mg/cup [66–68] 

Peanuts (boiled) 0.32-1.28 mg/cup [66–68] 

Peanuts (raw) 0.01-0.26 mg/cup [66–68] 

Red grapes 0.24-1.25 mg/cup [66–68] 

Red wine (global) 1.9 ± 1.7 mg/L [70] 
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Table 2: Resveratrol and its metabolites expressed in µg/ml (mean ± SEM) in the serum of mice 

administered daily for 2 months with 10mg/kg of resveratrol and their respective controls. RV: 

resveratrol, RVS: resveratrol sulfate, DHRVG: dihydro-resveratrol glucuronide, DHRVS: dihydro-

resveratrol sulfate. 

 

 

Groups 

Resveratrol Metabolites 

RV RVS DHRVG DHRVS 

CTR n.d. n.d. n.d. n.d. 

EtOH n.d. n.d. n.d. n.d. 

Resv n.d. 0.045 ± 0.015 0.025 ± 0.001 0.051 ± 0.001 

Resv + EtOH n.d. 0.0955 ± 0.013 0.0615 ± 0.01 0.0798 ± 0.03 
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