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Raman experiments on bulk FeSe revealed that the low-frequency part of the B1g Raman response
RB1gðΩÞ, which probes nematic fluctuations, rapidly decreases below the nematic transition at Tn ∼ 85 K.
Such behavior is expected when a gap opens up and at a first glance is inconsistent with the fact that FeSe
remains a metal below Tn. We argue that the drop of RB1gðΩÞ can be ascribed to the fact that the nematic
order drastically changes the orbital content of low-energy excitations near hole and electron pockets,
making them nearly mono-orbital. In this situation, the B1g Raman response gets reduced by the same
vertex corrections that enforce charge conservation in the symmetric Raman channel. The reduction holds
at low frequencies and gives rise to gaplike behavior of RB1gðΩÞ. We also show that the enhancement of the
B1g Raman response near Tn is consistent with the sign change of the nematic order parameter between
hole and electron pockets.
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Introduction.—Bulk Fe-chalcogenide FeSe has recently
attracted a lot of attention due to a peculiar property, not seen
in other Fe-based superconductors—the emergence of a
nematic order (a spontaneous breaking of C4 lattice sym-
metry down to C2) below Tn ∼ 85 K, without antiferromag-
netism nearby [1–4]. Extensive STM and ARPES studies
[5–18] revealed a sizeable deformation of hole and electron
Fermi surfaces (FSs) belowTn, which arewell reproduced by
introducing an electronic orbital splitting [8,11,19–21].
A remarkable indication of the electronic nature of the

nematic transition in FeSe has been provided by Raman
measurements [22–25]. In a metal, the Raman response
probes densitylike fluctuations at a finite frequency Ω and
vanishing momenta q, modulated by a form factor, which
depends on relative polarizations of the incoming and out-
going light and transforms according to the point-group
representation of the crystal [26]. When the form-factor is
constant as, e.g., in the fully symmetric channel in a single-
band system, the Raman response is proportional to the
density correlator at q ¼ 0 and finite Ω, and it vanishes
because fermionic density is a conserved quantity [4,26–34].
The Raman response which probes electronic nematic
correlations in FeSe has the nonsymmetric B1g symmetry
[35], so it is finite in the metal because no conservation law
applies [4,29–32].
Above the nematic transition, the measured profile of the

Raman intensity RB1gðΩÞ at small frequencies is well
approximated [4,29,36] by a relaxational form RB1g

ðΩÞ ∝
Ω=ðΩ2 þ 4γ2effÞ, where the effective scattering rate γeff is
either due to impurities [4] or to electron-electron inter-
action [31,32,37]. Critical fluctuations give [29,36,37]
γeff ∝ T − Tn, so that as T approaches Tn the peak is

expected to move to a lower frequency and to gain intensity.
Both results agree with the data [4,22–25]. However, below
the nematic transition, the data show that RB1gðΩÞ rapidly
drops at Ω≲ 200 cm−1. Such behavior is expected when
quasiparticles acquire a finite gap (e.g., in a superconductor
[33,34]), but FeSe remains a metal at T < Tn, with
deformed, but still sizable hole and electron pockets. We
argue that the Fermi surface deformation has little effect on
the Raman response, and the origin of the gaplike behavior
is the change of the orbital composition of the pockets
below Tn.
The outline of our reasoning is as follows. In the

tetragonal phase, FeSe has two nearly circular hole pockets
at the zone center Γ and two electron pockets atM ¼ ðπ; πÞ
(in the 2Fe Brillouin-zone notation), split by spin-orbit
coupling into inner and outer pockets. The hole and inner
electron pockets are made of dxz and dyz orbitals, and the
outer electron pocket has predominantly dxy character [38].
The B1g Raman vertex distinguishes between dxz and
dyz orbitals, and it is well approximated by ΓB1g

ðkÞ ¼
nxzðkÞ − nyzðkÞ, where n ¼ d†d, and d†, d are creation
and annihilation operators for the corresponding orbitals
[4,23,39]. In the band basis, ΓB1g

ðkÞ in the tetragonal phase
has pure d-wave symmetry, e.g., near the outer hole pocket
ΓB1g

¼ d†hdh cos 2θ, where d
†
h, dh are band operators and θ is

the angle along the pocket. The nematicity breaks C4

symmetry between the orbital occupations and induces an
additional term ΔðkÞ½nxzðkÞ − nyzðkÞ� in the Hamiltonian
[40]. This elongates hole and inner electron pockets in the
directions set by the signs of ΔðkÞ at Γ and atM points, Δh
and Δe (Refs. [8,11,19–21,41]) and changes the orbital
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content of the pockets. This affects ΓB1g
ðkÞ, which develops

an angle-independent component, proportional to ΔhðeÞ. In
FeSe, the pockets are small, and the orbital content changes
quite drastically. Calculations [8,19–21] and polarized
ARPES data [14,16] show that deep inside the nematic
phase the outer hole pocket becomes predominantly dxz
and the inner electron pocket becomes predominantly dyz.
In this situation, the angle-independent component of ΓB1g

becomes the dominant one. Then RB1gðΩÞ drops because
B1g Raman susceptibility becomes nearly identical to the
susceptibility in the symmetric density channel, and the
latter vanishes at q ¼ 0 and finiteΩ by charge conservation
[4,26–34]. The reduction holds atΩ ≤ 2 − 3ΔhðeÞ. At larger
Ω electronic excitations recover the same orbital character of
the tetragonal phase and RB1gðΩÞ rapidly increases.
The nematic order can originate from a d-wave

Pomeranchuk instability [30,41,42] or from composite
spin fluctuations [8,43,44]. The microscopic origin of
the nematic order parameter is not important for our
purposes—we will just compare the Raman response in
the presence and absence of ΔhðeÞ. At the computational
level, the reduction of RB1gðΩÞ is associated with the effect
of impurity-induced vertex corrections, which must be
included along with the fermionic self-energy (Ref. [45]).
Orbital composition of the pockets.—The low-energy

states near the hole pockets are described, in 1Fe zone, by
the effective Hamiltonian [46]

H ¼
X
k;σ;σ0

Ψ†
k;σK̂Ψk;σ0 ð1Þ

where Ψ≡ ðdyz; dxzÞ is a spinor in the orbital space, and

K̂¼½h0τ0þh1τ1þðh3−ΔhÞτ3�σð0Þσσ0 þητ2σ
ð3Þ
σσ0 . The hopping

integrals in momentum space are h0ðkÞ ¼ ϵ0 − k2=ð2mÞ;
h1ðkÞ ¼ −2ckxky, and h3ðkÞ ¼ bðk2x − k2yÞ. (ϵ0 includes
the static self-energy that accounts for the shrinking of the
hole pockets [8,21,44]), η is the spin-orbit (L · S) coupling,
and Δh ¼ ΔhðTÞ is the magnitude of the nematic order,
which we set to be positive in accordance with the
experimental findings [5–18]. To simplify the presentation,
in analytical formulas below we set b ¼ c > 0, in which
case the pocket in the tetragonal phase is circular. For
numerical calculations we choose the hopping parameters
which match the data on FeSe. The transformation from the
orbital to the band basis is described by the unitary matrix
with components u2k ¼ cos2θ̄k, v2k ¼ sin2θ̄k, where

cos 2θ̄k ¼ bk2 cos 2θ − Δhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2k4 þ Δ2

h − 2bk2Δh cos 2θ þ η2
p ; ð2Þ

and θ is the angle along the hole pocket. At η ¼ Δh ¼ 0,
two hole bands necessary cross the Fermi level and form
the inner and the outer hole pockets. When η orΔh (or both)

are nonzero, the inner pocket gets smaller and may sink
below the Fermi level. In FeSe, only the outer hole pocket
has been detected in the nematic state, and in analytical
treatment we focus on this band. The Hamiltonian in
the band basis is H ¼ P

k Ekd
†
h;kdh;k with Ek ¼

ϵ0 − k2=ð2mÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2k4 þΔ2

h − 2bk2Δh cos2θþ η2
p

. The
weight of dxz and dyz orbitals is given by v2k ¼
ð1 − cos 2θ̄kÞ=2 and u2k ¼ ð1þ cos 2θ̄kÞ=2, respectively.
In the tetragonal phase cos 2θ̄k ∝ cos 2θ, and dxz and dyz
orbitals equally contribute to band excitations. In the
nematic phase, the weight depends on the ratio λh ¼
Δh=ðbk2Þ. When λh is small, the two orbitals still contribute
nearly equally. However, when λh ≥ 1, cos 2θ̄k ≈ −1,
independent on θ. In this limit, the hole pocket is made
almost entirely of dxz orbitals. Recent polarized ARPES
study of FeSe did find [14,16] that the weight of the dxz is
over 80% along the hole pocket. This holds when λh ∼
0.7 (Ref. [20]).
A very similar result holds for the inner electron pocket

near ðπ; πÞ. In the tetragonal phase, this pocket is almost
circular, and composed equally of dxz and dyz orbitals. The
evolution of the orbital composition of this pocket below
Tn is quite similar to that of the hole pocket (see [47]),
except that Δe < 0 [5–18]. We can still model it with
Eq. (1), provided that m and b become negative to describe
an electronlike dispersion. By replacing b → jbj and Δh
with jΔej in Eq. (2), in the tetragonal phase it is still
cos 2θ̄k ¼ cos 2θ. However, since now u2k ¼ sin2 θ̄k and
v2k ¼ cos2 θ̄k the angular dependence of the orbital com-
position at the electron pocket is reversed. In addition, in
some distinction to the hole pocket, for a large jΔej, the
orbital content becomes predominantly dyz for most of θ,
but for θ ¼ 0 it remains dxz [14,16]. The outer electron
pocket has instead almost entirely xy character both above
and below Tn [38]. We follow earlier works [11,19,48],
which argued that fermions in the xy band have a small
residue, and neglect processes involving dxy fermions.
The Raman response in the nematic phase.—The

change of the orbital composition of the excitations has
a profound effect on the Raman response. The B1g Raman

density in the band basis is expressed as [47] ρ
B1g

hðeÞðqÞ ¼P
ki
ð−1Þid†hðeÞ;ki

dhðeÞ;kiþq cos 2θ̄ki
, where k1 is near Γ and

k2 is nearM. The factor ð−1Þi is the consequence of the fact
that the orbital content flips between the outer hole pocket
and the inner electron pocket. The density-density inter-
action, which favors a sign-changing nematic order, is

interpocket repulsion HI¼Ueh
P

qρ
B1g

h ðqÞρB1g
e ðqÞ [24,49].

In analogy with s� superconductivity, a positive Ueh > 0

favors a sign change between Δe ≡ hρB1g
e ðq ¼ 0Þi and

Δh ≡ hρB1g

h ðq ¼ 0Þi. We assume that interpocket repulsion
is larger than intrapocket nematic interactions. Summing up
the ladder series of corrections to the B1g Raman vertex, we
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find the total contribution from hole and electron pockets in
the form [47]:

RB1g
ðΩÞ ∝ Im

�
χhðΩÞ þ χeðΩÞ þ 2UehχhðΩÞχeðΩÞ

1 − U2
ehχhðΩÞχeðΩÞ

�
; ð3Þ

where χhðeÞðΩÞ ¼ χhðeÞðq ¼ 0;ΩÞ is the fully dressed par-
ticle-hole susceptibility with Raman side vertices cos 2θ̄k,
where k is near Γ and M, respectively. For χhðΩÞ ¼
χeðΩÞ ¼ χðΩÞ, RB1g

ðΩÞ ∝ Im½χðΩÞ=1 − UehχðΩÞ�. Since
χðΩÞ > 0, the observed enhancement of RB1g

ðΩÞ near Tn

occurs only if interpocket Ueh > 0. This is consistent with
the sign change between Δh and Δe in the nematic phase.
The diagrams for Raman susceptibilities χhðeÞðΩÞ are

presented in Fig. 1. The dressed bubble is χhðeÞðΩÞ ¼
χsehðeÞðΩÞ þ χvhðeÞðΩÞ, where χsehðeÞðΩÞ∝2iγhðeÞ=ðΩþ2iγhðeÞÞ
is the particle-hole bubble made of fermions with damping
rate γhðeÞ (assumed to be angle independent), and χvhðeÞðΩÞ
accounts for vertex corrections. In the tetragonal phase,
cos 2θ̄k ¼ cos 2θ, and vertex corrections due to impurity
scattering vanish because

H
dθ cos 2θ̄k ¼ 0 and χhðeÞðΩÞ ¼

χsehðeÞðΩÞ. In the nematic phase, RB1gðΩÞ changes because
the pocket becomes elliptical (or even peanutlike), and
because the orbital content of particle-hole excitations
changes. We verified [see Fig. 2(a)] that the change of
the shapes of the pockets actually somewhat enhances
Raman susceptibility. However, the change of orbital
content strongly reduces RB1g

. Indeed, in the nematic phase

cos 2θ̄k acquires an angle-independent, s-wave component
[see Eq. (2)], i.e., cos 2θ̄k ≈ Γs;k þ Γd;k cos 2θ. For the
d-wave component, vertex corrections are still irrelevant,
but for s-wave component they are nonzero and have to be
included. Summing up ladder series of vertex corrections
(see Fig. 1) we obtain [47]

χsehðeÞðΩÞ ¼ NF;hðeÞ
2iγhðeÞ

Ωþ 2iγhðeÞ
ðΓ2

s;hðeÞ þ Γ2
d;hðeÞÞ;

χvhðeÞðΩÞ ¼ −NF;hðeÞ
2iγhðeÞ

Ωþ 2iγhðeÞ
Γ2
s;hðeÞ; ð4Þ

where NF;hðeÞ is the density of states at the Fermi level.
Adding up the two terms we find that the s-wave con-
tribution expectedly cancels out. As a result, Raman
intensity remains proportional to Γ2

d;hðeÞ. For identical

pockets, NF;hðeÞ ¼ NF, γhðeÞ ¼ γ, Γd;hðeÞ ¼ Γd we obtain

RB1gðΩÞ ∝ Γ2
d

Ωγ
Ω2 þ 4γ2ð1 −UehNFΓ2

dÞ2
: ð5Þ

FIG. 1. Diagrammatic representation of the Raman susceptibil-
ity for angle-independent impurity scattering. Here single (dou-
ble) lines denote bare (dressed) electronic Green’s functions, the
dashed line with a cross denotes the impurity potential. In the
tetragonal phase, the Raman vertex (denoted by a dot) has pure d-
wave form, and vertex corrections due to impurity scattering
vanish. In the nematic phase, the vertex has both d- and s-wave
components, and the s-wave part is eliminated by vertex
corrections.

(a) (b)

(c) (d)

FIG. 2. Raman intensity in B1g channel, obtained neglecting
vertex corrections. Solid (dashed) lines denote the results in
the tetragonal (nematic) state. The frequency is in units of
Δh;0 ¼ ΔhðT ¼ 0Þ. (a),(b) Intraband (a) and interband (b) re-
sponse from the hole pockets. (c) Intraband response for the inner
electron pocket. (d) Full intraband response, obtained using
Eq. (3), along with the interband part, panel (b). Interband
response here is without RPA resummation, since the effect of
the latter is rather mild, see [47]. We set Δh;0 ¼ 15 meV,
ΔeðTÞ ¼ −1.3ΔhðTÞ and γh ¼ γe ¼ 6 meV. The band parame-
ters are listed in the Supplemental Material [47]. The double peak
structure of RB1gðΩÞ in the tetragonal phase is consistent with
Refs. [4,22].
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For Γd;h ≠ Γd;e the structure of RB1gðΩÞ is more compli-
cated [47], but it still only involves the d-wave components
of Raman vertices. When the hole pocket becomes
almost entirely dxz and the inner electron pocket becomes
dyz, Γs;hðeÞ≈ ∓ 1, and Γd;hðeÞ are small. Then RB1gðΩÞ is
strongly reduced.
The reduction holds only at small frequencies. At largerΩ,

typical momenta k in the polarization bubbles move away
from the corresponding kF;hðeÞ, λhðeÞ ∝ ΔhðeÞ=ðbhðeÞk2Þ get
smaller, and Γd;hðeÞ increase. This can be well captured by
including explicitly the dependence of Γs;hðeÞ and Γd;hðeÞ on
frequency:

Γs;hðeÞðΩÞ¼∓
Z

dθkdk
ð2πÞ2

δðΩ−Ek;hðeÞÞ
NF;hðeÞðΩÞ

cos2θ̄k;

Γ2
s;hðeÞðΩÞþΓ2

d;hðeÞðΩÞ¼
Z

dθkdk
ð2πÞ2

δðΩ−Ek;hðeÞÞ
NF;hðeÞðΩÞ

ðcos2θ̄kÞ2;

ð6Þ

where NF;hðeÞðΩÞ ¼
R ½ðdθkdkÞ=ð2πÞ2�δðΩ − Ek;hðeÞÞ is the

frequency-dependent density of states, and the integration is
near either hole or electron pocket. The Raman response
RB1gðΩÞ is given by Eq. (5) with Γd;hðeÞ ¼ Γd;hðeÞðΩÞ. As Ω
increases, the relevant k in Eq. (6) increases, λhðeÞ ≪ 1, and
for a generic θ one recovers cos 2θ̄k ¼ cos 2θ. In this
situation the s-wave component of cos 2θ̄k drops out, and
the Raman response becomes the same as in the tetragonal
phase. Note in passing that long-range Coulomb interaction
does not affect RB1gðΩÞ because the “mixed” bubble, with
B1g Ramanvertex on one side and a constant (s-wave) vertex
on the other, vanishes due to vertex corrections, even when
both Γs;hðeÞ and Γd;hðeÞ are nonzero (Refs. [33,34]). Also, the
A1g Raman response vanishes in both tetragonal and nematic
phases despite the mixing between s-wave and d-wave
components, since the A1g Raman vertex is always a
constant. We show this explicitly in the Supplemental
Material [47].
Numerical calculations.—To set up a more realistic

comparison with the experimental data we computed
RB1gðΩÞ in the tetragonal and nematic phases numerically
]47 ], using parameters appropriate to reproduce the band

dispersion of FeSe, as measured by ARPES. We first
show, in Fig. 2, the result for Raman intensity without
vertex corrections, i.e., with χhðeÞ ¼ χsehðeÞ [Eq. (5) with

Γd;hðeÞ ≈ 1]. In this approximation, the difference between
RB1gðΩÞ for T > Tn and T < Tn is only due to changes in
the shapes of the pockets. While the interband part moves
to higher frequencies due to the nematic splitting between
the bands, the intraband contributions actually get slightly
enhanced below Tn. In [47] we show how RB1gðΩÞ changes
if we additionally vary Ueh to model the reduction of
UehNF below Tn. RB1gðΩÞ decreases, but does not show

gaplike behavior. The situation changes drastically when
we include vertex corrections. We show the result for the
full intraband RB1gðΩÞ in Fig. 3(c) and for the total RB1gðΩÞ
with both intraband and interband contributions in [47].
We used a mean-field-like temperature dependence of
ΔhðeÞðTÞ, which is in good agreement with the observed
temperature evolution of the band dispersion below Tn [8].
We see the behavior that we just outlined. Namely, at small
Ω the Raman peak progressively loses intensity as T is
lowered below Tn. The peak survives over some range of
T < Tn, but eventually RB1gðΩÞ develops a gaplike behav-
ior at small frequencies. The fine details of the evolution of
RB1gðΩÞ below Tn somewhat depend on the band modeling
(see the Supplemental Material [47]), but the overall
suppression of the Raman intensity is quite robust and
agrees with the data [22,24,25].
Summary and discussion.—In this work we have shown

that the observed gaplike behavior of the B1g Raman
response in FeSe, i.e., in a nematic metal, is a direct
consequence of the change of orbital composition of the
pockets, which become nearly mono-orbital at T ≪ Tn.
The Raman intensity RB1gðΩÞ contains only the nonsym-
metric d-wave part of the form factor. However, the change
in the orbital content of the pockets induces a strong mix-
ing between d-wave and s-wave channels. When pockets
become nearly mono-orbital, the angle-independent

(a)

(b) (c)

FIG. 3. Intraband Raman response Eq. (3) including vertex
corrections. Solid (dashed) lines denote the response in the
tetragonal (nematic) state. (a),(b) Intraband response from the
outer hole pocket and the inner electron pocket at the lowest T.
(c) The full intraband response at T ≤ Tn shown in the inset. The
response at T ≪ Tn nearly vanishes at small Ω and recovers its
form in the tetragonal phase atΩ ≥ 3Δh;0. The system parameters
are the same as in Fig. 2. The total RB1gðΩÞ, including interband
contribution, is shown in [47].
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component of the B1g Raman form factor rises at the
expense of the original cos 2θ component, and the B1g

Raman intensity drops. We also found that the increase of
RB1g

near Tn holds only if the nematic order changes sign
between hole and electron pockets.
To put our results in a broader context, we note that so far

the orbital reconstruction of fermionic excitations in FeSe
due to nematicity has been analyzed in polarized ARPES
measurements [14,16], which are surface sensitive. Our
work demonstrates that the Raman spectroscopy, which is a
bulk probe, is also capable to detect orbital transmutation in
iron-based systems. It then will be particularly useful in
systems where detailed ARPES data are not available. We
note that our findings are inconsistent with the conjecture
of orbital-dependent spectral weights, put forward in
Refs. [11,19,50–52]. Within that conjecture, the orbital
weights are assumed to get rescaled by interactions in such
a way that, e.g., the outer hole pocket does not become
nearly entirely dxz in the nematic phase. In this situation,
the Raman response would not show strong suppression at
low frequency in the nematic phase, which is in disagree-
ment with the data.
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