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Abstract. Let 
 be a bounded smooth domain in RN which contains a ball of
radius R centered at the origin, N � 3: Under suitable symmetry assumptions,
for each � 2 (0; R); we establish the existence of a sequence (um;�) of nodal
solutions to the critical problem

��u = juj2
��2u in 
� := fx 2 
 : jxj > �g; u = 0 on @
� ;

where 2� := 2N
N�2 is the critical Sobolev exponent. We show that, if 
 is

strictly starshaped then, for each m 2 N; the solutions um;� concentrate and
blow up at 0; as � ! 0; and their limit pro�le is a tower of nodal bubbles, i.e.,
it is a sum of rescaled nonradial sign-changing solutions to the limit problem

��u = juj2
��2u; u 2 D1;2(RN );

centered at the origin.
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1. Introduction

Let 
 be a bounded smooth domain in RN which contains a ball of radius R > 0
centered at the origin, N � 3: Our goal is to exhibit new blow-up phenomena for
solutions to the problem

(1.1)
�
��u = juj2��2u in 
�;
u = 0 on @
�;

as � ! 0; where 2� := 2N
N�2 is the critical Sobolev exponent and


� := fx 2 
 : jxj > �g; � 2 (0; R):

It is well known that the existence of a nontrivial solution to the problem

(1.2) ��u = juj2
��2u in 
; u = 0 on @
;

depends on the domain. Pohozhaev�s identity, together with the unique continua-

tion principle, implies that this problem does not have a nontrivial solution if 
 is
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strictly starshaped. The �rst nontrivial result was obtained by Coron, who showed

in [12] that the problem (1.1) has at least one positive solution for � small enough.

A few years later, a mayor breakthrough was achieved by Bahri and Coron who es-

tablished the existence of a positive solution in every domain whose homology with

Z2-coe¢ cients is nontrivial. Problem (1.2) is now refered to as the Bahri-Coron

problem.

Multiplicity of solutions to the problem (1.1), for � small, has been exhibited,

e.g., in [8, 9, 11] and some of the references therein. Multiplicity results are also

available for more general domains with nontrivial topology under suitable symme-

try assumptions; see [6, 9].

Ge, Musso and Pistoia proved in [15] that the number of sign-changing solutions

to the problem (1.1) becomes arbitrarily large as � goes to zero. The limit pro�le

of their solutions is given by

(1.3)
X̀
j=1

(�1)j"(2�N)=2j;� U

�
�
"j;�

�
;

where U is the so-called standard bubble, which is the only positive solution to the

problem

(1.4) ��u = juj2
��2u; u 2 D1;2(RN );

up to sign, translation and rescaling. The rescaling parameters "j;� tend to 0 with

suitable velocities, as � ! 0: These solutions are called bubble-towers.

It was recently shown in [5] that there are nonradial sign-changing solutions to

the problem (1.4) which occur as limit pro�les in concentration phenomena. We

shall call these solutions �-nodal bubbles. Their precise de�nition is given below.

Further, it was shown in [10] that, under some symmetry assumptions, least energy

�-nodal bubbles occur as the limit pro�le of sign-changing solutions to the problem

(1.1), as � ! 0:

It is natural to ask whether there are solutions to (1.1) whose limit pro�le is a

tower of �-nodal bubbles, i.e., a sum of the form (1.3) with U replaced by a �-nodal

bubble. A general answer is not easy. The Ljapunov-Schmidt reduction method,

which was used in [15] to produce bubble-towers, cannot be applied to �-nodal

bubbles, since nothing is known about the spectrum of the linearized operator at

these bubbles.

In this paper we will establish the existence of towers of �-nodal bubbles in

domains with particular symmetries, using variational methods. Next, we present

and discuss our main result.

Let � be a closed subgroup of the group O(N) of linear isometries of RN and

� : � ! Z2 := f1;�1g be a continuous homomorphism of groups. Recall that the

�-orbit of a point x 2 RN is the set �x := fx :  2 �g: We assume that
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(S1) dim�x > 0 for every x 2 RN r f0g;
(S2) there exists � 2 RN such that f 2 � : � = �g � ker�.
A function u : RN ! R is said to be �-equivariant if it satis�es

(1.5) u(x) = �()u(x) for all  2 �; x 2 RN :

Note that, if � is surjective, then every nontrivial �-equivariant function is nonradial

and changes sign. If � is surjective, any nontrivial �-equivariant solution to the limit

problem (1.4) will be called a �-nodal bubble.

For u 2 D1;2(RN ) we set

kuk :=
�Z

RN
jruj2

�1=2
:

We will prove the following result.

Theorem 1.1. If 
 is �-invariant then, for each � 2 (0; R) and each positive

integer m, the problem (1.1) has a �-equivariant solution um;�; and there exists a

positive constant CN , which depends only on N; such that

(1.6) CN m � kum;�k2 for every � 2 (0; R); m 2 N.

If, moreover, 
 is strictly starshaped, then, for every positive integer m and every

sequence (�k) in (0; R) with �k ! 0; after passing to a subsequence, there exist a a

positive integer ` and, for each j = 1; :::; `; a nontrivial �-equivariant solution !j
to the limit problem (1.4) and a sequence ("j;k) in (0;1) such that

(i) "j;k ! 0 and "j;k
�k
!1 as k !1; for each j = 1; :::; `;

(ii)

um;�k � P̀j=1 "(2�N)=2j;k !j

�
�

"j;k

�! 0 as k !1;

(iii) limk!1 kum;�kk
2
=
P̀
j=1

k!jk2 :

In particular, Theorem 1.1 says that, if 
 is �-invariant and strictly starshaped

and � is surjective, then, for each m 2 N, there is a sequence �k ! 0 and a solution

um;�k to the problem (1.1) in 
�k whose limit pro�le is a towerX̀
j=1

"
(2�N)=2
j;k !j

�
�
"j;k

�
of ` �-nodal bubbles !1; :::; !`. Moreover, as

CN m � lim
k!1

kum;�kk
2
=
X̀
j=1

k!jk2 ;

our theorem yields the following alternative: either the set of �-nodal bubbles is

unbounded inD1;2(RN ), or, for arbitrarily large `; there are solutions to the problem
(1.1) whose limit pro�le is a tower of ` �-nodal bubbles.
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In the special case when 
 is a ball and, hence, 
� is an annulus, one can use

the geometry of the problem to produce a tower of ` �-nodal bubbles for every

` 2 N: Moreover, each �-nodal bubble in the tower has minimal energy. This will
be proved in Section 4.

It is not always true that the set of �-equivariant solutions to the limit problem

(1.4) is unbounded in D1;2(RN ). For instance, if � = O(N) and � � 1; then a

�-equivariant function is simply a radial function and the standard bubble is the

only radial solution to this problem, up to sign and dilations. Of course, � is not

surjective in this case.

On the other hand, W. Ding showed that the problem (1.4) has an unbounded

sequence of sign-changing solutions which are invariant under the conformal action

of the group G := O(k) � O(m) on RN ; induced by the orthogonal action of G on
the N -dimensional sphere SN via the stereographic projection, if k +m = N + 1;

m; k � 2 [14]. This action is very di¤erent from the linear actions we are considering
here: the G-orbit of every point of RN has positive dimension, so the Sobolev

embedding, when restricted to the space of G-invariant functions, turns out to
be compact, and standard variational methods yield a sequence of sign-changing

solutions which is unbounded in D1;2(RN ). In contrast, for the standard linear
action of O(N); the O(N)-orbit of the origin consists of that single point. This

allows blow-up, and explains why standard bubbles and �-nodal bubbles occur in

concentration phenomena.

It is an interesting open question to determine whether, for surjective �, the set

of �-nodal bubbles is unbounded in D1;2(RN ) or not.
Let us give an example of the kind of symmetries we are considering. For N � 4

we write the points in RN � C2�RN�4 as (z; y) with z = (z1; z2) 2 C2; y 2 RN�4,
and we consider the group � generated by fei#; �; � : # 2 [0; 2�); � 2 O(N � 4)g
acting on a point (z; y) by

ei#(z; y) := (ei#z; y); �(z; y) := (z; �y); �(z1; z2; y) := (��z2; �z1; y):

The homomorphism � : �! Z2 is given by �(ei#) := 1; �(�) := 1, �(�) := �1: So
� is surjective. If N = 4 the �-orbit of each point in R4 r f0g is homeomorphic to
the disjoint union S1 t S1 of two circles, whereas for N � 5 and (z; y) 2 RN r f0g;

�(z; y) �=

8<: SN�5 if z = 0 and y 6= 0;
S1 t S1 if z 6= 0 and y = 0;
(S1 � SN�5) t (S1 � SN�5) if z 6= 0 and y 6= 0:

Hence, assumption (S1) holds true if N = 4 or N � 6: Notice that (S2) is satis�ed
by any point � = (z; y) with z 6= 0. A function u is �-equivariant if

u(z; y) = u(ei#z; �y) and u(z1; z2; y) = �u(��z2; �z1; y);
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for all # 2 [0; 2�); � 2 O(N � 4); (z; y) 2 RN : Thus, if z 6= 0; the function u takes
some constant value c on one of the components of �(z; y) and the value �c on the
other component.

We wish to say a few words about the proof of Theorem 1.1. Assumption (S1)

implies that every �-orbit in 
� has positive dimension. Hence, Theorem 6.1 in [5]

yields an unbounded sequence of �-equivariant solutions to the problem (1.1), for

each � 2 (0; R): The new piece of information is the estimate (1.6) for the growth of
the norm of these solutions. We obtain this estimate following the ideas introduced

by Bahri and Lions in [2]. A �ner estimate, which takes the symmetries into account,

was recently obtained in [1] for more general exponents, but the constant involved

depends on the domain. We stress that the constant CN given here depends only

on N:

To obtain the limit pro�le of the solutions, as � ! 0; we use concentration-

compactness arguments. Struwe used this kind of arguments in [20] to describe

the Palais-Smale sequences of the energy functional associated to the Bahri-Coron

problem. A priori it is not clear whether, for �xed m 2 N and �k ! 0; the solutions

um;�k to the problem (1.1) in 
�k form a Palais-Smale sequence for the Bahri-Coron

problem in the whole domain 
: But they do form a concentrating sequence in the

sense of De�nition 3.3, given below. In contrast to Struwe�s argument, where the

nonexistence of solutions in a half-space plays an important role, the argument that

we give to describe concentrating sequences uses the fact that there are no solutions

to the Bahri-Coron problem in the complement of a ball; see Proposition 3.5 below.

This paper is organized as follows: in Section 2 we estimate the growth of the

minimax values for the functional associated to the Bahri-Coron problem in sym-

metric domains with positive dimensional orbits. Section 3 is devoted to the de-

scription of concentrating sequences and to the proof of Theorem 1.1. In Section 4

we consider the special case when 
 is a ball. We establish the existence of towers

of ` �-nodal bubbles for every ` 2 N and give a precise description of them.

2. The growth of symmetric minimax values at the critical exponent

Let � be a closed subgroup of O(N) and � : �! Z2 be a continuous homomor-
phism of groups. Recall that a function u : RN ! R is said to be �-equivariant if
it satis�es (1.5).

Let � be a �-invariant bounded smooth domain in RN such that

(2.1) f 2 � : x0 = x0g � ker� for some x0 2 �:

This property guarantees that the space

D1;2
0 (�)� := fu 2 D1;2

0 (�) : u is �-equivariantg
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is in�nite dimensional; cf. [3]. As usual, D1;2
0 (�) denotes the closure of C1c (�) in

the Hilbert space D1;2(RN ) := fu 2 L2�(RN ) : ru 2 L2(RN ;RN )g with the norm

kuk :=
�Z

RN
jruj2

�1=2
:

We consider the problem

(2.2)

8<: ��u = juj2��2u in �;
u = 0 on @�;
u(x) = �()u(x) 8 2 �; x 2 �:

By Palais�principle of symmetric criticality [19], the solutions to this problem are

the critical points of the functional J� : D
1;2
0 (�)� ! R given by

J�(u) :=
1

2
kuk2 � 1

2�
juj2

�

2� ;

where juj2
�

2� :=
R
RN juj

2� . The nontrivial solutions lie on the Nehari manifold

N �
� := fu 2 D

1;2
0 (�)� : u 6= 0; kuk2 = juj2

�

2�g;

which is of class C2; radially di¤eomorphic to the unit sphere in D1;2
0 (�)�; and a

natural constraint for J�:

For each c 2 R; set Jc� := fu 2 N �
� : J�(u) � cg: Note that Jc� is symmetric

with respect to the origin, i.e., u 2 Jc� i¤ �u 2 Jc�; and that 0 =2 Jc�: For each
m 2 N we de�ne

c�m;� := inffc 2 R : genus(J
c
�) � mg,

where genus(X) is the Krasnoselskii genus of X. Recall that, if X � D1;2(RN ) is
nonempty and symmetric with respect to the origin, then genus(X) is the smallest

number m 2 N for which there exists a continuous map f : X ! Sm�1 such that
f(�u) = �f(u) for every u 2 X; where Sm�1 is the unit sphere in Rm: If no such
map exists, we de�ne genus(X) :=1:

Theorem 2.1. Assume that the �-orbit �x of every point x 2 � has positive

dimension. Then, c�m;� is a critical value of the functional J� : N
�
� ! R and there

exists a positive constant BN , which depends only on N; such that

(2.3) BN m � c�m;�
for every m 2 N.

Proof. Since every �-orbit in � has positive dimension, the argument given to prove

Theorem 6.1 in [5] shows that the functional J� : N �
� ! R satis�es the Palais-Smale

condition. Then, standard arguments allow to show that c�m;� 2 (0;1) and that
c�m;� is a critical value of this functional for every m 2 N; see, e.g., Chapter II in
[21]. Moreover, as the Palais-Smale condition holds true, the argument used by

Bahri and Lions in [2] to estimate the minimax values in the subcritical case, can

also be used to prove the estimate (2.3). We sketch the proof of this estimate.
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Let ��(u) be the generalized Morse index of a critical point u of J� : N �
� !

R, i.e., ��(u) is the dimension of the eigenspace corresponding to all nonpositive
eigenvalues of the operator Lu := ��� (2��1) juj2

��2 acting on the tangent space

TuN �
� to the manifold N

�
� at the point u: Then, as D

1;2
0 (�)� = TuN �

��Ru and Lu
is negative de�nite on Ru; the generalized Morse index of this operator in the space
D1;2
0 (�)� is ��(u) + 1: The semiclassical inequality of Cwikel [13], Lieb [16] and

Rosenbljum [19] states that there is a positive constant A
N
, which depends only on

N; such that for every nonpositive potential V 2 LN=2(RN ), the generalized Morse
index of the Schrödinger operator �� + V in L2(RN ) is bounded from above by

AN
R
RN jV j

N=2
: Therefore, if u 2 N �

� is a critical point of J� with critical value

c�m;�; setting B
�1
N := ANN

�
N+2
N�2

�N=2
; we have that

(2.4)

��(u) + 1 � AN (2� � 1)N=2
Z
�

juj2
�
= ANN

�
N + 2

N � 2

�N=2
J�(u) = B

�1
N c�m;�:

We claim that there exists a critical point u 2 N �
� of J� with critical value c

�
m;�

and ��(u) � m � 1: This fact, combined with inequality (2.4) immediately yields
(2.3).

To prove this claim we argue by contradiction, i.e., we assume that ��(u) < m�1
for every critical point u 2 N �

� of J� with critical value c
�
m;� =: c:

First, we consider the case when J� has �nitely many critical points �u1; :::;�uk
with critical value c and all of them are nondegenerate. Let �i be the Morse index

of ui: Then, there is a splitting of the tangent space TuiN
�
� as an orthogonal sum

Xi�Yi with dimXi = �i such that, in local coordinates (x; y) 2 Xi�Yi around ui;
J� can be written as (x; y) 7! jyj2�jxj2 : As J� : N �

� ! R satis�es the Palais-Smale
condition, taking small enough coordinate neighborhoods Vi; Ui of ui with V i � Ui
and following the �ow of the vector �eld (x; y) 7! (0;�y) in Vi, the �ow of �rJ�
outside of Ui and the �ow of a convex combination of both vector �elds in Ui r Vi,
at a suitable speed, one can construct an odd deformation

(2.5) Jc+"� �! Jc�"� [B�1 [ (�B�1) [ � � � [B�k [ (�B�k) ;

for some small enough " > 0; where B�i is homeomorphic to a closed �i-dimensional

ball, the sets B�1 ;�B�1 ; :::; B�k ;�B�k are pairwise disjoint, and Jc�"� \ B�i =
@B�i : The de�nition of c�m;� implies that there exists an odd map f : Jc�"� !
Sm�2: As �i < m � 1, the restriction of f to @B�i is nullhomotopic and, using a
nullhomotopy for each i = 1; :::; k, one can extend f to an odd map

Jc�"� [B�1 [ (�B�1) [ � � � [B�k [ (�B�k) �! Sm�2
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whose composition with the deformation (2.5) gives an odd map Jc+"� ! Sm�2;
contradicting the fact that genus(Jc+"� ) � m: Therefore, �i � m� 1 for some i; as
claimed.

Next, we consider the general case. Note that, as J� : N �
� ! R satis�es the

Palais-Smale condition, there are regular values a and b of J� such that a < c < b

and the set Z := fu 2 N �
� : J 0�(u) = 0; J�(u) 2 [a; b]g is compact. Fix 0 <

� <dist(Z;N �
� r J

�1
� (a; b)): By Theorem 2.2 in [17] and Theorem 5.7 in [4], there

exists a C2-function I : N �
� ! R which satis�es the Palais-Smale condition, such

that I(u) = J�(u) if dist(u; Z) � � and I has �nitely many critical points in

J�1� [a; b]; they are nondegenerate and their Morse index is smaller than m� 1: Let
d1 < � � � < dj be the critical values of I in J�1� [a; b]: As a and b are regular values of

I, we have that a < d1 and dm < b and, since I satis�es the Palais-Smale condition,

there are odd maps

(2.6)
Id1�" ! Ia for every " 2 (0; jd1 � aj);
Idi+1�" ! Idi+" for every " 2 (0; 12 jdi+1 � dij); i = 2; :::; j;
Ib ! Idj+" for every " 2 (0; jb� dj j):

Now, as Ia = Ja� and a < c = c
�
m;�; there is an odd map I

a ! Sm�2: This map,
composed with the �rst map in (2.6), yields an odd map Id1�" ! Sm�2 for every
" 2 (0; jd1 � aj): The argument given above allows us to extend this map to an
odd map Id1+"1 ! Sm�2 for some "1 > 0: This map, composed with the map in

(2.6), yields an odd map Id2�" ! Sm�2 for every " 2 (0;minf 12 jd2 � d1j ; "1g):
Continuing in this way, we obtain an odd map Ib ! Sm�2: But, since Ib = Jb� and
b > c = c�m;�, we have that genus(I

b) � m: So this is a contradiction, and the claim
is proved. �

3. Symmetries and blow-up at a single point

Let � be a closed subgroup of O(N) and � : � ! Z2 be a continuous homo-
morphism of groups which satisfy the assumptions (S1) and (S2), stated in the

introduction.

Let 
 be a �-invariant bounded smooth domain in RN which contains the origin.
Fix R > 0 such that BR(0) := fx 2 RN : jxj < Rg � 
 and set


� := fx 2 
 : jxj > �g if � 2 (0; R); 
0 := 
:

We consider the problem

(}�� )

8<: ��u = juj2��2u in 
�;
u = 0 on @
�;
u(x) = �()u(x) 8 2 �; x 2 
�;

which is the problem (2.2) with � = 
�: We write J�, N �
� and c

�
m;� instead of J
� ,

N �

�
and c�m;
� for its associated energy functional, Nehari manifold and minimax
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values, respectively. Note that (S2) implies that 
� satis�es (2.1) for every � 2
[0; R):

If � 2 (0; R) then every �-orbit in 
� has positive dimension. Hence, Theorem
2.1 asserts that, for each m 2 N and � 2 (0; R); there exists a nontrivial solution
um;� to the problem (}�� ) such that J�(um;�) = c

�
m;� and, moreover,

BN m � c�m;�2 � c
�
m;�1

<1 if 0 < �2 � �1 < R:

We wish to analize the limit pro�le of um;� as � ! 0; for each �xed m 2 N: To this
end, we consider the limit problem

(}�1)

8<: ��u = juj2��2u
u 2 D1;2(RN )
u(x) = �()u(x) 8 2 �; x 2 RN ;

we write J1 : D1;2(RN )� ! R and N �
1 for the functional and the Nehari manifold

associated to it, and we set

c�1 := inf
N�
1

J1(u):

Lemma 3.1. We have that

(a) c�1;0 = c
�
1 and c�1;0 is not attained by J0 on N

�
0 :

(b) c�1;� ! c�1 as � ! 0:

Proof. Note that, for every � 2 [0; R);

c�1;� = inf
u2N�

�

J�(u):

Then, as 0 2 
 and 0 is a �xed point of any group action, statement (a) follows
from Theorem 2.3 in [5]. To prove (b), let � > 0 and choose v 2 N �

0 such that

J0(v) < c
�
1;0+�: Let � 2 C1(RN ) be a radial function such that �(x) = 0 if jxj � 1

and �(x) = 1 if jxj � 2; and set ��(x) := �(x� ) and v� := v��: It is easy to verify
that kv�k ! kvk : Hence, for all su¢ ciently small �; there exists t� 2 (0;1) such
that v� 2 N �

� and

c�1 = c�1;0 � c
�
1;� � J�(v�) < c

�
1;0 + 2�:

This proves (b). �

Next, we will prove the following result.

Theorem 3.2. Assume that the problem (}�0 ) does not have a nontrivial solution,

and let uk be a solution to the problem (}
�
�k
) such that �k ! 0 and J�k(uk)! c > 0:

Then, after passing to a subsequence, there exist ` nontrivial solutions !1; :::; !` to

the problem (}�1) and ` sequences of positive numbers ("j;k); j = 1; :::; `; with the

following properties:

(i) "j;k ! 0 and "j;k
�k
!1 as k !1; for each j = 1; :::; `;
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(ii)

uk � P̀j=1 "(2�N)=2j;k !j

�
�

"j;k

�! 0 as k !1;

(iii) c =
P̀
j=1

J1(!j):

To prove Theorem 3.2, we start with the following de�nition.

De�nition 3.3. A sequence (uk) such that uk 2 D1;2
0 (
�k)

�; �k ! 0; J�k(uk)! c;

and J 0�k(uk)vk ! 0 for every sequence (vk) with vk 2 D1;2
0 (
�k) and (vk) bounded

in D1;2(RN ); will be called a concentrating sequence.

As we shall see below, the sequence (uk) in Theorem 3.2 is a concentrating

sequence.

Recall that the �-orbit �x of a point x 2 RN is �-homeomorphic to the ho-

mogeneous space �=�x; where �x := f 2 � : x = xg is the isotropy group of
x:

Lemma 3.4. Given sequences ("k) in (0;1) and (�k) in RN ; there exist a sequence
(�k) in RN and a closed subgroup K of � such that, after passing to a subsequence,

the following statements hold true:

� The sequence ("�1k dist(��k; �k)) is bounded.

� ��k = K for all k 2 N.
� If K 6= � then there exists a countable subset fn : n 2 Ng of � such that

"�1k ji�k � j�kj ! 1 as k !1 if i 6= j:

Proof. Note that (S1) implies that �=�x is �nite i¤ x = 0. So this lemma is just

Lemma 3.3 in [7] for this particular situation. �

The main step in the proof of Theorem 3.2 is the following proposition.

Proposition 3.5. If (uk) is a concentrating sequence with uk 2 D1;2
0 (
�k)

� and

J�k(uk) ! c > 0; such that uk * 0 weakly in D1;2
0 (
); then, after passing to a

subsequence, there exist a nontrivial solution ! to the problem (}�1), a sequence of

positive numbers ("k) and a concentrating sequence (uk); with the following proper-

ties:

(a) "k ! 0 and "k
�k
!1 as k !1;

(b)
uk � uk � " 2�N2k !

�
�
"k

�! 0 as k !1;

(c) uk 2 D1;2
0 (
�k)

� and J�k(uk)! c� J1(!) as k !1:

Proof. Since the proof is rather long, we subdivide it into �ve steps.

Step 1. We de�ne ("k) and !:



TOWERS OF NODAL BUBBLES 11

Fix d 2 (0; 12S
N=2). As (uk) is a concentrating sequence and c > 0, we have that

1
N jukj

2�

2� = J�k(uk) � 1
2J

0
�k
(uk)uk ! c and c � 1

N S
N=2. Hence, there are bounded

sequences ("k) in (0;1) and (�k) in RN such that, after passing to a subsequence,

(3.1) sup
x2RN

Z
B"k

(x)

jukj2
�
=

Z
B"k

(�k)

jukj2
�
= d:

For ("k) and (�k) we choose K and (�k) as in Lemma 3.4. Then, ��k = K and

dist(��k; �k) < C"k for some positive constant C and all k 2 N. As jukj is �-
invariant, we have that

(3.2) d =

Z
B"k

(�k)

jukj2
�
�
Z
B(C+1)"k

(�k)

jukj2
�
:

If K 6= � then, for each n 2 N and 1; :::; n 2 � as in Lemma 3.4, there exists
kn > 0 such that ji�k � j�kj � 2(C + 1)"k for all k � kn and i 6= j: Hence,

nd �
nX
j=1

Z
B(C+1)"k

(j�k)

jukj2
�
� jukj2

�

2� 8k � kn and 8n 2 N;

which is impossible because (jukj2�) is bounded. Therefore, K = �; and assumption

(S1) implies that �k = 0 for all k 2 N:
We de�ne

wk(z) := "
N�2
2

k uk("kz):

As kwkk = kukk ; the sequence (wk) is bounded in D1;2(RN ): So, after passing to
a subsequence, wk * ! weakly in D1;2(RN ); wk ! ! strongly in L2loc(RN ); and
wk ! ! a.e. in RN : Note that wk 2 D1;2(RN )�: Hence, ! 2 D1;2(RN )�:
Step 2. We show that ! 6= 0:
Arguing by contradiction, assume that ! = 0: Let ' 2 C1c (B1(z)) for some z 2

RN : Observe that, since (uk) is a concentrating sequence, setting 'k(x) := '( x"k )

we haveZ
RN
rwk � r

�
'2wk

�
�
Z
RN
'2 jwkj2

�
=

Z

�k

ruk � r('2kuk)�
Z

�k

'2k jukj
2�

= J 0�k(uk)
�
'2kuk

�
= o(1):

Hence, as wk ! ! strongly in L2loc(RN ); from (3.1) and our choice of d we obtainZ
RN
jr ('wk)j2 =

Z
B1(z)

'2 jrwkj2 +
Z
B1(z)

2'wkrwk � r'+
Z
B1(z)

w2k jr'j
2

=

Z
B1(z)

rwk � r
�
'2wk

�
+ o(1) =

Z
B1(z)

'2 jwkj2
�
+ o(1)

�
 Z

B1(z)

jwkj2
�

! 2��2
2� �Z

RN
j'wkj2

�
� 2

2�

+ o(1)

� d2=N

S

Z
RN
jr ('wk)j2 + o(1) <

�
1

2

�2=N Z
RN
jr ('wk)j2 + o(1):
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Therefore, k'wkk = o(1) and, hence, j'wkj2� = o(1) for every ' 2 C1c (B1(z));
z 2 RN : As BC+1(0) � B1(z1) [ � � � [ B1(zn) for some z1; :::; zn 2 RN ; choosing
a smooth partition of unity f'2�1 ; :::; '2

�

n g with supp('j) � B1(zj), from (3.2) we

obtain that

d �
Z
BC+1(0)

jwkj2
�
�

nX
j=1

Z
RN
j'jwkj2

�
= o(1):

This is a contradiction. Consequently, ! 6= 0:
Step 3. We prove (a) and we show that ! solves the problem (}�1):

As ("k) is bounded, after passing to a subsequence, we have that "k ! " 2 [0;1).
Since uk * 0 weakly in D1;2

0 (
) and w 6= 0, an easy argument shows that " = 0:
Inequality (3.2) implies that (C + 1)"k > �k for all k 2 N. Therefore, if ( "k�k )

is bounded, then, after passing to a subsequence, "k�k ! % 2 (0;1): As wk = 0 in
B�k="k(0) and wk ! ! a.e. in RN ; we have that ! = 0 a.e. in B1=%(0):Moreover, for
every ' 2 C1c (RN rB1=%(0)); setting 'k(x) := '( x"k ) we have that supp('k) � 
�k
for k large enough and, as (uk) is a concentrating sequence, we obtainZ

RN
rwk � r'�

Z
RN
jwkj2

��2
wk' =

Z

�k

ruk � r'k �
Z

�k

jukj2
��2

uk'k

= J 0�k(uk) ['k] = o(1):

Since wk * ! weakly in D1;2(RN ); this implies that J 01(!)' = 0 for every ' 2
C1c (RN rB1=%(0)); i.e., ! is a nontrivial solution to the problem

��u = juj2
��2u; u 2 D1;2

0 (RN rB1=%(0));

which is impossible; see Remark 4.1 below.

Therefore, ( "k�k ) is unbounded. So, after passing to a subsequence,
"k
�k
!1 and

a similar argument shows that J 01(!)' = 0 for every ' 2 C1c (RN r f0g): Since
C1c (RNrf0g) is dense in D1;2(RN ); we conclude that ! is a solution to the problem
(}�1):

Step 4. We de�ne (uk) and we prove (b).

Let � 2 C1c (RN ) be a radial function such that 0 � �(z) � 1; �(z) = 1 if
1
2 � jzj � 2; and �(z) = 0 if jzj �

1
4 or jzj � 4: Let R > 0 be such that BR(0) � 


and, for �k 2 (0; R16 ); set

�k(z) :=

8>><>>:
�( "k4�k z) if 0 � jzj � 4�k

"k
;

1 if 4�k"k � jzj �
R
4"k
;

�( 4"kR z) if R
4"k

� jzj ;

and b�k(x) := �k( x"k ): Note that supp(b�k) � fx 2 RN : �k � jxj � Rg: We de�ne
uk(x) := uk(x)� "

2�N
2

k !

�
x

"k

� b�k(x):
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Then, uk 2 D1;2
0 (
�k)

�: A straightforward computation shows that

(3.3) lim
k!1

k�kw � wk = 0 8w 2 D1;2(RN ):

So, performing the change of variable x = "kz, we obtainuk � uk � " 2�N2k !

�
x

"k

�2 = k�k! � !k2 = o(1):
This proves (b).

Step 5. We prove (c) and we show that (uk) is a concentrating sequence.

As wk * ! weakly in D1;2(RN ); with the change of variable x = "kz and using
(3.3), we obtain

kukk2 � kukk2 = kwkk2 � kwk � �k!k2 = k!k2 + o(1):

Using the Brezis-Lieb lemma, we obtain in a similar way

jukj2
�

2� � jukj
2�

2� = jwkj
2�

2� � jwk � �k!j
2�

2� = j!j
2�

2� + o(1):

It follows that

J�k(uk) = J�k(uk)� J1(!) + o(1) = c� J1(!) + o(1):

This proves (c). To prove that (uk) is a concentrating sequence, we �rst consider

the function f(r) := jrj2
��2

r: Given r; s 2 R, the mean value theorem yields a

number t 2 (0; 1) such that

jf(s)� f(s� r)j � C js� trj2
��2 jrj � C(jsj2

��2
+ jrj2

��2
) jrj :

Setting s := wk(z)�!(z) and s� r := wk(z)��k(z)!(z); for any ' 2 C1c (RN ) we
obtain Z

RN

���jwk � !j2��2 (wk � !)'� jwk � �k!j2��2 (wk � �k!)'���
� C

Z
RN
(jwk � !j2

��2
+ j�k! � !j2

��2
) j�k! � !j j'j

� C(jwk � !j2
��2
2� + j!j2

��2
2� ) k�k! � !k k'k = o(1) k'k :

This estimate, together with Lemma 8.9 in [22], yields

(3.4) jwkj2
��2

wk�jwk � �k!j2
��2

(wk��k!)�j!j2
��2

! �! 0 in (D1;2(RN ))0:

Let vk 2 D1;2
0 (
�k) be such that (vk) is bounded in D

1;2(RN ); and set evk(z) :=
"
N�2
2

k vk("kz): As J 01(!) = 0; with the usual change of variable and using identities

(3.3) and (3.4), we obtain��J 0�k(uk)vk � J 0�k(uk)vk�� = jJ 01(wk)evk � J 01(wk � �k!)evk � J 01(!)evkj
� kJ 01(wk)� J 01(wk � �k!)� J 01(!)k(D1;2(RN ))0 kevkk = o(1):

Since J 0�k(uk)vk ! 0, we conclude that J 0�k(uk)vk ! 0: This �nishes the proof. �
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Proof of Theorem 3.2. Let uk be a solution to the problem (}��k) such that �k ! 0

and J�k(uk)! c > 0: Note that, by the principle of symmetric criticality [18], uk is a

critical point of the functional J�k in the whole space D
1;2
0 (
�k); i.e., J

0
�k
(uk)v = 0

for every v 2 D1;2
0 (
�k): So, (uk) is a concentrating sequence. Since J�k(uk) =

1
N kukk

2
; the sequence (uk) is bounded and, after passing to a subsequence, uk * u

weakly inD1;2
0 (
): Now, if ' 2 C1c (
rf0g); then supp(') � 
�k for k large enough.

Therefore,

J 00(uk)' =

Z

�k

ruk � r'�
Z

�k

jukj2
��2

uk' = J
0
�k
(uk)' = 0;

for k large enough. Passing to the limit, we get that J 00(u)' = 0 for every ' 2
C1c (
 r f0g) and, as C1c (
 r f0g) is dense in D

1;2
0 (
); we conclude that u is a

solution to the problem (}�0 ): Thus, by assumption, u = 0:

Now we can apply Proposition 3.5 to (uk) to obtain a new concentrating sequence

(u1k): Then, we apply it to (u
1
k); so on. It is easy to see that concentrating sequences

occur only at levels c � 0. So, after a �nite number of steps, we will arrive to a

concentrating sequence (u`k) such that J�k(u
`
k)! 0. This �nishes the process, and

yields the result. �

Proof of Theorem 1.1. By Theorem 2.1, there exists a nontrivial solution um;� to

the problem (}�� ) such that J�(um;�) =
1
N kum;�k

2
= c�m;� and

BN m � c�m;� for every � 2 (0; R); m 2 N:

If 
 is strictly starshaped then the problem (}�0 ) does not have a nontrivial solution,

and the second statement in Theorem 1.1 follows immediately from Theorem 3.2.

�

4. Towers of nodal bubbles for annuli

In this section we analize the case when 
 is a ball, i.e., 
 := fx 2 RN : jxj < Rg:
We will show that, for every ` 2 N; one can construct solutions whose limit pro�le
is a tower of ` �-nodal bubbles. To do this, we will take advantage of the geometry

of the problem.

As before, we will assume that � is a closed subgroup of O(N) and � : � ! Z2
is a continuous homomorphism, which satisfy (S1) and (S2):

For each s > 0, we consider the inversion on the sphere Ss := fx 2 RN : jxj = sg,
given by

Ks(x) :=
s2x

jxj2
for x 6= 0:

We de�ne the image under Ks of a domain � in RN to be the set

Ks(�) := fKs(x) : x 2 �r f0gg
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and, for u : Ks(�) ! R, we consider its Kelvin transform, which is the function
Ksu : �! R de�ned by

(Ksu)(x) :=
sN�2

jxjN�2
u

 
s2x

jxj2

!
:

It follows easily that

(4.1)
Z
�

r(Ksu) � r(Ksv) =
Z
Ks(�)

ru � rv;
Z
�

j(Ksu)j2
�
=

Z
Ks(�)

juj2
�
;

for every u; v 2 D1;2
0 (Ks(�)). Therefore, u solves ��u = juj2

��2u in D1;2
0 (Ks(�))

if and only if Ksu solves the same equation in D
1;2
0 (�):

Remark 4.1. Note that this implies, in particular, that the problem

��u = juj2
��2u; u 2 D1;2

0 (RN rBs(0));

does not have a nontrivial solution. Otherwise,

��u = juj2
��2u; u 2 D1;2

0 (Bs(0));

would have a nontrivial solution, which is impossible, due to Pohozhaev�s identity.

For w 2 D1;2(RN ) and " 2 (0;1); set w"(x) := "(2�N)=2w(x" ). It is straightfor-
ward to verify that

(4.2) K2sw = w and Ks(w") = (K1w)s2=" for every s; " 2 (0;1):

Clearly, Ks(x) = Ks(x) for every  2 O(N): Therefore, � is �-invariant if and
only if Ks(�) is �-invariant, and a function u : Ks(�) ! R is �-equivariant if and
only if Ksu : � ! R is �-equivariant. In particular, if � = RN ; we have that !
solves the problem (}�1) i¤ Ks! solves the problem (}�1):

For r; s 2 (0; R]; r < s; we consider the annulus Ar;s := fx 2 RN : r < jxj < sg:
We denote the problem (2.2) in � = Ar;s by (}�r;s); and we write Jr;s and N �

r;s;

instead of JAr;s
and N �

Ar;s
, for its energy functional and its Nehari manifold. Let

c�r;s := inf
N�
r;s

Jr;s(u):

By Theorem 2.1 there exists a solution ur to the problem (}
�
r;R) such that Jr;R(ur) =

c�r;R: Set % :=
r
R : Then, as Kr(Ar;R) = A%r;r; we have that �Krur is a solution to the

problem (}�%r;r): A straightforward computation shows that the normal derivatives

of �Krur and ur coincide at each point of the common boundary Sr of A%r;r and
Ar;R: Therefore, for each ` 2 N; setting

u1;r := ur and uj;r := K%j�2ruj�1;r for j = 2; :::; `;

we have that the function bu`;r de�ned by
bu`;r := P̀

j=1

(�1)juj;r
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is a solution to the problem (}�
%`�1r;R

) in the annulus A%`�1r;R which satis�es

(4.3) J%`�1r;R(bu`;r) = ` c�r;R:
The following theorem describes the limit pro�le of bu`;r as r ! 0:

Theorem 4.2. Let ur be a solution to the problem (}�r;R) with Jr;R(ur) = c�r;R:

Then, there exist rk 2 (0; R) with rk ! 0; a nontrivial solution ! to the problem

(}�1) with J1(!) = c�1; and a sequence ("k) in (0;1) such that the following
statements hold true for each ` 2 N:

(i) "k ! 0 and "k
rk
! 0 as k !1;

(ii)
bu`;rk �P`

j=1(�1)j"
(2�N)=2
j;k !j

�
�

"j;k

�! 0 as k !1; where !j := ! and

"j;k :=
rj�1k "k
Rj�1 if j is odd, and !j := K1! and "j;k :=

rjk
Rj�2"k

if j is even;

(iii) Jr`k=R`�1; R(bu`;rk)! ` c�1 as k !1:

Proof. By Lemma 3.1, we have that c�r;R ! c�1 as r ! 0: Therefore, Theorem 3.2

yields a sequence rk 2 (0; R) with rk ! 0; a nontrivial solution ! to the problem

(}�1) with J1(!) = c
�
1; and a sequence ("k) in (0;1) such that "k ! 0; "krk !1

and

(4.4)

urk � " 2�N2k !

�
�
"k

�! 0 as k !1:

Set %k := rk
R ;

!1;k := !"k and !j;k := K%j�2k rk
!j�1;k for j = 2; :::; `:

Then, (4.1) yields

kuj;rk; � !j;kk =
K%j�2k rk

uj�1;rk; � K%j�2k rk
!j�1;k

 = kuj�1;rk; � !j�1;kk
for every j = 2; :::; `; and from (4.4) we obtainbu`;rk � P̀j=1(�1)j!j;k

 =
 P̀j=1(�1)j (uj;rk; � !j;k)


�
P̀
j=1

kuj;rk; � !j;kk = ` kurk � !"kk �! 0 as k !1:

Using the formulas (4.2) we see that

!j;k =

(
!"j;k with "j;k := %

j�1
k "k if j is odd,

(K1!)"j;k with "j;k := %
j�2
k

r2k
"k

if j is even.

This proves (ii). From (4.3) and Lemma 3.1 we immediately obtain (iii). �
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