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Abstract

We review PLTLf and PLDLf , the pure-past ver-
sions of the well-known logics on finite traces LTLf

and LDLf , respectively. PLTLf and PLDLf are log-
ics about the past, and so scan the trace backwards
from the end towards the beginning. Because of
this, we can exploit a foundational result on reverse
languages to get an exponential improvement, over
LTLf /LDLf , for computing the corresponding DFA.
This exponential improvement is reflected in several
forms of sequential decision making involving tem-
poral specifications, such as planning and decision
problems in non-deterministic and non-Markovian
domains. Interestingly, PLTLf (resp., PLDLf ) has
the same expressive power as LTLf (resp., LDLf ),
but transforming a PLTLf (resp., PLDLf ) formula
into its equivalent LTLf (resp., LDLf ) is quite expen-
sive. Hence, to take advantage of the exponential
improvement, properties of interest must be directly
expressed in PLTLf /PLDLf .

1 Introduction
Several research areas in AI have been attracted by the clarity
and ease of Linear-time Temporal Logic (LTL) [Pnueli, 1977].
Specifically, LTL has been employed in reasoning about actions
and planning: as a specification mechanism for temporally
extended goals [Bacchus and Kabanza, 1998; De Giacomo and
Vardi, 1999; Calvanese et al., 2002; Camacho et al., 2017], for
constraints on plans [Bacchus and Kabanza, 2000], to express
preferences and soft constraints [Bienvenu et al., 2006], for
specifying multi-agent systems [Fagin et al., 1995], and for
specifying norms [Fisher and Wooldridge, 2005].

Recently, a variant of LTL on finite traces, LTLf , and its
extension LDLf , inspired by the Propositional Dynamic Logic
(PDL) [Harel et al., 2000], have been investigated [De Gia-
como and Vardi, 2013], and have found application in several
contexts. The main reason for this interest is due to the possi-
bility of transforming LTLf /LDLf formulas into Deterministic
Finite-state Automaton (DFA), which can then be suitably em-
ployed in different contexts, as mentioned above.

LTLf /LDLf , like LTL originally, expresses temporal proper-
ties in a “pure-future fashion”, i.e., referring only to the present

and to the future. However, it has been observed that some-
times specifications are easier and more natural to express
referring to the past [Lichtenstein et al., 1985]. For instance,
to say that we have accomplished our task and that since
we were decontaminated we have been in clean areas, we
write: TaskDone ∧ (InCleanArea S Decontaminated).
The use of past temporal logics has been advocated for non-
Markovian models in reasoning about actions [Gabaldon,
2011], for non-Markovian rewards in MDPs [Bacchus et
al., 1996], and for normative properties in multi-agent sys-
tems [Fisher and Wooldridge, 2005; Knobbout et al., 2016;
Alechina et al., 2018].

In this paper, we review the pure-past versions of LTLf and
LDLf , respectively PLTLf and PLDLf . Due to the finite nature
of traces, PLTLf and PLDLf have a very natural interpretation:
they specify formulas that must be true at the end of the trace
and evaluate the trace backwards. In fact, PLTLf has been
introduced in the literature as a technical means to get results
for LTL and LTLf [Maler and Pnueli, 1990; Zhu et al., 2019].
Here, instead, we consider PLTLf , and its extension PLDLf , as
first class citizens.

Working with PLTLf /PLDLf gives us an exponential (worst-
case) computational advantage with respect to LTLf /LDLf .
Such an advantage stems from the fact that, like LTLf /LDLf ,
also PLTLf /PLDLf can be translated into an Alternating Finite-
state Automaton (AFA) in polynomial time, but, in the case of
PLTLf /PLDLf , we can exploit a well-known result on regular
languages, which states that an AFA can be transformed, in
single exponential time, into a DFA that recognizes the reverse
language [Chandra et al., 1981]. This should be contrasted
with the fact that the DFA for the language itself (not its reverse)
can be double-exponentially larger than the AFA.

This language theoretic property has a deep impact on the
conversion of PLTLf /PLDLf formulas to their corresponding
DFAs. Indeed, PLTLf /PLDLf formulas can be transformed into
DFAs in only single exponential time (vs. double exponential
time for LTLf /LDLf formulas).

This exponential improvement affects the computational
complexity of problems involving temporal logics on fi-
nite traces in several contexts, including planning in non-
deterministic domains (FOND) [Camacho et al., 2017; De
Giacomo and Rubin, 2018], reactive synthesis [De Giacomo
and Vardi, 2015; Camacho et al., 2018], MDPs with non-
Markovian rewards [Bacchus et al., 1996; Brafman et al.,



2018], reinforcement learning [De Giacomo et al., 2019;
Camacho et al., 2019], and non-Markovian planning and de-
cision problems [Brafman and De Giacomo, 2019a; Brafman
and De Giacomo, 2019b].

Interestingly, PLTLf (resp., PLDLf ) and LTLf (resp., LDLf )
have the same expressive power. Indeed, we provide an algo-
rithm to transform a PLTLf (resp., PLDLf ) formula into an
LTLf (resp., LDLf ) formula. However, the transformation can
be triple-exponentially (resp., double-exponentially) larger in
the worst-case, and these are the best-known bounds.

Hence, it is not computationally sensible to start from
LTLf /LDLf formulas and transform them into the equivalent
PLTLf /PLDLf formulas to take advantage of the exponential
improvement. To get such an advantage, the property of in-
terest should be succinctly expressible in PLTLf /PLTLf , as is
often the case when the property naturally talks about the past.

2 Preliminaries
AFA, NFA, and DFA. An alternating finite-state automaton
(AFA) is a tuple A = ⟨Σ,Q, q0, δ, F ⟩, where (i) Σ = 2P is a
finite input alphabet; (ii) Q is a finite set of states; (iii) q0 ∈ Q
is the initial state; (iv) F ∈ 2Q is the set of accepting states;
(v) δ ∶ Q × Σ → B+(Q) is the transition function, where
B+(Q) is the set of positive Boolean formulas over Q (i.e.,
built from the states using ∧, ∨ and the constants true and
false). For instance, δ(q1, a) = q2 ∨ (q3 ∧ q4) means that for
the automaton to accept the input aτ , from state q1, it should
either accept the input τ from q2 or from both q3 and q4. For
V ⊆ Q and ϕ ∈ B+(Q), we write V ⊧ ϕ if the assignment that
maps states in V to true and states in Q ∖ V to false satisfies
the formula ϕ.

A nondeterministic finite-state automaton (NFA) is an AFA
in which no transition uses ∧. For instance, the transition
δ(q, a) = (q1 ∨ q2 ∨ q3) is allowed. A deterministic finite-state
automaton (DFA) is an NFA in which no transition uses ∨. For
instance, the transition δ(q, a) = q1 is allowed.

The size of A, denoted ∣A∣, is the number of bits required
to represent the transition function, i.e., ∑q∈Q∑a∈Σ ∣δ(q, a)∣
which is bounded by ∣Q∣∣Σ∣K where K is an upper bound on
the lengths of the formulas in the transition function.

An accepting run of an AFA A is defined by introducing the
function Acc ∶ Σ∗ → 2Q, where q ∈ Acc(τ) is read “input τ is
accepted from state q”, inductively given as follows:

1. Acc(ε) = F ,
2. q ∈ Acc(aτ) iff V ⊧ δ(q, a) for some V ⊆ Acc(τ).

A run τ is accepted by A if q0 ∈ Acc(τ). Note that in the
special case that δ(q, a) = true , we have that q ∈ Acc(aτ) for
all τ (since ∅ ⊧ true). One way to visualize this definition is
via run-trees1, see [Vardi, 1996].

1A run-tree of A on input τ is a tree labeled by states such that i)
all nodes at depth ∣τ ∣ are labeled by final states, and ii) if an internal
node x is labeled by q, and X is the set of labels of the children
of x, then X ⊧ δ(q, x). Note that not all branches need to reach
depth ∣τ ∣ since an internal node at depth i may be labeled q where
δ(q, τi) = true. Thus, a branch in a run-tree either reaches a final
state after reading the word, or hits the transition true .

An easy induction shows that q ∈ Acc(τ) iff there is a run-tree on
input τ whose root is labeled by q.

Given an AFA it is possible to obtain (in single exponential
time) an NFA that accepts the same language and whose size
is at most single exponential in the size of the AFA [Chandra
et al., 1981], and hence a DFA that accepts the same language
whose size is at most double exponential in the AFA.

We make use of regular expressions, collectively denoted
RE [Hopcroft and Ullman, 1979]. In particular, Kleene’s The-
orem says that one can translate a DFA to a RE in exponential
time (and thus to a RE that is at most exponentially-larger than
the DFA). We can use RE as temporal specifications on finite
traces, see, e.g., [De Giacomo and Vardi, 2013].

LTLf and LDLf . LTLf is a variant of Linear-time Temporal
Logic (LTL) interpreted over finite, instead of infinite, traces
[De Giacomo and Vardi, 2013]. Given a set P of atomic propo-
sitions, LTLf formulas ϕ are defined by:

ϕ ∶∶= a ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ◯ϕ ∣ ϕU ϕ

where a denotes an atomic proposition in P , ◯ is the next
operator, and U is the until operator. We use abbreviations for
other Boolean connectives, as well as the following: eventually
as ◇ϕ ≡ true U ϕ; always as ◻ϕ ≡ ¬◇ ¬ϕ; weak next ●ϕ ≡
¬◯¬ϕ (note that, on finite traces, ¬◯ϕ is not equivalent to
◯¬ϕ); and last (time point of the trace) last ≡ ●false .

Formulas of LTLf are interpreted on finite traces τ =
τ0τ1⋯τn−1 where τi at instant i is a propositional interpreta-
tion over the alphabet 2P . We denote by length(τ) the length
n of τ . Given τ , an LTLf formula ϕ and an instant i, we define
when ϕ holds at i, written τ, i ⊧ ϕ, by induction, as follows:

• τ, i ⊧ a iff a ∈ τi (for a ∈ P);
• τ, i ⊧ ¬ϕ iff τ, i /⊧ ϕ;
• τ, i ⊧ ϕ1 ∧ ϕ2 iff τ, i ⊧ ϕ1 and τ, i ⊧ ϕ2;
• τ, i ⊧ ◯ϕ iff i < length(τ) − 1 and τ, i + 1 ⊧ ϕ;
• τ, i ⊧ ϕ1 U ϕ2 iff for some j, i ≤ j < length(τ) τ, j ⊧
ϕ2, and for all k, i ≤ k < j τ, k ⊧ ϕ1.

We write τ ⊧ ϕ, if τ,0 ⊧ ϕ and say that τ satisfies ϕ.
LDLf is a proper extension of LTLf that is able to capture

regular expressions over traces. Here, following [Brafman
et al., 2018], we consider a notational variant of LDLf . The
syntax of LDLf is defined by:

ϕ ∶∶= tt ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ⟨%⟩ϕ
% ∶∶= φ ∣ ϕ? ∣ % + % ∣ %;% ∣ %∗

where φ denotes propositional formulas over P (we use the
usual abbreviations, e.g., the Boolean constant true is defined
as a ∨ ¬a, for some fixed a ∈ P) and tt stands for logical true
(not to be confused with the Boolean constant true). Expres-
sions of the form % are regular expressions (RE) over propo-
sitional formulas φ and the test construct ϕ? typical of PDL.
We abbreviate [%]ϕ ≡ ¬⟨%⟩¬ϕ as in PDL, ff ≡ ¬tt for false,
and φ ≡ ⟨φ⟩tt to denote the occurrence of the propositional
formula φ. We also use end ≡ [true]ff to express that the
trace has ended.

Intuitively, ⟨%⟩ϕ states that, from the current instant in the
trace, there exists an execution satisfying the RE % such that its
last instant satisfies ϕ, while [%]ϕ states that, from the current
instant, all executions satisfying the RE % are such that their



last instant satisfies ϕ. Test constructs put into the execution
path checks for satisfaction of additional LDLf formulas.

Given a trace τ = τ0τ1⋯τn−1 we denote by τi,j the sub-trace
τi . . . τj if j < length(τ), τi . . . τn−1 if j ≥ length(τ). Note
that if i ≥ length(τ) then τi,j denotes the empty trace. Given
a finite trace τ , an LDLf formula ϕ, and an instant i, we define
when ϕ holds at i, written τ, i ⊧ ϕ, by (mutual) induction, as
follows:

• τ, i ⊧ tt ;
• τ, i ⊧ ¬ϕ iff τ, i /⊧ ϕ;
• τ, i ⊧ ϕ1 ∧ ϕ2 iff τ, i ⊧ ϕ1 and τ, i ⊧ ϕ2;
• τ, i ⊧ ⟨%⟩ϕ iff there is a j such that i ≤ j and τi,j ∈R(%)

and τ, j ⊧ ϕ,

where the relation τi,j ∈R(%) is inductively defined as:

• τi,j ∈R(φ) if j = i + 1, i < length(τ), and τi ⊧ φ;
• τi,j ∈R(ϕ?) if j = i and τ, i ⊧ ϕ;
• τi,j ∈R(%1+%2) if τi,j ∈R(%1) or τi,j ∈R(%2);
• τi,j ∈ R(%1;%2) if there exists i ≤ k ≤ j such that τi,k ∈
R(%1) and τk,j ∈R(%2);

• τi,j ∈ R(%∗) if j = i or there exists k such that τi,k ∈
R(%) and τk,j ∈R(%∗).

Note that if i ≥ length(τ), the above definitions still apply.
Again, we say that a trace τ satisfies an LDLf formula ϕ,

written τ ⊧ ϕ, if τ,0 ⊧ ϕ.

LTLf /LDLf to AFA and DFA. For every LTLf /LDLf formula
ϕ there is an equivalent AFA Aϕ accepting exactly the traces
satisfying ϕ, which is linear in the size of ϕ [De Giacomo and
Vardi, 2013]. Moreover, every AFA can be translated into an
equivalent DFA, i.e., a DFA recognizing the same language,
whose size is at most double-exponential, which can be com-
puted in 2EXPTIME in the size of the AFA [Chandra et al.,
1981]. Hence, we have a 2EXPTIME algorithm for translating
an LTLf /LDLf formula into an equivalent DFA [De Giacomo
and Vardi, 2013].

Algorithm 1: Translating LTLf /LDLf to DFA
Given an LTLf /LDLf formula ϕ
1: Compute an AFA equivalent to ϕ (lin)
2: Compute an NFA equivalent to the AFA (1exp)
3: Determinize the NFA obtaining an equivalent DFA (1exp)

3 PLTLf and PLDLf

We study the pure-past version of LTLf , denoted as PLTLf ,
and the pure-past version of LDLf , denoted as PLDLf . These
are logics on finite traces that refer only to the past. PLTLf and
PLDLf have a natural interpretation on finite traces: they are
satisfied if they hold in the last instant of the trace.

PLTLf . Given a set P of propositional symbols, PLTLf is
defined by:

ϕ ∶∶= a ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ⊖ϕ ∣ ϕS ϕ

where a ∈ P , ⊖ is the before operator and S is the since
operator. Similarly to LTLf and LDLf , we define the following
common abbreviations: the once operator xϕ ≡ true S ϕ and
the historically operator ⊟ϕ ≡ ¬x¬ϕ.

We define the satisfaction relation τ, i ⊧ ϕ, stating that ϕ
holds at instant i, as follows. For atomic propositions and
Boolean operators it is as for LTLf . For past operators:

• τ, i ⊧ ⊖ϕ iff i ≥ 1 and τ, i − 1 ⊧ ϕ;

• τ, i ⊧ ϕ1 S ϕ2 iff there exists k, with 0 ≤ k ≤ i such
that τ, k ⊧ ϕ2 and for all j, with k < j ≤ i, we have that
τ, j ⊧ ϕ1.

A PLTLf formula ϕ is true in τ , denoted τ ⊧ ϕ, if
τ, length(τ) − 1 ⊧ ϕ.

Example 1. The property “we are now at location p23 and
we have passed through location p12” can be expressed in
PLTLf as p23 ∧xp12 . It is also expressible in LTLf , although
with a more complex formula, i.e., ◇(p12 ∧◇(p23 ∧ last)).

Example 2. The property “every time you took the bus,
you bought a new ticket beforehand” can be expressed in
PLTLf as ⊟(takeB ⇒ ⊖(¬takeB S buyT )), while it can
be expressed in LTLf as (buyT R takeB) ∧ ◻ (takeB ⇒
(buyT ∨ ◯(buyT R¬takeB))) [Cimatti et al., 2004].

PLDLf . PLDLf is the extension of PLTLf with regular ex-
pressions in the eventualities. The syntax of PLDLf is similar
to the syntax of LDLf except that we use a backward diamond
operator. Intuitively, ⟪%⟫ϕ states that there exists a point in
the past, reachable (going backwards) through the regular ex-
pression % from the current instant, where ϕ holds. Formally,
the syntax of PLDLf is defined by:

ϕ ∶∶= tt ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ⟪%⟫ϕ
% ∶∶= φ ∣ ϕ? ∣ % + % ∣ %;% ∣ %∗

Define the satisfaction relation as for LDLf , except that:

• τ, i ⊧ ⟪%⟫ϕ iff there exists j, 0 ≤ j ≤ i such that τj,i ∈
Rpast(%) and τ, j ⊧ ϕ,

where the relation τj,i ∈Rpast(%) is inductively defined as:

• τj,i ∈Rpast(φ) if j = i − 1, i ≥ 1, and τi ⊧ φ ;
• τj,i ∈Rpast(ϕ?) if j = i and τ, i ⊧ ϕ;
• τj,i ∈ Rpast(%1+%2) if τj,i ∈ Rpast(%1) or τj,i ∈
Rpast(%2);

• τj,i ∈ Rpast(%1;%2) if there exists j ≤ k ≤ i such that
τk,i ∈Rpast(%1) and τj,k ∈Rpast(%2);

• τj,i ∈Rpast(%∗) if j = i or there exists j ≤ k ≤ i such that
τk,i ∈Rpast(%) and τj,k ∈Rpast(%∗).

We say that τ satisfies a PLDLf formula ϕ, written τ ⊧ ϕ,
if τ, length(τ) − 1 ⊧ ϕ. As before, we use the abbreviation
J%Kϕ ≡ ¬⟪%⟫¬ϕ. Moreover, we define start ≡ JtrueKff to
express the fact that the trace has just started.

Example 3. The property “every time, if the cargo-ship de-
parted (cs), then beforehand there was an alternation of grab
and unload (unl) of containers” can be expressed in PLDLf

as Jtrue∗K(⟪cs⟫tt ⇒ ⟪(unl; grab)∗; (unl; grab)⟫start),
whereas it can be expressed in LDLf as ⟨(¬cs + (grab ∧
¬cs); (unl; (grab ∧ ¬cs))∗; (cs ∧ unl));¬cs∗⟩end .

As we will see later, all PLTLf /PLDLf formulas are translat-
able into LTLf /LDLf and vice versa, however the translation
can be quite involved.



Just as for LTLf /LDLf , one can build a DFA accepting the
traces satisfying ϕ. The same is true for PLTLf /PLDLf formu-
las ϕ. However, since PLTLf /PLDLf formulas are evaluated
from the end of the trace towards the beginning, we can build a
DFA whose size is single exponential in the size of the formula
(vs. double-exponential, as for LTLf /LDLf ). The crux of this
result lays on the possibility of obtaining from an AFA a DFA
for the reverse language in single exponential time.

4 Reverse Languages and AFA

The reverse of a string τ = τ0τ1 . . . τn−1 is the string τR =
τn−1 . . . τ1τ0, and the reverse of a language L is the lan-
guage LR = {τR ∶ τ ∈ L}. Notably, while the minimal
DFA equivalent to an AFA can be double-exponentially larger,
the minimal DFA for the reverse language is at most single-
exponentially larger [Chandra et al., 1981], and can be easily
built as shown below. For an AFA A = (Σ,Q, q0, δ, F ), define
the DFA AR = (Σ, S, sinit, T,F ′) that recognizes the reverse
language where:

• S = 2Q, sinit = F ;
• for v ∈ S, a ∈ Σ, define T (V, a) to be the set of all q such

that V ⊧ δ(q, a);
• let V ∈ F ′ iff q0 ∈ V .

Note that the size of AR is 2O(∣A∣). Moreover, AR can be
computed in exponential time.
Theorem 1. [Chandra et al., 1981] The DFA AR recognizes
the reverse of the language of the AFA A.

Proof. Introduce a generalization of Acc defined in Section 2:
q ∈ Fwd(τ,X) which is intuitively read as “the automaton
reads τ forward from state q and results in a state in the set
X”. Formally, define Fwd ∶ Σ∗ × 2Q → 2Q inductively:

(i) Fwd(ε,X) =X ,
(ii) Fwd(aτ,X) = {q ∶ Fwd(τ,X) ⊧ δ(q, a)}.

Note that Acc is definable in terms of Fwd, i.e., q ∈ Acc(τ)
iff q ∈ Fwd(τ,F ). Intuitively, Fwd processes the input word
in the forward direction. Also, for processing the input τ in the
backward direction, define Bck ∶ Σ∗ × 2Q → 2Q inductively:
(iii) Bck(ε,X) =X ,
(iv) Bck(τa,X) = Bck(τ,{s ∶X ⊧ δ(s, a)}).

By (ii) and (iv) we get the following property corresponding
to the shift from (τa)τ ′ to τ(aτ ′): Bck(τa,Fwd(τ ′,X)) =
Bck(τ,Fwd(aτ ′,X)). Then, an induction on the length
of τ shows Bck(τ,Fwd(τ ′,X)) = Fwd(ττ ′,X) for
all τ ′. Indeed, for the base case τ = ε, note that
Bck(ε, Fwd(τ ′,X)) = Fwd(τ ′,X) by (iii), and for the gen-
eral case, say τ = τ ′′a, note that Bck(τ ′′a,Fwd(τ ′,X)) =
Bck(τ ′′, Fwd(aτ ′,X)) by the shifting property above,
which equals Fwd(τ ′′(aτ ′),X) by the inductive hypothesis,
which equals Fwd((τ ′′a)τ ′,X) as required.

We return to the proof of Theorem 1. We prove, by induc-
tion on τ , that q0 ∈ Fwd(τ, V ) iff AR accepts τR from state
V . If τ = ε then both sides are equivalent to q0 ∈ V . Consider
τ = τ ′a. Then Fwd(τ ′a, V ) = Bck(τ ′a, V ) = Bck(τ ′,{s ∶
V ⊧ δ(s, a)}) = Bck(τ ′, T (V, a)) = Fwd(τ ′, T (V, a)).

Thus, q0 ∈ Fwd(τ ′a, V ) = Fwd(τ ′, T (V, a)) iff AR ac-
cepts (τ ′)R from state T (V, a) (by induction), iff AR accepts
a(τ ′)R = (τ ′a)R from state V , as required. So, A accepts τ
iff AR accepts τR.

5 From PLTLf /PLDLf to DFA
We take advantage of the single exponential reduction of
an AFA to a DFA for the reverse language to get a DFA for
PLTLf /PLDLf formulas, which is single exponential in the
size of the formula. To do so, we introduce the syntactic no-
tion of swap, which, given a PLTLf /PLDLf formula, produces
an LTLf /LDLf formula by syntactically replacing each past
operator with its corresponding future operator. Intuitively,
⊖ corresponds to ◯, S corresponds U , ⟪%⟫ corresponds to
⟨%sw⟩, and J%K corresponds to [%sw], where %sw is the regu-
lar expression %, with all formulas in test constructs replaced
by the corresponding swapped formulas. Formally, we de-
fine ϕsw by induction: (i) asw = a (for all a ∈ P) and ttsw = tt ;
(ii) (¬ϕ)sw = ¬ϕsw and (ϕ1∧ϕ2)sw = ϕsw

1 ∧ϕsw
2 ; (iii) (⊖ϕ)sw =

◯ϕsw, (iv) (ϕ1 S ϕ2)sw = ϕsw
1 U ϕsw

2 ; (v) (⟪%⟫ϕ)sw = ⟨%sw⟩ϕsw

and (J%Kϕ)sw = [%sw]ϕsw; (vi) φsw = φ, and (ϕ?)sw = (ϕsw)?,
and (ρ1 + ρ2)sw = ρsw1 + ρsw2 ; (vii) (ρ1;ρ2)sw = (ρsw1 ;ρsw2 ), and
(ρ∗)sw = (ρsw)∗. Similarly, we can swap an LTLf /LDLf for-
mula ϕ into a PLTLf /PLDLf formula ϕsw.

The following lemma summarizes the relation between for-
mulas and their swaps.
Lemma 1. If ϕ is a PLTLf /PLDLf (resp., LTLf /LDLf ) formula,
its swap ϕsw is an LTLf /LDLf (resp., PLTLf /PLDLf ) formula
of size ∣ϕ∣ such that τ ⊧ ϕ iff τR ⊧ ϕsw, i.e., LR(ϕ) = L(ϕsw).

We present two examples that illustrate the syntactic (vs.
semantic) relationship between a formula and its swap.
Example 4. Consider the PLTLf formula “inRoom ∧
roomDecontaminated ∧ x(getPermit)” — a variant of
the example in the introduction. Its swapped LTLf formula is

“inRoom ∧ roomDecontaminated ∧ ◇(getPermit)”. Al-
though the two formulas are syntactically similar, they have
different meanings. The former says that the robot is in a de-
contaminated room and it acquired the permit to enter the
room beforehand. The latter says that the robot is in a decon-
taminated room and later (!) it will get the permit to enter.
Example 5. Consider the LTLf formula “batteryCharged∧
◇(useNotebook)” and its swapped PLTLf formula

“batteryCharged ∧x(useNotebook)”. While the first says
that the battery is now charged and you can eventually use the
notebook, the PLTLf formula says that you used the notebook
in the past, but the battery is charged now.

Now, we are ready to show that transforming PLTLf /PLDLf

formulas into DFA can be done in exponential time (vs. double
exponential time for LTLf /LDLf formulas):
Theorem 2. For every PLTLf /PLDLf formula ϕ there is an
equivalent DFA Aϕ whose size is at most 2O(∣ϕ∣) in the size of
ϕ, and which is computable in at most exponential time.

Proof. Swap the PLTLf /PLDLf formula ϕ getting the
LTLf /LDLf ϕ

sw, then construct the AFA Aϕsw , and, finally,
build the DFA Aϕ = AR

ϕsw . By Lemma 1 and Theorem 1 we
get that Aϕ has size 2O∣ϕ∣ and L(ϕ) = L(Aϕ).



Hence, we can define the analogue of Algorithm 1 to trans-
late PLTLf /PLDLf formulas into DFA based on Theorem 2.

Algorithm 2: Translating PLTLf /PLDLf to DFA
Given a PLTLf /PLDLf formula ϕ
1: Swap ϕ into the corresponding LTLf /LDLf ϕ

sw (lin)
2: Compute AFA for ϕsw (lin)
3: Compute DFA from AFA for the reverse language (1exp)

Note that Algorithm 2 returns the DFA corresponding to a
PLTLf /PLDLf formula in single EXPTIME (worst-case com-
plexity) vs. 2EXPTIME of Algorithm 1 for the LTLf /LDLf

case. This implies that using past temporal formulas reduces
the complexity of several problems, as we will see later.

6 PLTLf /PLDLf and LTLf /LDLf

PLTLf /PLDLf offers an exponential advantage over
LTLf /LDLf when building the corresponding DFA. However,
here we show that they have the same expressive power,
and, indeed, they can be translated one into the other.
Unfortunately, the translations are quite expensive.

Expressive power of PLTLf . We start by establishing that
PLTLf and LTLf have the same expressive power by using
first-order logic (FOL) as an intermediate logic. In this setting,
FOL formulas are interpreted on finite traces viewed as labeled
linear orders, i.e., formulas can use: variables x that vary over
instants and that can be quantified existentially and universally;
the binary predicate < denoting the order of instants; equality
= between instants; and unary (sometimes called monadic)
predicates P for the labels; see, e.g., [De Giacomo and Vardi,
2013] for formal definitions).

We start by observing that LTLf and PLTLf can be translated
into FOL on finite traces by mimicking the semantics of these
logics as FOL formulas, and can be done in linear-time:

Theorem 3. [De Giacomo and Vardi, 2013; Zhu et al., 2019]
Both PLTLf and LTLf can be translated into FOL on finite
traces in linear-time.

For the converse, it is known that FOL (on finite traces) can
be translated into LTLf [Gabbay et al., 1980]. Here, we use
this fact to show that FOL can also be translated into PLTLf :

Theorem 4 (cf. [Kamp, 1968]). FOL (on finite traces) can be
translated into both LTLf and PLTLf .

Proof. Given an FOL formula ϕ replace x < y by y < x to get
an FOL ϕsw for the reverse language, i.e., w ⊧ ϕ iff wR ⊧ ϕsw.
Then, translate the FOL formula ϕsw into an equivalent LTLf

formula ψ [Gabbay et al., 1980]. Then, the PLTLf formula
ψsw is equivalent to the original FOL formula ϕ.

Putting these together, we immediately get:

Theorem 5. PLTLf and LTLf have the same expressive power.

Considering the results on LTLf in [De Giacomo and Vardi,
2013], we can now characterize the expressive power of
PLTLf .

Theorem 6. PLTLf has exactly the same expressive power as
FOL on finite traces, i.e., star-free regular expressions.

Expressive power of PLDLf . Next, we investigate the ex-
pressive power of PLDLf .

Theorem 7. RE is as least as expressive as PLDLf .

Proof. Apply Theorem 2 to get a DFA, and then apply Kleene’s
Theorem to get an equivalent regular expression.

The reverse direction also holds:

Theorem 8. PLDLf is as least as expressive as RE.

Proof. Given a regular expression % compute the reverse reg-
ular expression % and return ⟪%⟫start.

Since RE has the same expressive power as Monadic Second-
order Logic (MSO) over finite traces (cf., [De Giacomo and
Vardi, 2013]), we get the following characterizations.

Theorem 9. PLDLf has the same expressive power as RE, and
as MSO on finite traces.

Theorem 10. PLDLf has the same expressive power as LDLf .

Translating between PLTLf and LTLf . The above results
give us a way to translate LTLf (resp., PLTLf ) into PLTLf

(resp., LTLf ): first, translate LTLf into FOL; then, translate
FOL into PLTLf . However, we remark that the transformation
of an FOL formula into an LTLf formula, in general, can be
non-elementary (i.e., not bounded by any finite tower of expo-
nentials) in the size of the FOL formula [Gabbay, 1987]. Hence,
the above translation of LTLf (resp., PLTLf ) into PLTLf (resp.,
LTLf ) is not trivial. In fact, we can do better by making use of
the following result from the literature:

Theorem 11. [Maler and Pnueli, 1990] DFA accepting star-
free regular languages can be translated into PLTLf formulas
of size at most exponentially larger.

Now, we are ready to provide our translation, which gives
us the best known upper bound for the translation, though it
remains open whether the bound is tight.

Theorem 12. For every PLTLf (resp., LTLf ) formula ϕ there
exists an equivalent LTLf (resp., PLTLf ) formula whose size
is at most triply exponential in the size of ϕ, and which is
computable in at most triply exponential time.

Proof. Given a PLTLf formula ϕ, build an equivalent DFA
Aϕ by Theorem 2. Note that the DFA may be exponentially
larger than ϕ. Reverse all transitions to get an NFA AR

ϕ that
accepts the reverse of the language of Aϕ, then determinize
this NFA to get an equivalent DFA A′Rϕ . Note that A′Rϕ may
be exponentially larger than AR

ϕ . Now, apply Theorem 11
to transform this DFA into an equivalent PLTLf formula ψ.
Finally, form the swap ψsw for the reverse language of ψ. Then,
ψsw is the LTLf formula equivalent to the PLTLf formula ϕ.
Note that we reversed the language twice, and we incurred in
three exponential blowups.

Similarly, we can obtain a PLTLf formula from an LTLf one.
From an LTLf formula ϕ, build an equivalent DFA Aϕ that
may be double-exponentially larger than ϕ, and, then, apply
Theorem 11 to get an equivalent PLTLf formula which may
be single-exponentially larger.



Translating between PLDLf and LDLf . Next, we turn to
PLDLf and LDLf . Again, the bound (and algorithm) in the the-
orem below is the best known upper bound for the translation.
It is open whether the bound is tight.
Theorem 13. For every PLDLf (resp., LDLf ) formula ϕ there
exists an equivalent LDLf (resp., PLDLf ) formula whose size
is at most doubly exponential in the size of ϕ, and which is
computable in doubly exponential time.

Proof. From a PLDLf formula ϕ build, an equivalent DFA that
may be exponentially larger (Theorem 2), then, using Kleene’s
Theorem, convert this to a regular expression that may be ex-
ponentially larger, and, finally, convert this to an LDLf formula
with constant blow-up [De Giacomo and Vardi, 2013]. The
other case (from LDLf to PLDLf ) follows by considering the
swapped formulas.

In light of the discussion in this section, we observe that
while PLTLf /PLDLf allows for exponentially smaller equiva-
lent DFA compared to LTLf /LDLf , we cannot try to translate
LTLf /LDLf into PLTLf /PLDLf to take advantage of this result,
since the translation itself is too expensive. Hence, the prop-
erties of interest should be naturally expressible directly in
PLTLf /PLDLf to get the exponential improvement.

7 Impact of Adopting PLTLf /PLDLf

The exponential gain in transforming PLTLf /PLDLf formu-
las into DFAs, with respect to LTLf /LDLf , is reflected in an
exponential gain in solving a variety of forms of sequential
decision making problems involving temporal specifications.
We start by focusing on Planning.

Planning in fully observable nondeterministic planning
domains (FOND) for LTLf /LDLf goals has been studied
in [Camacho et al., 2017; De Giacomo and Rubin, 2018;
Camacho et al., 2018]. A (rooted) fully observable nondeter-
ministic domain is a tuple D = ⟨P,A,S, s0, tr⟩ where: (i) P
is a set of fluents (atomic propositions); (ii) A is a set of ac-
tions (atomic symbols); (iii) S = 2P is the set of domain
states; (iv) s0 is the initial state (initial assignment to fluents);
(v) (s, a, s′) ∈ tr represents action effects (including frame
assumptions), and implicitly also actions preconditions. Since
a domain is assumed to be represented compactly (e.g. in
PDDL), we consider the size of the domain as the cardinal-
ity of P , i.e., logarithmic in the number of states (see e.g.,
[Geffner and Bonet, 2013]). We are interested in the case
where the goal is given as a PLTLf /PLDLf goal formula ϕg

over fluents P . A plan f is a strong solution to D for goal ϕg

if every trace following the plan f of D is finite and satisfies
ϕg. To find such a plan we use the automata-based technique
in [De Giacomo and Rubin, 2018], but exploit the fact that
PLTLf /PLDLf goals give us a single exponential DFA.
Theorem 14. Solving FOND for PLTLf /PLDLf goals is
EXPTIME-complete in the domain and EXPTIME-complete
in the PLTLf /PLDLf goals.

Contrast this result with the LTLf /LDLf case, where FOND
planning is EXPTIME-complete in the domain (compactly
represented) and 2EXPTIME-complete in the goal [De Gi-
acomo and Rubin, 2018]. As mentioned in Section 6, the

exponential gain is only achieved for properties expressed di-
rectly in PLTLf /PLDLf . If we first express the specification in
LTLf /LDLf and then translate it into PLTLf /PLDLf , we lose
the advantage due to a blow-up in the translation. Thus, our ap-
proach yields an improvement for problems that can natively
be specified in PLTLf /PLDLf , without resorting to LTLf /LDLf

at all. The above construction can be adapted to handle
(stochastically) fair domains [De Giacomo and Rubin, 2018;
Aminof et al., 2020] with the same exponential advantage.

Note that if the domain is deterministic the difference be-
tween LTLf /LDLf and PLTLf /PLDLf disappears because in
the former case we can directly work with an NFA, since it is
sufficient to solve simple reachability, i.e., nonemptiness (cf.
[De Giacomo and Rubin, 2018]). Hence, in both cases, the
complexity becomes PSPACE in the domain and in the goal.
The crux of the above construction is that starting from the
PLTLf /PLDLf formula we build an exponential DFA, which is
then combined through a polynomial operation (the product)
with the planning domain. An analogous line of reasoning can
be exploited to show an exponential improvement in several
other contexts as we will show in what follows.
Solving MDPs with non-Markovian rewards [Bacchus et
al., 1996; Thiébaux et al., 2006; Brafman et al., 2018] with
PLTLf /PLDLf rewards is EXPTIME-complete in the domain
and EXPTIME in PLTLf /PLDLf rewards, while the latter is
2EXPTIME-complete for LTLf /LDLf rewards [Brafman et al.,
2018].
Reinforcement Learning where rewards are based on
traces [De Giacomo et al., 2019; Camacho et al., 2019] with
PLTLf /PLDLf rewards also gain the exponential improvement.
Planning in non-Markovian domains [Brafman and De Gi-
acomo, 2019a], with both the non-Markovian domain and
the goal expressed in PLTLf /PLDLf is EXPTIME-complete
in the domain and in the goal, vs. 2EXPTIME-complete in
the domain and in the goal in the case these are expressed in
LTLf /LDLf .
Solving non-Markovian decision processes [Brafman and
De Giacomo, 2019b], with both the system dynamics and
the rewards expressed using PLTLf /PLDLf , is EXPTIME-
complete in the domain and in the rewards specification. Again,
this is an exponential improvement both in the domain and the
rewards wrt the case of LTLf /LDLf .

8 Conclusion
We reviewed PLTLf and its extension PLDLf , which have an
exponential advantage over LTLf /LDLf when computing the
corresponding DFA, which, in turn, positively impacts several
problems in AI. However, to take advantage of this exponen-
tial improvement, the properties of interest must be directly
expressed in PLTLf /PLDLf because the translation between
LTLf /LDLf and PLTLf /PLDLf dominates the exponential ad-
vantage of working with PLTLf /PLDLf .
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