
1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2916858, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Similarity Search for Dynamic Data Streams
Marc Bury, TU Dortmund, Chris Schwiegelshohn, Mara Sorella, Sapienza University of Rome

Abstract—Nearest neighbor searching systems are an integral part of many online applications, including but not limited to pattern
recognition, plagiarism detection and recommender systems. With increasingly larger data sets, scalability has become an important
issue. Many of the most space and running time efficient algorithms are based on locality-sensitive hashing. Here, we view the data set
as an n by |U | matrix where each row corresponds to one of n users and the columns correspond to items drawn from a universe U .
The de-facto standard approach to quickly answer nearest neighbor queries on such a data set is usually a form of min-hashing. Not
only is min-hashing very fast, but it is also space efficient and can be implemented in many computational models aimed at dealing
with large data sets such as MapReduce and streaming. However, a significant drawback is that minhashing and related methods are
only able to handle insertions to user profiles and tend to perform poorly when items may be removed. We initiate the study of scalable
locality-sensitive hashing (LSH) for fully dynamic data-streams. Specifically, using the Jaccard index as similarity measure, we design
(1) a collaborative filtering mechanism maintainable in dynamic data streams and (2) a sketching algorithm for similarity estimation.
Our algorithms have little overhead in terms of running time compared to previous LSH approaches for the insertion only case, and
drastically outperform previous algorithms in case of deletions.

Index Terms—Dynamic Streaming, locality-sensitive Hashing, Nearest Neighbor Searching

F

1 INTRODUCTION

F INDING the most interesting pairs of points, i.e., typi-
cally those having small distance or, conversely, of high

similarity, known as the nearest-neighbor search problem, is a
task of primary importance, that has many applications such
as plagiarism detection [2], clustering [3] and association
rule mining [4]. The aim is to maintain a data structure such
that we can efficiently report all neighbors within a certain
distance from a candidate point. Collaborative filtering [5] is
an approach to produce such an item set by basing the
recommendation on the most similar users in the data set
and suggesting items not contained in the intersection. To
apply such an approach, one typically requires two things:
(1) a measure of similarity (or dissimilarity) between users
and (2) scalable algorithms for evaluating these similarities.
In these contexts scalability can mean fast running times,
but can also require strict space constraints.

Though it is by no means the only method employed
in this line of research, locality-sensitive hashing (LSH)
satisfies both requirements [4], [6]. For a given similarity
measure, the algorithm maintains a small number of hash-
values, or fingerprints that represent user behavior in a
succinct way. The name implies that the fingerprints have
locality properties, i.e., similar users have a higher probabil-
ity of sharing the same fingerprint whereas dissimilar users
have a small probability of agreeing on a fingerprint. The
fingerprints themselves allow the recommendation system
to quickly filter out user pairs with low similarity, leading
to running times that are almost linear in input and output
size.

A crucial property of LSH-families is that they are data-
oblivious, that is the properties of the hash family depend
only on the similarity measure but not on the data. There-
fore, LSH-based filtering can be easily facilitated in online
and streaming models of computation, where user attributes

A preliminary version of this paper appeared in WSDM 2018 [1].
C.S. is supported by ERC Advanced Grant 788893 AMDROMA.

are added one by one in an arbitrary order. The fingerprint
computation may fail, however, if certain attributes get
deleted. Attribute deletion occurs frequently, for instance,
if the data set evolves over time. Amazon allows users to
unmark certain bought items for recommendations, Twitter
users have an unfollow option, Last.fm users may delete
songs or artists from the library. A naive way to incorporate
deletions within the context of LSH is to recompute any
affected fingerprint, which requires scanning the entire user
profile and is clearly infeasible.

1.1 Contributions

We initiate the study of locality-sensitive nearest neigh-
bors search in the dynamic data-stream model. Our input
consists of sequence of triples (i, j, k), where i ∈ [n] is
the user identifier, j ∈ |U | is the item identifier and
k ∈ {−1, 1} signifying insertion or deletion. Instead of
maintaining an n × |U | user/attribute matrix, we keep a
sketch of polylog(n · |U |) bits per user.

In a first step, we show that the Jaccard distance 1− |A∩B||A∪B|
can be (1± ε)-approximated in dynamic streams. Moreover,
the compression used in this approximation is a black-box
application of `0 sketches, which allows for extremely effi-
cient algorithms from theory and practice. This also enables
us to efficiently compress the n by n distance matrix using
n polylog (n|U |) bits, similar in spirit to the compression by
Indyk and Wagner [7] for Euclidean spaces. This enables us
to run any distance matrix-based algorithm in a dynamic
semi-streaming setting.

Known lower bounds on space complexity of set in-
tersection prevent us from achieving a compression with
multiplicative approximation ratio for Jaccard similarity, see
for instance [8]. From the multiplicative approximation for
Jaccard distance we nevertheless get an ε-additive approx-
imation to Jaccard similarity, which may be sufficient if
the interesting similarities are assumed to exceed a given

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on May 26,2020 at 07:23:26 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2916858, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

threshold. The same reduction further extends to a wide
class of similarity functions on sets such as rational set
similarities and root similarities, see Gower and Legendre [9].
However, even with this assumption, such a compression
falls short of the efficiency we are aiming for, as it is not
clear whether the relevant similarities can be found more
quickly than by evaluating all similarities.

Our main contribution lies now in developing a com-
pression scheme that simultaneously supports locality-
sensitive hashing while satisfying a weaker form of approx-
imation ratio. The construction is inspired by bit-hashing
techniques used both by `0 sketches and min-hashing. In ad-
dition, our approach can be extended to similarities admit-
ting LSHs other than min-hashing, such as Hamming, An-
derberg, and Rogers-Tanimoto similarities. This approach,
despite having provable bounds that are weaker than `0
sketches from an approximation point of view, is extremely
simple to implement. Our implementation further shows
that our algorithms have none to little overhead in terms
of running time compared to previous LSH approaches for
the insertion only case, and drastically outperform previous
algorithms in case of deletions.

2 PRELIMINARIES

We have n users and a universe set U of items. A dynamic
stream consists of sequence of triples (i, j, k), where i ∈ [n]
is the user identifier, j ∈ |U | is the item identifier and k ∈
{−1, 1} signifying deletion or insertion, respectively. A user
profile is a subset of U .

The symmetric difference of two sets A,B ⊆ U is A4
B = (A \ B) ∪ (B \ A). The complement is denoted by
A = U \ A. Given x, y ≥ 0 and 0 ≤ z ≤ z′, the rational set
similarity Sx,y,z,z′ between two item sets A and B is

Sx,y,z,z′(A,B) =
x · |A ∩B|+ y · |A ∪B|+ z · |A4B|
x · |A ∩B|+ y · |A ∪B|+ z′ · |A4B|

if it is defined and 1 otherwise. The distance func-
tion induced by a similarity Sx,y,z,z′ is defined as
Dx,y,z,z′(A,B) := 1−Sx,y,z,z′(A,B). If Dx,y,z,z′ is a metric,
we call Sx,y,z,z′ a metric rational set similarity [10]. The
arguably most well-known rational set similarity is the
Jaccard index S(A,B) = S1,0,0,1(A,B) = |A∩B|

|A∪B| . A root
similarity is defined as Sαx,y,z,z′ := 1−(1−Sx,y,z,z′)α for any
0 < α ≤ 1. We denote numerator and denominator of a ra-
tional set similarity by Num(A,B) and Den(A,B), respec-
tively. For some arbitrary but fixed order of the elements,
we represent A via its characteristic vector a ∈ {0, 1}|U |
with ai = 1 iff i ∈ A. The `p-norm of a vector a ∈ Rd

is defined as `p(a) = p

√∑d
i=1 |ai|p. Taking the limit of p

to 0, `0(x) is exactly the number of non-zero entries, i.e.
`0(a) = |{i | ai 6= 0}|.

An LSH for a similarity measure S : U × U → [0, 1] is a
set of hash functions H on U with an associated probability
distribution such that

Pr [h(A) = h(B)] = S(A,B)

for h drawn from H and any two item sets A,B ⊆ U .
We will state our results in a slightly different manner.
A (r1, r2, p1, p2)-sensitive hashing scheme for a similarity

measure aims to find a distribution over a family of hash
functions H such that for h drawn from H and two item
sets A,B ⊆ U we have

Pr [h(A) = h(B)] ≥ p1 if S(A,B) ≥ r1
and

Pr [h(A) = h(B)] ≤ p2 if S(A,B) ≤ r2.

The former definition due to Charikar [11] has a number
of appealing properties and is a special case of the latter
definition due to Indyk and Motwani [12]. Unfortunately,
it is also a very strong condition and in fact not achievable
for dynamic data streams. We emphasize that the general
notions behind both definitions are essentially the same.

3 RELATED WORK

Locality-Sensitive Hashing
Locality-sensitive hashing describes an algorithmic frame-
work for fast (approximate) nearest neighbor search in met-
ric spaces. In the seminal paper by Indyk and Motwani [12],
it was proposed as a way of coping with the curse of dimen-
sionality for proximity problems in high-dimensional Eu-
clidean spaces. The later, simpler definition by Charikar [11]
was used even earlier in the context of min-hashing for
the Jaccard index by Broder et al. [13], [14], [15]. Roughly
speaking, min-hashing computes a fingerprint of a binary
vector by permuting the entries and storing the first non-
zero entry. For two item sets A and B, the probability that
the fingerprint is identical is equal to the Jaccard similarity
of A and B. When looking for item sets similar to some set
A, one can arrange multiple fingerprints to filter out sets
of small similarity while retaining sets of high similarity
(see Cohen et al. [4], and Leskovec et al. [16] for details). We
note that while this paper is focused mainly on min-hashing,
locality-sensitive hashing has been applied to many differ-
ent metrics, see Andoni and Indyk [17] for an overview.

Instead of using multiple independent hash functions
to generate k fingerprints, Cohen and Kaplan suggested
using the k smallest entries after a single evaluation [18],
[19] which is known as bottom k-sampling, see also Heller-
stein et al. [20]. Min-hashing itself is still an active area of
research. Broder et al. [15] showed that an ideal min-hash
family is infeasible to store, which initiated the search for
more feasible alternatives. Indyk considered families of ap-
proximate min-wise independence [21], i.e., the probability
of an item becoming the minimum is not uniform, but close
to uniform, see also Feigenblat et al [22].

Instead of basing requirements on the hash-function,
other papers focus on what guarantees are achievable by
simpler, easily stored and evaluated hash-functions with
limited independence. Of particular interest are 2-wise in-
dependent hash functions. Dietzfelbinger [23] showed that,
given two random numbers a and b, the hash of x may
be computed via (ax + b) � k, where k is a power of 2
and � denotes a bit shift operation. This construction is to
the best of our knowledge the fastest available and there
exists theoretical evidence which supports that it may be, in
many cases, good enough. Chung et al. [24] showed that if
the entropy of the input is large enough, the bias incurred
by 2-wise independent hash functions becomes negligible.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on May 26,2020 at 07:23:26 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2916858, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

Thorup [25] further showed that 2-wise independent hash-
ing may be used for bottom k sampling with a relative
error of 1√

fk
, where f is the Jaccard similarity between

two items. Better bounds and/or running times are possible
using more involved hash functions such as tabulation
hashing [26], [27], linear probing [28], [29], one-permutation
hashing [30], [31], [32], and feature hashing [33], [34].

Profile Sketching
Using the index of an item as a fingerprint is immediate
and requires log2 |U | space. For two item sets A,B, we then
require roughly log2 |U |

ε2·S(A,B) bits of space to get an (1 ± ε)-
approximate estimate of the similarity S(A,B). It turns
out that this is not optimal, Bachrach and Porat [35], [36]
and Li and König [37] proposed several improvements
and constant size fingerprints are now known to exist.
Complementing these upper bounds are lower bounds by
Pagh [8] who showed that that this is essentially optimal for
summarizing Jaccard similarity.

We note that one of the algorithms proposed by Bachrach
and Porat in [35] use an `2 estimation algorithm as a black
box to achieve fingerprint size of size (1−S(A,B))2

ε2 log2 |U |
bits. It is well known that the `2 norm of a vector can be
maintained in dynamic data streams. However, their algo-
rithm only seems to work for if the similarity is sufficiently
large, i.e. S(A,B) ≥ 0.5 and it does not seem to support
locality-sensitive hashing.

4 SIMILARITY SKETCHING IN DYNAMIC STREAMS

In this section, we aim to show that the distance function
of any rational set similarity with an LSH can be (1 ± ε)-
approximated in dynamic streams. First, we recall the fol-
lowing theorem relating LSH-ability and properties of the
induced dissimilarity:

Theorem 1. Let x, y, z, z′ > 0. Then the following three
statements are equivalent.

1) Sx,y,z,z′ has an LSH.
2) 1− Sx,y,z,z′ is a metric.
3) z′ ≥ max(x, y, z).

(1)⇒(2) was shown by Charikar [11], (2)⇒(1) was shown
by Chierichetti and Kumar [38] and (2)⇔(3) was proven
by Janssens [10]. We also recall the state of the art of `0
sketching in dynamic streams.

Theorem 2 (Th. 10 of Kane, Nelson, and Woodruff [39]).
There is a dynamic streaming algorithm for (1±ε)-approximating
`0(x) of a |U |-dimensional vector x using space O(1

ε2 log2 |U |)1,
with probability 2/3, and with O(1) update and query time.

With this characterization, we prove the following.

Theorem 3. Given a constant 0 < ε ≤ 0.5, two item sets
A,B ⊆ U and some rational set similarity Sx,y,z,z′ with
metric distance function 1 − Sx,y,z,z′ , there exists a dynamic
streaming algorithm that maintains a (1 ± ε) approximation to

1. The exact space bounds of the `0 sketch by Kane, Nelson and
Woodruff depends on the magnitude of the entries of the vector. The
stated space bound is sufficient for our purposes as we are processing
binary entries.

1−Sx,y,z,z′(A,B) with constant probability. The algorithm uses
O(1

ε2 log2|U |) space and has O(1) update and query time.

Proof. We start with the observation that |A4B| = `0(a−b)
and |A ∪ B| = `0(a + b), where a and b are the character-
istic vectors of A and B, respectively. Since Den(A,B) −
Num(A,B) = (z′ − z) · |A 4 B| is always non-negative
due to z′ ≥ z, we only have to prove that Den(A,B) is
always a non-negative linear combination of terms that we
can approximate via sketches. First, consider the case x ≥ y.
Reformulating Den(A,B), we have

Den(A,B) = y · |U |+ (x− y) · |A∪B|+ (z′ − x) · |A4B|.

Then both numerator and denominator of 1−Sx,y,z,z′ can be
written as a non-negative linear combination of n, |A4 B|
and |A ∪ B|. Given a (1 ± ε) of these terms, we have an
upper bound of 1+ε

1−ε ≤ (1 + ε) · (1 + 2ε) ≤ (1 + 5ε) and a
lower bound of 1−ε

1+ε ≥ (1− ε)2 ≥ (1− 2ε) for any ε ≤ 0.5.
Now consider the case x < y. We first observe

Sx,y,z,z′(A,B) = Sy,x,z,z′(A,B).

Therefore

Den(A,B) = (y− x) · |A∪B|+ x · |U |+ (z′ − y) · |A4B|.

Again, we can write the denominator as a non-negative lin-
ear combination of |A4B|, n and |A∪B|. Dynamic updates
can maintain an approximation of |A 4 B| and |A ∪ B|,
leading to upper and lower bounds on the approximation
ratio analogous to those from case x ≥ y.

By plugging in the `0 sketch of Theorem 2 and rescaling
ε by a factor of 5, the theorem follows.

Using a similar approach, we can approximate the dis-
tance of root similarity functions admitting a locality hash-
ing scheme. We first repeat the following characterization.

Theorem 4 (Th. 4.8 and 4.9 of [38]). The root similarity
Sαx,y,z,z′ is LSH-able if and only if z′ ≥ α+1

2 max(x, y) and
z′ ≥ z.

Theorem 5. Given a constant 0 < ε ≤ 0.5, two item sets
A,B ⊆ U and some LSH-able root similarity Sαx,y,z,z′ , there
exists a dynamic streaming algorithm that maintains a (1 ± ε)
approximation to 1 − Sαx,y,z,z′(A,B) with constant probability.
The algorithm uses O(1

ε2 log2|U |) space and each update and
query requires O(1) time.

Proof. We consider the case x ≥ y, the case y ≥ x can be
treated analogously. Again we will show that we can (1 ±
ε)-approximate the denominator; the remaining arguments
are identical to those of Theorem 3. Consider the following
reformulation of the denominator

Den(A,B) = y · n+ (x− z′) · |A ∩B|+ (z′ − y) · |A ∪B|.

We first note that we can obtain an estimate of |A∩B| in
a dynamic data stream with additive approximation factor
ε · |A∪B| by computing |A|+ |B| − ̂|A ∪B|, where ̂|A ∪B|
is a (1± ε)-approximation of |A ∪B|.

Due to Theorem 4, we have x − z′ ≤ 2 · z′ − z′ ≤ z′

and either z′ − y ≥ z′

2 or y ≥ z′

2 . Hence ε · (x − z′) ≤
ε ·z′ ≤ 2ε ·max(z′, (z′−y)). Since further |U | ≥ |A∪B|, we

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on May 26,2020 at 07:23:26 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2916858, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

then obtain a (1 ± 2ε)-approximation to the denominator.
Rescaling ε completes the proof.

Remark 1. Theorems 3 and 5 are not a complete character-
ization of dissimilarities induced by similarities that can be
(1 ± ε)-approximated in dynamic streams. Consider, for in-
stance, the Sørenson-Dice coefficient S2,0,0,1 = 2·|A∩B|

|A|+|B| with

1 − S2,0,0,1 = |A4B|
|A|+|B| . Neither is 1 − S2,0,0,1 a metric, nor

do we have z′ ≥ α+1
2 x for any α > 0. However, both numerator

and denominator can be approximated using `0 sketches.

The probability of success can be further amplified to
1− δ in the standard way by taking the median estimate of
O(log2(1/δ)) independent repetitions of the algorithm. For
n item sets, and setting δ = 1/n2, we then get the following
corollary.

Corollary 1. Let S be a rational set similarity with metric
distance function 1− S. Given a dynamic data stream consisting
of updates of the form (i, j, v) ∈ [n]× [|U |]×{−1,+1} meaning
that a(i)j = a

(i)
j + v where a(i) ∈ {0, 1}|U | with i ∈ {1, . . . , n},

there is a streaming algorithm that can compute with constant
probability for all pairs (i, i′)
• a (1± ε) multiplicative approximation of 1− S(ai, ai

′
) and

• an ε-additive approximation of S(ai, ai
′
).

The algorithm uses O(n log2 n · ε−2 · log2|U |) space and each
update and query needs O(log2 n) time.

We note that despite the characterization of LSH-able
rational set similarities of Theorem 1, the existence of the
approximations of Corollary 1 hints at, but does not directly
imply the existence of a locality-sensitive hashing scheme or
even an approximate locality-sensitive hashing scheme on
the sketched data matrix in dynamic streams. Our second
and main contribution now lies in the design of a simple
LSH scheme maintainable in dynamic data streams, albeit
with weaker approximation ratios. The scheme is space ef-
ficient, easy to implement and to the best of our knowledge
the first of its kind able to process deletions.

Remark 2. Corollary 1 also implies that any algorithm based
on the pairwise distances of a rational set similarity admits a
dynamic streaming algorithm using n · polylog (n|U |) bits of
space. Notable examples include hierarchical clustering algorithms
such as single or complete linkage, distance matrix methods
used in phylogeny, and visualization methods such as heatmaps.
Though the main focus in the experimental section (Section 6)
will be an evaluation of the dynamic hashing performance, we
also briefly explore clustering and visualization methods based on
the sketched distance matrix.

5 AN LSH ALGORITHM FOR DYNAMIC DATA
STREAMS

In the following, we will present a simple dynamic stream-
ing algorithm that supports Indyk and Motwani-type sen-
sitivity. Recall that we want to find pairs of users with
similarity greater than a parameter r1, while we do not
want to report pairs with similarity less than r2. The precise
statement is given via the following theorem.

Theorem 6. Let 0 < ε, δ, r1, r2 < 1 be parameters. Given a
dynamic data stream with n users and |U | attributes, there exists

an algorithm that maintains a (r1, r2, (1 − ε)r1, 6r2/(δ(1 −
ε/5
√

2r1))-sensitive LSH for Jaccard similarity with probabil-
ity 1 − δ. For each user, O(1

ε4δ5·r21
log2

2 |U |) bits of space are
sufficient. The update time is O(1).

The proof of this theorem consists of two parts. First, we
give a probabilistic lemma from which we derive the sen-
sitivity parameters. Second, we describe how the sampling
procedure can be implemented in a streaming setting.

5.1 Sensitivity Bounds

While a black box reduction from any `0 sketch seems
unlikely, we note that most `0 algorithms are based on bit-
sampling techniques similar to those found in min-hashing.
Our own algorithm is similarly based on sampling a suf-
ficient number of bits or item indexes from each item set.
Given a suitably filtered set of candidates, these indexes
are then sufficient to infer the similarity. Let Uk ⊆ U be a
random set of elements where each element is included with
probability 2−k. Further, for any item set A, let Ak = A∩Uk.
Note that in Sx,y,z,z′(Ak, Bk) the value of |U | is replaced by
|Uk|. At the heart of the algorithm now lies the following
technical lemma.

Lemma 1. Let 0 < ε, δ, r < 1 be constants and Sx,y,z,z′
be a rational set similarity with metric distance function.
Let A and B be two item sets. Assume we sample every
item uniformly at random with probability 2−k, where k ≤

log2

(
ε2 · δ · r ·Denx,y,z,z′(A,B)

100 · z′

)
.

Then with probability at least 1 − δ the following two state-
ments hold.

1) If Sx,y,z,z′(A,B) ≥ r we have (1−ε)Sx,y,z,z′(A,B) ≤
S(Ak, Bk) ≤ (1 + ε)Sx,y,z,z′(A,B).

2) Sx,y,z,z′(Ak, Bk) ≤ 2 · Sx,y,z,z′(A,B)

δ(1− (ε/5) ·
√

2r)
.

We note that any metric distance function induced by
a rational set similarity satisfies z′ ≥ max(x, y, z), see
Theorem 1 in Section 4.

Proof. Let Denk = Den(Ak, Bk), Numk = Num(Ak, Bk),
and Xi = 1 iff i ∈ Uk. If Sx,y,z,z(A,B) ≥ r then
Num(A,B) ≥ r · Den(A,B). Thus, we have E[Numk] =
Num(A,B)/2k ≥ r · Den(A,B)/2k and E[Denk] =
Den(A,B)/2k. Further, we have Var [Xi] = 2−k · (1 −
2−k) ≤ 2−k. for any Xi. We first give a variance bound
on the denominator.

Var [Denk]

= Var[x · |Ak ∩Bk|+ y · (|Uk| − |Ak ∪Bk|)|
+z′ · |Ak 4Bk|]

= x2
∑

i∈A∩B
Var [Xi] + y2

∑
i∈A∪B

Var [Xi]

+z′2
∑

i∈A4B
Var [Xi]

=
(
(x2 − y2)|A ∩B|+ y2 · |U |

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on May 26,2020 at 07:23:26 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2916858, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

+(z′2 − y2)|A4B|
)
Var [Xi]

≤
(
(x2 − y2)|A ∩B|+ y2 · |U |+ (z′2 − y2)|A4B|

)
/2k

≤ 1

2k
max{x+ y, z′ + y, y} · ((x− y)|A ∩B|+

y · d+ (z′ − y)|A4B|)
≤ 2z′ ·E [Denk]

and analogously

Var [Numk]

= Var[x · |Ak ∩Bk|+ y · (|Uk| − |Ak ∪Bk|)|
+z · |Ak 4Bk|]

≤ 1

2k
max{x+ y, z + y, y} · ((x− y)|A ∩B|+

y · d+ (z′ − y)|A4B|)
≤ max{x+ y, z + y, y} ·E [Numk] .

Using Chebyshev’s inequality we have

P [|Denk −E [Denk] | ≥ ε/5 ·E [Denk]]

≤ 50z′

ε2 ·E [Denk]
≤ 50z′ · 2k

ε2 ·Num(A,B)
,

and

P [|Numk −E [Numk] | ≥ ε/5 ·E [Numk]]

≤ 25 max{x+ y, z + y, y}
ε2 ·E [Numk]

≤ 50z′ · 2k

ε2 ·Num(A,B)
.

If k ≤ log2

(
ε2δrDen(A,B)

100z′

)
≤ log2

(
ε2δNum(A,B)

100z′

)
then both Denk − E [Denk] ≤ ε

5E [Denk] and Numk −
E [Numk] ≤ ε

5E [Numk] hold with probability at least 1 −
δ/2. Then we can bound S(Ak, Bk) = Numk/Denk from
above by

Num(A,B)/2k + εNum(A,B)

Den(A,B)/2k − εDen(A,B)/2k)

=
1 + ε/5

1− ε/5
· Sx,y,z,z′(A,B)

≤ (1 + ε) · Sx,y,z,z′(A,B).

Analogously, we can bound Sx,y,z,z′(Ak, Bk) from below
by 1−ε/5

1+ε/5 · Sx,y,z,z′(A,B) ≥ (1 − ε) · Sx,y,z,z′(A,B) which
concludes the proof of the first statement.

For the second statement, we note that the expectation
of Numk can be very small because we have no lower
bound on the similarity. Hence, we cannot use Chebyshev’s
inequality for an upper bound on Numk. But it is enough
to bound the probability that Numk is greater than or equal
to (2/δ) ·E [Numk] by δ/2 using Markov’s inequality. With
the same arguments as above, we have that the probability
of Denk ≤ (1− ε′) ·E [Denk] is bounded by ε2rδ

25·ε′2 which is
equal to δ/2 if ε′ = ε/5 ·

√
2r. Putting everything together

we have that

Sx,y,z,z′(Ak, Bk) ≤ 2

δ(1− (ε/5) ·
√

2r)
· Sx,y,z,z′(A,B)

with probability at least 1− δ.

We note that for similarities with y > x, we can obtain
the same bounds by sampling 0-entries instead of 1-entries.

Since we are not aware of any similarities with this property
used in practice, we limited our analysis to the arguably
more intuitive case x ≥ y.

Applying this lemma on a few better known similarities
gives us the following corollary. We note that to detect
candidate high similarity pairs for an item set A, Den :=
|A∪B| ≥ |A| for Jaccard andDen := |A∪B|+|A4B| ≥ |A|
for Anderberg. For Hamming and Rogers-Tanimoto similar-
ities, Den ≥ |U |. More examples of rational set similarities
can be found in Naish, Lee, and Ramamohanarao [40].

Corollary 2. Let α := ε2δ · r. Then if we sample items with at
least probability 2−k, the similarity is preserved for any two item
sets A and B as per Lemma 1. The following table reports suitable
values of k for interesting rational set similarities.

Similarity Parameters k

Jaccard S1,0,0,1 log (α|A|/100)
Hamming S1,1,0,1 log (α|U |/100)
Anderberg S1,0,0,2 log (α|A|/200)

Rogers-Tanimoto S1,1,0,2 log (α|U |/200)

5.2 Streaming Implementation
When applying Corollary 2 or more generally Lemma 1 to
a dynamic streaming environment, we have to address a
few problems. First, we may not know how to specify the
number of items we are required to sample. For Hamming
and Rogers-Tanimoto similarities, it is already possible to
run a black box LSH algorithm (such as the one by Cohen
et al. [4]) if the number of sampled items are chosen via
Corollary 2. For Jaccard (and Anderberg), the sample sizes
depend on the cardinality of A, which requires additional
preprocessing steps.

Cardinality-Based Filtering
As a first filter, we limit the candidate solutions based on
their respective supports. For each item, we maintain the
cardinality, which can be done exactly in a dynamic stream
via counting. If the sizes of two item sets A and B differ by
a factor of at least r1, i. e., |A| ≥ r1 · |B|, then the distance
between these two sets has to be

1− S(A,B) =
|A4B|
|A ∪B|

≥ |A| − |B|
|A|

≥ 1− 1/r1.

We then discard any item set with cardinality not in the
range of [r1 · |A|, |A|]. Like the algorithm by Cohen et al [4],
we can do this by sorting the rows or hashing.

Small Space Item Sampling
Since the cardinality of an item set may increase and de-
crease as the stream is processed, we have to maintain
multiple samples Uk in parallel for various values of k. If a
candidate k is larger than the threshold given by Corollary 2,
we will sample only few items and still meet a small space
requirement. If k is too small, |Uk| might be too large to
store. We circumvent this using a nested hashing approach
we now describe in detail.
Sampling with 2-Universal Hash Functions We first note
that Uk does not have to be a fully independent randomly
chosen set of items. Instead, we only require that the events

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on May 26,2020 at 07:23:26 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2916858, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

Xi are pairwise independent. The only parts of the analysis
of Lemma 1 that could be affected are the bounds on the
variances, which continue to hold for pairwise indepen-
dence. This allows us to emulate the sampling procedure
using universal hashing. Assume that M is a power of 2
and let h : [|U |] → [M] be a 2-wise independent universal
hash function, i.e. P[h(a) = j] = 1

M , for all j ∈ [M].
We set Uk = {j ∈ [M] | lsb(h(j)) = k}, where lsb(x)
denotes the first non-zero index of x when x is written
in binary and lsb(0) = log2M . Since the image of h is
uniformly distributed on [M], each bit of h(j) is 1 with
probability 1/2, and hence we have P[lsb(h(j)) = k] = 2−k.
Moreover, for any two j, j′ the events that lsb(h(j)) = k
and lsb(h(j′)) = k are independent. The value of M may be
adjusted for finer (M large) or coarser (M small) sampling
probabilities. In our implementation (see Section 6) as well
as in the proof of Theorem 6, we set M = |U |. Following
Dietzfelbinger [23], h requires log2 |U | bits of space.
Recovery and Compression via Perfect Hashing To avoid
storing the entire domain of h in the case of large |Uk|, we
pick, for each k ∈ [0, . . . , log2 |U |], another 2-wise indepen-
dent universal hash function hk : [|U |] → [c2], for some
absolute constant c to be specified later. For some j ∈ [|U |],
we first check if lsb(h(j)) = k. If this is true, we apply hk(j).

For the ith item set, we maintain a set T ik,• of buckets
T ik,hk(j)

for all k ∈ {0, . . . log2 |U |} and hk(j) ∈ {0, . . . , c2 −
1}. Each such bucket T ik,hk(j)

contains the sum of the entries
hashed to it. This allows us to maintain the contents of
T ik,hk(j)

under dynamic updates. Note that to support sim-
ilarity estimation for sets that might have a low cardinality
at query time, we must also maintain a bucket set T i0,•
associated to a hash function h0, that will receive all items
seen so far for a given set i, i. e., each of them will be hashed
to the bucket T i0,h0(j)

with probability 20 = 1 (see line 7 in
Algorithm 1).

For the interesting values of k, i. e., k ∈ Θ(log2 |A|),
the number of indexes sampled by h will not exceed some
constant c. This means that the sampled indexes will be
perfectly hashed by hk, i. e., the sum contained in T ik,hk(j)
consists of exactly one item index. If k is too small (i.e.
we sampled too many indexes), hk has the useful effect of
compressing the used space, as c2 counters require at most
O(c2 log2 |U |) bits of space.

We can then generate the fingerprint matrix, for instance,
by performing a min-hash on the buckets Bik,• and storing
the index of the first non zero bucket. For a pseudocode of
this approach, see Algorithm 1. Algorithm 2 describes an
example candidate generation as per Cohen et al. [4].

Proof of Theorem 6. Fix items sets A and B and let a, b be
the corresponding characteristic vectors for the sets A and
B, respectively. Without loss of generality, assume |A| ≥
|B|. Set α = ε2·δ

600 . If S(A,B) ≥ r1 then |A|/|B| ≤ 1/r1,
then log2(α · |B|) ≤ log2(α · |A|) and log2(r1 · α · |B|) ≤
log2(α · |A|). Both sets will then enter line 3 of Algorithm 2
for some common values of k, and must exist at least an Hk

containing min-hashes from both sets as per line 4.
Let 2k be the largest power of 2 such that k ≤

log2 (α · r1|A ∪B|) ≤ log2 (α · |A ∩B|). Let Uk be a subset
of indexes as determined by line 4 of Algorithm 1 and define
Ak := Uk ∩A and Bk := Uk ∩B.

Algorithm 1 Dynamic stream update (Jaccard)
Input: Parameter c ∈ N
Output: T (i)

k,l with i ∈ [n], k ∈ [0, . . . , log2m], l ∈ [c2]
Initialization:
si = 0 for all i ∈ [n]

T
(i)
k,l = 0 for all i ∈ [n], k ∈ [0, . . . , log2 |U |], l ∈ [c2].
h : [|U |]→ [M] a 2-universal hash function.
h1 : [M]→ [c2] another 2-universal hash function.

1: On update (i, j, v):
2: k = lsb(h(j))

3: T
(i)
k,h1(j)

= T
(i)
k,h1(j)

+ v

4: T
(i)
0,h1(j)

= T
(i)
0,h1(j)

+ v
5: si = si + v

Algorithm 2 Filter candidates (Jaccard)

Input: Thresholds 0 < r1, α < 1, B(i)
k,l from Alg.1 with k ∈

{0, 1, 2, . . . , log2 |U |}
Output: Set of candidate pairs

Initialization:
I = {0, log2(1/r1), 2 log2(1/r1), . . . , log2 |U |}
Hi: empty list for i ∈ I .

1: for i ∈ [n] do
2: s = `0(x(i))
3: for k ∈ [log2(r1 · α · s), log2(α · s)] ∩ I do
4: add (i,MinHash(T

(i)
k,•)) to Hk

5: end for
6: end for
7: return {(i, i′) | ∃k : (i, h), (i′, h′) ∈ Hk and h = h′}

In expectation, E[|Ak ∪Bk|] = |A ∪B|/2k. By Markov’s
inequality, we have |Ak ∪ Bk| ≤ 3

δ · |A ∪ B|/2
k ≤ 1800

ε2δ2·r1
with probability at least 1 − δ/3. By setting the number of
buckets in the order of

c2 = |Ak ∪Bk|2 ∈ O
(

1

ε4δ5 · r21

)
, (1)

the elements of Ak ∪Bk will be perfectly hashed by hk with
probability at least 1 − δ/3 (line 3 of Algorithm 1). Since
deleting indexes where both vector entries are zero does
not change the Jaccard similarity, the probability that the
smallest index in the collection of buckets T (p)

k,• is equal to

the smallest index in the collection of buckets T (q)
k,• is equal

to the similarity of Ak and Bk. Thus we have

P[MinHash(T
(p)
k,•) = MinHash(T

(q)
k,•)] = S(Ak, Bk).

If S(A,B) ≥ r1 we have by our choice of α and due to
the first part of Lemma 1, S(Ak, Bk) ≥ (1 − ε) · S(A,B)
with probability 1 − δ

3 . If S(A,B) ≤ r2 < r1, we
have due to the second part of Lemma 1 S(Ak, Bk) ≤

6 · S(A,B)

δ(1− (ε/5) ·
√

2r1)
≤ 6r2

δ(1−(ε/5)·
√
2r1)

with probability 1− δ
3 .

Conditioning on all events gives us a (r1, r2, (1 −
ε)r1, 6r2/(δ(1 − ε/5

√
2r1))-sensitive LSH with probability

1− δ.
To bound the space requirement, observe that for each

of the n item sets we have log2 |U | collections T
(p)
k,• of

c2 ∈ O
(

1
ε4δ5·r21

)
buckets due to Equation 1. Each bucket

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on May 26,2020 at 07:23:26 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2916858, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

contains a sum that uses at most log2 |U | bits. The space
required for each hash function is at most log2 |U | due to
Dietzfelbinger [23].

For every item insertion or deletion, we execute lines 2-
5 of Algorithm 1. Each of these operations are elementary
arithmetic operations that run in constant time.

The parameters in Theorem 6 can be chosen such that
we are able to use Algorithm 1 and Algorithm 2 similar
to the min-hashing technique in the non-dynamic scenario.
This also means that we can use similar tricks to amplify
the probability of selecting high similar items in Algorithm 2
and lower the probability in case of a small similarity as long
as (1− ε)r1 > 6r2

δ(1−ε/5)√r1 , see also Leskovec et al. [16]. Let
`,m ∈ N. Then we repeat the hashing part of Algorithm 2
` times and only add a pair to the output set iff all ` hash
values are equal. This procedure is repeatedm times and the
final output set contains all pairs which appear at least once
in an output set of the m repetitions. The probability that a
pair with similarity s is in the output set is 1 − (1 − p`)m
with p ≥ (1−δ)(1−ε)s if s > r1 and p ≤ 6s/(δ(1−ε/5√r2)
if otherwise.

6 EXPERIMENTAL EVALUATION

In this section we evaluate the practical performance of the
algorithm given in Section 5. Our aim is two-fold: First,
we want to show that the running time of our algorithm
is competitive with more conventional min-hashing algo-
rithms. For our use-case, i. e., dynamic streams, we are not
aware of any competitors in literature. Nevertheless, it is
important to demonstrate the algorithm’s viability, as in
many cases a system might not even support a dynamic
streaming environment: we show a performance compari-
son in Section 6.1. To cover all ranges of user profiles, we
use a synthetic benchmark described below.

Our second goal is to be able to measure the quality of
the algorithm’s output. We deem our filtering mechanism
to be successful if it finds most of the user pairs with
high similarity, while performing a good level of filtering,
returning as candidates few user pairs with low similar-
ity. Furthermore, Theorem 6 guarantees us a reasonable
approximation to the similarity of each pair, though it is
unclear whether this still holds for all pairs simultaneously,
especially for small bucket sizes. We are satisfied if our
approximate computation based on sketches does not lead
to high deviation with respect to exact similarities. As a
typical candidate from practice, we consider profiles of users
containing recently preferred artists from Last.FM.
Implementation details: We implemented Algorithm 1,
Algorithm 2, as well as other hash routines in C++ and
compiled the code with GCC version 4.8.4 and optimization
level 3. Compared to the description of Algorithm 2, which
has 5 parameters (error ε, failure probability δ, lower bound
for desirable similarities r1, upper bound for undesirable
similarities r2, and granularity of the sampling given byM),
our implementation has only two parameters: (1) the inverse
sampling rate α and (2) the number of buckets c2. Recall that
a higher inverse sampling rate α means selecting higher
values of k in Algorithm 2, line 5, where an increasing k
is associated to a decreasing sampling probability 2−k of a
bucket Tk,hk(i).

The choice of c2 influences the possible combinations of
ε, δ, and r1, see Equation 1 for an upper bound on c2.The
cardinality based filtering of Algorithm 2 is influenced by
the choice of α.

As a rule of thumb, r2 is roughly of the order r1.51 . For
example, if we aim to retain all pairs of similarity at least
1
4 , we can filter out pairs with similarity less than 1

8 . Pairs
with an intermediate similarity, i.e. a similarity within the
interval [18 ,

1
4], may or may not be detected. We view this

as a minor restriction as it is rarely important for these
thresholds to be sharp.

Lastly, we implemented Dietzfelbinger’s multiply-add-
shift method to generate 2-wise independent hash functions,
where a is a random non-negative odd integer, b a random
non-negative integer, and for a given M the shift is set
to w − log2(M), where w is the word size (32 bits in our
implementation). All hash functions used in the implemen-
tation of both Algorithm 1, that is the functions h, h1 and
the hash functions used for implementing the MinHash
scheme, with amplification parameters ` (functions in one
band) and m (number of bands) at line 6 of Algorithm 2),
are 2-wise independent hash functions, and were generated
independently, i. e., we did not reuse them for subsequent
experiments. Otherwise the implementation follows that of
Algorithms 1 and 2 with various choices of parameters.

All computations were performed on a 2.7 GHz Intel
Core i7 machine with 8 MB shared L3 Cache and 16 GB
main memory. Each run was repeated 10 times.
Synthetic Dataset To accurately measure the distortion on
large datasets, for varying feature spaces, we used the
synthetic benchmark by Cohen et al. [4]. Here we are given
a large binary data-matrix consisting of 10, 000 rows and
either 10, 000, 100, 000 or 1, 000, 000 columns. The rows
corresponded to item sets and the columns to items, i. e.,
we compared the similarities of rows. Since large binary
data sets encountered in practical applications are sparse,
the number of non-zero entries of each row was between 1%
to 5% chosen uniformly at random. Further, for every 100th
row, we added an additional row with higher Jaccard sim-
ilarity in the range of {(0.35, 0.45), (0.45, 0.55), (0.55, 0.65),
(0.65, 0.75), (0.75, 0.85), (0.85, 0.95)}.

To obtain such a pair, we copied the preceding row
(which was again uniformly chosen at random) and uni-
formly at random flipped an appropriate number of bits,
e. g., for 10, 000 items, row sparsity of 5%, and similarity
range (0.45, 0.55) we deleted an item contained in row i
with probability 1/3 and added a new item with probability
1
19 ·

1
3 = 1

57 . In the insertion-only case, the stream consists
of the sequence of 1-entries of each row. We introduced
deletions by randomly removing any non-zero entry imme-
diately after insertion with probability 1

10 .
Last.FM Dataset: For an evaluation of our algorithm on real
data we considered a dataset from [41] containing temporal
data from the popular online (social) music recommenda-
tion system Last.fm. Users update their profiles in multiple
ways: listening to their personal music collection with a
music player supporting the Last.fm Audioscrobbler plugin,
or by listening to the Last.fm Radio service, either with
Last.fm official client application, or with the web player.
Radio stations consist of uninterrupted audio streams of
individual tracks based on the user’s profile, its “musical

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on May 26,2020 at 07:23:26 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2916858, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

neighbors” (i. e., similar users identified by the platform),
or the user’s “friends”. All songs played are added to a
log from which personalized top charts and musical rec-
ommendations are calculated, using a collaborative filtering
algorithm. This automated track logging process is called
scrobbling. Our dataset contains the full “scrobbled” listening
history of a set of 44, 154 users, covering a period of 5-years
(May 2009-May 2014), containing 721M listening events and
around 4.6M unique tracks, where each track is labeled
with a score for a set of 700 music genres. To obtain a
more granular feature space, we decided to map each track
to the corresponding artist. To this end we queried the
MusicBrainz DB2 to obtain artist information for each of
the unique tracks (total of 1.2M artists). We then processed
the listening histories of each user i in chronological order
to produce our event stream, emitting a triple (i,j,+1)
after a user has listened to at least 5 songs by an artist j,
and emitting a triple (i,j,-1) when no track from artist
j is listened by i for a period of 6 months (expiration time).
The threshold of 5 tracks is mainly intended to mitigate the
“recommendation effect”: being Last.fm a recommendation
system, some portions of the listening histories might in
fact be driven by recommendation sessions, where diverse
artists are suggested by the system based on the user’s
interests (i. e., not explicitly chosen by him), and are likely
to lead to cascades of deletions in the stream after the
expiration time. Like most real world datasets that link users
to bought/adopted items, this dataset is very sparse. For
rows with only sparse support, a fast, space efficient nearest
neighbor data structure typically does not improve over a
naive approach that simply stores everything. We therefore
only considered only users having at least 0.5%-dense pro-
files on average, obtaining a final set of n = 15K users (sets),
|U | = 380K (items) and a stream length of 6.2M entries.
Table 1 shows the distribution of exact similarity values for
all pairs the Last.fm dataset.

TABLE 1: Distribution of exact similarity values for pairs in
the Last.fm dataset

Similarity 0.0 0.05 0.1 0.15
No. of pairs 60432710 37947485 12031795 1938117
Similarity 0.2 0.25 0.3 0.35

No. of pairs 164246 7855 266 13
Similarity 0.4 0.45 0.5 ≥ 0.55

No. of pairs 10 1 3 0

6.1 Performance Evaluation

We evaluated the running time of our algorithm using
the synthetic dataset, to understand its performance with
respect to various dataset sizes, in two different scenar-
ios, an insertion-only stream, and a fully dynamic stream,
both obtained from our synthetic dataset. As a compara-
tive benchmark, we compare our approach with an online
implementation of a “vanilla” LSH scheme (later Vanilla-
MH), where profile sketches are computed online using 2-
wise independent hash functions (that is also our signature
scheme).

2. https://musicbrainz.org/doc/MusicBrainz Database

We tested two versions of our algorithm. The first ver-
sion henceforth called DynSymSearch (DSS) maintains the
sketches of Alg. 1 and computes fingerprints only at query
time. The second, called DynSymSearch Proactive (or simply
DSS Proactive), instead maintains a set of fingerprints online,
with every update (that is, after line 5 of Alg. 1, reflecting
the most recent change from the stream).

The choice of the first or the second implementation
depends on the use case, with a trade-off between query
responsiveness and additional space required for computing
and storing the signatures of sets.

Let us now focus on the algorithms that update signa-
tures online. When inserting item j added to set i, both DSS
Proactive and Vanilla-MH behave in the same way. When an
element is added, all hash-functions are evaluated on the
new element, and updated in case such value is the new
minimum. Let k = lsb(h(j)). In case of deletions, both will
have to recompute signatures, yet while Vanilla-MH has to
do so for the full user profile, DSS Proactive has to recompute
signatures only for the two compressed bucket sets T ik,• and
T i0,•. A further optimization that we implemented in DSS
Proactive, is the selective recomputation of signatures in case
of deletions. In case of deletions of an item j, we recompute
a set of signatures for T (i)

k only if the bucket is sensitive, i. e.,
its corresponding set cardinality and similarity threshold are
such that k is the range specified by line 5 of Algorithm 2.
This allows to ignore many costly recomputations.

Now we can move on to comparing the three on the
various settings. We set ` = 5, m = 40 as amplifying
parameters for signatures of all algorithms, and further
set r1 = 0.5 for our two algorithms. The choice of `,m
is not extremely important: indeed for the sake of run-
time comparison all algorithms should only share the same
“hashing-related” overhead. Average running times of 10
independent realizations of each algorithm are plotted in
Figure 1 where we study the impact of the parameters.

The running time of our algorithms is influenced by their
parameters to different extents. In particular, the number of
buckets c2 has impact on both our algorithms (especially
for DSS Proactive) as it directly implies more hash function
evaluation for fingerprints.

For the insertion-only stream (Figure 1a), we see that
the performances of the three algorithms are somewhat
comparable, which is expected, considering that Vanilla-MH
is to some extent naturally contained in both versions of our
algorithm. In DSS they are computed only at query time on
the sensitive sketches, rendering it the fastest option for this
scenario.

When considering deletions, things change dramatically.
As can be seen in Figure 1b, deletions represent a problem
for both Vanilla-MH and DSS Proactive: as the fingerprint
computation is not reversible, after a deletion they must all
be consistently recomputed. However, our algorithm is less
affected: thanks to its compression and cardinality-based
bucketing system, the updates are, to some extent, more
local, as they impact only the sensitive buckets. We note that
DSS Proactive has some values of α where the running time
increases: these values allow for a wider range of buckets to
become sensitive as long as the set cardinalities vary with
the stream, implying more signature recomputations when
each k becomes queryable. Overall, DSS is consistently

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on May 26,2020 at 07:23:26 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2916858, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

c2
= 128 c2

= 256 c2
= 512 c2

= 1024

0.0075
0.01

0.05 0.1 0.15 0.2
0.0075

0.01
0.05 0.1 0.15 0.2

0.0075
0.01

0.05 0.1 0.15 0.2
0.0075

0.01
0.05 0.1 0.15 0.2

1
2

10

100

1000

10000

α

av
er

ag
e

ti
m

e
(s

)
Dimensions 10000 100000 1000000 Algorithm DSS Proactive DSS Vanilla MinHashing

(a) Insertion only stream

c2
= 128 c2

= 256 c2
= 512 c2

= 1024

0.0075
0.01

0.05 0.1 0.15 0.2
0.0075

0.01
0.05 0.1 0.15 0.2

0.0075
0.01

0.05 0.1 0.15 0.2
0.0075

0.01
0.05 0.1 0.15 0.2

1
2

10

100

1000

10000

α

av
er

ag
e

ti
m

e
(s

)

(b) Fully dynamic stream

Fig. 1: [Synthetic] Running time of our algorithms com-
pared to a 2-wise MinHashing based LSH implementation,
in insertion-only or fully dynamic setting for different val-
ues of |U |. y-axes are in log-scale. The summary running
times are the mean values of 10 repetitions. In the insertion
only setting (a), all algorithms have comparable perfor-
mance, while in the dynamic setting (b), Vanilla MH takes
from 12 to 100 times more time than the two variants of our
algorithm, due to extensive recomputation of signatures in
case of deletions.

faster then the other two options, while the performance
of Vanilla-MH is very poor, taking from 12 to 100 times
more time than DSS Proactive, for d = 1M . We also remark
that in the implementation of Vanilla-MH, we are forced
to store the entire data set in order to deal with deletions,
to be able to recompute the fingerprints. This requirement
is indeed not feasible in many settings. Furthermore, even
for these comparatively sparse data sets, our algorithm has
significant space savings.

Quality of approximation: We now move to examine
the quality of approximation of our algorithm (which is the
same for both online and offline implementations), on the
synthetic dataset, as a function of our two main parameters,
α and c2. Concerning α, there are two opposite cases. If
the inverse sampling rate is too low, we might have chosen
set representative buckets with many samples: this means
high chance of collisions which decreases the approximation
ratio. On the other hand if it is too high, the selected
set of items might not be sensitive. A higher bucket size
instead, always means less collisions, for an increased space
occupation of the sketches.

Figure 2 shows the values of the average squared de-

α = 0.0075 α = 0.01 α = 0.05 α = 0.1 α = 0.15 α = 0.2

128 256 512
1024 128 256 512

1024 128 256 512
1024 128 256 512

1024 128 256 512
1024 128 256 512

1024

0.00

0.25

0.50

0.75

Hash Size c2

av
er

ag
e

sq
. d

ev
ia

ti
on

 (
lo

w
 s

im
ila

ri
ty

)

Dimensions 10000 100000 1000000

(a) Low similarity pairs

α = 0.0075 α = 0.01 α = 0.05 α = 0.1 α = 0.15 α = 0.2

128 256 512
1024 128 256 512

1024 128 256 512
1024 128 256 512

1024 128 256 512
1024 128 256 512

1024

0.00

0.05

0.10

0.15

Hash Size c2
av

er
ag

e
sq

. d
ev

ia
ti

on
 (

hi
gh

 s
im

ila
ri

ty
)

(b) High similarity pairs

Fig. 2: [Synthetic] Average squared deviation for high sim-
ilarity (J ≥ 0.2) and low similarity (J < 0.2) pairs in the
synthetic dataset, for various parameter choices. At inverse
sampling rate α = 0.1, the error for both high similarity and
low similarity pairs was below 0.05, even for a very small
number of buckets (c2 = 128).

viation of the sketched similarities obtained with our algo-
rithm, and their exact Jaccard similarity, on the synthetic
dataset, for different value of d, and various values of the
parameters α and c2.

The goodness of a given α depends on the similarity of
a pair in question. We show separate plots for high and
low similarity pairs, that is pairs with Jaccard similarity
respectively below and above 0.2. Their behavior is affected
in a different way. First, low pairs tend to have higher
average squared deviation than high pairs, this is expected
as out sketches can better approximate high similarity pairs.
Also, for both kind of pairs the distortion decreases with
increasing c2, independently of α as the number of collisions
decrease monotonically. All deviations reach almost zero
already at α = 0.05 for all bucket sizes. For α above 0.1 we
see that the deviation of high similarity pairs depart from
the others, and especially for higher dimensional datasets
tend to be slightly more distorted. Except for the lowest
number of buckets, the average total deviation for these
parameters was always below 0.1 and further decreased
reaching to zero for larger bucket sizes. We note that these
values of c2 are below the theoretical bounds of Theorem 6,
while having little to acceptable deviation for appropriately
chosen values of α.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on May 26,2020 at 07:23:26 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2916858, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

6.2 Analysis of the Last.fm Dataset
A realistic context like the one of Last.FM dataset, offers a
valid playground to explore the performance of our similar-
ity search. We use our algorithms to find high similarity
pairs, to provide recommendations. We also compute a
visualization of the most related user pairs, which illustrates
an application of the sketching techniques from Section 4
to implicitly store an approximate distance matrix in small
space. We note that the data is very sparse. Since the Jaccard
index is highly sensitive to the support of the vectors, using
it for this type of recommendation is more appropriate
compared to other similarity measures such as Hamming,
or cosine similarity.

In Algorithm 2, we fixed r1 = 0.25, therefore for each
set A associated to each user profile, we added a min-
hash value to Hk with k ∈ [s − 2, s] ∩ I , with I =
{0, log2

1
r1
, . . . } = {0, 2, 4, . . . , log2|U |} (lines 3-4), where s

is the actual cardinality of A at the time of the query (which
we perform at the end of the stream). At the output of the
filtering phase, we evaluate the similarity between users of
a candidate pair using k = log2(α · r1 · max(|A|, |B|) and
output S(Ak, Bk). Note that this choice of k satisfies the first
condition from Lemma 1. We remark that this dataset, as
witnessed by the huge presence of very low similarity pairs
(see Table 1), and very few pairs with higher similarity, is a
challenge for any LSH scheme, as providing a good filtering
behavior with low similarity thresholds requires many hash
functions.

We performed multiple experiments in order to choose
good parameters of ` and m to achieve a good filtering. We
set a threshold on the maximum number of hash functions
to use to 1600 hash functions. Then we also set a threshold
on the maximum fraction of pairs that we accept to be
reported as candidate pairs, to 10%. Then we tested a
number of combinations of ` and m that are compatible
with the similarity threshold r and meet our constraints,
and report them in Table 2. The combination of ` = 5 and
m = 300 shows the lowest number of false negatives, and
achieves a very good filtering, reporting only as low as 3.6%
of pairs. We choose these values as amplification parameters
for the filtering phase, and are fixed for all the experiments
on this dataset.

TABLE 2: Fraction of pairs reported as candidates vs best
number of false negatives given by our algorithm for vari-
ous choices of a and b

` m % candidate pairs False negatives
4 400 0.099 1393
5 50 0.016 5171

150 0.028 2406
300 0.036 781
320 0.029 1587

6 200 0.0187 5415

Figure 3a shows average squared deviation values of
the sketched similiarities obtained with our algorithm and
their exact Jaccard similarity, as function of α and c2.
Like in Figure 2, we show separate curves for pairs with
Jaccard similarity below 0.2 (green curve) and high pairs
(red curve). The same considerations made for the syn-
thetic dataset hold, while we note that, for this dataset, the
approximations of high similar pairs for very low bucket

sizes appear slightly worse, possibly because indeed the
majority of them have a similarity value is closer to the
threshold, with respect to the synthetic dataset. However,
for appropriate values of the parameters, all deviations
tend to zero. Figure shows other information regarding the
detection performance of our filtering scheme. Recall that
the sensitivity of our scheme is defined using Indyk and
Motwani [12] kind of sensitivity, that is characterized by two
different thresholds r2 < r1 (and corresponding regimes,
with different approximation bounds as per Theorem 6).
As a rule of thumb, r2 is roughly of the order r1.51 , so we
tolerate to report pairs with similarity above r2 = 0.125
, and consider this range as true positives (TP), true nega-
tives (TN) pairs below r2 that are correctly not reported.
Conversely, pairs below r2 that are reported as candidates
by our algorithm are false positives (FP), and we consider
false negatives (FN) pairs that are above the real threshold
r1 = 0.25 but were not reported. Figure 3b shows values of
Accuracy = (TP+TN)

(TP+TN+FP+FN) , Recall = (TP)
(TP+FN) and fraction

of candidate pairs reported. We can notice that the recall is
approximately 1 for all values of the parameters. Accuracy
instead, increases for increasing c2, as expected, and also for
increasing α, until it deteriorates for very high values, like
it was for the high similarity pairs in Figure 3a. We notice
that we get filtering above 90% starting from α = 0.075, for
512 buckets. Lastly, in Figure 3c we see that we achieve very
small running times from α = 0.075, as a consequence of the
filtering. We remark that these plots show the performances
of the filtering algorithm alone without any further pruning
step. Yet, as reported by our very low deviation from actual
similarities, we note that when completely avoiding false
negatives is of primary concern, one can decide to choose
a lower r1 (and/or a different l,m combination) to retain
more pairs in the candidate selection phase, and then per-
form another linear filtering using the accurate estimation
given by our sketches.

6.2.1 Visualizing top similar users

We conclude showing a visualization of the most similar
Last.fm users found by DynSymSearch. For a predefined
order of the elements in U , that is, our collection of music
artists, we can view user profiles as their characteristic
binary vectors, where an entry is 1 at a given time if a given
user has recently listened to the corresponding artist. Given
the high dimensionality of U , it is very hard to find a way
to make sense of such similarities. We have taken various
steps to reach the following two objectives: i) find a lower
dimensional representation (ideally 2D points) of the user
profiles that can mostly retain their Jaccard similarities, and
ii) enrich such points with lower resolution information that
helps to visually distinguish similar pairs without recurring
to artist annotation.

Our input is a set of characteristic vectors, representing
profiles of a set S of 34 users, 24 of which form the top 14
similar pairs i. e., pairs with similarity above 0.4 (see Table 1)
and other 10 users selected at random. We refer to the former
users as the top k users, and call the latter users random.

For implementing step i) we resort to Multidimensional
Scaling (MDS) [42], a technique that takes in input a ma-
trix of pairwise distances (notably Euclidean and Jaccard,

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on May 26,2020 at 07:23:26 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2916858, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

α = 0.01 α = 0.025 α = 0.075 α = 0.1 α = 0.15 α = 0.2 α = 0.3

128 256 512
1024 128 256 512

1024 128 256 512
1024 128 256 512

1024 128 256 512
1024 128 256 512

1024 128 256 512
1024

0.0

0.2

0.4

0.6

c2

av
er

ag
e

sq
. d

ev
ia

ti
on

Low similarity pairs (s < 0.2) High similarity pairs (s >= 0.2)

(a) Average squared deviation

α = 0.01 α = 0.025 α = 0.075 α = 0.1 α = 0.15 α = 0.2 α = 0.3

128 256 512
1024 128 256 512

1024 128 256 512
1024 128 256 512

1024 128 256 512
1024 128 256 512

1024 128 256 512
1024

0

25

50

75

100

 c2

%

Accuracy Recall Output pairs

(b) Accuracy, Recall and Fraction of output pairs

α = 0.01 α = 0.025 α = 0.075 α = 0.1 α = 0.15 α = 0.2 α = 0.3

128 256 512
1024 128 256 512

1024 128 256 512
1024 128 256 512

1024 128 256 512
1024 128 256 512

1024 128 256 512
1024

100

1000

10000

c2

ru
nn

in
g

ti
m

e

(c) Running time (log-scale)

Fig. 3: [Last.fm] Approximation quality, Accuracy, Recall,
Fraction of pairs found and running time, for various com-
binations of the parameters

among others) of an input set of objects, and finds an N -
dimensional projection of points, such that the between-
object distances are preserved as well as possible. Each
object is then assigned coordinates in each of the N dimen-
sions. We used a Python implementation of MDS from the
Orange Data Mining library [43], where we set N = 2 and
input a Jaccard distance matrix computed on all pairs of our
34 user characteristic vectors.

As per step ii) we used genre information from the
original dataset in the form of a vector of scores for the mu-
sic genres Rock, Pop, Electronic,Metal,Hip-Hop/RnB, Jazz/Blues
and Country/World, where each entry is normalized so that
their sum adds to 1. For each artist a appearing in some user
profile, we derived a score vector computing the normalized
sum of all score vectors of tracks authored by him, present
in our dataset, and then in turn used the same mechanism
for deriving a score for a user listening to a set of artists,
determining a 7-dimensional vector, or genre-based profile for
each user.

Figure 4 depicts a result of the combinations of both

Fig. 4: 2D embedding of the profiles of 30 users (top and
random), obtained running a MDS algorithm on the charac-
teristic vectors. Circles are used to represent users belonging
to top similar pairs (sim ≥ 0.4), and other 10 users were
selected at random, and are marked with a cross symbol.
Colors represent combinations of the top 3 user genres
scores (see Section 6.2.1 for further details).

steps: a 2-dimensional MDS visualization of S computed
using artist-based Jaccard similarity, annotated with colors
reflecting the first 3 entries by score as per the corresponding
users genres-based profiles. Also, edges show pairs for
which the Jaccard similarity is above the threshold 0.1 (note
that more than 14 edges are reported, as some users are
involved in mildly-similar pairs with other users from top
k, yet with similarity lower than 0.4). We notice that the
majority of users have Rock or Electronic among their main
genres, this is a characteristic of the dataset [41].

Overall, a clustered structure becomes apparent when
considering both distance and genre-based colors, (also, we
see that random users — marked with a cross symbol — are
mostly spread out and are not involved in any pairs). Some
pairs of top users have different colors: this possibly means
that their intersection involves a subset of such genres,
which is quite natural.

To complement Figure 4, in Figure 5, we show heatmaps
of two similarity matrices, Jaccard similarities of artist-based
profiles (Fig. 5a) and Cosine similarities of genre-based pro-
files (which span the range between 0 and 1, being vectors
with only positive components), in Figure 5b, arranged
using the output of a hierarchical clustering algorithm with
ordered leaves representation [44], i. e., maximizing the sum
of similarities among adjacent elements. We see that the
clustering structure is apparent, and preserved, in both
matrices (see the colored boxes on the user ids), although
way clearer in the Jaccard matrix. This is expected as artists-
based profiles have a far more granular resolution, and
are therefore sparser with respect to genre-based profiles,
especially considering that the main genres are almost the
same for all users. This is also a witness of the fact that artist
information is more suitable to achieve real personalized
recommendations than genres, which motivates our choice
of artists as user profile features.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on May 26,2020 at 07:23:26 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2916858, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

Ja
cc

ar
d

sim
ila

rit
y

0

0.25

0.75

1

0.5

(a) Clustered Jaccard similarity matrix (users profiles)

C
os

in
e

si
m

ila
rit

y

0

0.25

0.75

1

0.5

(b) Clustered cosine similarity matrix (genres)

Fig. 5: Clustered similarity matrices for top and random
users of Figure 4. Plots show heatmap output of a hi-
erarchical clustering algorithm using a) Jaccard distance
between users profiles (listened Last.fm artists), b) Cosine
distance genres-based profile. In both figures the colored
boxes highlight the clusters present in Figure 4.

7 CONCLUSION

In this paper, we presented scalable approximation algo-
rithms for Jaccard-based similarity search in dynamic data
streams. Specifically, we showed how to sketch the Jaccard
similarity via a black box reduction to `0 norm estima-
tion, and we gave a locality-sensitive hashing scheme that
quickly filters out low-similarity pairs. To the best of our
knowledge, these are the first algorithms that can handle
item deletions. In addition to theoretical guarantees, we
showed that the algorithm has competitive running times to
the established min-hashing approaches. We also have rea-
son to believe that the algorithm can be successfully applied
in real-world applications, as evidenced by its performance
for finding Last.fm users with similar musical tastes.

It would be interesting to extend these ideas for other
similarity measures. Though we focused mainly on the Jac-

card index, our approach works for any set-based similarity
measure supporting an LSH, compare the characterization
of Chierichetti and Kumar [38]. It is unclear whether our
techniques may be reused for other similarities applied in
collaborative filtering, such as the Kendall-tau metric.

Future work might also focus on collecting data sets
with insertions and deletions. Even streaming benchmarks
typically consist only of a final data set and are therefore
inherently insertion-only. We feel that a formal model for
capturing dynamic data will be of considerable value both
for the designing and evaluating algorithms.

REFERENCES

[1] M. Bury, C. Schwiegelshohn, and M. Sorella, “Sketch ’em all: Fast
approximate similarity search for dynamic data streams,” in Proc.
WSDM, 2018, pp. 72–80.

[2] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig,
“Syntactic clustering of the web,” Computer Networks, vol. 29, no.
8-13, pp. 1157–1166, 1997.

[3] S. Guha, R. Rastogi, and K. Shim, “ROCK: A robust clustering
algorithm for categorical attributes,” Inf. Syst., vol. 25, no. 5, pp.
345–366, 2000.

[4] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani,
J. D. Ullman, and C. Yang, “Finding interesting associations with-
out support pruning,” IEEE Trans. Knowl. Data Eng., vol. 13, no. 1,
pp. 64–78, 2001.

[5] Y. Shi, M. Larson, and A. Hanjalic, “Collaborative filtering beyond
the user-item matrix: A survey of the state of the art and future
challenges,” ACM Comput. Surv., vol. 47, no. 1, pp. 3:1–3:45, May
2014.

[6] A. Das, M. Datar, A. Garg, and S. Rajaram, “Google news person-
alization: scalable online collaborative filtering,” in Proc. WWW,
2007, pp. 271–280.

[7] P. Indyk and T. Wagner, “Near-optimal (euclidean) metric com-
pression,” in Proc. ACM-SIAM SODA, 2017, pp. 710–723.

[8] R. Pagh, M. Stöckel, and D. P. Woodruff, “Is min-wise hashing
optimal for summarizing set intersection?” in Proc. ACM PODS,
2014, pp. 109–120.

[9] J. C. Gower and P. Legendre, “Metric and Euclidean properties of
dissimilarity coefficients,” Journal of Classification, vol. 3, no. 1, pp.
5–48, 1986.

[10] S. Janssens, “Bell inequalities in cardinality-based similarity mea-
surement,” Ph.D. dissertation, Ghent University, 2006.

[11] M. Charikar, “Similarity estimation techniques from rounding
algorithms,” in Proc. ACM STOC, 2002, pp. 380–388.

[12] P. Indyk and R. Motwani, “Approximate nearest neighbors: To-
wards removing the curse of dimensionality,” in Proc. ACM STOC,
1998, pp. 604–613.

[13] A. Z. Broder, “On the resemblance and containment of docu-
ments,” in Proc. SEQUENCES. Washington, DC, USA: IEEE
Computer Society, 1997, pp. 21–.

[14] ——, “Identifying and filtering near-duplicate documents,” in
Proc. CPM, 2000, pp. 1–10.

[15] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher,
“Min-wise independent permutations,” J. Comput. Syst. Sci.,
vol. 60, no. 3, pp. 630–659, 2000.

[16] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of Massive
Datasets, 2nd Ed. Cambridge University Press, 2014.

[17] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for ap-
proximate nearest neighbor in high dimensions,” Commun. ACM,
vol. 51, no. 1, pp. 117–122, 2008.

[18] E. Cohen and H. Kaplan, “Summarizing data using bottom-k
sketches,” in Proc. PODC, 2007, pp. 225–234.

[19] ——, “Bottom-k sketches: better and more efficient estimation of
aggregates,” in Proc. ACM SIGMETRICS, 2007, pp. 353–354.

[20] J. M. Hellerstein, P. J. Haas, and H. J. Wang, “Online aggregation,”
in Proc. ACM SIGMOD 1997, 1997, pp. 171–182.

[21] P. Indyk, “A small approximately min-wise independent family of
hash functions,” J. Algorithms, vol. 38, no. 1, pp. 84–90, 2001.

[22] G. Feigenblat, E. Porat, and A. Shiftan, “Exponential time improve-
ment for min-wise based algorithms,” in Proc. ACM-SIAM SODA,
2011, pp. 57–66.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on May 26,2020 at 07:23:26 UTC from IEEE Xplore. Restrictions apply.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2916858, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

[23] M. Dietzfelbinger, “Universal hashing and k-wise independent
random variables via integer arithmetic without primes,” in Proc.
STACS, 1996, pp. 569–580.

[24] K. Chung, M. Mitzenmacher, and S. P. Vadhan, “Why simple hash
functions work: Exploiting the entropy in a data stream,” Theory
of Computing, vol. 9, pp. 897–945, 2013.

[25] M. Thorup, “Bottom-k and priority sampling, set similarity and
subset sums with minimal independence,” in Proc. ACM STOC,
2013, pp. 371–380.

[26] M. Patrascu and M. Thorup, “Twisted tabulation hashing,” in Proc
ACM-SIAM SODA, 2013, pp. 209–228.

[27] M. Thorup, “Simple tabulation, fast expanders, double tabulation,
and high independence,” in Proc. IEEE FOCS, 2013, pp. 90–99.

[28] A. Pagh, R. Pagh, and M. Ruzic, “Linear probing with 5-wise
independence,” SIAM Review, vol. 53, no. 3, pp. 547–558, 2011.

[29] M. Patrascu and M. Thorup, “On the k-independence required
by linear probing and minwise independence,” ACM Trans. Algo-
rithms, vol. 12, no. 1, pp. 8:1–8:27, 2016.

[30] S. Dahlgaard, M. B. T. Knudsen, and M. Thorup, “Fast similarity
sketching,” in Proc. IEEE FOCS, 2017, pp. 663–671.

[31] P. Li, A. B. Owen, and C. Zhang, “One permutation hashing,” in
Proc. NIPS, 2012, pp. 3122–3130.

[32] A. Shrivastava and P. Li, “Densifying one permutation hashing
via rotation for fast near neighbor search,” in Proc. ICML, 2014,
pp. 557–565.

[33] S. Dahlgaard, M. B. T. Knudsen, and M. Thorup, “Practical hash
functions for similarity estimation and dimensionality reduction,”
in Proc. NIPS, 2017, pp. 6618–6628.

[34] K. Q. Weinberger, A. Dasgupta, J. Langford, A. J. Smola, and
J. Attenberg, “Feature hashing for large scale multitask learning,”
in Proc. ICML, 2009, pp. 1113–1120.

[35] Y. Bachrach and E. Porat, “Fingerprints for highly similar
streams,” Inf. Comput., vol. 244, pp. 113–121, 2015.

[36] ——, “Sketching for big data recommender systems using fast
pseudo-random fingerprints,” in Proc. ICALP, 2013, pp. 459–471.

[37] P. Li and A. C. König, “Theory and applications of b-bit minwise
hashing,” Commun. ACM, vol. 54, no. 8, pp. 101–109, 2011.

[38] F. Chierichetti and R. Kumar, “LSH-preserving functions and their
applications,” J. ACM, vol. 62, no. 5, p. 33, 2015.

[39] D. M. Kane, J. Nelson, and D. P. Woodruff, “An optimal algorithm
for the distinct elements problem,” in Proc. ACM PODS, 2010, pp.
41–52.

[40] L. Naish, H. J. Lee, and K. Ramamohanarao, “A model for spectra-
based software diagnosis,” ACM Trans. Softw. Eng. Methodol.,
vol. 20, no. 3, p. 11, 2011.

[41] A. Anagnostopoulos and M. Sorella, “Learning a macroscopic
model of cultural dynamics,” in Proc. IEEE ICDM, 2015, pp. 685–
690.

[42] F. Wickelmaier, “An introduction to mds,” Sound Quality Research
Unit, Aalborg University, Denmark, vol. 46, 2003.

[43] J. Demšar, T. Curk, A. Erjavec, Črt Gorup, T. Hočevar, M. Miluti-
novič, M. Možina, M. Polajnar, M. Toplak, A. Starič, M. Štajdohar,
L. Umek, L. Žagar, J. Žbontar, M. Žitnik, and B. Zupan, “Orange:
Data mining toolbox in python,” Journal of Machine Learning Re-
search, vol. 14, pp. 2349–2353, 2013.

[44] Z. Bar-Joseph, D. K. Gifford, and T. S. Jaakkola, “Fast optimal
leaf ordering for hierarchical clustering,” Bioinformatics, vol. 17,
no. suppl 1, pp. S22–S29, 2001.

Marc Bury received the PhD degree in com-
puter science from the Technical University of
Dortmund in 2016. He now works at Google
Zürich. His past work revolved mostly on com-
plexity theory, in particular BDDs, and stream-
ing algorithms. His current research focuses on
scalable algorithms for web-based applications.

Chris Schwiegelshohn received the PhD de-
gree in computer science from the Technical
University of Dortmund in 2017. He is currently
an assistant professor at Sapienza, University
of Rome. His main research interests cover
streaming, dynamic algorithms, learning prob-
lems such as clustering.

Mara Sorella received her PhD degree
in computer science and engineering from
Sapienza, University of Rome in 2018. She con-
tinues to work there as a postdoc. Her current
interests are distributed computing, security, and
data mining.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on May 26,2020 at 07:23:26 UTC from IEEE Xplore. Restrictions apply.

