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Abstract. We consider the semilinear elliptic problem{
−∆u = |u|p−1u in B
u = 0 on ∂B

(Ep)

where B is the unit ball of R2 centered at the origin and p ∈ (1,+∞).
We prove the existence of sign-changing solutions to (Ep) having 2 nodal
domains, whose nodal line does not touch ∂B and which are non-radial.
We call these solutions quasi-radial.
The result is obtained for any p sufficiently large, considering least en-
ergy nodal solutions in spaces of functions invariant under suitable di-
hedral groups of symmetry and proving that they fulfill the required
qualitative properties.
We also show that these symmetric least energy solutions are instead
radial for p close enough to 1, thus displaying a breaking of symmetry
phenomenon in dependence on the exponent p.
We then investigate the nonradial bifurcation at certain values of p from
the sign-changing radial least energy solution of (Ep). The bifurcation
result gives again, with a different approach and for values of p close to
the ones at which the bifurcations appear, the existence of non-radial
but quasi-radial nodal solutions.
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1. Introduction

We consider the semilinear Lane-Emden problem{
−∆u = |u|p−1u in B
u = 0 on ∂B

(1.1)

where B ⊂ R2 is the unit ball centered at the origin and p > 1.
It is well known that (1.1) admits a unique positive solution which is radially
symmetric. Moreover, due to the oddness of the nonlinear term, standard
variational methods give the existence of infinitely many sign-changing so-
lutions and, since the domain B is radially symmetric, one can restrict the
variational methods to the Sobolev space of radial functions H1

0,rad(B) and

prove the existence of infinitely many sign-changing radial solutions for (1.1).
More precisely it is well known that for every m ∈ N0 := N \ {0} there exists
a unique (up to sign) radial solution u to (1.1) such that ](u) = m (see [NN],
[K1]), where ](u) is the number of nodal regions of u, i.e. of the connected
components of the set {x ∈ B : u(x) 6= 0}. We denote by urad

p the unique (up
to sign) radial sign-changing solution to (1.1) which satisfies

](urad
p ) = 2. (1.2)

It is easy to show that urad
p minimizes the energy funtional

Ep(u) : =
1

2

∫
B

|∇u|2 − 1

p+ 1

∫
B

|u|p+1 (1.3)

among all the radial sign-changing solutions to (1.1), hence we will refer to
urad
p as to the least energy radial sign-changing solution. In [AP] it has been

proved that

m(urad
p ) ≥ 4 (1.4)

where m(u) is the Morse index of a solution u (see also [DIP3] where m(urad
p )

has been explicitly computed for p large and also [DIP4] where an estimate
as in (1.4) has been obtained for any radial solution with lower bound given
by the number 3m − 2, where m is the number of nodal regions. For the
definition of the Morse index see Section 3.1).

One can also prove the existence of a sign-changing solution ũp of (1.1) which
minimizes the energy Ep among all the sign-changing solutions to (1.1) (it
can be obtained for instance via a constrained minimization of Ep on the
nodal Nehari set in the Sobolev space H1

0 (B), see [CCN] for details). ũp is
usually called least energy sign-changing solution. In [BW] it has been shown
that

](ũp) = 2 and m(ũp) = 2. (1.5)

Comparing the information on the Morse index of ũp in (1.5) with the one
of urad

p in (1.4) one gets that the radial solution urad
p is not the least energy

sign-changing solution in the whole space H1
0 (B), namely that

urad
p 6= ũp; (1.6)
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this was already observed in [AP]. Nevertheless ũp partially inherits the sym-
metries of the domain, being foliated Schwarz symmetric, namely axially sym-
metric with respect to an axis passing through the origin and nonincreasing
in the polar angle from this axis (see [BWW, PW]). Moreover, since (1.6)
holds, then the monotonicity of ũp with respect to the polar angle must be
strict at some region and in [PW] it is actually proved that, for p > 2, the
monotonicity is always strict.
In [AP] it has been proved also that the nodal set of ũp

Z(ũp) = {x ∈ B : ũp(x) = 0}

touches the boundary of B, namely

Z(ũp) ∩ ∂B 6= ∅. (1.7)

It is not clear whether nodal solutions to (1.1) which are not radial and
do not satisfy (1.7) exist. So far the existence of solutions with this kind of
shape is totally unknown and probably unexpected when the domain is a ball
B. One of the first difficulty when trying to prove such a result is how to
distinguish other sign-changing solutions from the radial ones, since Morse
index estimates are not an easy issue and so a direct Morse index comparison
argument may be hard to exploit.

In this paper we give a positive answer to the question of the existence of
non-radial solutions of (1.1) which do not satisfy (1.7).

We introduce the following definition:

Definition 1.1. We say that a solution u of (1.1) is quasi-radial if its nodal set
Z(u) is the union of a finite number of disjoint simple closed curves which are
the boundary of nested domains contained in B, where a family of domains
is nested when it is ordered with respect to the inclusion.

Observe that the nodal line of a quasi-radial solution doesn’t touch the
boundary of the ball B, namely (1.7) is not satisfied, anyway any radial
solution is obviously quasi-radial.

In this work we restrict to the Sobolev space H1
0,k(B) of the functions in

H1
0 (B) which are even and 2π

k -periodic in the angular variable, for a fixed k ∈
N0 and consider the sign-changing symmetric solution ukp which minimizes

the energy Ep among all the H1
0,k(B) sign-changing solutions to (1.1), we will

refer to ukp as to the least energy k-symmetric sign-changing solution.

Observe that u1
p = ũp (since ũp is axially symmetric), while ukp 6= ũp for

k ≥ 2 (since if they coincide then ũp would be 2π
k -periodic in the angular

variable and so necessarily radial by the foliated Schwarz symmetry, getting
a contradiction with (1.6)).
Using energy asymptotic estimates from [RW, GGP] one can easily derive
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the following upper bound on the number ](ukp) of nodal regions of ukp:

](ukp) ≤ 4 for p large (1.8)

(see Section 7 for details).

0

+
−

−

−

Figure 1. k = 3. Nodal set of a k-symmetric and not quasi-
radial function with 4 nodal regions

As a consequence in [DIP1] (where symmetric and simply connected domains,
more general than the ball B, have been considered), using some geometrical
arguments which exploit the k-symmetry invariance of ukp, it has been proved

that for certain integers k a least energy symmetric solution ukp is quasi-radial,
more precisely that:

Theorem 1.2 ([DIP1]). If k ≥ 4 then there exists p̂ > 1 such that

ukp is quasi-radial for p ≥ p̂ (1.9)

and moreover

](ukp) = 2 and m(ukp) ≥ 4 for p ≥ p̂. (1.10)

Observe that a priori ukp, k ≥ 2 could be radial, and indeed the properties

(1.9), (1.10) are satisfied also by urad
p (see (1.2), (1.4)). Hence the result in

[DIP1] does not answer the question of the existence of non-radial solutions
of (1.1) which are quasi-radial.

Our first result investigates whether the least energy k-symmetric solution
ukp coincides with the radial least energy nodal solution urad

p or not, as p ∈
(1,+∞) and k ≥ 2 vary:

Theorem 1.3. Let ukp be a least energy sign-changing solution of (1.1) in the

space H1
0,k(B), k ∈ N, k ≥ 2, then there exist δ > 0 and p? > 1 such that:

i) for k = 2: ukp is non-radial both for p ∈ (1, 1 + δ) and p ≥ p?;

ii) for k = 3, 4, 5: ukp is radial for p ∈ (1, 1 + δ) and non-radial when
p ≥ p?;

iii) for k ≥ 6: ukp is radial for p ∈ (1, 1 + δ).

Clearly when ukp is radial then it coincides with urad
p (up to the sign). Fur-

thermore ukp 6= ũp for any p > 1.
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Theorem 1.3-ii) combined with Theorem 1.2 provides an example, for any
p large enough, of non-radial (k-symmetric) sign-changing solution of (1.1)
which is quasi-radial:

Theorem 1.4. Let k = 4, 5, then there exists p̄ > 1 such that

ukp is not radial and quasi-radial for p ≥ p̄.

In particular ukp 6= urad
p and ukp 6= ũp, moreover (1.10) holds and ukp does not

satisfy condition (1.7).

pp?

k = 1

k = 2

k = 3

k = 4

k = 5

k ≥ 6

1 1 + δ

non-radial

quasi-radial

Â

radial

ũp ũp ũp

uradp

uradp

uradp

uradp

Figure 2. Symmetry of ukp from Theorem 1.3 and Theorem 1.2

Let us stress that the type of symmetries that solutions in Theorem 1.4 have
are so specific that it does not surprise that they have never been found
before not even by numerical simulation. From Theorem 1.3 we see that the
symmetry of the domain is not totally caught by the least energy solution
ukp at least for k ≤ 5 (this holds also in the case k = 1, since as already

observed ukp = ũp for any p ∈ (1,+∞), which is Schwarz symmetric but not
radial), this is reasonable since we are dealing with sign-changing solutions.
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Anyway the symmetry breaking phenomenon when k = 3, 4, 5 (case ii)) and
its dependence on the value of the exponent p were totally unexpected. It is
interesting that we can identify the symmetries of the solution at which this
phenomenon occurs. Moreover the symmetry breaking result suggests that
ukp, when k = 3, 4, 5, may arise by a bifurcation phenomenon in p from the

radial sign-changing solution urad
p .

For this reason we conjecture that also for k = 3 the symmetric solution ukp is
quasi-radial at least for a certain range of values of p, while differently from
the higher symmetry cases k = 4, 5 considered in Theorem 1.4, we do not
expect it to keep the quasi-radial shape for large p.
For k = 2 we conjecture that ukp is not radial for any p > 1 and also not
quasi-radial (when p is close to 1 it can be proved rigorously, see Remark
7.8).
The case k ≥ 6 and p large is not covered by Theorem 1.3, we believe that ukp
is radial for any p ∈ (1,∞), observe that this is not in contrast with Theorem
1.2.
It would be useful to give a closer description of the solution ukp, for instance
studying its asymptotic behavior, as p→ +∞, similarly as it has been done
in [GGP] for urad

p ; for non-radial solutions this may be very difficult (see for
instance Proposition 7.7 and the proof of Proposition 7.3 in Section 7, where
we have studied the asymptotic behavior of ukp as p → 1) and will be the
object of a subsequent study.

Our next result is about the analysis of the bifurcation phenomenon. We have
proven the existence of 3 distinct solutions to (1.1) which bifurcate from the
least energy radial nodal solution urad

p at certain values of p. The result is

the following, where Xk := H1
0,k(B) ∩ C1,α(B̄):

Theorem 1.5. For any k = 3, 4, 5 there exists at least one exponent pk ∈
(1,+∞) such that (pk, urad

pk ) is a nonradial bifurcation point for problem (1.1).

The bifurcating solutions are sign-changing, belong to Xk and close to the
bifurcation point they have two nodal domains and are quasi-radial. Moreover
the bifurcation is global and, letting Ck be the continuum that branches out
of (pk, urad

pk ), then either Ck is unbounded in (1,+∞) × Xk or it intersects

{1}×Xk. Finally at any point along each branch Ck either the solution belongs
to Xk \ Xj, ∀j > k or it is radial, in particular the continua bifurcating from
different values of k can intersect only at radial solutions.

The three bifurcating solutions in Theorem 1.5 belong to H1
0,k(B)\H1

0,rad(B),
for k = 3, 4, 5 respectively. Moreover close to the bifurcation point they are
quasi-radial. Hence this results gives again, now with a different approach
and for certain values of p (values close to the ones at which the bifurcation
appears), the existence of non-radial but quasi-radial nodal solutions to (1.1).
We conjecture that these bifurcating solutions exist for any p ≥ pk and that
coincide with the least energy k-symmetric solutions ukp, when k = 3, 4, 5.
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Figure 3. Nodal sets of k-symmetric and quasi radial func-
tions with 2 nodal regions

Observe that the bifurcation is with respect to the exponent p of the nonlin-
earity, previous results in this direction can be found for instance in [GGPS]
and [G]. We recall that the bifurcation from the least energy nodal radial
solution urad

p can occur only at values p at which urad
p is degenerate and that

a sufficient condition to identify degeneracy points is to have a change in the
Morse index of urad

p .
The computation of the Morse index of sign-changing solutions is not an easy
issue, anyway for urad

p it has been computed recently in [DIP3], proving the
existence of an exponent p? > 1 such that:

m(urad
p ) = 12 ∀ p ≥ p?. (1.11)

This result is only for large p and it strongly relies on the asymptotic be-
havior of urad

p as p → +∞, which has been described in [GGP]. As we will

see, an asymptotic analysis of the behavior of the solution urad
p as p → 1

shows that a suitable re-normalization of urad
p converges to the second radial

eigenfunction of the Laplace operator with Dirichlet boundary conditions (see
Lemma 5.4) and this allows to compute the Morse index of urad

p also for p
close to 1, showing that it has a different value in this range. More precisely
in Proposition 5.1 we get the existence of δ > 0 such that

m(urad
p ) = 6 ∀ p ∈ (1, 1 + δ). (1.12)

Hence (1.11) and (1.12) prove that along the branch of radial solutions
(p, urad

p ) of (1.1) there should be points at which the Morse index increases

and this change of the Morse index of urad
p in the interval (1,+∞) is behind

the bifurcation from urad
p .

We stress that in the convex domain B this phenomenon is specific of sign-
changing solutions, since the positive solution inB is unique and non-degenerate
(for uniqueness and non-degeneracy in more general convex planar domains
see the recent result in [DGIP]). Anyway this is the first time that a non-
radial bifurcation result from sign-changing solutions in convex domains is
observed and, as it will be clear from the proof, there was no chance to get
it before the study of the Morse index of urad

p done in [DIP3].

Next we explain the main ideas to get Theorem 1.3 and Theorem 1.5.
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Both the proof of the non-radial part of Theorem 1.3 and the proof of The-
orem 1.5 rely on the analysis of the linearized problem at the radial sign-
changing solution urad

p . In particular we study the degeneracies of urad
p (to

get the bifurcation result) and the Morse index of urad
p (to get the non-radial

part of Theorem 1.3) in the spaces H1
0,k(B) of symmetric functions. This is

the goal of Sections 3, 4, 5 and 6. The analysis is done first without symme-
tries and for any p in Section 3, then in Sections 4 and 5 we deduce results
for p large and p close to 1 respectively, and last in Sections 6 we restrict to
the symmetric spaces.
We briefly describe how we proceed. We first consider in Section 3.2 an aux-
iliary singular weighted eigenvalue problem

−∆ψ − p|urad
p (x)|p−1ψ = β

|x|2ψ in B \ {0},
ψ = 0 on ∂B∫
B
|∇ψ|2 + ψ2

|x|2 < +∞,
(1.13)

which has the same kernel and the same number of negative eigenvalues of the
linearized operator at urad

p (see Lemma 3.5) and whose main advantage relies
on the fact that, in addition, a classical spectral decomposition into radial
and angular part may be applied to it (Lemma 3.7). The weighted eigenvalue
problem (1.13) belongs to the class of eigenvalue problems which has been
studied in [GGN], where the eigenvalues for (3.9) have been variationally
characterized in the case when they are negative, see also [AG2].
Since urad

p is the radial least energy nodal solution, then in the space of
radial functions its Morse index is 2, in Section 3.3, in view of the spectral
decomposition, we estimate the two negative radial eigenvalues of problem
(1.13) from above and from below by certain consecutive eigenvalues of−∆S1 .
As a consequence of our estimates we get a general explicit dependence of the
Morse index of the solution urad

p on the first radial eigenvalue of the weighted
problem (Lemma 3.8) and also a general characterization of the degeneracy
of urad

p (Proposition 3.9), for any p > 1.

Finally, thanks to (1.11) and (1.12), we get more specific results both in the
case p large and p close to 1 (see Sections 4 and 5).
Observe that, due to the spectral decomposition, we can decompose any so-
lution of the linearized equation at urad

p (and more in general each solution

of the eigenvalue problem (1.13)) along spherical harmonics, which in R2 are
the functions cos(jθ), sin(jθ) with j ∈ N, getting in particular an explicit
representation of the solutions of the linearized equation when they are non-
trivial (and more in general of the eigenfunctions of (1.13) associated with
negative eigenvalues). As a consequence we can then identify the symmetries
of those functions which are responsible of the degeneracy of urad

p (or which

give rise to negative eigenvalues for the linearized operator at urad
p ). This as-

pect has been investigated in Section 6, where the symmetric spaces H1
0,k(B)

have been introduced and the degeneracy and Morse index of urad
p in these

spaces studied (see Propositions 6.7 and 6.5, 6.6 respectively). Observe that
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this is done only for p close to 1 and p large since it is deduced from (1.11)
and (1.12) and so, among other things, from the asymptotic analysis of urad

p

as p→ 1 and as p→ +∞ respectively.

Once the symmetric Morse index for the radial solution urad
p is known (Propo-

sitions 6.5 and 6.6), the proof of the non-radial part of Theorem 1.3 immedi-
ately follows (see Section 7.1). Indeed in order to prove that urad

p and ukp do
not coincide one would like to compare their Morse indexes and show that
they are different. However the computation of m(ukp) may be very difficult,

but if we restrict to the symmetric spaces H1
0,k(B) then the Morse index of

ukp is always 2 (see Lemma 7.4) and so the proof is done by comparison with

the symmetric Morse index of urad
p previously computed.

The proof of Theorem 1.5 is contained in Section 8 and is a consequence
of the study of the degeneracy of urad

p in the symmetric spaces (Proposition
6.7). Observe that the restriction to the spaces Xk allow to isolate a unique
function in the kernel of the linearized operator selecting one suitable spher-
ical harmonic (between sin and cos) that produces degeneracy. Since we do
not know explicitly the solution urad

p , it is not clear whether the transver-
sality condition of the well-known Crandall-Rabinowitz Theorem (for one
dimensional kernel) is satisfied or not. Anyway the bifurcation result may be
obtained here using a degree argument. The separation of the branches is
obtained defining suitable cones Kk ⊂ Xk of monotone functions introduced
by Dancer in [D2] and using the degree in cones, see [A] (see Section 8 for the
definitions of the cones). The quasi-radiality is inherited from the radial least
energy solution urad

p , since near the bifurcation point the bifurcating solution
is a small perturbation of it (see Remark 8.7).
Along the branch instead the number of nodal regions and the shape of
the solutions may change, anyway the characterization of the behavior for
branches of non-radial solutions may be a very difficult task to investigate,
we also conjecture that the branches exist for every p ≥ pk.

Last we describe the main ingredients of the proof of the radial part of The-
orem 1.3, which can be found in Section 7.3. It relies on a careful blow-up
procedure in the spirit of [GS] for showing L∞ bounds for the solutions ukp
(see Proposition 7.7). Once an L∞ bound is available one can deduce the
result by studying the asymptotic behavior of the solutions ukp as p→ 1 (see

the proof of Proposition 7.3). In particular a delicate expansion of ‖ukp‖∞ at
p = 1 up to the second order is needed.
Getting a uniform L∞ bound is somehow standard for solutions with uni-
formly bounded Morse index, since one shows that the bound on the Morse
index is preserved as p → 1, while the blow-up analysis of unbounded solu-
tions in L∞-norm leads to solutions to limit problems in unbounded domains,
whose Morse index is not finite, thus reaching a contradiction.
The main problem here is that for the least energy symmetric solutions ukp
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we do not have a bound for the full Morse index, but only for the symmetric
Morse index (see Lemma 7.4), while in the rescaling procedure the symme-
tries are not preserved.
To overcome this technical difficulty we exploit the symmetry of ukp and re-
duce problem (1.1) to the circular sector Sk of the ball of amplitude π

k , for
k ∈ N0. In particular we are able to convert the bound on the k-Morse index
to a bound on the full Morse index of ukp in the sector Sk (Morse index for a
mixed Dirichlet-Neumann problem, see Lemma 7.5) and finally we perform
the blow-up argument in Sk.
Also the blow-up procedure in Sk requires special care, since we have to deal
with mixed boundary conditions and, above all, with the angular points of Sk.
For these reasons the analysis of the rescaled solutions includes several differ-
ent cases, depending upon the location of the maximum points in the sector.
Anyway in all the cases we end-up with solutions to a limit linear problem
in unbounded domains with either Dirichlet or Neumann or mixed boundary
conditions, whose Morse index is finite. Finally studying the Morse index of
solutions for these limit problems (Proposition 7.6) we get a contradiction.

In this paper we have focused on the radial least energy sign-changing so-
lution urad

p of (1.1). A bifurcation result similar to Theorem 1.5 could be
obtained from any nodal radial solution of (1.1) with m > 2 nodal regions,
provided information about its Morse index when p is large is available. In this
case we expect that the symmetries which cause the degeneracy and hence
produce branches of bifurcating solutions, should be of the same type of the
one for functions in Xk (which derive by the symmetry groups of spherical
harmonics), but with different values of k, probably k ≥ 6.

Moreover one could think to extend the bifurcation result in Theorem 1.5
also to higher dimension N ≥ 3, when p ∈ (1, N+2

N−2 ). Indeed the behavior

of all the radial sign-changing solutions of (1.1) has been studied in [DIP4]
and in particular their Morse index has been explicitly computed when p
is sufficiently close to N+2

N−2 , giving for instance, for the radial least energy

sign-changing solution urad
p :

m(urad
p ) = 2 +N, for p close to N+2

N−2 .

Similarly as in the 2-dimensional case, we expect a change in the Morse index
of urad

p as p varies from 1 to N+2
N−2 . Indeed urad

p should converge as p→ 1 to the
radial Dirichlet eigenfunction with 2 nodal regions of the Laplace operator in
B and this would imply

m(urad
p ) = 2 +N +

(N + 2)(N − 1)

2
, for p close to 1.

Again a change in the Morse index should give a nonradial bifurcation result.
An extra difficulty in dimension N ≥ 3 would be to identify the symmetry
groups of the spherical harmonics, which are much more involved than those
of the 2-dimensional spherical harmonics, see for instance [AG].
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2. Preliminary results

Observe that for a radial solution u of (1.1) necessarily u(0) 6= 0, hence
w.l.o.g. we may assume that

u(0) > 0 (2.1)

indeed, by the oddness of the nonlinearity in (1.1), u is a solution if and only
if −u is a solution.
In particular (1.1) admits a unique radial solution urad

p having 2 nodal regions
and satisfying (2.1). In [HRS, Lemma 5.2] the authors proved the following
estimate that can be useful in the sequel:

Lemma 2.1. For any p∗ ∈ (1,+∞) there exist constants m,M such that, for
any p ∈ (1, p∗]

m ≤ m ≤
(
‖urad

p ‖∞
)p−1 ≤M. (2.2)

Finally we state a Proposition which provides the behavior, at the singularity,
of solutions to a singular ordinary differential equation. This result is partially
contained in [GGN, Lemma 2.4], although one implication is new and proved
here.

Proposition 2.2. Let ψ be a solution to{
−ψ′′ − 1

rψ
′ + β2 ψ

r2 = hψ, in (0, 1)

ψ(1) = 0,
∫ 1

0
r(ψ′)2dr <∞

(2.3)

with h ∈ L∞(0, 1) and β > 0. Assume that ψ satisfies one of the following
conditions:

a) ψ ∈ C0[0, 1) and ψ(0) = 0

b)
∫ 1

0
ψ2

r dr <∞.

Then ψ ∈ L∞(0, 1) and

ψ(r) = O(rβ) as r → 0. (2.4)
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Proof. When ψ satisfies condition b) then the thesis follows from Lemma 2.4
in [GGN] (see estimate (2.28)). When ψ satisfies condition a) we can proceed
as in the proof of Lemma 2.4 in [GGN]. Then, multiplying by rn (2.3) and
integrating in (rn, 1) we get

rβ+1
n ψ′(rn)− rβnψ′(1) + β2rβn

∫ 1

rn

ψ

r
dr = rβn

∫ 1

rn

rh(r)ψ(r) dr.

Using the fact that along a sequence rn → 0 it holds∣∣rβn ∫ 1

rn

β2

s
ψ(s) ds

∣∣∣ ≤ Crβn| log rn| = o(1)

we get as n→∞
rβ+1
n ψ′(rn) = o(1).

Observe now that the function v(r) = rβ satisfies

− v′′ − 1

r
v′ +

β2

r2
v = 0 in (0, 1) , v(0) = 0 (2.5)

We multiply (2.3) by v, we multiply (2.5) by ψ, we integrate on (rn, R), with
R ∈ (0, 1), we subtract the two equations and we get∫ R

rn

rβ+1h(r)ψ(r) dr = rβ+1
n ψ′(rn)− βrβnψ(rn)−Rβ+1ψ′(R) + βRβψ(R)

and, passing to the limit as n→∞∫ R

0

rβ+1h(r)ψ(r) dr = −Rβ+1ψ′(R) + βRβψ(R)

which implies for any t ∈ (0, 1)

ψ(t)

tβ
=

∫ 1

t

1

R2β+1

(∫ R

0

sβ+1h(s)ψ(s)ds

)
dR. (2.6)

The boundedness of h(s) and ψ(s) then gives∣∣∣ ∫ R

0

sβ+1h(s)ψ(s)ds
∣∣∣ ≤ CRβ+2 (2.7)

which, together with (2.6) gives

|ψ(t)|
tβ

≤

{
C|1− t2−β | if β 6= 2

C(1− log t) if β = 2

and this implies the thesis in case β < 2. When β ≥ 2 instead we have
|ψ(t)| ≤ Ct2 for β > 2 and |ψ(t)| ≤ Ctβ−ε for β = 2 where 0 < ε << 1.
Inserting these estimates into (2.7) then we have∣∣∣ ∫ R

0

sβ+1h(s)ψ(s)ds
∣∣∣ ≤ {CRβ+4 if β > 2

CR2β+1−ε if β = 2
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which, together with (2.6) gives

|ψ(t)|
tβ

≤


C|1− t4−β | if β 6= 4

C(1− log t) if β = 4

C(1− t1−ε) if β = 2

which implies the thesis when β < 4. We can repeat the procedure. At each
step the set of values of β at which (2.4) is satisfied increases by 2. Then for
every value of β the thesis follows after a finite number of steps. �

3. Morse index and degeneracy of urad
p

In this section we investigate the Morse index and the degeneracy of the least
energy radial sign-changing solution urad

p . In order to shorten the notation

we simply set up := urad
p .

The section is organized as follows: we first define the linearized operator Lp
at the solution up and recall the definition of Morse index and radial Morse
index (Section 3.1). Then (Section 3.2) we consider an auxiliary weighted
eigenvalue problem (problem (3.9) below), whose main advantage, as we will
see, relies on the fact that it shares with Lp the same spectral properties (see
Lemma 3.5) and, in addition, a classical spectral decomposition into radial
and angular part may be applied to it (Lemma 3.7). Finally (Section 3.3) the
study of the auxiliary eigenvalue problem is carried out for any p > 1, getting
a general explicit dependence of the Morse index of the solution up on the first
radial eigenvalue of the weighted problem (Lemma 3.8) and also obtaining a
general characterization of the degeneracy of up (Proposition 3.9).

3.1. Linearized operator at up

Let Lp : H2(B) ∩H1
0 (B)→ L2(B) be the linearized operator at up, namely

Lpv := −∆v − p|up(x)|p−1v. (3.1)

It is well known that Lp admits a sequence of eigenvalues which, counting
them according to their multiplicity, we denote by

µ1(p) < µ2(p) ≤ . . . ≤ µi(p) ≤ . . . , µi(p)→ +∞ as i→ +∞,
where the first inequality is strict because it is known that µ1(p) is simple.
We also recall their min-max characterization

µi(p) = min
W⊂H1

0 (B)
dimW=i

max
v∈W
v 6=0

Rp[v], i ∈ N0 (3.2)

where Rp[v] is the Rayleigh quotient

Rp[v] :=
Qp(v)∫

B
v(x)2dx

(3.3)
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and Qp : H1
0 (B)→ R denotes the quadratic form associated to Lp, namely

Qp(v) :=

∫
B

[
|∇v(x)|2 − p|up(x)|p−1v(x)2

]
dx. (3.4)

Since up is a radial solution to (1.1) we can also consider the subsequence of
(µi(p))i∈N0

of the radial eigenvalues of Lp (i.e. eigenvalues which are associ-
ated to a radial eigenfunction) that we denote by

µi,rad(p), i ∈ N0

and which are all simple in the space of radial functions.
For the eigenvalues µi,rad(p) an analogous characterization holds:

µi,rad(p) = min
W⊂H1

0,rad(B)

dimW=i

max
v∈W
v 6=0

Rp[v] (3.5)

where Rp is as in (3.3) and H1
0,rad(B) is the subspace of the radial functions

of H1
0 (B). Moreover it is known that µ1,rad(p) = µ1(p).

The Morse index of up, denoted by m(up), is the maximal dimension of a
subspace X ⊆ H1

0 (B) such that Qp(v) < 0, ∀v ∈ X \ {0}. Since B is a
bounded domain this is equivalent to say that m(up) is the number of the
negative eigenvalues of Lp counted with their multiplicity.
The radial Morse index of up, denoted by mrad(up), is instead the number of
the negative radial eigenvalues µi,rad(p) of Lp.

By the results in [AP] we have

Lemma 3.1. For any p > 1

(+∞ >) m(up) ≥ 4.

Moreover it is well known (see for instance [BW], see also [HRS]) the following

Lemma 3.2. For any p > 1

mrad(up) = 2. (3.6)

The previous lemma means that for any p > 1

µ1,rad(p) < µ2,rad(p) < 0 ≤ µ3,rad(p) < . . . ,

next we show that

µ3,rad(p) > 0,

namely that the problem {
Lpv = 0 in B
v = 0 on ∂B

(3.7)

doesn’t admit nontrivial radial solutions, indeed the following result holds:

Lemma 3.3. For any p > 1 up is radially non-degenerate.
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Proof. Given a solution wα for the problem
w′′α + 1

rw
′
α + |wα|p−1wα = 0 in (0, T )

wα(0) = α > 0
w′α(0) = 0
wα has exactly 1 zero in (0, T )
wα(T ) = 0

(3.8)

where T > 0, it is not difficult to see (see [SW]) that wα is differentiable
with respect to α and that it is radially non-degenerate in (0, T ) if and only
if ∂wα

∂α |r=T 6= 0.
Observe that up solves (3.8) with α = up(0) > 0 and T = 1.
Moreover for any α > 0 (3.8) has a unique solution wα which is obtained by
scaling up as

wα(r) := T (α)−
2
p−1up(

r

T (α)
),

where T = T (α) :=
(
up(0)
α

) p−1
2

.

Hence it is immediate to check that ∂wα
∂α |r=T (α) 6= 0, from which it then

follows that up is radially non-degenerate. �

3.2. An auxiliary weighted eigenvalue problem

We consider the auxiliary eigenvalue problem
−∆ψ − p|up(x)|p−1ψ = β

|x|2ψ in B \ {0},
ψ = 0 on ∂B∫
B
|∇ψ|2 + ψ2

|x|2 < +∞,
(3.9)

where β ∈ R and p > 1.

Observe that, since p|up|p−1 ∈ L∞(B), (3.9) belongs to the class of eigenvalue
problems which has been studied in [GGN], where the eigenvalues for (3.9)
have been variationally characterized in the case when they are negative.

In the following we recall the variational characterization obtained in [GGN].
In particular they have observed that when the associated Rayleigh quotient
is greater or equal than zero there is a compactness problem, but as far as
the quotient is strictly negative, the eigenvalues and eigenfunctions maintain
the usual properties of the classical ones.
Let us denote by H the closure of C∞0 (B \ {0}) with respect to the norm

‖v‖2H =
∫
B

(
|∇v|2 + v2

|x|2

)
dx. Notice that H ⊂ H1

0 (Ω) and the inclusion is

strict (consider for instance the function w(x) = 1− |x|2).
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For η, ξ ∈ H we write

η ⊥H ξ ⇔
∫
B

ηξ

|x|2
dx = 0. (3.10)

Observe that if ψ, ψ̃ ∈ H are weak solutions to (3.9) related respectively to

the eigenvalues β and β̃, β 6= β̃ then

ψ ⊥H ψ̃ (3.11)

(just multiply (3.9) by ψ̃, the equation (3.9) for the eigenvalue β̃ by ψ, inte-
grate and subtract).

We define

β1(p) := inf
v∈H, v 6=0

R̃p[v] (3.12)

where R̃p[v] is the Rayleigh quotient

R̃p[v] :=
Qp(v)∫
B
v(x)2

|x|2 dx
(3.13)

and Qp is as in (3.4).

From [GGN, Proposition 2.1] we know that when β1(p) < 0 then this infimum
is achieved at a radial function ψ1 ∈ H, ψ1 > 0 in B \ {0}, which solves∫

B

∇ψ1∇v − p|up|p−1ψ1v dx = β1(p)

∫
B

ψ1v

|x|2
dx, ∀v ∈ H. (3.14)

Moreover β1(p) is simple (in H). In this case we can then define

β2(p) := inf
v∈H, v 6=0
v⊥Hψ1

R̃p[v] (3.15)

which again is achieved when it is negative (see [GGN, Proposition 2.3]) and
any function ψ2 ∈ H at which β2(p) is achieved solves∫

B

∇ψ2∇v − p|up|p−1ψ2v dx = β2(p)

∫
B

ψ2v

|x|2
dx, ∀v ∈ H, (3.16)

and by definition ψ1 ⊥H ψ2, then ψ2 must change sign.

More in general, by iterating, if βj(p) < 0 and ψj ∈ H is a function where it
is achieved, for j = 1, . . . , i− 1, we can define

βi(p) := inf
v∈H, v 6=0

v⊥Hspan{ψ1,...,ψi−1}

R̃p[v], i ∈ N, i ≥ 2 (3.17)

which (again [GGN, Proposition 2.3]) is achieved if it is negative and, in such
a case, any function ψi ∈ H at which βi(p) is achieved solves∫

B

∇ψi∇v − p|up|p−1ψiv dx = βi(p)

∫
B

ψiv

|x|2
dx, ∀v ∈ H, (3.18)
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and changes sign.

Similarly, restricting to the subspace Hrad of the radial functions of H, we
can also define:

β1,rad(p) := inf
v∈Hrad, v 6=0

R̃p[v] (= β1(p)) (3.19)

and, if βj,rad(p) < 0 for j = 1, . . . , i− 1

βi,rad(p) := inf
v∈Hrad, v 6=0

v⊥Hspan{φ1,...,φi−1}

R̃p[v], i ∈ N, i ≥ 2 (3.20)

where φj ∈ Hrad is the function where βj,rad(p) is achieved for j = 1, . . . , i−1
(observe that φ1 = ψ1) and solve∫

B

∇φj∇v − p|up|p−1φjv dx = βj,rad(p)

∫
B

φjv

|x|2
dx, ∀v ∈ Hrad. (3.21)

Lemma 3.4 (Variational characterization [GGN]). The negative eigenvalues
(resp. negative radial eigenvalues) of problem (3.9) coincide with the negative
numbers βi(p)’s defined in (3.12)-(3.17) (resp. with the numbers βi,rad(p)’s
defined in (3.19)-(3.20)). Moreover, by (3.11), the corresponding eigenfunc-
tions, which solve (3.9), are in H and can be chosen to be orthogonal in the
sense of (3.10).

The following relation holds between the Morse index of up and the number
of negative eigenvalues of the weighted problem (3.9):

Lemma 3.5 ([GGN], Lemma 2.6). The Morse index (resp. radial Morse index)
of up coincides with the number of negative eigenvalues (resp. negative radial
eigenvalues) of problem (3.9) counted according to their multiplicity.

As a consequence we have:

Lemma 3.6. For any p > 1

β1,rad(p) < β2,rad(p) < 0.

Moreover β3,rad(p) = 0 and it is not an eigenvalue for (3.9).

Proof. The first statement is a consequence of Lemma 3.2 and Lemma 3.5.
Observe that the value β3,rad(p) is well defined by (3.20), being both β1,rad(p)
and β2,rad(p) negative, moreover β3,rad(p) ≥ 0 from Lemma 3.4 and Lemma
3.5, since mrad(up) = 2 by Lemma 3.2. In particular even if β3,rad(p) = 0
it cannot be an eigenvalue for (3.9) because H ⊂ H1

0 (B) and up is radially
nondegenerate by Lemma 3.3.
To show that β3,rad(p) = 0 we let φj ∈ Hrad be the function where βj,rad(p)
is achieved for j = 1, 2, we choose the test functions

ηε(x) :=


1− |x| if ε ≤ |x| ≤ 1
2(1−ε)
ε |x|+ ε− 1 if ε

2 ≤ |x| ≤ ε
0 if |x| ≤ ε

2
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defined for 0 < ε < 1 and we let

η̃ε(x) := ηε(x)− aεφ1 − bεφ2

where aε, bε ∈ R are given by

aε :=

∫
B
ηεφ1

|x|2∫
B

φ2
1

|x|2
, bε :=

∫
B
ηεφ2

|x|2∫
B

φ2
2

|x|2

so that η̃ε is orthogonal in the sense of (3.10) to φj , j = 1, 2 for any ε ∈ (0, 1).
Moreover observe that by our choice of the test functions ηε there exists
C = Cp > 0 such that ∫

B

(
|∇ηε|2 − p|up|p−1η2

ε

)
≤ C, (3.22)

for any ε ∈ (0, 1).
Since βj,rad(p) < 0 for j = 1, 2, by Proposition 2.2 we have that

φj(r) = O
(
r
√
−βj,rad(p)

)
as r → 0. (3.23)

This last estimate together with the definition of ηε then implies that∫ 1

0

ηεφj
r

dr =
2(1− ε)

ε

∫ ε

ε
2

φj(r) dr + (ε− 1)

∫ ε

ε
2

φj(r)

r
dr +

∫ 1

ε

(1− r)φj(r)
r

dr

(3.23)

≤ C +O
(
ε
√
−βj,rad(p)

)
≤ C

so that aε and bε are uniformly bounded.

From (3.20) and the orthogonality between η̃ε and φj , j = 1, 2 then β3,rad(p) ≤
R̃p[η̃ε] where

R̃p[η̃ε] =
Qp(η̃ε)∫
B

η̃2ε
|x|2 dx

. (3.24)

An easy computation shows that

Qp(η̃ε) =

∫
B

(
|∇ηε|2 − p|up|p−1η2

ε

)
+ a2

ε

∫
B

(
|∇φ1|2 − p|up|p−1φ2

1

)
+b2ε

∫
B

(
|∇φ2|2 − p|up|p−1φ2

2

)
− 2aε

∫
B

(
∇ηε · ∇φ1 − p|up|p−1ηεφ1

)
−2bε

∫
B

(
∇ηε · ∇φ2 − p|up|p−1ηεφ2

)
−2aεbε

∫
B

(
∇φ1 · ∇φ2 − p|up|p−1φ1φ2

)
and, using that φj , j = 1, 2 solves (3.21), that φ1 ⊥H φ2 and recalling the
definition of aε, bε, we then get

Qp(η̃ε) =

∫
B

(
|∇ηε|2 − p|up|p−1η2

ε

)
−a2

εβ1,rad(p)

∫
B

φ2
1

|x|2
−b2εβ2,rad(p)

∫
B

φ2
2

|x|2
.
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The last equality, together with (3.22) and the boundedness of aε, bε implies
that

Qp(η̃ε) ≤ C
for any ε ∈ (0, 1). Finally, using again the definition of aε, bε we have∫
B

η̃2
ε

|x|2
dx =

∫
B

η2
ε

|x|2
− a2

ε

∫
B

φ2
1

|x|2
− b2ε

∫
B

φ2
2

|x|2

aε, bε bounded
≥

∫
B

η2
ε

|x|2
− C

= 2π

(
(1− ε)2

ε2

∫ ε

ε
2

(2r − ε)2

r
dr +

∫ 1

ε

(1− r)2

r
dr

)
− C

= 2π (− log ε+ ε log 2 + (1− ε)(ε− 2))− C
= −2π log ε (1 + o(1)) as ε→ 0.

The conclusion then follows using (3.24) and 0 ≤ β3,rad(p) ≤ R̃p[η̃ε]. �

Here and in the following we denote by αk, k ∈ N the spherical harmonics
in dimension 2, namely the homogeneous harmonic polynomials of degree k
considered on the unit sphere S1 ⊂ R2. They can be written explicitly, using
the polar coordinates x = (r cos θ, r sin θ)

αk(θ) =

{
c k = 0
c1 cos(kθ) + c2 sin(kθ) k = 1, 2, 3, . . .

(3.25)

for c, c1, c2 ∈ R.
Recall that the set (αk)k∈N is a complete orthogonal system for L2(S1), hence
any function v ∈ L2(B) can be written as

v(r, θ) =

+∞∑
k=0

hk(r)αk(θ) (3.26)

where

hk(r) :=

∫ 2π

0

αk(θ)v(r, θ)dθ, r ∈ (0, 1). (3.27)

Moreover if v(r, θ) is continuous in the origin, then 2πcv(0) = h0(0) (where
c is the constant in (3.25)) and

hk(0) = 0, ∀k ≥ 1. (3.28)

Recall also that the eigenvalues of the Laplace-Beltrami operator −∆S1 on
the unit sphere S1 are the numbers k2, k ∈ N, that they have multiplicity 1
if k = 0 and multiplicity 2 if k ≥ 1, and that the spherical harmonics αk are
the eigenfunctions associated to the eigenvalue k2.

For the negative eigenvalues of (3.9) we then have the following spectral
decomposition into radial and angular part, where the angular part is given
by the eigenvalues of −∆S1 :
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Lemma 3.7. Let p > 1. For any i = 1, . . . ,m(up) there exists (j, k) ∈ {1, 2}×N
((j, k) depending also on p) such that

βi(p) = βj,rad(p) + k2. (3.29)

Conversely for every (j, k) ∈ {1, 2} × N such that βj,rad(p) + k2 < 0 there
exists i ∈ {1, . . . ,m(up)} (i depending also on p) for which (3.29) holds.

Moreover the eigenspace associated to each negative eigenvalue β(p) of (3.9)
is spanned by the functions

φj(r) cos(kθ) and φj(r) sin(kθ), ∀ (j, k) such that βj,rad(p) + k2 = β(p),
(3.30)

where φj is the radial eigenfunction to (3.9) associated to the radial eigenvalue
βj,rad(p) (which is simple in the space of radial functions).

Proof. Step 1. We show the first statement.
By Lemma 3.4 and Lemma 3.5 the value βi(p), for any i = 1, . . . ,m(up), is a
(negative) eigenvalue for problem (3.9) and so there exists a function ψ ∈ H,
ψ 6= 0 which satisfies (3.9) with β = βi(p). Decomposing ψ along spherical
harmonics (see (3.26), (3.27)), we write

ψ(r, θ) =

+∞∑
k=0

hk(r)αk(θ)

where

hk(r) :=

∫ 2π

0

αk(θ)ψ(r, θ)dθ, r ∈ (0, 1). (3.31)

Then, since ψ 6= 0 and (αk)k is a complete orthogonal system for L2(S1), it
follows that hk 6= 0 for some k ∈ N, moreover it satisfies

−h′′k −
1

r
h′k =

∫ 2π

0

(
−ψrr −

1

r
ψr

)
αk dθ

=

∫ 2π

0

(
−∆ψ +

1

r2
∆S1ψ

)
αk dθ

= p|up|p−1hk +
βi(p)

r2
hk +

1

r2

∫ 2π

0

(∆S1ψ)αk dθ.

Integrating the last term by parts we get{
−h′′k − 1

rh
′
k − p|up|p−1hk = βi(p)−k2

r2 hk in (0, 1)

hk(1) = 0,
(3.32)

where βi(p)−k2 ≤ βi(p) < 0. Next we show that it satisfies also the condition∫ 1

0

r(h′k)2 +
h2
k

r
< +∞. (3.33)
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Indeed using (3.31) we get∫ 1

0

hk(r)2

r
dr =

∫ 1

0

1

r

(∫ 2π

0

αk(θ)ψ(r, θ) dθ

)2

dr (3.34)

Jensen ineq.

≤
∫ 1

0

1

r

∫ 2π

0

α2
k(θ)ψ2(r, θ) dθ dr

αk are bounded
≤ C

∫ 1

0

∫ 2π

0

ψ2(r, θ)

r2
r dr dθ = C

∫
B

ψ2(x)

|x|2
<∞,

where last estimate follows from (3.9). In the same way we obtain∫ 1

0

r (h′k(r))
2
dr =

∫ 1

0

r

(∫ 2π

0

αk(θ)
∂ψ(r, θ)

∂r
dθ

)2

dr (3.35)

≤ C

∫ 1

0

∫ 2π

0

r

∣∣∣∣∂ψ(r, θ)

∂r

∣∣∣∣2 drdθ ≤ C ∫
B

|∇ψ(x)|2dx <∞,

showing (3.33).
By Lemma 3.4, Lemma 3.5 and Lemma 3.6 problem (3.32)-(3.33) admits only
two negative eigenvalues which coincide with β1,rad(p) and β2,rad(p). Then
(3.32)-(3.33) has a nontrivial solution hk (related to a negative eigenvalue)
if and only if βj,rad(p) = βi(p)− k2 for some j = 1, 2. This ends the proof of
the existence of (j, k) ∈ {1, 2} × N which satisfies (3.29).

Step 2. We show the converse statement.
Let (j, k) ∈ {1, 2}×N be such that βj,rad(p) +k2 < 0, let φj be an eigenfunc-
tion associated to the radial eigenvalue βj,rad(p) (which is simple in the space
of the radial functions) and αk be an eigefunction of −∆S1 associated to the
eigenvalue k2 (see (3.25)). Then easy computation shows that the number
βj,rad(p) + k2 is a negative eigenvalue for the weighted problem (3.9) with
eigenfunction given by

ψj,k(x) := φj(|x|)αk(
x

|x|
). (3.36)

As a consequence, by Lemma 3.4 and Lemma 3.5, there exists i ∈ {1, . . . ,m(up)}
for which (3.29) holds.

Step 3. We prove that the eigenspace of a negative eigenvalue β(p) of problem
(3.9) is spanned by the functions in (3.30).
Let m ∈ N0 be the multiplicity of β(p), so there exists an index ` ∈ N, ` ≥ 1
such that

β(p) = β`(p) = β`+1(p) = · · ·β`+m−1(p) < β`+m(p)

and if ` ≥ 2 also

β`−1(p) < β(p)

(m is the number of subsequent indexes i in our notation).
By Step 1. for every i = `, . . . , `+m−1 there exists a couple (j, k) ∈ {1, 2}×N
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for which (3.29) holds (some of the couples may coincide).
Then considering the set

I := {(j, k) ∈ {1, 2} × N : βi(p) = β(p) = βj,rad(p) + k2, i = `, . . . `+m},

as seen in Step 2. all the functions in (3.36) with (j, k) ∈ I are eigenfunctions
for (3.9). Observe that since βj,rad(p) is simple in the space of radial functions
and αk are the functions in (3.25) one obtains all the functions in (3.30), which
are linearly independent.
Last we prove by contradiction that the eigenspace of β(p) consists only of the
functions in (3.30). So let us assume the existence of another eigenfunction
ψ 6= 0,

ψ ⊥H span {φj(r) cos(kθ), φj(r) sin(kθ) : (j, k) ∈ I} , (3.37)

then similarly as in Step 1. we can write

ψ(r, θ) =

+∞∑
s=0

hs(r)αs(θ) (3.38)

where

hs(r) :=

∫ 2π

0

αs(θ)ψ(r, θ)dθ, r ∈ (0, 1).

Since ψ 6= 0 then there exists s ∈ N such that hs 6= 0. Then, as in Step 1. we
can prove that for any s such that hs 6= 0 there exists ts ∈ {1, 2} such that

β(p) = βts,rad + s2 and hs = φts . (3.39)

As a consequence (3.38) becomes

ψ(r, θ) =

+∞∑
s=0, hs 6=0

φts(r)αs(θ)

and so the orthogonality condition (3.37) gives

0 =

∞∑
s=0

∫ 1

0

φtsφj
r

dr

∫ 2π

0

αsαkdθ =

+∞∑
s=0, hs 6=0

δts,jδs,k, ∀(j, k) ∈ I.

As a consequence, for any (j, k) ∈ I either s 6= k or if s = k then necessarily
ts 6= j, namely the couple (ts, s) 6∈ I. Since (3.39) holds this contradicts the
definition of the set I. �

3.3. Morse index and characterization of the degeneracy of up

In the next result we estimate the two negative radial eigenvalues of the
auxiliary weighted eigenvalue problem (3.9) from above and from below by
consecutive eigenvalues of −∆S1 . As a consequence of our estimates we also
get that the Morse index of up is even for any p > 1 and uniformly bounded
in p. Moreover the estimate of the two negative radial eigenvalues of (3.9)
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is the starting point to characterize the degeneracy of up, this last result is
contained in Proposition 3.9 at the end of the section.

Lemma 3.8.

− 1 < β2,rad(p) < 0 ∀p > 1. (3.40)

For any p > 1 there exists a unique j = j(p) ∈ N, j ≥ 2 such that

− j2 ≤ β1,rad(p) < −(j − 1)2 (3.41)

and

m(up) = 2j (3.42)

Moreover j(p) ≤ C for any p > 1, where the constant C > 0 does not depend
on p.

Proof. By Lemma 3.6 we already know that

β1,rad(p) < β2,rad(p) < 0

are the unique negative radial eigenvalues for (3.9). Next, using a result in
[AG2, Proposition 3.3], (with m = 2, M = 2 and ν̂i = βi,rad(p)) we also have

β1,rad(p) < −1 < β2,rad(p) < 0 for every p > 1. (3.43)

Then, the decomposition of the negative eigenvalues βi(p) in (3.29) and the
corresponding eigenfunctions which are given in (3.36), allows to say that the
modes k that contribute to the Morse index of up are those such that

βi(p) = βj,rad(p) + k2 < 0, j = 1, 2. (3.44)

The case j = 2 in (3.44) is possible only when k = 0 by (3.43). Hence by
(3.36) and recalling that there is only 1 spherical harmonic for k = 0 (see
(3.25)) we get only 1 contribution to the Morse index in this case.
The case j = 1 always gives instead 1 contribution (for k = 0) and, by (3.43)
and recalling that there are two spherical harmonics for k = 1, 2 contributions
for k = 1, showing that

m(up) ≥ 4 for every p.

But, j = 1 must also give other contributions for k ≥ 2. As a consequence
(3.41) holds. Hence by (3.36) and recalling that there are two spherical har-
monics for k ≥ 2, (see (3.25)) we get in this case that the total contribution
of β1,rad(p) to the Morse index is then 2(j − 1) + 1.
Summing up all the contributions from both j = 1 and j = 2 we get (3.42).
Last we show that there exists C > 0 independent of p such that

− C ≤ β1,rad(p) (< 0) for any p > 1 (3.45)

from which the uniform bound on j(p) then follows and this concludes the
proof. Let φp ∈ H be a function where β1,rad(p) is achieved, then by (3.21),
choosing v = φp, we have:

0 ≤
∫
B

|∇φp(y)|2dy =

∫
B

p|up(y)|p−1φp(y)2dy + β1,rad(p)

∫
B

φp(y)2

|y|2
dy
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=

∫
B

(
p|up(y)|p−1|y|2 + β1,rad(p)

) φp(y)2

|y|2
dy

≤
[
max
y∈B

(
p|up(y)|p−1|y|2

)
+ β1,rad(p)

] ∫
B

φp(y)2

|y|2
dy,

As a consequence

β1,rad(p) ≥ −max
y∈B

(
p|up(y)|p−1|y|2

)
. (3.46)

We recall the following pointwise estimate for up which has been proved in
[DIP2]:

p|up(x)|p−1|x|2 ≤ C, ∀p > 1, ∀x ∈ B, (3.47)

for a certain C > 0 (see property (P k3 ) in [DIP2, Proposition 2.2], observing
that in the radial case the origin is the only absolute maximum point of |up|
and that k = 1 by [DIP2, Proposition 3.6]). The conclusion follows combining
(3.47) with (3.46). �

Next we investigate the degeneracy of the solution up, for any p > 1. This
result will be useful to characterize the degeneracy of up in the case of large
p. Moreover we will need it to identify the possible bifurcation points and
select the eigenfunctions related to them.

Proposition 3.9 (Characterization of degeneracy). For any p ∈ (1,+∞) let
j = j(p) ∈ N, j ≥ 2 be as in Lemma 3.8. The solution up is degenerate if
and only if

β1,rad(p) = −j2 (3.48)

Moreover the space of the solutions to the linearized problem (3.7) at a value
p that satisfies (3.48) is spanned by

vj(r, θ) = φ1(r) (A sin(jθ) +B cos(jθ)) A,B ∈ R (3.49)

where φ1 is an eigenfunction associated to the first radial eigenvalue β1,rad(p).
Hence Ker(Lp) has dimension 0 when (3.48) is not satisfied, and dimension
2 when (3.48) holds.

Proof. up is degenerate if and only if there exists v ∈ H1
0 (B), v 6= 0 such that{

−∆v − p|up|p−1v = 0 in B,
v = 0 on ∂B.

(3.50)

Step 1. We show that if up is degenerate then (3.48) holds.
If up is degenerate, problem (3.50) admits a solution v which is continuous in
B by elliptic regularity. Then we can decompose v along spherical harmonics,
namely for k ∈ N we consider the radial function

hk(r) :=

∫ 2π

0

αk(θ)v(r, θ) dθ, r ∈ [0, 1) (3.51)

where αk is an eigefunction of −∆S1 associated to the eigenvalue k2 (see
(3.25)—(3.28)). Since (αk)k is a complete orthogonal system for L2(S1) and
v 6= 0, then necessarily hk 6= 0 for some k ∈ N. Moreover, similarly as in Step
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1 in the proof of Lemma 3.7, it is easy to show that hk, for these values of k,
is a nontrivial solution to the problem{

−h′′k − 1
rh
′
k − p|up|p−1hk = −k2

r2 hk in (0, 1)
hk(1) = 0

(3.52)

Observe that k ≥ 1, since up is radially nondegenerate by Lemma 3.3, so (see
(3.28)), one has also

hk(0) = 0. (3.53)

Next we show that hk satisfies also the condition∫ 1

0

r(h′k)2 +
h2
k

r
< +∞. (3.54)

Indeed, since v ∈ H1
0 (B), we can argue as in the proof of (3.35) to get∫ 1

0

r(h′k)2 < +∞ (3.55)

and moreover, using Proposition 2.2, we also have that hk(r) = O(rk), as
r → 0, which implies ∫ 1

0

h2
k

r
< +∞. (3.56)

By Lemma 3.4, Lemma 3.5 and Lemma 3.6 problem (3.52)-(3.55)-(3.56) ad-
mits only two negative eigenvalues which coincide with β1,rad(p) and β2,rad(p).
Hence we conclude that hk is nontrivial if and only if βi,rad(p) = −k2 for some
i = 1, 2 and k ≥ 1. The equality (3.48) then follows remembering that, by
Lemma 3.8, −1 < β2,rad(p) < 0 and −j2 ≤ β1,rad(p) < −(j − 1)2 for some
j = j(p) ∈ N, j ≥ 2.
Step 2. We show that if (3.48) holds then up is degenerate.
Let

vk(x) := φ1(|x|)αk(
x

|x|
), (3.57)

where φ1 is an eigenfunction associated to the radial eigenvalue β1,rad(p) and
αk is an eigefunction of −∆S1 associated to the eigenvalue k2 (see (3.25)).
Then easy computation shows that if (3.48) holds then vk with k = j solves
(3.50).
Step 3. We show that the space of solutions of (3.50) at a value p that satisfies
(3.48) is given by (3.49).
The functions in (3.49) clearly solve (3.50). This follows from Step 2, recalling
the explicit expression of αk (see (3.25)).
To prove that the space of solutions to (3.50) is spanned by the functions in
(3.49), recall that αk is an orthogonal basis for L2(S1), hence any nontrivial
solution v to (3.50) may be written in L2(B) as

v(r, θ) =

+∞∑
k=0

hk(r)αk(θ) (3.58)
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with hk defined as in (3.51). Then the same arguments used in Step 1 imply
that when (3.48) holds then hk = 0 for any k 6= j and so (3.58) reduces to

v(r, θ) = hj(r)αj(θ)

with hj eigenfunction associated to the radial eigenvalue β1,rad(p), namely
hj = φ1. �

4. The case p large

In [DIP3], exploiting the asymptotic analysis of up for p→ +∞, it has been
already proved that

Proposition 4.1. There exists p̂ > 1 such that

m(up) = 12 ∀ p ≥ p̂. (4.1)

Moreover, retracing the proof of [DIP3, Theorem 6.1] one can easily deduce
the following asymptotic result for the first eigenvalue β1(p) = β1,rad(p) in
the ball (for the detailed proof see [AG3, Proposition 3.3], where β1(p) is

called ν1(p) and κ2 = `2+2
2 )

Lemma 4.2.

lim
p→+∞

β1(p) = lim
p→+∞

β1,rad(p) = −`
2 + 2

2
∼ −26, 9

where ` ' 7.1979 is the constant introduced in [DIP3].

Using the general analysis previously done in Section 3 (Lemma 3.8 and
Proposition 3.9), combining it with Proposition 4.1 above and with the as-
ymptotic result in Lemma 4.2, we completely characterize the degeneracy of
the solution up when p is large. Our result reads as follows:

Proposition 4.3. There exists p? > 1 such that for any p ≥ p?

− 36 < β1,rad(p) < −25. (4.2)

Hence Ker(Lp) for p ≥ p? has dimension 0 and up is nondegenerate.

Proof. The proof follows from Lemma 3.8, Proposition 3.9, observing that by
Proposition 4.1 j(p) ≡ 6 for p ≥ p̂ and that moreover by Lemma 4.2 there
exists p?(≥ p̂) such that the equality

β1,rad(p) = 36

is never attained when p ≥ p?. �
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5. The case p close to 1

Let us fix some notation. We denote by (λi)i the sequence of the Dirichlet
eigenvalues of −∆ in B, counted with their multiplicity. Moreover let (ϕi)i
be a basis of eigenfunctions in L2(B) associated to λi.
We also denote by (λi,rad)i and (ϕi,rad)i the subsequences of the radial eigen-
values and eigenfunctions respectively (it is well known that λi,rad are simple
in the space of radial functions and that ϕi,rad has i− 1 zeros).
The main result of this section is the following:

Proposition 5.1. There exists δ > 0 such that

m(up) = 6 ∀ p ∈ (1, 1 + δ) (5.1)

and up is nondegenerate for p ∈ (1, 1 + δ) (namely µ7(p) > 0).
Moreover

µi(p) −→
p→1

λi − λ2,rad < 0, i = 1, . . . , 5 (5.2)

µ6(p) = µ2,rad(p) −→
p→1

λ6 − λ2,rad = 0−

and, up to a subsequence

vi,p −→
p→1

C
ϕi
‖ϕi‖∞

in C(B̄), i = 1, . . . , 6 (5.3)

where C = ±1 and µi(p), µi,rad(p) are the Dirichlet eigenvalues and radial
eigenvalues respectively of the linearized operator Lp at up (see (3.1), (3.2)
and (3.5)) and vi,p are the eigenfunctions of Lp associated to the eigenvalues
µi,p and normalized in L∞(B) (‖vi,p‖∞ = 1).

We observe that, combining (5.1) with the general results about the Morse
index of up and the characterization of its degeneracy given in Section 4
for any p > 1 (Proposition 3.9 and Lemma 3.8 respectively), we also have
the following estimate for the first negative radial eigenvalue of the auxiliary
problem (3.9), when p is close to 1:

Corollary 5.2. Let δ > 0 be as in Proposition 5.1. Then for any p ∈ (1, 1 + δ)

− 9 < β1,rad(p) < −4 (5.4)

Proof. From Lemma 3.8, observing that (5.1) implies j(p) ≡ 3 for p ∈ (1, 1 +
δ), we have that

−9 ≤ β1,rad(p) < −4

for p ∈ (1, 1 + δ). The strict inequalities in the left hand sides follow from
the nondegeneracy of up in (1, 1 + δ) (see Proposition 5.1) and from the
characterization of the degeneracy in Proposition 3.9. �

In order to obtain the previous result we need to analyze the behavior of the
solution up, as p is close to 1. We will show that up converges, as p → 1, to
the second radial Dirichlet eigenfunction of −∆ in the ball B (Lemma 5.4
below).
Hence let us recall some useful results for the Dirichlet eigenvalues and for
the second radial eigenfunction of −∆ in B.
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Lemma 5.3. One has

m (ϕ2,rad) = 5

and in particular

λ1 = λ1,rad < λ2 = λ3 < λ4 = λ5 < λ6 = λ2,rad < λ7 ≤ . . . . (5.5)

Proof. This proof is classical, we write it for completeness. The eigenfunctions
of the Laplace operator −∆ with Dirichlet boundary conditions in B are
given, in radial coordinates, by

ϕ̃n,k(r, θ) = Jn(νnkr)×
{

cos(nθ)
sin(nθ) for n 6= 0

(5.6)

for n ∈ N, k ∈ N0, where Jn are the Bessel functions of the first kind (see for
instance [W]) and νnk is the k-th positive root of Jn (for any fixed n there
are infinitely many roots). The corresponding eigenvalues are given by

λ̃nk = ν2
nk, (5.7)

hence they are simple for n = 0 and have multiplicity 2 when n ≥ 1.
From (5.6) it follows that the second radial eigenfunction is

ϕ2,rad(r) = J0(ν02r)

and so by (5.7) the second radial eigenvalue is

λ2,rad = ν2
02. (5.8)

The Morse index of ϕ2,rad is the number of eigenvalues (counted with mul-
tiplicity) of the Laplace operator −∆ with Dirichlet boundary conditions in
B which are strictly less than λ2,rad. By (5.7) and (5.8) this is equivalent to
compute the number of the zeros νnk of the Bessel functions Jn which are
strictly less than ν02, recalling that when n ≥ 1 each eigenvalue has multi-
plicity 2.
It is known (see [W, TABLE VII]) that

ν01 < ν11 < ν21 < ν02, (5.9)

while

ν12, ν22, νh1 > ν02, ∀h ≥ 3 (5.10)

hence the Morse index of ϕ2,rad is 5.
By (5.7), (5.9) and (5.10) (recalling the multiplicities) it follows that

λ1 = λ̃01,

λ2 = λ3 = λ̃11,

λ4 = λ5 = λ̃21,

λ6 = λ̃02 < λ7,

and that (5.5) holds. �
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5.1. Asymptotic behavior of up as p→ 1

We now analyze the asymptotic behavior of up, as p → 1. In particular we
obtain an expansion of its L∞-norm up to the second order which will be
useful for the proof of Theorem 1.3 (see Proposition 7.3).

Lemma 5.4. Let pn be any sequence converging to 1. Then

ūn :=
upn
‖upn‖∞

→ ϕ2,rad = J0(ν02|x|) in C(B̄) (5.11)

(recall that, by the definition of J0, we have that ‖ϕ2,rad‖∞ = ϕ2,rad(0) =
J0(0) = 1) and

‖upn‖pn−1
∞ = λ2,rad (1− c̃(pn − 1)) + o(pn − 1) as n→∞ (5.12)

where

c̃ :=

∫
B
ϕ2

2,rad log |ϕ2,rad|dx∫
B
ϕ2

2,raddx
(5.13)

Proof. The function ūn defined in (5.11) satisfies −∆ūn = γpn−1
n |ūn|pn−1ūn in B

ūn = 0 on ∂B
ūn(0) = 1

(5.14)

where γn := ‖upn‖∞. From (2.2) it easily follows

‖γpn−1
n |ūn|pn−1ūn‖∞ ≤M,

from which
‖∇ūn‖L2(B) ≤M. (5.15)

Moreover we have the following estimate

|
(
|ūn|pn−1 − 1

)
ūn| ≤ c(pn − 1) (5.16)

in B̄, with c independent on n. Estimate (5.16) obviously holds, for any fixed
n, at the points at which ūn = 0. When ūn 6= 0 instead it comes as in [AGG,

(3.10)] from the identity ex − 1 = x
∫ 1

0
etx dt, from which

|ūn|pn−1 − 1 = (pn − 1) log |ūn|
∫ 1

0

(
|ūn|pn−1

)t
dt, (5.17)

so that ∣∣|ūn|pn−1 − 1
∣∣ ≤ (pn − 1)

∣∣ log |ūn|
∣∣,

which implies (5.16) by the boundedness of the function x 7→ x log x in (0, 1).
From (5.16) we get (

|ūn|pn−1 − 1
)
ūn → 0 as n→ +∞ (5.18)

uniformly in B̄. Then, by (5.15) and (5.18), ūn converges, up to a subse-
quence, in C(B̄) to a solution to −∆ū = γū in B

ū = 0 on ∂B
ū(0) = 1
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where γ := limn→+∞ γpn−1
n > 0 by (2.2). Moreover ū is radial and we will

prove that it has two nodal regions. This implies that ū = ϕ2,rad showing
(5.11) and consequently γ = λ2,rad. Since the convergence in (5.11) holds for
every subsequence, then it holds directly for the sequence ūn.
Next we show that ū has 2 nodal regions. Observe that the number of nodal
regions of ū cannot be grater then 2 since ūn has 2 nodal regions and it
converges uniformly to ū. Let rn be the unique zero of ūn in (0, 1), up to a
subsequence rn → r0, then ū has 2 nodal regions if we show that r0 ∈ (0, 1).
The C0 convergence of ūn to ū easily implies that r0 > 0 since ū(0) = 1.
So by contradiction let us assume rn → 1 as n → +∞. By Rolle Theorem
there exists ξn ∈ (rn, 1) such that ū′n(ξn) = 0 for any n. By assumption
ξn → 1 as n → +∞. Moreover observe that the convergence in (5.11) holds
also in C1(B), by standard regularity theory, so it follows that ū′(ξn) → 0
and this is not possible since the Hopf boundary Lemma implies ū′(r) 6= 0 in
a neighborhood of r = 1.

We have shown so far that γpn−1
n → λ2,rad as n→∞. To conclude we have to

prove the expansion in (5.12). Let us multiply (5.14) by ϕ2,rad and integrate
over B. We get

γpn−1
n

∫
B

|ūn|pn−1ūnϕ2,rad =

∫
B

∇ūn∇ϕ2,rad = λ2,rad

∫
B

ūnϕ2,rad

where last equality follows by the definition of ϕ2,rad. This implies that

λ2,rad

∫
B

(
|ūn|pn−1 − 1

)
ūnϕ2,rad =

(
λ2,rad − γpn−1

n

) ∫
B

|ūn|pn−1ūnϕ2,rad.

(5.19)
By using the identity (5.17), which holds a.e. in B, we also have∫
B

(
|ūn|pn−1 − 1

)
ūnϕ2,rad = (pn−1)

∫
B

ūnϕ2,rad log |ūn|
∫ 1

0

|ūn|t(pn−1)dt dx

and so from (5.19) we get

λ2,rad − γpn−1
n

λ2,rad(pn − 1)
=

∫
B
ūnϕ2,rad log |ūn|

∫ 1

0
|ūn|t(pn−1)dt dx∫

B
|ūn|pn−1ūnϕ2,rad dx

. (5.20)

To conclude the proof we show that the right hand side of (5.20) converges
to the constant c̃ in (5.13). First we observe that the uniform convergence of
ūn to ϕ2,rad in B implies∫

B

|ūn|pn−1ūnϕ2,rad →
∫
B

ϕ2
2,rad 6= 0 as n→∞ (5.21)

(recall that ϕ2,rad(x) = J0(ν02|x|)). Moreover, since ‖ūn‖∞ ≤ 1, (ūn 6=
0 q.o.) and the function x 7→ x log x is bounded in (0, 1), then the term

ūnϕ2,rad log |ūn|
∫ 1

0
|ūn|t(pn−1)dt ∈ L∞(B) and

‖ūnϕ2,rad log |ūn|
∫ 1

0

|ūn|t(pn−1)dt‖L∞(B) ≤ C,
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so by the convergence of ūn to ϕ2,rad and the dominated convergence theorem
we also get∫
B

ūnϕ2,rad log |ūn|
∫ 1

0

|ūn|t(pn−1)dt dx→
∫
B

ϕ2
2,rad log |ϕ2,rad|dx as n→∞.

(5.22)

Then, from (5.20), by (5.21) and (5.22), it follows that
λ2,rad−γpn−1

n

λ2,rad(pn−1) is bounded

and, up to a subsequence,

λ2,rad − γpn−1
n

λ2,rad(pn − 1)
→ c̃ as n→∞.

Since this convergence holds for every subsequence, then it holds for the
sequence concluding the proof.

�

5.2. Proof of Proposition 5.1

Using Lemma 5.4 and Lemma 5.3 we can finally prove Proposition 5.1.

Proof of Proposition 5.1. The proof of (5.1) consists in showing that for p
sufficiently close to 1

m(up) = m (ϕ2,rad) + 1, (5.23)

where m (ϕ2,rad) = 5 by Lemma 5.3. We divide it into three steps. First
observe that for ūp defined from up as in (5.11)

|up|p−1 = ‖up‖p−1
∞ |ūp|p−1. (5.24)

Step 1. We show that m(up) ≥ m (ϕ2,rad) + 1, for p sufficiently close to 1.
Let Qp : H1

0 (B)→ R be the quadratic form in (3.4) and let us consider the
first 5 Dirichlet eigenfunctions ϕ1, . . . , ϕ5 of −∆ in B and the corresponding
eigenvalues λ1, . . . , λ5. Then by (5.24) we have that

Qp(ϕi) =

∫
B

[
|∇ϕi|2 − p|up|p−1ϕ2

i

]
dx

(5.24)
=

∫
B

[
|∇ϕi|2 − p‖up‖p−1

∞ |ūp|p−1ϕ2
i

]
dx

= λi

∫
B

ϕ2
i dx− p‖up‖p−1

∞

∫
B

|ūp|p−1ϕ2
i dx

(?)
= (λi − λ2,rad)

∫
B

ϕ2
i dx+ op(1) < 0

for i = 1, . . . , 5 and p sufficiently close to 1, since λi < λ2,rad by Lemma 5.3,
where for the equality in (?) we have used (5.12) and the Lebesgue dominated
convergence theorem thanks to (5.11). Recalling that the eigenfunctions ϕi
are orthogonal in L2(B) and hence in H1

0 (B) this means that the Morse index
of up is at least 5 for p sufficiently close to 1. But from (3.42) in Lemma 3.8
we already know that m(up) must be always even, then the Morse index of
up is at least 6 for p sufficiently close to 1.
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Step 2. Let µi(p) ≤ 0 be a non-positive Dirichlet eigenvalue of the operator Lp
for p ∈ (1, 1+δ) and let vi,p be an associated eigenfunction with ‖vi,p‖∞ = 1.
We prove that as p→ 1

µi(p)→ λj − λ2,rad (5.25)

vi,p → Cjϕj in C(B̄) up to a subsequence, (5.26)

for a certain j = j(i) ∈ {1, 2, 3, 4, 5, 6}, where Cj := ±‖ϕj‖−1
∞ . Moreover we

also show that if l ∈ N, l 6= i and µl(p) ≤ 0 for p ∈ (1, 1 + δ), then

j(l) 6= j(i) (5.27)

(we stress that under condition (5.27) it is nevertheless possible to have
λj(l) = λj(i)).
Observe that the non-positive eigenvalue µi(p) is bounded for p close to 1,
indeed by the standard variational characterization of µ1(p)

µi(p) > µ1(p) = µ1,rad(p)
(5.24)

= inf
v∈H1

0,rad(B)

v 6=0

∫ 1

0

(
r (v′)

2 − p‖up‖p−1
∞ |ūp|p−1rv2

)
dr∫ 1

0
rv2dr

≥ −p‖up‖p−1
∞

(5.12)

≥ −(λ2,rad + ε)

for p close to 1. Let pn be a sequence converging to 1, then the eigenfunction
vi,n := vi,pn satisfies

Lpvi,n
(5.24)

= −∆vi,n − pn‖upn‖pn−1
∞ |ūpn |pn−1vi,n = µi(pn)vi,n in B

‖vi,n‖∞ = 1
vi,n = 0 on ∂B.

(5.28)
Moreover ∣∣pn‖upn‖pn−1

∞ |ūpn |pn−1vi,n + µi(pn)vi,n
∣∣ ≤ C

and then, up to a subsequence, vi,n → ϕ̃i in C(B̄) where ‖ϕ̃i‖∞ = 1 by the
uniform convergence and, using (5.12) and (5.11), it follows that ϕ̃i solves

−∆ϕ̃i = (λ2,rad + µ̃i) ϕ̃i in B

‖ϕ̃i‖2 = 1

ϕ̃i = 0 on ∂B,

(5.29)

where µ̃i = limn→+∞ µi(pn) ≤ 0. This means that ϕ̃i is an eigenfunction of
the Laplace operator associated to the eigenvalue λ2,rad + µ̃i, namely there
exists j = 1, 2, . . . such that

µ̃i = λj − λ2,rad

and

ϕ̃i = Cjϕj
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where Cj = ±‖ϕj‖−1
∞ . Since µ̃i ≤ 0, by Lemma 5.3 we have necessarily that

j ∈ {1, 2, 3, 4, 5, 6}. Moreover, since the convergence in (5.25) holds for any
subsequence, then it also holds for the sequence.

Last we prove (5.27). Let l 6= i be such that µl(p) ≤ 0. We can take vl,p
orthogonal in L2(B) to vi,p. The uniform convergence in B̄ implies then that

0 =

∫
B

vi,pvl,p = Cj(i)Cj(l)

∫
B

ϕj(i)ϕj(l),

hence j(i) 6= j(l).

Step 3. Conclusion
From Step 2 we deduce that the operator Lp, for p close to 1, may have at
most 6 non-positive eigenvalues µi(p) ≤ 0, namely that µ7(p) > 0.
Indeed if we assume by contradiction that µ7(p) ≤ 0 for p close to 1, then

(5.25) holds for all i = 1, 2, . . . , 7 and so necessarily j(7) = j(̂i) for some

î ∈ {1, . . . 6}, a contradiction with (5.27).
From Step 1, we also know that the operator Lp for p close to 1 has at least
6 negative eigenvalues µi(p) < 0.
Combining both the information we get:

µ1(p) < µ2(p) ≤ µ3(p) < µ4(p) ≤ µ5(p) < µ6(p) < 0 < µ7(p) ≤ . . . (5.30)

(the strict inequalities are a consequence of (5.5) and of the convergence in
(5.25)), which proves both (5.23) and the nondegeneracy of up for p close to
1.
It remains to prove (5.2). It is well known that µ1(p) = µ1,rad(p). Moreover
mrad(up) = 2 by Lemma 3.2, hence there exists a unique l ∈ {2, 3, 4, 5, 6} such
that µl(p) = µ2,rad(p). We denote by vl,p a radial eigenfunction associated to
µl(p). Next we show that l = 6.
Observe that as a consequence of (5.30) and of the monotonicity property of
the limit, we can take j = i in the convergences already proved in Step 2,
namely (5.25) and (5.26) become respectively:

µi(p)→ λi − λ2,rad (5.31)

vi,p → Ciϕi (5.32)

as p→ 1, for any i = 1, . . . , 6.
Obviously ϕ1 = ϕ1,rad and moreover, since λ6 = λ2,rad by Lemma 5.3, we
can take ϕ6 = ϕ2,rad, while ϕi is surely not radial for i = 2, 3, 4, 5. Observe
now that ϕl is radial, being obtained in the limit of the radial eigenfunction
vl,p in (5.32), this proves that l = 6. Last (5.31) in the case i = 6 also gives
the limit µ6(p) = µ2,rad(p)→ 0− as p→ 1. �
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6. Morse index and degeneracy of urad
p in symmetric functions

spaces

To prove the bifurcation result in Theorem 1.5 and also to prove Theorem
1.3 we need to introduce some spaces of symmetric functions. To this end
we let O(2) be the orthogonal group in R2, Ok ⊂ O(2), for k ∈ N0, be the
subgroup of rotations of angle 2π

k and τ ∈ O(2) be the reflection with respect

to the x-axis, i.e. τ(x, y) = (x,−y) for any (x, y) ∈ R2. For any k ∈ N0, we
denote by

Gk ⊂ O(2) the subgroup generated by the elements of Ok and by τ (6.1)

and by

H1
0,k(B) := {v ∈ H1

0 (B) such that v(g(x)) = v(x), ∀g ∈ Gk, ∀x ∈ B}.
(6.2)

The functions in the spaces H1
0,k(B) clearly possess the following invariances

(in polar coordinates (x, y) = (r cos θ, r sin θ)):

v(r, θ) = v(r, 2π − θ) (6.3)

v(r, θ) = v(r, θ + 2π
k ) (6.4)

and so also

v(r,
π

k
+ θ) = v(r,

π

k
− θ) (6.5)

for every r ∈ (0, 1] and for every θ ∈ [0, 2π]. Note that in general θ + 2π
k /∈

[0, 2π], if this occurs we mean that v(r, θ) = v(r, θ + 2π
k − 2π) and similarly

we do when π
k ± θ /∈ [0, 2π].

Observe that when k = 1 then O1 is the trivial subgroup of O(2) given by the
identity map and the functions in H1

0,1(B) are only invariant by the reflection
τ .

Clearly the radial solution up ∈ H1
0,k(B), for every k ∈ N0.

As a consequence, letting as before (µi(p))i∈N0
be the sequence of the eigen-

values of the linearized operator Lp at up (see Section 3.1), we can consider
its subsequence (µi,k(p))i∈N0

of the Gk-symmetric eigenvalues (i.e. eigenval-

ues associated to an eigenfunction that belongs to H1
0,k(B)) for any k ∈ N0,

which can be characterized as

µi,k(p) = min
W⊂H1

0,k(B)

dimW=i

max
v∈W
v 6=0

Rp[v],

where Rp is the usual Rayleigh quotient as in (3.3). By the principle of
symmetric criticality the functions vi that attains µi,k(p) are indeed solutions
to the eigenvalue problem associated to the linearized operator, i.e. they
satisfy {

−∆vi − p|up(x)|p−1vi = µi,k(p)vi in B,

vi = 0 on ∂B
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and are invariant by the action of Gk. It is known that µ1,k(p) = µ1,rad(p) =
µ1(p), for any k ∈ N0, since v1 is a radial function.

We then define the k-Morse index of up, that we denote by mk(up), as the
number of the negative Gk-symmetric eigenvalues µi,k(p) of Lp counted with
multiplicity.

To compute the k-Morse index of up it is useful the following result, analogous
to the one in Lemma 3.5:

Lemma 6.1. The k-Morse index of up coincides with the number of the nega-
tive Gk-symmetric eigenvalues of the weighted problem (3.9) counted accord-
ing to their multiplicity.

The proof of the previous result is an easy adaptation of the arguments in
[GGN, Lemma 2.6] and relies on the variational characterization of the neg-
ative Gk-symmetric eigenvalues of the weighted problem (3.9) (i.e. the eigen-
values whose eigenfuntions belong to H1

0,k(B)). Indeed observe that they are

a subsequence of the eigenvalues of the weighted problem (3.9) and that, as
we have already seen in Section 3.2, they can be variationally characterized
exactly when they are negative. More precisely, by the principle of symmet-
ric criticality, we can now restrict to the subspace Hk of the Gk-symmetric
functions of H (Hk ⊂ H1

0,k(B)) and define

β1,k(p) := inf
v∈Hk, v 6=0

R̃p[v] (= β1(p) = β1,rad(p)) (6.6)

and, if βj,k(p) < 0 for j = 1, . . . , i− 1

βi,k(p) := inf
v∈Hk, v 6=0

v⊥Hspan{φ1,...,φi−1}

R̃p[v], i ∈ N, i ≥ 2, (6.7)

where φj ∈ Hk is the function where βj,k(p) is achieved for j = 1, . . . , i − 1
and solve∫

B

∇φj∇v − p|up|p−1φjv dx = βj,k(p)

∫
B

φjv

|x|2
dx, ∀v ∈ H. (6.8)

So similarly as in Lemma 3.4 one can prove the following variational char-
acterization, which then gives the characterization of the k-Morse index in
Lemma 6.1 above:

Lemma 6.2. The negative Gk-symmetric eigenvalues of problem (3.9) coincide
with the negative numbers βi,k(p)’s in (6.6)-(6.7). Moreover the correspond-
ing eigenfunctions, which solve (3.9), are in Hk and can be chosen to be
orthogonal in the sense of (3.10).

Remark 6.3 (Gk-invariance of the eigenfunctions). Recall that, according to
the spectral decomposition result in Lemma 3.7 and using Lemma 3.6, we can
decompose the negative eigenvalues of the weighted problem (3.9) as

βn,rad(p) + j2 < 0 (6.9)
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for some n = 1, 2 and some j ∈ N, where βn,rad(p) are the negative radial
weighted eigenvalues as defined in Section 3.2.
Moreover the eigenfunctions associated to each (n, j) ∈ {1, 2} × N in the
decomposition (6.9) are explicitly known by Lemma 3.7, indeed they are:

φn(r) cos(jθ) and φn(r) sin(jθ)

where φn(r) is a radial eigenfunction associated to the simple radial eigen-
value βn,rad(p).
Recall also that, by (3.30), the eigenspace related to each negative eigenvalue
of problem (3.9) is generated by these eigenfunctions, with (n, j) varying
among all the possible associated decompositions.
Hence the Gk-invariance of the eigenfunctions is known, precisely one has
that:

a) for j = 0, the eigenvalues β1,rad(p) < β2,rad(p) < 0 are simple in
the space of the radial functions and each one produces 1 radial eigen-
function φn (n = 1, 2 respectively) of problem (3.9), which belongs to
H1

0,k(B) for every k ≥ 1;

b) for every j ≥ 1, the eigenfunction φn(r) sin(jθ) doesn’t belong to any
space H1

0,k(B), k ≥ 1 (since the reflection τ ∈ Gk);

c) for every j ≥ 1, the eigenfunction φn(r) cos(jθ) is in H1
0,j(B);

d) for every j ≥ 2, the eigenfunction φn(r) cos(jθ) belongs also to the
spaces H1

0,k(B) such that k ∈ N0 is a factor of j (we write k | j) (in

particular it always belongs to H1
0,1(B)), while it doesn’t belong to the

spaces H1
0,k(B) when k ∈ N0 is not a factor of j.

In the next section we will use the following result:

Lemma 6.4. Let p ∈ (1,+∞). The linearized operator Lp has a negative
eigenvalue with eigenfunction in H1

0,k(B) \H1
0,rad(B) if and only if

β1,rad(p) + k2 < 0 (6.10)

Proof. Lemma 6.1 implies that Lp has a negative eigenvalue in H1
0,k(B) \

H1
0,rad(B) if and only if the weighted problem (3.9) has a negative eigen-

value in the space Hk \Hrad. By the spectral decomposition given in Lemma
3.7 then, when (6.10) holds problem (3.9) has the negative eigenvalue β(p) =
β1,rad(p)+k2 with corresponding eigenfunctions φ1(r) sin(kθ) and φ1(r) cos(kθ),
the second of which belonging to Hk \Hrad. When, instead β1,rad(p)+k2 ≥ 0
the negative eigenvalues of problem (3.9) are: βi,rad(p), for i = 1, 2 with
corresponding eigenfunctions φi(r) ∈ Hrad so that they do not belong to
Hk \ Hrad and β1,rad(p) + j2 for some j ∈ {1, . . . , k − 1} with correspond-
ing eigenfunctions φ1(r) sin(jθ) and φ1(r) cos(jθ) neither of which belong to
Hk since j < k, by Remark 6.3. This means that when (6.10) is not satis-
fied then the linearized operator does not admit any negative eigenvalue in
H1

0,k(B) \H1
0,rad(B) concluding the proof. �
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By exploiting the information about the location of the weighted radial eigen-
values βn,rad(p), n = 1, 2 obtained in the previous sections we can also derive
information about the k-Morse index of the radial solution up which will be
useful to prove the non-radial part in Theorem 1.3 (see Section 7).
Indeed using the results in Section 4 and Section 5, we can explicitly compute
the k-Morse index of up, for p large enough and for p close to 1 respectively:

Proposition 6.5. Let p? > 1 be as in Proposition 4.3. Then for any p ≥ p?

mk(up) =


7 for k = 1

4 for k = 2

3 for k = 3, 4, 5

2 for k ≥ 6

(6.11)

Proof. By Lemma 6.1 in order to compute mk(up) we have to count the lin-
early independent eigenfunctions to the weighted problem (3.9) which are as-
sociated to a negative eigenvalue and belong to the symmetric space H1

0,k(B).

From Lemma 3.8 we know that −1 < β2,rad(p) < 0 for every p > 1 while
Proposition 4.3 implies that for p ≥ p? it holds

−36 < β1,rad(p) < −25.

Then all the negative eigenvalues are given by (6.9) with

j =

{
0 for n = 2
0, 1, 2, 3, 4, 5 for n = 1

The conclusion follows by a), b), c) and d) in Remark 6.3. �

Analogously for p close to 1 one has:

Proposition 6.6. Let δ > 0 be as in Proposition 5.1. Then for any p ∈ (1, 1+δ)

mk(up) =


4 for k = 1

3 for k = 2

2 for k ≥ 3

(6.12)

Proof. We reason as in the proof of the previous lemma. From Corollary 5.2
we know that for p ∈ (1, 1 + δ) it holds

−9 < β1,rad(p) < −4, −1 < β2,rad(p) < 0.

Then all the negative eigenvalues are given by (6.9) with

j =

{
0 for n = 2
0, 1, 2 for n = 1

The conclusion follows again by Remark 6.3. �

Finally we can characterize the degeneracy of up in the symmetric spaces.
We know from Proposition 3.9 that up is degenerate if and only if

β1,rad(p) + j2 = 0 for some j = j(p) > 1.
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As we can see in the next result, the restriction to the symmetric spaces
reduces the kernel of Lp to be 1-dimensional.

Proposition 6.7 (Characterization of degeneracy in H1
0,k(B)). Let δ > 0 and

p? > 1 be as in Proposition 5.1 and Proposition 4.3 respectively. Let k ∈ N0.

i) if p ∈ (1, 1 + δ) then up is non-degenerate in H1
0,k(B) for any k ≥ 1;

ii) if p ≥ p? then up is non-degenerate in H1
0,k(B) for any k ≥ 1;

iii) if p ∈ (1 + δ, p?) then up is degenerate in H1
0,k(B) for k ≥ 2 if and only

if there exists j ≥ 2 such that

β1,rad(p) = −j2 and k | j.
In this case the kernel of Lp in H1

0,k(B) is one dimensional and it is

spanned by the function φ1(r) cos(jθ).

Proof. i) is obvious, since up is non-degenerate in H1
0 (B) when p ∈ (1, 1 + δ)

(Proposition 5.1). ii) is obvious, since up is non-degenerate in H1
0 (B) when

p ≥ p? due to Proposition 4.3. iii) follows from the characterization of the
degeneracy of up in H1

0 (B) given in Proposition 3.9. Indeed, observe that
Ker(Lp) 6= {0} in H1

0,k(B) if and only if p satisfies the equation (3.48). To

conclude let us recall that in this case Ker(Lp) is spanned by the functions
φ1(r) sin(jθ) and φ1(r) cos(jθ) (see (3.49)) and that φ1(r) sin(jθ) 6∈ H1

0,k(B)

for k ≥ 2, while φ1(r) cos(jθ) ∈ H1
0,k(B) for any k | j. �

7. The analysis of uk
p

In this section we define the least energy k-symmetric solutions ukp for k ∈ N0,
and we prove some of their qualitative properties that allow to get Theorem
1.3. To produce nodal solutions to (1.1) which are invariant by the action
of Gk one can minimize the functional Ep in (1.3) on the nodal k-symmetric
Nehari set

Mk := {v ∈ H1
0,k(B) : v+ 6= 0, v− 6= 0, E′p(u)u+ = E′p(u)u− = 0}

where E′p is the Fréchet derivative of Ep and Gk, H1
0,k(B) are as defined in

(6.1) and (6.2) respectively. Then a function ū such that

Ep(ū) = inf
u∈Mk

Ep(u)

is a solution to (1.1), by the principle of symmetric criticality, which has the
least energy among sign changing Gk-invariant functions. We denote it by ukp,
for k = 1, 2, . . . .

Lemma 7.1.

](ukp) ≤ 4 for p large (7.1)

If k ≥ 4 then

ukp is quasi-radial for p large (7.2)
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and moreover

](ukp) = 2 and m(ukp) ≥ 4 for p large. (7.3)

Proof. This result can be deduced from [DIP1], where symmetric and simply
connected domains, more general than the ball B, have been considered. We
rewrite the main ideas of the proof for completeness.
The upper bound on the number ](ukp) of nodal regions of ukp can be easily
derived using energy asymptotic estimates from [RW, GGP]. Indeed from
[RW, Corollary 2.3] we know that the energy pEp(u) of the positive ground
state solution u of (1.1) converges, as p → +∞, to the number 4πe. Gener-
alizing this result one can easily show that for any solution u of (1.1), also
sign-changing, the contribution to the energy in each nodal region Np is at
least 4πe in the limit as p→ +∞, namely that

lim inf
p→+∞

pEp(uχNp) ≥ 4πe

if χD denotes the characteristic function of the set D. Combining this asymp-
totic estimate with the obvious inequality Ep(u

k
p) ≤ Ep(urad

p ) and the upper
bound

pEp(u
rad
p ) ≤ α · 4πe, for p large,

proved in [GGP] for the radial solution urad
p , with constant α ∈ (4.5, 5), one

derives the upper bound (7.1) on the number of nodal regions of ukp.
By some geometrical arguments which exploit (7.1) and the k-symmetry in-
variance of ukp, one can prove (see [DIP1, Lemma 4.1, 4.2 and 4.3]) that for

k ≥ 4 the nodal set Z(ukp) of ukp does not intersect ∂B nor the origin 0 and

that each nodal region is k-invariant, so necessarily Z(ukp) is a simple close

curve and (7.2) holds. From (7.2) and the fact that ukp has least energy among
all the k-symmetric solutions, as in [DIP1] then one also derives (7.3). �

The rest of the section is devoted to the proof of Theorem 1.3. It follows by
combining the following two results:

Proposition 7.2. ukp is non-radial for any k ≤ 5 when p is sufficiently large
and for k = 2 when p is close to 1.

Proposition 7.3. ukp is radial for any k ≥ 3 when p is close to 1.

7.1. The proof of Proposition 7.2

Following the same arguments in [BW, Theorem 1.3] and working in the
space of symmetric functions H1

0,k(B), one can prove the following result:
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Lemma 7.4. Let ukp be a least energy sign-changing solution to (1.1) in the

space H1
0,k(B). Then

mk

(
ukp
)

= 2, ∀p ∈ (1,+∞), (7.4)

where mk denotes the k-Morse index of ukp.

Proposition 7.2 is deduced by comparing the value of the k-Morse index of
the least energy symmetric solution ukp in (7.4) with the k-Morse index of
the radial solution up computed in Section 6 (see Propositions 6.5 and 6.6).
Indeed necessarily ukp is not radial for any p and k such that mk(up) > 2.

7.2. The proof of Proposition 7.3

The proof of the radial part of Theorem 1.3 is more involved and is the goal
of the rest of this section where first we show an L∞ bound for the solution
ukp for p close to 1 (Proposition 7.7) and then, using this bound, we deduce

the result by studying the asymptotic behavior of the solutions ukp as p→ 1
(this is done in the proof of Proposition 7.3).

As already discussed in the introduction we do not have a bound for the full
Morse index of ukp, but only for the k-Morse index (Lemma 7.4 above), for

this reason, exploiting the symmetry of ukp, we reduce problem (1.1) from the
ball B to the circular sector Sk of the ball defined in polar coordinates as

Sk := {(r, θ) : 0 < r < 1 , 0 < θ <
π

k
}.

Indeed setting Γ1 := {(r, θ) : r = 1, θ ∈ (0, πk )}, Γ2 := {(r, θ) : θ = 0, r ∈

O B

A

Γ1Γ3

Γ2

Sk

π
k

Figure 4. Sector Sk

(0, 1)}, Γ3 := {(r, θ) : θ = π
k , r ∈ (0, 1)}, A = (cos πk , sin

π
k ) and B = (1, 0),

one has ∂Sk = Γ1 ∪ Γ2 ∪ Γ3 ∪ {O,A,B} and any regular function v to (1.1)
which is invariant by the action of the group Gk, satisfies

v ∈ C1(Sk ∪ Γ2 ∪ Γ3 ∪O) ,
∂v

∂ν
= 0 on Γ2 ∪ Γ3
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where ν denotes the outer normal vector to the boundary of Sk. Hence ukp is
a classical solution to

−∆ukp = |ukp|p−1ukp in Sk

ukp = 0 on Γ1

∂ukp
∂ν = 0 on Γ2 ∪ Γ3.

(7.5)

In next result we convert the bound on the k-Morse index in (7.4) into a
bound on the full mixed-Morse index of ukp in the sector Sk.

Lemma 7.5. Let ukp be the least energy sign-changing solution to (1.1) in the

space H1
0,k(B). Then for any p ∈ (1,+∞) the mixed eigenvalue problem

−∆v = p|ukp|p−1v + µv in Sk

v = 0 on Γ1

∂v
∂ν = 0 on Γ2 ∪ Γ3

(7.6)

admits only 2 negative eigenvalues µ.

Proof. Because of Lemma 7.4 the Dirichlet eigenvalue problem{
−∆v = p|ukp|p−1v + µv in B

v = 0 on ∂B
(7.7)

admits only two linearly independent eigenfunctions ψ̃1 and ψ̃2 which are
invariant by the action of Gk, are regular, by elliptic regularity theory, and
which correspond to a negative eigenvalue, say µk1 and µk2 . By the symmetry

properties of ψ̃i it is straightforward to see, that, the restriction of ψ̃i to
the sector Sk satisfies (7.6) corresponding to the same eigenvalue µki < 0
for i = 1, 2. This shows that the number of negative eigenvalues of (7.6) is
at least two. Viceversa, if problem (7.6) possess m > 2 negative eigenvalues
µi corresponding to the eigenfunctions ψ1, . . . , ψm (that we take orthogonal

in L2(Sk)), then, denoting by ψ̃1, . . . , ψ̃m the extension of ψ1, . . . , ψm to B

under the action of Gk, it is easy to see that ψ̃1, . . . , ψ̃m ∈ H1
0,k(B) solve

(7.7) corresponding to the eigenvalues µ1 < · · · ≤ µm < 0 and are orthogonal
in L2(B) contradicting Lemma 7.4. This shows that the number of negative
eigenvalues for problem (7.6) is at most two concluding the proof. �

In order to get an uniform L∞ bound for the solution ukp we want to perform
a blow-up argument in the sector Sk exploiting the uniform bound of the
mixed Morse index in Lemma 7.5.
This blow-up procedure in Sk requires special care, since we have to deal with
mixed boundary conditions and above all with the angular points of Sk. For
these reasons the analysis of the rescaled solutions includes several different
cases, depending on the location of the maximum points in the sector which
gives different shapes of the limiting domain. Anyway in all the cases we end-
up with solutions to a limit linear problem in unbounded domains with either
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Dirichlet or Neumann or mixed boundary conditions, whose Morse index (or
symmetric Morse index) is finite. In order to rule-out this possibility we will
need the following symmetric version of a well known non-existence result:

Proposition 7.6. Let Σ be either R2 or R2
+ := {(x, y) ∈ R2 : y > 0} and let G

be any subgroup of O(2) which preserves Σ. Let u be any nontrivial solution
to the problem

−∆u− u = 0 in Σ (7.8)

and when Σ = R2
+ assume also that

u = 0 on ∂Σ. (7.9)

Then, the G-Morse index of u is not finite.
Here the G-Morse index of a solution u to (7.8) is the maximal dimension of
a subspace X ⊆ C∞0,G(Σ) such that

Q(v) :=

∫
Σ

[
|∇v|2 − |v|2

]
dx < 0, ∀v ∈ X \ {0}, (7.10)

where C∞0,G(Σ) denotes the subspace of C∞0 (Σ) of the functions invariant with
respect to the action of G.

Proof. Let us consider first the case of Σ = R2. Let us denote, as usual, by
λj , j ∈ N, the Dirichlet eigenvalues of −∆ in B, since G preserves B, we can

consider among them the subsequence λGj of the eigenvalues corresponding
to G-invariant eigenfunctions.
Let ψGj be the G-invariant eigenfunction associated to λGj , then it is easy to

see that the function ψ̂Gj (x) := ψGj
(
x
R

)
, where R > 0, solves{

−∆ψ̂Gj =
λGj
R2 ψ̂

G
j in BR

ψ̂Gj = 0 on ∂BR,
(7.11)

where BR is the ball centered at the origin with radius R.
Observe that for any integer m > 0 and for any subgroup G of O(2) there

exists R > 0 such that
λG1
R2 < · · · ≤ λGm

R2 < 1, so that by (7.11) we get

Q
(
ψ̂Gj

)
=

∫
Σ

[
|∇ψ̂Gj |

2 − |ψ̂Gj |
2
]
dx =

(
λGj
R2
− 1

)∫
Σ

|ψ̂Gj |
2dx < 0, for j = 1, . . . ,m

Since the functions ψ̂G1 , . . . , ψ̂
G
m ∈ C∞0,G(Σ) and are linearly independent (and

orthogonal in L2(BR)), this means that the G-Morse index of any nontrivial
solution u to (7.8) is greater or equal than m, for any m ∈ N showing the
result in case of Σ = R2.

When Σ = R2
+ we let λ+

j be the sequence of Dirichlet eigenvalues of −∆ in

B∩R2
+ and (λ+

j )G the subsequence of the eigenvalues invariant with respect to
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the action of G with associated G-invariant eigenfunctions ψGj . Then defining

as before the rescaled function ψ̂Gj , it solves{
−∆ψ̂Gj =

(λ+
j )G

R2 ψ̂Gj in BR ∩ R2
+

ψ̂Gj = 0 on ∂
(
BR ∩ R2

+

)
and the thesis follows similarly as in the previous case. �

We are now ready to perform the blow-up analysis in Sk to get a uniform
L∞ bound for the solutions ukp.

Proposition 7.7. Let ukp be a least energy sign-changing solution to (1.1) in

the space H1
0,k(B) and let δ > 0. Then there exists C > 0 such that

‖ukp‖p−1
∞ ≤ C, for any p ∈ (1, 1 + δ).

Proof. Assume by contradiction that there exists a sequence pn → 1 such
that, letting Mn := ‖un‖∞ with un := ukpn , Mpn−1

n → ∞ as n → ∞. Let
Pn = (xn, yn) be the points at which |un(Pn)| = Mn. W.l.o.g. we can assume
un(Pn) = Mn and, by the symmetry properties of un, also that Pn ∈ Sk ∪
Γ2 ∪ Γ3 ∪ {O}. We may also assume that

Pn → P0 := (x0, y0) ∈ S̄k.
We restrict the functions un to the sector Sk and define the functions

ũn(x, y) :=
1

Mn
un(M

1−pn
2

n (x, y) + Pn),

that satisfy
−∆ũn = |ũn|pn−1ũn

in Ωn := M
pn−1

2
n (Sk − Pn).

In the sequel we analyze the asymptotic behavior of the rescaled functions
ũn and get a contradiction by mean of Proposition 7.6. We need to consider
several cases depending upon the localization of the limit point P0 in S̄k.
The underlying idea of each case is that the sequence of solutions ũn con-
verges to a non-trivial solution ũ to (7.8) either in R2 or in a halfplane with
Dirichlet boundary conditions. Moreover the bound on the Morse index of ũn
obtained in Lemma 7.5 is preserved when passing to the limit problem. This
last property, together with Proposition 7.6, implies ũ = 0 giving always a
contradiction. Thus Mpn−1

n is bounded and this ends the proof.

Observe that by definition (x̃, ỹ) ∈ Ωn if and only if

x̃ = M
pn−1

2
n (x− xn) and ỹ = M

pn−1
2

n (y − yn)

for some (x, y) ∈ Sk, moreover a point (x, y) belongs to Sk if and only if

x > 0 , y > 0 ,
y

x
< tan

π

k
and 0 < x2 + y2 < 1. (7.12)
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As a consequence we deduce that (x̃, ỹ) ∈ Ωn if and only if the following
inequalities are all satisfied:

M
1−pn

2
n x̃+ xn > 0 , (7.13)

M
1−pn

2
n ỹ + yn > 0 , (7.14)

M
1−pn

2
n ỹ + yn

M
1−pn

2
n x̃+ xn

< tan
π

k
(7.15)

0 < x2
n + y2

n +M1−pn
n

(
x̃2 + ỹ2

)
+ 2M

1−pn
2

n (x̃xn + ỹyn) < 1 (7.16)

From now on we denote by dn the distance between Pn and ∂Sk, namely

dn := min
P∈∂Sk

|Pn − P |. (7.17)

Step 1. P0 ∈ Sk
Observe that in this case dnM

pn−1
2

n → +∞ as n → +∞. Indeed, since P0 ∈
Sk, by (7.12) x0 > 0, y0 > 0, x2

0 + y2
0 < 1 and y0

x0
< tan π

k , so that, since

Mpn−1
n → ∞ as n → +∞, any point (x̃, ỹ) ∈ BR satisfies (7.13), (7.14),

(7.15) and (7.16), for n large enough, namely for any R > 0 BR ⊆ Ωn for n
large enough.
Elliptic estimates imply that, up to a subsequence ũn → ũ uniformly on
compact sets of R2. By the argument in [GS] ũ is defined in all of R2, it is a
nontrivial weak solution to (7.8) in Σ = R2 and satisfies ũ(0) = 1.
Finally we show that the Morse index of the limit function ũ is less or equal
than 2, this contradicts Proposition 7.6 and proves the thesis in the case
P0 ∈ Sk.
Assume, by contradiction, that the Morse index of ũ as a solution to (7.8)

is greater than 2. Then there exist at least 3 functions ψ̃1, ψ̃2, ψ̃3 ∈ C∞0 (R2)

such that ψ̃i are linearly independent (orthogonal in L2(R2)) and

Q(ψ̃i) < 0

where Q is the quadratic form as defined in (7.10). Since ψ̃i are supported in
a ball BR then, the uniform convergence of ũn → ũ on compact sets of R2

implies that ∫
R2

|∇ψ̃i|2 − pn|ũn|pn−1ψ̃2
i < 0

for n large enough. Then the functions ψ̂i(x, y) := ψ̃i

(
(x,y)−Pn

M
pn−1

2
n

)
belong to

C∞0 (Sk) for n large enough, are orthogonal in L2(Sk) and satisfy∫
Sk

|∇ψ̂i|2 − pn|un|pn−1ψ̂2
i < 0
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for i = 1, 2, 3. Then, letting ψi ∈ C∞0 (B) be the Gk-invariant extension of ψ̂i
to the ball B, it holds ∫

B

|∇ψi|2 − pn|un|pn−1ψ2
i < 0

for i = 1, 2, 3 contradicting the fact that the k-Morse index of un is two
(Lemma 7.4).

Step 2. P0 ∈ Γ1

In this case we have to consider the two possibilities either dnM
pn−1

2
n →∞ or

dnM
pn−1

2
n → s > 0, for dn as in (7.17) (the fact that s > 0 is a consequence of

the Dirichlet boundary conditions on Γ1 and can be deduced exactly as in the
paper [GS]). Then, as in the proof in [GS] the rescaled functions ũkn → ũ as
n→∞ uniformly on compact sets of Σ, where ũ is a nontrivial solution (recall
that ũ(0) = 1) either to (7.8) in Σ = R2 in the first case or in Σ = R2

+ in the
second case (up to a rotation and a translation) satisfying (7.9). Moreover one
can prove similarly as in Step 1 that ũ has finite Morse index, contradicting
again Proposition 7.6.

Step 3. P0 ∈ Γ2 ∪ Γ3

We give the details of the proof only in the case P0 ∈ Γ2 since the case
P0 ∈ Γ3 can be handled in a similar way. In this case dn = yn → 0 (dn as in
(7.17)) and xn → x0 as n → ∞ with 0 < x0 < 1, hence a point (x̃, ỹ) ∈ BR
satisfies (7.14), (7.15) and (7.16) for n large enough, and so it belongs to Ωn
if and only if (7.13) holds, namely when

ỹ > −ynM
pn−1

2
n .

Two possibilities may hold: either ynM
pn−1

2
n →∞ or ynM

pn−1
2

n → s ≥ 0.

Case 1: ynM
pn−1

2
n →∞.

In the first case it follows that any ball BR ⊂ Ωn for n large enough, namely
Ωn → Σ = R2 and so, as in Step 1, ũn → ũ uniformly on compact sets of
Σ, where ũ is a nontrivial solution to (7.8) in R2 that satisfies ũ(0) = 1 and
that has finite Morse index, getting a contradiction.

Case 2: ynM
pn−1

2
n → s ≥ 0.

In this case instead Ωn → Σ := {(x, y) ∈ R2 : y > −s} for some s ≥ 0 and
ũn → ũ on compact sets of Σ where ũ is a solution to (7.8) in Σ := {(x, y) ∈
R2 : y > −s} that satisfies a Neumann boundary condition on ∂Σ.
When s > 0, 0 ∈ Ωn for n large enough, hence ũ is nontrivial since ũ(0) = 1
by the uniform convergence on compact sets. Finally by translating this limit
nontrivial solution in the y-direction we then end-up, when s > 0, with a
nontrivial solution ũ to (7.8) in Σ = R2

+ with Neumann boundary conditions
on ∂Σ.
Next we treat the case s = 0 and show that again the limit solution ũ is
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non-trivial. Observe that ỹ = −M
pn−1

2
n yn ∈ ∂Ωn and that in the case s = 0

it belongs to a neighborhood of 0 for n large. By the elliptic regularity up
to the boundary (see Lemma 6.18 in [GT]) for the equation −∆ũn = fn
with fn = |ũn|pn−1ũn, we obtain a uniform bound on the gradient of ũn in
Ωn ∩Bρ, for ρ sufficiently small (indeed by definition |ũn| ≤ 1 on ∂Ωn, hence
|fn(x)| ≤ 1 and we use the fact that un ∈ C2,γ(Γ2)). This implies that

ũn(F ) ≥ ũn(0)− C|F − 0| = 1− C|F |, ∀F ∈ Ωn ∩Bρ
where C is the uniform bound on the gradient. Choosing F in the set Σ =
{(x, y) ∈ R2 : y > 0} and sufficiently close to 0 and passing to the limit in
the previous inequality one then has ũ(F ) > 0, namely ũ is non-trivial.
Summarizing, for any s ≥ 0, we have obtained a non-trivial solution ũ to (7.8)
in Σ := R2

+ that satisfies a Neumann boundary condition on ∂Σ. Moreover,
as a consequence of Lemma 7.5, similarly as in Step 1, one can easily prove

that the maximal number of linearly independent functions ψ̃i in the space

C∞0 (R2
+)∩{∂ψ̃i∂y

∣∣
y=0

= 0} that make negative the quadratic form Q is at most

2. As a consequence, the even extension of ũ to the whole R2 is a nontrivial
solution to (7.8) in Σ = R2 which has finite G-Morse index, where G here is
the group generated by the reflection with respect to the x-axis. Again this
is not possible by Proposition 7.6.

Step 4. P0 = B (P0 = A follows similarly).
Since we are assuming that Mpn−1

n →∞ and (xn, yn)→ (1, 0) it is straight-
forward to see that a point (x̃, ỹ) ∈ BR satisfies (7.13), (7.15) and the first
inequality in (7.16) for large values of n and so it belongs to Ωn for large n if
and only if (7.14) and the second inequality in (7.16) are satisfied, namely:

ỹ > −ynM
pn−1

2
n (7.18)

M
1−pn

2
n

(
x̃2 + ỹ2

)
+ 2 (x̃xn + ỹyn) <

(
1− x2

n − y2
n

)
M

pn−1
2

n (7.19)

Hence we have to to distinguish several possibilities:

either ynM
pn−1

2
n →∞ (7.20)

or ynM
pn−1

2
n → α ≥ 0 (7.21)

as n→∞ and also

either
(
1− x2

n − y2
n

)
M

pn−1
2

n →∞ (7.22)

or
(
1− x2

n − y2
n

)
M

pn−1
2

n → β > 0 (7.23)

as n → ∞, where the case β = 0 is ruled-out by the Dirichlet boundary
conditions on Γ1 (as in Step 2).
Observe that (7.20) implies (7.18) for large n, while when (7.21) holds then
(7.18) is satisfied for n large if and only if ỹ > −α. Similarly if (7.22) holds
then (7.19) is satisfied when n is large, while if (7.23) holds then (7.19) is

satisfied for n large if and only if x̃ < β
2 .
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Summarizing we have that ũn → ũ uniformly on compact sets of Σ, where ũ
is a solution to (7.8) in Σ, more precisely:

Case 1: (7.20) and (7.22) hold.
In this case Σ = R2, ũ is nontrivial (since ũ(0) = 1) and moreover, as in Step
1 one can prove that ũ has finite Morse index contradicting Proposition 7.6.

Case 2: (7.20) and (7.23) hold.

In this case Σ = {(x, y) ∈ R2 : x < β
2 }, ũ is nontrivial (again 0 ∈ Ωn

when n is large enough and then ũ(0) = 1), it satisfies Dirichlet boundary

conditions on the hyperplane x = β
2 and has finite Morse index. This (up to

a translation) contradicts again Proposition 7.6.

Case 3: (7.21) and (7.22) hold.
Now Σ = {(x, y) ∈ R2 : y > −α}, ũ satisfies Neumann boundary conditions
on the hyperplane y = −α. If α > 0 then, as before, ũ(0) = 1 and so it is
nontrivial. In this case we translate this solution in the y-direction getting a
solution to (7.8) in R2

+ that satisfies Neumann boundary conditions and we
obtain a contradiction as in Step 3-Case 2 . In the case α = 0 we observe
that dn = yn (where dn as usual is the distance in (7.17)). Indeed P0 = B
implies that dn = min{dist(Pn,Γ2), dist(Pn,Γ1)}, where dist(Pn,Γ2) = yn
and dist(Pn,Γ1) = 1 −

√
x2
n + y2

n, moreover 1 −
√
x2
n + y2

n ≥ yn if and only
if

yn(2− yn) ≤ 1− x2
n − y2

n, (7.24)

and (7.24) holds for n large, under the assumptions (7.21) with α = 0 and

(7.22). Since dn = yn, then ỹ = −M
pn−1

2
n yn ∈ ∂Ωn and moreover it belongs to

a neighborhood of 0 for n large, hence we can reason as in Step 3-Case 2 and
use the elliptic regularity up to the boundary to obtain a uniform estimate
on the gradient of ũn in a neighborhood of 0, showing that ũ is nontrivial.
Again we obtain a contradiction as at the end of Step 3-Case 2 .

Case 4: (7.21) and (7.23) hold.

Now Σ = {(x, y) ∈ R2 : y > −α, x < β
2 }, ũ satisfies Dirichlet boundary

conditions on the hyperplane x = β
2 and Neumann boundary conditions on

the hyperplane y = −α. As before when α > 0 we have that 0 ∈ Ωn when n is
large enough and then ũ(0) = 1, namely ũ is nontrivial and so we translate it
ending with a nontrivial solution ū to (7.8) in Σ̄ = {(x, y) ∈ R2 : y > 0, x <
0}, with Dirichlet boundary conditions on x = 0 and Neumann boundary
conditions on y = 0. When α = 0 one proves (7.24) as in the previous case,

so again dn = yn for large n. Then ỹ = −M
pn−1

2
n yn ∈ ∂Ωn and it belongs to

a neighborhood of 0 for large n, so we can prove that ũ is nontrivial using
again the elliptic regularity up to the boundary as in the previous situation.
Also in this case we translate ũ ending with a nontrivial solution ū to (7.8)
in Σ̄ = {(x, y) ∈ R2 : y > 0, x < 0}, with Dirichlet boundary conditions on
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x = 0 and Neumann boundary conditions on y = 0.
Finally observe that as a consequence of Lemma 7.5, using arguments similar
to the ones in Step 1, one can prove that the maximal number of linearly

independent functions ψ̃i ∈ C∞0 ({(x, y) ∈ R2 : y ≥ 0, x < 0}) ∩ {∂ψ̃i∂y

∣∣
y=0

=

0} that make negative the quadratic form Q is at most 2. Thus, by extending

ū to Σ̃ := {(x, y) ∈ R2 : x < 0} in an even way, we obtain a solution to (7.8)

in Σ̃ which has finite G-Morse index, where G here is the group generated by
the reflection with respect to the x-axis. This is again in contradiction with
Proposition 7.6.

Step 5. P0 = O
In this case we can assume w.l.o.g. that dn = yn, since P0 = O implies
that dn = min{dist(Pn,Γ2), dist(Pn,Γ3)}, dist(Pn,Γ2) = yn and w.l.o.g (up
to rotation) we may consider only the case dist(Pn,Γ2) ≤ dist(Pn,Γ3). We
may also assume that yn ≤ xn and yn

xn
≤ tan π

2k (if xn 6= 0). Then a point

(x̃, ỹ) ∈ BR(0) for some R > 0 belongs to Ωn if and only if conditions (7.14)
and (7.15) are satisfied. Indeed (7.16) is easily verified. We have to distinguish
different cases, since

either ynM
pn−1

2
n →∞ (7.25)

or ynM
pn−1

2
n → α ≥ 0 (7.26)

and

either xnM
pn−1

2
n →∞ (7.27)

or xnM
pn−1

2
n → β ≥ 0, (7.28)

where it is obvious that (7.25) implies (7.27) and that (7.28) implies (7.26)
with α ≤ β (since yn ≤ xn).

Case 1: (7.25) holds.

In this case also (7.27) holds and dnM
pn−1

2
n →∞, hence (7.14) and (7.15) are

satisfied for large n and so Ωn → R2. Then ũn → ũ uniformly on compact
sets of R2 where ũ is a nontrivial (since ũ(0) = 1) solution to (7.8) in R2 of
finite Morse index, giving a contradiction to the results of Proposition 7.6.

Case 2: (7.26) and (7.27) hold.
(7.15) is satisfied for large n while (7.14) is satisfied for large n if and only
if ỹ > −α. Hence the limit domain is Σ = {(x, y) ∈ R2 : y > −α} and
ũn → ũ uniformly on compact sets of Σ where ũ is a solution to (7.8) in
Σ that satisfies a Neumann boundary condition on y = −α of finite Morse
index, in the sense of Step 3. Moreover when α > 0 then 0 ∈ Ωn and this
implies that ũ is nontrivial getting a contradiction. When α = 0 we observe

that ỹ = −M
pn−1

2
n yn ∈ ∂Ωn and it belongs to a neighborhood of 0. We can
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therefore apply the elliptic regularity up to the boundary as in Step 3 getting
that ũ is nontrivial. Thus a contradiction arises as in the previous case.

Case 3: (7.28) holds with β > 0.
In this case also condition (7.26) holds with 0 ≤ α ≤ β, which implies that
(7.14) is satisfied for large n if and only if ỹ > −α. Moreover by (7.13) and
(7.28) it follows that x̃ > −β. Condition (7.15) is satisfied for large n, instead,
if and only if

ỹ + α

x̃+ β
< tan

π

k
.

Then the limiting domain Σ is a positive cone in R2 with vertex in (−β,−α)
and with amplitude π

k (the same of Sk)

Σ =
{

(r cos θ − β, r sin θ − α) : r ∈ (0,+∞), θ ∈ [0,
π

k
]
}

Then ũn → ũ uniformly on compact sets of Σ where ũ is a solution to (7.8)
in Σ that satisfies a Neumann boundary condition on ∂Σ. When α, β 6= 0
then 0 ∈ Σ and we can infer that ũ is nontrivial. The same is true when

α = 0, since β > 0 and in this case we have that ỹ = −M
pn−1

2
n yn ∈ ∂Ωn

and belongs to a neighborhood of 0, so we can reason as in Step 3 the and
show that ũ is nontrivial. Moreover in both the cases ũ has finite Morse
index, since the maximal number of linearly independent functions ψ̃i in

C∞0 (Σ)∩{∂ψ̃i∂ν |∂Σ = 0} (ν denotes the outer normal to ∂Σ) that make negative
the quadratic form Q is at most two due to Lemma 7.5. Translating ũ with
respect to one or both the axes we end-up with a function ū that satisfies (7.8)
in {(x, y) ∈ R2 : x > 0, y > 0, yx < tan π

k } and Neumann boundary conditions.

Finally the Gk extension of ū to the whole R2 (which is well defined due to
the Neumann boundary conditions) is a non trivial k-symmetric solution to
(7.8) in R2 which has k-Morse index at most 2. This contradicts the result
in Proposition 7.6.

Case 4: (7.28) holds with β = 0. In this case also condition (7.26) holds with
α = 0. We consider the solution un in the whole ball B (without restricting
it to the sector Sk) and we define

ṽn(x, y) :=
1

Mn
un(M

1−pn
2

n (x, y))

that satisfies

−∆ṽn = |ṽn|pn−1ṽn

in B̃n := M
pn−1

2
n B and also |ṽn| ≤ 1. The rescaled domain B̃n → R2 and

ṽn → ṽ uniformly on compact sets of R2 where ṽ is a solution to (7.8) which
has k-Morse index at most 2 (observe that since we are rescaling with respect
to the origin the symmetries are preserved). To obtain a contradiction via
Proposition 7.6 we need to show that ṽ is nontrivial. This easily follows since
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ṽn(P̃n) = 1, where P̃n = (M
pn−1

2
n xn,M

pn−1
2

n yn) and by assumption P̃n → 0,
so that ṽ(0) = 1. This end the proof. �

Now we are in the position to consider the asymptotic behavior of the nodal
least energy solutions ukp as p → 1 and to conclude the proof of Proposition
7.3.

Proof of Proposition 7.3.
Step 1. We show that for any sequence pn > 1 converging to 1

ūkn :=
ukpn
‖ukpn‖∞

→ Cϕ2,rad = J0(ν02|x|) in C(B̄) (7.29)

up to a subsequence, where C = ±1 and

‖ukpn‖
pn−1
∞ = λ2,rad (1− c̃(pn − 1)) + o(pn − 1) as n→∞ (7.30)

where c̃ is as in (5.13).

LetMn := ‖ukpn‖∞, we have shown in Proposition 7.7 thatMpn−1
n is bounded,

we can then repeat the proof of Lemma 5.4 proving that

Mpn−1
n → λ and ūkn → Cϕ in C(B̄) up to a subsequence, with C = ±1

where λ is an eigenvalue of −∆ in B with Dirichlet boundary conditions,
ϕ is a corresponding eigenfunction with ‖ϕ‖∞ = 1. Moreover ϕ is invariant
by the action of Gk (since ūkn are for every n) and, following the ideas in
Step 1 in the proof of Proposition 5.1 we can show that mk(ϕ) ≤ mk(ukpn),
hence mk(ϕ) ≤ 2 by Lemma 7.4. Since the k-symmetric eigenvalues of −∆
are known and since we are assuming k ≥ 3, this means that necessarily
either λ = λ1,rad or λ = λ2,rad. We show that the case λ = λ1,rad cannot
hold. Indeed, following similar ideas as in Step 2 of the proof of Proposition
5.1, since ϕ1,rad has Morse index 0, one gets that the 2 negative k-symmetric
eigenvalues of the linearized operator at ukpn (recall mk(ukpn) = 2 by Lemma
7.4) converge both to 0 and that the corresponding eigenfunctions (that we
can take to be orthogonal in L2(B)) converge to two orthogonal solutions of{

−∆v = λ1v in B
v = 0 on ∂B.

This is not possible, since λ1 is simple, so λ = λ2,rad. Reasoning exactly as
in the proof of Lemma 5.4, we can then prove (7.30). Assuming w.l.o.g. that
ūkn(0) ≥ 0 for n large, we also have

ūkn → ϕ2,rad = J0(ν02|x|) as n→∞ in C(B̄),

getting (7.29).
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Step 2. We show that ukp = up for p close to 1, where as usual up is the least
energy nodal radial solution to (1.1).

Assume by contradiction that there exists a sequence pn > 1, pn → 1 as
n → +∞ such that ukn 6= un, where ukn := ukpn and un := upn , and define

wn :=
ukn−un
‖ukn−un‖∞

. wn satisfies −∆wn = pncn(x)wn in B
wn = 0 on ∂B
‖wn‖∞ = 1

(7.31)

where, by the Mean value Theorem,

cn(x) =

∫ 1

0

|tukn+(1−t)un|pn−1 dt ≤ ‖ukn‖pn−1
∞ +‖un‖pn−1

∞ ≤
(7.30)−(5.12)

C λ2,rad.

(7.32)
We show that

cn(x)→ λ2,rad almost everywhere in B as n→∞. (7.33)

Indeed from (5.12) and (5.11) we have that

un

λ
1

pn−1

2,rad

=
un
‖un‖∞

(
‖un‖pn−1

∞
λ2,rad

) 1
pn−1

= ūn (1− c̃(pn − 1) + o(pn − 1))
1

pn−1

= ϕ2,rade
−c̃(1 + o(1))

as n → ∞, where c̃ is as in (5.13), and the same holds for ukn using (7.30)
and (7.29). Namely

un

e−c̃λ
1

pn−1

2,rad

→ ϕ2,rad and
ukn

e−c̃λ
1

pn−1

2,rad

→ ϕ2,rad in C(B̄) as n→∞.

As a consequence, for any x ∈ B we have

t
ukn

e−c̃λ
1

pn−1

2,rad

+ (1− t) un

e−c̃λ
1

pn−1

2,rad

→ ϕ2,rad (7.34)

and (7.33) follows then from (7.34) observing that

cn(x)

λ2,rad
=

∫ 1

0

∣∣∣t ukn

λ
1

pn−1

2,rad

+ (1− t) un

λ
1

pn−1

2,rad

∣∣∣pn−1

dt =

= e−c̃(pn−1)

∫ 1

0

∣∣∣t ukn

e−c̃λ
1

pn−1

2,rad

+ (1− t) un

e−c̃λ
1

pn−1

2,rad

∣∣∣pn−1

dt.

. (7.35)

Passing to the limit in (7.31) and using (7.33) get that wn converges, up to
a subsequence, in C(B̄) to a function w which solves −∆w = λ2,radw in B

w = 0 on ∂B
‖w‖∞ = 1

(7.36)
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so that

w = Cϕ2,rad, with C = ±1 depending on the sign of w(0). (7.37)

On the other side, multiplying (7.31) by ϕ2,rad and integrating over B we
find

λ2,rad

∫
B

wnϕ2,rad =

∫
B

∇wn∇ϕ2,rad = λ2,radpn

∫
B

cn(x)

λ2,rad
wnϕ2,rad

= λ2,rad

∫
B

cn(x)

λ2,rad
wnϕ2,rad + λ2,rad(pn − 1)

∫
B

cn(x)

λ2,rad
wnϕ2,rad.

(7.38)

Using the trivial equality ex − 1 = x
∫ 1

0
esxds and (7.35), we write

cn(x)

λ2,rad
=

∫ 1

0

1 + (pn − 1) log
∣∣∣t ukn

λ
1

pn−1

2,rad

+ (1− t) un

λ
1

pn−1

2,rad

∣∣∣
·
∫ 1

0

∣∣∣t ukn

λ
1

pn−1

2,rad

+ (1− t) un

λ
1

pn−1

2,rad

∣∣∣s(pn−1)

ds dt

= 1 + (pn − 1)gn(x),

where

gn(x) :=

∫ 1

0

log
∣∣∣t ukn

λ
1

pn−1

2,rad

+(1−t) un

λ
1

pn−1

2,rad

∣∣∣ ∫ 1

0

∣∣∣t ukn

λ
1

pn−1

2,rad

+(1−t) un

λ
1

pn−1

2,rad

∣∣∣s(pn−1)

ds dt.

Equation (7.38) then becomes

λ2,rad

∫
B

wnϕ2,rad = λ2,rad

∫
B

(1 + (pn − 1)gn(x))wnϕ2,rad

+λ2,rad(pn − 1)

∫
B

cn(x)

λ2,rad
wnϕ2,rad.

so that, dividing by λ2,rad(pn − 1) we obtain

0 =

∫
B

gn(x)wnϕ2,rad +

∫
B

cn(x)

λ2,rad
wnϕ2,rad. (7.39)

Observe now that, by (7.34), for any x ∈ B such that ϕ2,rad 6= 0 we have that

gn(x)→ log
∣∣ϕ2,rade

−c̃∣∣ = log
∣∣ϕ2,rad

∣∣− c̃ as n→∞. (7.40)

This implies that gn(x)ϕ2,rad ∈ L∞(B) and

‖gn(x)ϕ2,rad‖∞ ≤ C.
We can then pass to the limit as n → ∞ into (7.39) and using (7.40) and
(7.33) we get

0 = C

∫
B

(
log
∣∣ϕ2,rad

∣∣− c̃)ϕ2
2,rad + C

∫
B

ϕ2
2,rad

which implies, using the definition of c̃ in (5.13), that

0 = C

∫
B

ϕ2
2,rad
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namely that C = 0, contradicting the definition of C in (7.37) and ending
the proof. �

Remark 7.8. One could prove, reasoning as in the proof of Proposition 7.3,
that ū2

p → ϕ in C1(B̄) as p → 1, where ϕ is an eigenfunction of −∆ corre-
sponding to the eigenvalue λ4 = λ5, which is not quasi-radial. The conver-

0

+

−−

+

Figure 5. Eigenfunction associated to λ4 = λ5

gence in C1(B̄), by the Hopf lemma then implies that u2
p is not quasi-radial

for p close to 1.

8. The bifurcation result

In this section we will find non-radial solutions to (1.1) bifurcating from
the curve of radial solutions (p, up), looking for fixed points of the operator

T : (1,+∞)× C1,α
0 (B̄) −→ C1,α

0 (B̄) defined by

T (p, u) := (−∆)
−1 (|u|p−1u

)
. (8.1)

We will restrict to the Gk-invariant functions introduced in Section 6, in
particular let us define the spaces

Xk := C1,α(B̄) ∩H1
0,k(B), (8.2)

where H1
0,k(B) are the symmetric spaces in (6.2); we also set

Xrad := C1,α(B̄) ∩H1
0,rad(B) (8.3)

(we use the notation C1,α(B̄) to denote the space of C1(B̄) functions with

Hölder derivatives, C1,α
0 (B̄) the one of functions in C1,α(B̄) which are zero

on ∂B). Obviously up ∈ Xrad ⊂ Xk, for every p ∈ (1,∞) and for every k ≥ 1.

We will look for solutions in Xk which bifurcate at some degenerate point
(pk, upk). By proposition 6.7-iii) the values of p at which up is degenerate are

Dj := {p ∈ (1,+∞) : β1,rad(p) = −j2}, for j ∈ N0. (8.4)

In particular we will be interested in the subsets

Pj :=
{
p ∈ (1,+∞) : p 7→ β1,rad(p) + j2 changes sign

}
⊆ Dj (8.5)
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and we will show bifurcation in Xk for any p in the subset Pk of degenerate
values corresponding to the same index k, for k = 3, 4, 5.
Observe that for any fixed p the operator T (p, ·) is compact and continuous
in p and that also its restriction to the subspaces Xk, k ≥ 2 is still compact
(and continuous in p).

In particular we will prove that the continuum of bifurcating solutions belongs
to Xk \ Xj , ∀j > k until they are non-radial, thus separating the branches
related to different values of k. In order to get this property we restrict
the operator T to suitable cones Kk in Xk, defined, similarly as in [D1], by
imposing some angular monotonicity to the Gk-symmetric functions. Hence
for k ∈ N0 let us define the cone:

Kk : = {v ∈ Xk s.t. vθ(r, θ) ≤ 0 for 0 ≤ θ ≤ π

k
, 0 < r < 1}, (8.6)

where vθ denotes the derivative with respect to the angle θ of the polar co-
ordinates. By definition Xrad ⊂ Kk ⊂ Xk for any k ≥ 1 and the monotonicity
in the definition implies the following separation property :

Kk ∩ Kh = Xrad, ∀h 6= k, (8.7)

which will be crucial in order to separate the branches.

The complete statement of our bifurcation result is contained in Theorem 8.1
below, which is the main result of the section, Theorem 1.5 in the introduction
follows from it.

Let Pk, k ∈ N0 be the subset of degenerate exponents defined in (8.5). It is
possible to prove that

∅ 6= Pk = {pk1 , . . . , pksk}, when k = 3, 4, 5, (8.8)

where sk ≥ 1 is an odd integer (see Lemma 8.3 below). We then have:

Theorem 8.1. The points (pkh, upkh), h ∈ {1, . . . , sk} for k = 3, 4, 5 are non-

radial bifurcation points from the curve of radial solutions (p, up) and the
bifurcating solutions belong to the cone Kk. The bifurcation is global and the
Rabinowitz alternative holds. Moreover, for every k = 3, 4, 5 there exists at
least one exponent pk ∈ {pk1 , . . . , pksk} such that, letting Ck be the continuum

that branches out of (pk, upk) then either it is unbounded in (1,+∞)×Kk or
it intersects {1} × Kk. Finally Ck ∩ Cj ⊂ Xrad for any j = 3, 4, 5, j 6= k.

The proof of Theorem 8.1 can be found at the end of the section. The core
of the proof consists in getting bifurcation at the degenerate points at which
there is a change in the fixed point index of T (p, ·) at up relative to the cone
Kk (index introduced in [D]). These degenerate points (p, up) are given by
any p ∈ Pk (see Proposition 8.6).

Remark 8.2 (Odd change in the k-Morse index).
Observe that at p ∈ Pk also the k-Morse index of up has a (odd) change.
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Indeed from Proposition 6.7 - iii), Lemma 6.1 and the usual spectral decompo-
sition of the negative eigenvalues of the weighted problem (3.9) it follows that
p ∈ (1,+∞) is a value at which the k-Morse index mk(up), k ≥ 2 changes if
and only if there exists j ≥ 2 such that k | j and p ∈ Pj, where Pj is defined
in (8.5).
Moreover the change in the k-Morse index is always odd (precisely ±1).

First we show that (8.8) holds true:

Lemma 8.3. The map p 7→ β1,rad(p) is analytic in p and the sets of degen-
erate points in (8.4), when not empty, consist of only isolated points.
Moreover Pk 6= ∅, for k = 3, 4, 5 and there exists an odd number sk(≥ 1) of
isolated values pk1 , . . . , p

k
sk
∈ (1 + δ, p?) (where δ and p? are as in Proposition

5.1 and Proposition 4.3 respectively) such that

Pk = {pk1 , . . . , pksk} k = 3, 4, 5.

Proof. In [D2] it is proved that for any smooth bounded domain Ω ⊂ R2 for
any p > 1 except possibly for isolated p the equation −∆u = up in Ω, u = 0
on ∂Ω has a non-degenerate positive solution. The proof relies on the fact
that the map (u, p) −→ (−∆)

−1
(up) is real analytic when considered in a

suitable cone of positive weighted functions.
This proof cannot be directly applied for sign-changing solutions, and so we
need to adapt the proof of the analyticity for sign-changing radial fast decay
solutions in the exterior of the ball used in [DW], which holds in RN , with
N ≥ 3.

Following [DW] we let w̃p(s) = r
2
p−1up(r), for r = es. This function satisfies

w̃′′p −
4

p− 1
w̃′p +

(
2

p− 1

)2

w̃p + |w̃p|p−1w̃p = 0

for s ∈ (−∞, 0) with the conditions

w̃p(0) = 0 , lim
s→−∞

w̃p(s) = 0. (8.9)

We consider, for z > 0, the rescaled function w(t) = w̃p(z
−1t) that satisfies

w′′ − 4

p− 1
zw′ +

(
2

p− 1

)2

z2w + z2|w|p−1w = 0 (8.10)

in (−∞, 0) with the boundary conditions in (8.9). We let s1 be the unique
zero of w(t) in (−∞, 0) and we consider problem (8.10) in one of the intervals
(−∞, s1) or (s1, 0) with Dirichlet boundary conditions (also at infinity). Of

course we have that r1 = ez
−1s1 is the unique zero of up. Problem (8.10) is

equivalent to solve 
−∆u = up in Ωi

u > 0 in Ωi

u = 0 on ∂Ωi

where Ω1 = B(0, ez
−1s1) or Ω2 = B \B(0, ez

−1s1) and u is radial. The Dancer
result for positive solutions in [D2] implies then that the positive solutions
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w1
z,p and w2

z,p to (8.10), in (−∞, s1) and (s1, 0) respectively, depend analyti-
cally on p and z.
Lastly, following the proof of Lemma 3.2 part c) in [DW], one can show the
existence of zp close to 1 and analytic in p such that the function

w̃p(s) =

{
w1
zp,p(zps) for s ∈ (−∞, z−1

p s1]

−w2
zp,p(zps) for s ∈ (z−1

p s1, 0)

is C1 in s = z−1
p s1. This proves that p 7→ up is analytic.

The fact that up is analytic with respect to p implies that the eigenvalues
β1,rad(p), β2,rad(p) are analytic [K2]. Moreover by (4.2) and (5.4) it follows
that p 7→ β1,rad(p) is not constant in (1,+∞) and so the solutions p ∈ (1,+∞)
to β1,rad(p) = −j2 are isolated and can accumulate only at +∞. Finally (4.2)
and (5.4) imply also that β1,rad(p) + j2 changes sign for some p ∈ (1 + δ, p?)
(precisely at an odd number of values of p), when j = 3, 4, 5. �

We also prove the following:

Lemma 8.4. The operator T (p, ·) maps Xk into Xk and in particular Kk into
Kk.

Proof. Let w ∈ Xk and let z = T (p, w). Since w ∈ C1,α(B) then z ∈ C3,α(B)
and by definition of T , it is a classical solution to{

−∆z = |w|p−1w in B,

z = 0 on ∂B.
(8.11)

Let z̃(x) = z(g(x)), for g ∈ Gk. Then z̃ is a solution to (8.11), because
w ∈ Xk and −∆ is invariant by the action of Gk. This implies z̃ = z getting
that z ∈ Xk.
It remains to show that when w ∈ Kk also the monotonicity assumption on
w is preserved by T . Since z ∈ C3,α(B) we can compute zθ = ∂z

∂θ and letting

wθ = ∂w
∂θ , we have that zθ is a classical solution to{

−∆zθ = p|w|p−1wθ in (0, 1)× (0, πk ),

zθ(1, θ) = 0 on ∂B.

By assumption w ∈ Kk so that wθ ≤ 0 in (0, 1)×(0, πk ). Moreover zθ(r, 0) = 0
since z is even in θ (see (6.3)) and moreover zθ(r,

π
k ) = 0 by (6.5). The

maximum principle then yields zθ ≤ 0 for 0 ≤ θ ≤ π
k , 0 < r < 1, concluding

the proof. �

When up is an isolated fixed point for T (p, ·) we can consider its index relative
to the cone Kk (see [D]), which we denote by indKk (T (p, ·), up).
We can compute indKk (T (p, ·), up) when up is non-degenerate in Xk. In this
case the characterization in Proposition 6.7-iii) implies in particular that
β1,rad(p) + k2 6= 0, we then have:
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Lemma 8.5. Let k ≥ 2 and p be such that up is non-degenerate in Xk then

indKk (T (p, ·), up) =

{
0 if β1,rad(p) + k2 < 0
1 if β1,rad(p) + k2 > 0

Proof. By Lemma 8.4 we can consider the operator T restricted to the space
Xk, namely T : (1,+∞) × Xk −→ Xk for some k ≥ 2. Let us denote by T ′u
the Frechét derivative of T with respect to u. Since up is non-degenerate in
Xk, then I −T ′u(p, up) : Xk −→ Xk is invertible. We can then apply Theorem
1 in [D] getting that

indKk (T (p, ·), up) =

{
0 if T ′u has the property α
indXk (T ′u(p, up), 0) if T ′u does not have the property α

(8.12)
where we refer to [D] for the definition of the property α. Moreover, since
up is isolated in Xk (again by its nondegeneracy) and since I − T ′u(p, up) is
invertible we have

indXk (T ′u(p, up), 0) = lim
r→0

degXk (I − T ′u(p, ·), Ur(up), 0) = (−1)mk(up)

(8.13)
where deg is the usual Leray-Schauder degree in the Banach space Xk, Ur(up) :=
{w ∈ Xk : ‖up − w‖ < r} and the last equality follows by standard results
for the Leray Schauder degree of linear, compact, invertible maps (see for in-
stance [AM]). The characterization of the degeneracy in Xk (see Proposition
6.7-iii)) implies in particular that β1,rad(p) + k2 6= 0 at the non-degenerate
point p, the rest of the proof is devoted to show that

T ′u has the property α if and only if β1,rad(p) + k2 < 0. (8.14)

In this case indeed (8.12) and (8.13) implies the result since by Lemma 6.4
and Lemma 3.2 one has

mk(up) = 2, when β1,rad(p) + k2 > 0.

The property α in (8.12) is stated in [D, Lemma 2]. Following the same
notations we have that the linear map T ′u(p, up) has the property α if and
only if (Lemma 2-(a) of [D]) the spectral radius of T ′u(p, up) is greater than
1 when restricted to the orthogonal complement to Xrad in Xk, which we
denote by X⊥rad (observe that in our case the subspace Sup in [D] is Xrad).
Equivalently, as observed also in [D1, proof of Theorem 1], T ′u(p, up) has
the property α if and only if there exist t ∈ (0, 1) and h ∈ X⊥rad such that
h = tT ′u(p, up)h, namely, recalling the definition of T , such that the linear
equation {

−∆h− tp|up|p−1h = 0 in B

h = 0 on ∂B
(8.15)

admits a nontrivial solution h ∈ X⊥rad for some t ∈ (0, 1). This is equivalent
to say that zero is an eigenvalue of the problem{

−∆h− tp|up|p−1h = µh in B

h = 0 on ∂B
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with eigenfunction in X⊥rad for some t ∈ (0, 1). We denote by µt the smallest
eigenvalue of this problem in X⊥rad, which depends on t. By the variational
characterization of the eigenvalues µt is decreasing in t. Moreover µ0 > 0,
since when t = 0 µ0 is the first Dirichlet eigenvalue in X⊥rad of the Laplace
operator in B which is strictly positive. When t = 1 instead µ1 is the smallest
eigenvalue in X⊥rad of the linearized operator Lp. When µ1 is negative then
there exists a t ∈ (0, 1) such that (8.15) has a solution in Xk \ Xrad. When
µ1 is positive instead then µt > µ1 > 0 for any t ∈ (0, 1) and equation (8.15)
does not have a solution in Xk \ Xrad. Finally from Lemma 6.4 we have that
µ1 < 0 if and only if β1,rad(p) + k2 < 0 and this concludes the proof of
(8.14). �

As a consequence one can characterize the set of the points p at which the
index indKk (T (p, ·), up) changes:

Proposition 8.6 (Change in the fixed point index relative to Kk). p ∈ (1,+∞)
is a value at which indKk (T (p, ·), up) changes, for k ≥ 2 if and only if p ∈ Pk,
where the set Pk is the one defined in (8.5).

Proof. If p ∈ Pk then (p, up) is an isolated degenerate point (Lemma 8.3), as
a consequence the values p = pkh ± δ are non-degenerate for any δ > 0 small
and by definition of Pk we also have [β1,rad(p+δ)+k2][β1,rad(p−δ)+k2] < 0.
The conclusion then follows by Lemma 8.5 applied at the points p = pkh ± δ.
Viceversa if indKk (T (p, ·), up) changes at p then by Lemma 8.5 p satisfies
β1,rad(p) = −k2 and β1,rad(p) + k2 changes sign at p. This implies that nec-
essarily p ∈ Pk. �

8.1. Proof of Theorem 8.1

Proof. Step 1. Non-radial local bifurcation in Kk
Let us consider pkh for a certain h ∈ {1, . . . , sk}. By Proposition 8.6 we know
that indKk (T (p, ·), up) changes as p crosses pkh, namely that for any δ > 0
small

indKk

(
T (pkh − δ, ·), upkh−δ

)
6= indKk

(
T (pkh + δ, ·), upkh+δ

)
, (8.16)

we now show that (pkh, upkh) is a bifurcation point in (1,+∞)×Kk.

Hence let us assume by contradiction that (pkh, upkh) is not a bifurcation point

in (1,+∞)×Kk, then we can find δ > 0 and a neighborhood O of {(p, up) :
p ∈ (pkh − δ, pkh + δ)} in (pkh − δ, pkh + δ) × Kk such that u − T (p, u) 6= 0 for
every (p, u) in O different from (p, up). We can choose δ > 0 such that (8.16)
holds. Letting Op := {v ∈ Kk : (p, v) ∈ O}, it then follows that there are
no solutions to u−T (p, u) = 0 on ∪p∈(pkh−δ,p

k
h+δ){p}× ∂Op and there is only

the radial solution (p, up) in
(
{pkh − δ} × Opkh−δ

)
∪
(
{pkh + δ} × Opkh+δ

)
. By

the homotopy invariance of the fixed point index in the cone, see [D], then
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we have that

indKk (T (p, ·), up) is constant for p ∈ (pkh − δ, pkh + δ),

which is in contradiction with (8.16). This proves the local bifurcation. The
bifurcating solutions belong to Kk since T maps the cone in itself (Lemma
8.4) and are non-radial for p close to pkh since up is radially non-degenerate
by Lemma 3.3.

Step 2. Global bifurcation and Rabinowitz alternative
We can adapt the proof of Theorem 3.3 in [G]. One of the main differences is
that now, since the cone Kk is not a Banach space, we substitute the Leray-
Schauder degree used in [G] with the degree in the convex cone Kk, which we
denote by degKk(I − T (p, ·),O, 0), for any open (with the induced topology)
set O in Kk. The degree in the convex cone has been introduced in [A] (where
it is called index), its definition arises directly from the Leray-Schauder de-
gree (to which it coincides when the cone is a Banach space) and in particular
it admits the same properties of the Leray-Schauder degree (normalization,
additivity, homotopy invariance, permanence, excision, solution property, etc,
see [A, Theorem 11.1 and 11.2]).
Following [G], let S := {(p, up) : p ∈ (1,+∞)} ⊆ (1,+∞)×Kk be the curve
of radial least-energy solutions, let Σk be the closure of the set {(p, v) ∈
((1,+∞)×Kk) \ S : v solves (1.1)} and let Ck be the closed connected com-
ponent of Σk bifurcating from (pkh, upkh). Assume by contradiction that the

Rabinowitz alternative, namely one of the following, does not occur:

i) Ck is unbounded in (1,+∞)×Kk;
ii) Ck intersects {1} × Kk;
iii) there exists pkl with l 6= h such that (pkl , upkl ) ∈ Ck ∩ S.

Then as in Step 2 in the proof of [G, Theorem 3.3] we can then construct
a suitable neighborhood O of Ck in Kk such that ∂O ∩ Σk = ∅, O ∩ S ⊂
(pkh−δ, pkh+δ)×Kk for δ such that upkh±δ is nondegenerate and moreover there

exists c0 > 0 such that ‖v− up‖Xk ≥ c0 for (p, v) ∈ O such that |p− pkh| ≥ δ.
Then we can follow the proof of Step 3 and Step 4 in [G, Theorem 3.3],
recalling now that, for Λc := {(p, v) ∈ (1,+∞) × Xk : ‖v − up‖Xk < c} one
has

degKk(I − T (pkh ± δ, ·), (O ∩ Λc)pkh±δ
, 0) = indKk(T (pkh ± δ, ·), upkh±δ)

for any c < c0. The fixed point index relative to the cone Kk can be then
computed in pkh ± δ and it assumes either the value 0 or 1 (Lemma 8.5). The
proof of Step 3 and 4 of [G, Theorem 3.3] can be repeated and so we get a
contradiction.
We can now adapt the proof of [G2, Proposition 2.3], again using the degree
in the convex cone Kk which is, as already observed, either 0 or 1 in a neigh-
borhood of the isolated (in Xk) solution up. The main difference is that, in
the final part of the proof of [G2, Proposition 2.3] we now obtain, following
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the notations of [G2], that

degKk(Sr(p, v),O ∩Br(pkl , upkl ), 0) = ±1

for every pkl ∈ Pk. This implies again that the number of points pkl ∈ Pk
which belong to Ck, including (pkh, upkh), has to be even if Ck is bounded.

Since the total number sk of points in Pk is odd (see Lemma 8.3), then there
exist at least one value pk ∈ {pkh}h=1,...,sk at which either i) or ii) holds.

Step 3. Conclusion
Since the bifurcating solutions are not radial for p close to pkh, the separation
property (8.7) implies that near the bifurcation points Ck 6= Ci if k 6= i.
Moreover (Ck ∩ Ci) ⊂ (Kk ∩ Kj) hence it contains only radial solutions. �

Remark 8.7 (Shape of the bifurcating solutions). Observe that from the defi-
nition of the space Xh and from the separation property (8.7) of Kk it follows
that

Kk ∩ Xh = Xrad, ∀h > k (8.17)

and so, as stated in Theorem 1.5 in the introduction, either the bifurcating
solution belongs to Xk \ Xj, ∀j > k or it is radial.
Moreover, since the kernel of the linearized operator is one dimensional when
restricted to the spaces Xk (Proposition 6.7-iii)), we can get an expansion
of the bifurcating solution found in Theorem 8.1 near the bifurcation point
(pk, upk), even if we cannot apply the Crandall-Rabinowitz result to obtain
some regularity on the solutions set. Indeed, applying Proposition 2.4 in [G2]
we know that there exists ε0 > 0 such that for any 0 < ε < ε0 if (p, v) ∈
Ck ∩

(
Bε(p

k, upk) \ {(pk, upk)}
)
, then

v(r, θ) = up(r) + αεφ1(r) cos (kθ) + ψε(r, θ)

where αε → 0 as ε → 0, φ1(r) > 0 is a first eigenfunction of the weighted
eigenvalue problem as defined in Proposition 3.9 and ψε(r, θ) ∈ Xk is such
that ‖ψε‖∞ = o(αε) as ε → 0. As a consequence, near the bifurcation point,
the solutions we found not only are in Xk \Xrad but, being small perturbation
of the radial least energy solution up, they also inherit from up the property of
having two nodal domains and of being quasi-radial in the sense of Definition
1.1.
We remark that along the branch the number of nodal regions of the solutions
may change and that moreover far from the bifurcation point they may also
loose the quasi-radial shape and their nodal line could touch the boundary.

Remark 8.8 (Multiple bifurcation). Observe that we can obtain a solution to
(1.1) by rotating the solution v in Theorem 8.1 of an angle α. This solution
coincides with the one bifurcating from up in the direction

w(r, θ) = φ1(r) (a sin(kθ)− b cos(kθ)) ∈ Ker(Lp)



Quasi-radial solutions 61

with α = arctan(−a/b), letting τ̂ be the reflection with respect to the hyper-
plane ax+ by = 0 and restrincting to the spaces

X̂k := C1,α
0 (B) ∩ Ĥ1

0,k(B),

where Ĥ1
0,k(B) := {v ∈ H1

0 (B) such that v(g(x)) = v(x), ∀g ∈ Ĝk, ∀x ∈
B} and Ĝk ⊂ O(2) is the group generated by Ok and by the reflection τ̂ .

Remark 8.9 (Bifurcation via odd change in the k-Morse index of up). We
stress that in order to get the bifurcation result one could work directly in the
space Xk, k = 3, 4, 5 without restricting to the cones Kk ⊂ Xk substituting
the degree in the cone Kk with the usual Leray-Schauder degree in Xk.
Anyway the bifurcation result obtained in this way is only partial, since a
priori different branches of solutions could coincide.
The advantage of restricting to the cones Kk in the proof of Theorem 8.1 is
that set Kk ∩Kj contains only radial functions when k 6= j, and this allow to
separate the branches.
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