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Abstract: The paper presents a multi-objective derivative-free and deterministic global/local hybrid
algorithm for the efficient and effective solution of simulation-based design optimization (SBDO)
problems. The objective is to show how the hybridization of two multi-objective derivative-free
global and local algorithms achieves better performance than the separate use of the two algorithms
in solving specific SBDO problems for hull-form design. The proposed method belongs to the class
of memetic algorithms, where the global exploration capability of multi-objective deterministic
particle swarm optimization is enriched by exploiting the local search accuracy of a derivative-free
multi-objective line-search method. To the authors best knowledge, studies are still limited
on memetic, multi-objective, deterministic, derivative-free, and evolutionary algorithms for an
effective and efficient solution of SBDO for hull-form design. The proposed formulation manages
global and local searches based on the hypervolume metric. The hybridization scheme uses two
parameters to control the local search activation and the number of function calls used by the local
algorithm. The most promising values of these parameters were identified using forty analytical tests
representative of the SBDO problem of interest. The resulting hybrid algorithm was finally applied to
two SBDO problems for hull-form design. For both analytical tests and SBDO problems, the hybrid
method achieves better performance than its global and local counterparts.

Keywords: hybrid algorithms; memetic algorithms; particle swarm; multi-objective deterministic
optimization, derivative-free; global/local optimization; simulation-based design optimization

1. Introduction

The research and development of new technologies, along with a reduction of design and
production costs, are enabling factors to face the challenges imposed by the worldwide-market
competition. Computer simulations have played an increasingly important role in the design process
of engineering products whose efficiency is greatly affected by shape parameters, such as air-, ground-,
and water-borne vehicles. For these reasons, addressing real-world complex industrial applications
involves high-fidelity physics-based solvers, particularly where innovative products are pursued for
which past experience is not available.

In this context, the simulation-based design (SBD) paradigm has demonstrated the ability to
support the design decision-making process. The recent development of high-performance computing
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systems has led the SBD to integrate optimization algorithms and uncertainty quantification (UQ)
methods, shifting the SBD paradigm to automatic deterministic and stochastic SBD optimization
(SBDO) [1] with potential global solutions to the design problem. The computational costs associated
with the solution of the SBDO problem with high-fidelity solvers remain a limiting factor for the
implementation of the SBDO in industries and, in particular, small- and medium-sized enterprises.
The major critical issues related to computational cost and implementation complexity of the SBDO
procedure can be summarized as: (a) physical solvers are computationally expensive to run; (b) they are
often combined in a multidisciplinary analysis framework that increases the computational complexity;
(c) solvers are often available only as a black box; (d) solutions are often affected by non-negligible
residual noise; (e) assessing design performance in a variety of operating/environmental conditions
requires multiple solvers to operate; (f) the search for improved performance often faces conflicting
objectives; and (g) achieving optimum design through an optimization method requires a large
number of evaluations, especially for high-dimensional design spaces and, if their global exploration
is attempted, making high-fidelity SBDO a very complex theoretical, algorithmic, and technical task.
Despite the unquestionable and significant achievements in the field, with the capability of solving
high-fidelity multidisciplinary design optimization , the design-space exploration and exploitation
in the quest for global optima remains a hard-to-reach objective, due to its almost-unaffordable
computational cost [2], especially when dealing with multi-objective (constrained) problems.

Real-world applications are pervaded by almost conflicting objectives and can be formulated
as multi-objective (constrained) problems (MOPs) [3]. For such problems, the optimum is defined
by the Pareto definition, where a set of non-dominated solutions provides the trade-off among the
objectives. From the optimization view point, the Pareto optimality definition separates the roles of
problem solver and decision maker. The problem solver finds one or more non-dominated solutions.
The decision maker, based on her/his preferences, selects one of the non-dominated solutions. For this
reason, considering when the decision maker operates, the following classification of the optimization
algorithms can be drawn up: (i) without preferences, decision maker preferences are indifferent and the
problem is solved by finding a single non-dominated solution; (ii) a priori, the optimization procedure is
driven by the knowledge of the decision maker preferences, making provision for the acceptance of the
optimal solution by the decision maker; and (iii) a posteriori, decision maker preferences are taken into
account at the end of the optimization. Even though there is interest in without preferences and a priori
methods (capable of providing a single non-dominated solution), the a posteriori methods have a high
relevance in the SBDO context, since they are able to approximate the whole set of Pareto solutions.
For this purpose, evolutionary algorithms (EAs) [4] have long been used as a posteriori methods:
by adapting a group of individuals, EAs naturally allow for the solution of MOPs. Nevertheless,
EAs are in general stochastic and their testing and assessment requires statistically converged results
(non-dominated solution set) from multiple optimization runs, which are almost unattainable for
complex industrial applications. Therefore, deterministic methods have also been developed and
assessed [5–7].

Historically, the aeronautics industry and the associated research have played a very important
role in tackling and solving SBDO for complex multidisciplinary applications. For technological and
computational-efficiency reasons, researchers have focused on local optimization methods, often
relying on availability of derivatives from adjoint solvers [2]. On the one hand, local methods
require the knowledge of derivatives, which may require intrusive approaches (e.g., adjoint methods,
unfortunately not suitable for black-box solvers) and can get easily trapped in local minima. On the
other hand, global optimization methods usually do not require derivatives, but are affected by the curse
of dimensionality, where the complexity and associated computational cost to solve the problem increases
dramatically with the dimension of the design space. Furthermore, local algorithms investigate
accurately a limited domain region, also providing proof of convergence (generally not available for
global methods), whereas global methods are designed to explore the whole design domain, providing
approximate solutions to the decision problem. Since in the SBDO context objectives may be noisy
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and/or their derivatives are often not provided by the simulation tool, derivative-free optimization
algorithms [8] are often a viable option. Examples of local and global derivative-free SBDO approaches
to the design problem have been investigated in the ship hydrodynamic community [9], with focus on
both civil and military applications and development of dual-use technologies. In the last years, several
EAs have been proposed to solve design problems, such as dragonfly [10], salp swarm [11], polar
bear [12], and dolphin pod optimization [13]. Among other derivative-free global methods, particle
swarm optimization (PSO) [14] represents a suitable option for the solution of SBDO problems [15].
The numerical experiences reported in literature seem to indicate that it is quite efficient in identifying
the regions of the feasible set where the globally optimal solutions are located [16]. Although the
multi-objective extension of PSO results in an increased algorithmic complexity, the associated
increased computational cost (overhead) is orders of magnitude lower than the CPU-time associated
to the typical objectives evaluations in SBDO for ship hydrodynamics, and therefore not considered
an issue.

In the last decades, the optimization community has explored the possibility of combining global
and local approaches, with the aim of enriching global search capability with the local search accuracy
in some hybrid formulations. This kind of algorithms falls in the class of memetic algorithms (MAs),
where a population-based global method is coupled with an individual learning procedure capable
of performing local refinements [17]. Among other MAs, PSO has been extended to single-objective
hybrid global/local formulations by local line search in [18]. In the MOPs context, PSO has been
combined with several local search methods, such as scatter search [19], synchronous particle local
search [20], gradient-based [21], charged system search [22], modified local search [23], multi-objective
dichotomy line search [24], and optimal particle search strategy [25]. Further examples of hybrid
methods in the context of multi-objective optimization can be found in [26,27]. Most MAs and PSO
methods ensure global exploration and solution diversity via use of random components. These require
running multiple times to achieve statistically significant results, which may be not affordable in
computationally-expensive SBDO problems. Therefore, deterministic PSO formulations are considered
in this work.

At the present state of the art, to the authors best knowledge, studies are still limited on memetic
multi-objective deterministic derivative-free EA formulations for an effective and efficient solution
of SBDO for hull-form design. In earlier work [28], the authors proposed the hybridization of
a multi-objective deterministic version of the PSO algorithm (MODPSO) [6] with local searches
by a deterministic derivative-free multi-objective (DFMO) [29] line search method. The resulting
multi-objective deterministic hybrid algorithm (MODHA) was applied to a limited number of test cases
and algorithm setups. Criteria for the activation of local searches were proposed and discussed, based
on the particles velocity and the hypervolume metric (HV) [30], which is a widely-used indicator for
the assessment of convergence and distribution of multi-objective problem solutions [31]. Although the
study was limited to only few cases/setups, HV was found the most promising criterion to drive the
hybridization within MODHA. A more extensive study was recommended on the local activation and
computational-cost breakdown between global and local searches.

The objective of the present work is to show how the use of a global/local hybrid algorithm based
on MODPSO and DFMO achieves better performance than stand-alone global and local algorithms
in solving multi-objective SBDO for hull-form design. Specifically, the problems of interest are
characterized by a number of variables of the order of 10 and up to three objectives (for instance,
resistance, seakeeping, and maneuverability). Specifically, the paper advances the study on MODHA
presented in [28], with focus on the use of the HV metric and the identification of the proper setup for
the hybridization scheme.

The proposed hybridization scheme is driven by two parameters: the first defines the threshold
for the activation of local searches, whereas the second defines the “deepness” of the local search
(i.e., how many function evaluations are performed at each call of the local algorithm). To identify
reasonable values for these parameters, a full factorial combination of three activation and three
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deepness parameters is evaluated and the performance compared. Following the guidelines in [32],
the assessment was targeted towards a representative benchmark of the specific SBDO problem of
interest. Specifically, the benchmark was composed by 40 analytical test problems, with two and
three objectives, 1 to 12 variables, and several features of variables and functions spaces. MODHA
performance was assessed by the HV bounded by the non-dominated solution set. Finally, the most
promising parameter setup was applied to two SBDO problems pertaining to the shape optimization
of a high-speed catamaran in waves and of a small waterplane area twin hull (SWATH) model in calm
water. Comparisons with stand-alone global [6] and local [29] methods are presented and discussed.

2. Multi-Objective Optimization Problem Formulation and Definitions

The general formulation of a multi-objective minimization problem reads

minimize f(x) = { fm(x)}, with m = 1, . . . , M

subject to zi(x) ≤ 0, with i = 1, . . . , I

and to hj(x) = 0, with j = 1, . . . , J

and to l ≤ x ≤ u

(1)

where x ∈ RN is the variables vector with N the number of variables, M is the number of objectives fm,
zi are the inequality constraints, hj are the equality constraints, and l and u are the lower and upper
bound for x, respectively. Defining the feasible solution set as

X = {x ∈ RN : l ≤ x ≤ u, zi(x) ≤ 0 ∀i ∈ I, hj(x) = 0 ∀j ∈ J} (2)

the theoretical solution of the MOP in Equation (1) is the locus of non-dominated feasible solutions
given (both in the variable and objective function space) by the Pareto solution set P (see Figure 1)

P = {(x, p)|x ∈ X , p = f(x) , @y ∈ X : f(y) � f(x)} (3)

where f(y) � f(x) indicates that f(y) dominates f(x) (see, e.g. [33]).
In the following, the approximate and discrete solution set S i (see Figure 1) achieved by the

optimizer at the ith iteration and used for the algorithm performance assessment is defined similarly
to Equation (3) as

S i = {(x, s)|x ∈ X i , s = f(x) , @y ∈ X i : f(y) � f(x)} (4)

where X i is the subset of feasible points produced by the algorithm and available at the ith iteration.
Likewise, the approximate and discrete reference solution setR used for the performance analysis

is defined as
R = {(x, r) ∈ ∪Ns

n=1Sn|@(y, s) ∈ ∪Ns
n=1Sn : s � r} (5)

where Ns is the number of final solution sets Sn provided by different algorithm formulations
and/or setups.

2.1. Performance Metrics

The performance assessment of a multi-objective optimization algorithm can be established in
terms of convergence and diversity: the former is related to the distance between S andR, whereas the
latter deals with the wideness and the spread of S . A suitable convergence-diversity metric is the
HV [30]. It provides the (hyper)volume dominated by the solution set S , evaluated as follows

HV(S ,R) = volume

 |S|⋃
i=1

vi

 (6)
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by using the anti-ideal point A of the reference solution setR [33] as a reference point, as shown in
Figure 1.

Figure 1. Hypervolume metric.

Herein, to assess and compare the performance of different algorithms, a normalized version of
HV is used

NHV =
HV(S ,R)
HV(R,R) (7)

To further assess the impact of the kth setting parameter on the algorithm performance, the
relative variability σ2

r,k [34] is additionally used. Considering the algorithm parameters vector as t ∈ T ,
the relative performance variability associated to its kth component is

σ2
r,k =

σ2
k

∑
|T |
k=1 σ2

k

(8)

where

σ2
k =

1
|Γ| ∑

γ∈Γ
[µ̂k(γ)]

2 −
[

1
|Γ| ∑

γ∈Γ
µ̂k(γ)

]2

(9)

with Γ containing the positions γ assumed by the parameter tk,

µ̂k(γ) =
1
|B| ∑

b∈B
µ̄(t),B = {t : tk = γ} and µ̄(t) =

1
|Q| ∑

q∈Q
[µ(t)]q (10)

where [µ(t)]q is the value of the NHV given by the parameters t, for the problem q.

3. Multi-Objective Deterministic Hybrid Algorithm: MODHA

The proposed global/local hybrid algorithm is based on a multi-objective deterministic version
of the particle swarm optimization [6] and on the derivative-free multi-objective local searches
algorithm [29]. The following subsections present the global and local algorithms and finally the
hybridization proposed.

3.1. Multi-Objective Deterministic Particle Swarm Optimization (MODPSO)

The PSO algorithm [14] belongs to the class of metaheuristic algorithms for single-objective
derivative-free global optimization. It is based on the social-behavior metaphor of a flock of birds or a
swarm of bees searching for food. The original PSO formulation makes use of random coefficients,
to enhance the swarm dynamics’ variability. This approach might be too expensive in SBDO for real
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industrial applications, since statistically convergent results can be obtained only through extensive
numerical campaigns. Therefore, a deterministic PSO is introduced in [35] and a discussion for its
effective and efficient use in SBDO, with comparison to the original (stochastic) PSO, is presented in [36].
The extension of deterministic PSO to a multi-objective formulation is proposed in [37] as followsvi+1

j = χ
[
vi

j + φ1

(
hj − xi

j

)
+ φ2

(
gj − xi

j

)]
xi+1

j = xi
j + vi+1

j

(11)

where vi
j and xi

j are the velocity and the position of the jth particle at the ith iteration, χ is the
constriction factor, φ1 and φ2 are the cognitive (or personal) and social (or global) learning rates, and
hj and gj are the cognitive and social (personal and global) attractors. Specifically, hj is the personal
minimizer of an aggregated objective function defined as

hj = argmin
xh,j

M

∑
m=1

fm(xh,j) with xi
h,j ∈ S i

j (12)

where xi
h,j are the points of the personal non-dominated solution set S i

j at the ith iteration, whereas gj

is the closest point to the jth particle of the solution set S i defined as

gj = argmin
xj

‖xi
j − x‖ with x ∈ S i (13)

Here, a memory-based formulation of MODPSO is used, where all points x ever visited until the
current iteration are assessed in Equation (4).

A discussion on MODPSO formulations and parameters setup for an effective and efficient use in
SBDO is presented in [6]. The current MODPSO code is available at github.com/MAORG-CNR-INM/POT.

3.2. Derivative-Free Multi-Objective Local Searches (DFMO)

DFMO [29] is an a posteriori derivative-free algorithm for constrained (possibly) non-smooth
multi-objective problems. The algorithm produces (or updates) a set of non-dominated solutions
(rather than a single one, as it is common in the single-objective case), tending towards the P of the
problem, as the iteration count grows.

At each iteration (see Figure 2), from each point xj ∈ S i, DFMO starts a line-search along a
suitably generated direction d̂k. If such a direction is able to guarantee “sufficient” decrease, then a
“sufficiently” large step λ along this direction is performed, allowing to (possibly) improve S .

It is worth noting that DFMO belongs to a particular class of derivative-free methods proposed
to tackle optimization problems where first order derivatives of the objective function and/or of
the constraints can be neither calculated nor explicitly approximated [38]. In particular, DFMO
does not perform any line-searches along approximations of gradient-related directions but rather
along directions that are not affected by possible errors on the calculation of the objective function
and constraints. Further details on DFMO formulation and implementation can be found in [29].
DFMO source code is available at www.iasi.cnr.it/liuzzi/DFL/index.php/home.

github.com/MAORG-CNR-INM/POT
www.iasi.cnr.it/ liuzzi/DFL/index.php/home
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Figure 2. DFMO conceptual scheme.

3.3. Hybridization Scheme

When and where from the local search starts, represent one of the critical issues when combining
global and local optimization methods. Herein, the proposed hybridization scheme uses the HV metric.
Defining the local search activation parameter as

α =
HV(S i,S i)

HV(S i−1,S i)
(14)

where HV(S i,S i) is the hypervolume associated to S i and HV(S i−1,S i) is the hypervolume associated
to solution set at the previous algorithm iteration S i−1, the hybrid algorithm starts a local search from
each point of the current solution set if α < α?, with α? a prescribed threshold value.

The number of problem evaluations performed at each call of the local algorithm (L) is defined as
L = ωZ , with ω the local search deepness parameter and Z the number of particles. Hybridization
scheme block-diagram and pseudo-code are shown in Figure 3 and Algorithm 1, respectively.
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Figure 3. MODHA block diagram.
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Algorithm 1 MODHA pseudo-code.

1: Initialize a swarm of Z particles
2: while i < Maximum number of iterations (Maximum budget of problem evaluations) do

3: for j = 1,Z do

4: Evaluate the objective functions f
5: end for
6: Compute the personal and global non-dominated solution sets
7: for j = 1,Z do

8: Identify cognitive hj and social gj attractors,
9: Update particles velocity vi+1

j and position xi+1
j

10: end for
11: Evaluate the local search activation parameter (α)
12: if Condition for performing local search is true (α < α?) then

13: Define D = 2N coordinate directions d̂k
14: Identify N starting points for the local search
15: for n = 1,N do

16: Set the number of local search L to zero
17: for k = 1,D do

18: while L < ωZ and λ > λmin do

19: Perform one step equal to λ along d̂k from the nth starting point
20: Evaluate the objective functions f
21: Set L to L+ 1
22: if At least one objective function improves then

23: Update local search solution set and go to step 18
24: else

25: Reduce λ
26: end if
27: end while
28: end for
29: end for
30: Update the non-dominated solution set S i with local search solution set
31: end if
32: Update the number of problem evaluations performed
33: end while
34: Output the non-dominated solution set S i

4. Analytical Test Problems

The most promising activation and deepness parameter values are identified using a test set
representative of a SBDO problem with up to three objectives and a number of variables of the order
of 10. Specifically, 40 real-valued test problems were selected from the literature [39], with two and
three objectives and 1 to 12 variables. The selected test problems include several features, such as
convex/concave/mixed/disconnected Pareto fronts or some combination, separable/non-separable
variables, Pareto one-to-one/many-to-one, and uni/multi-modality [40]. The multi-objective test
problems are summarized in Table 1. Note that problems q = 26, . . . , 40 are multi-objective combination
of well-known single-objective test functions.

To provide a proper comparison between different problems with different function-space range,
the non-dominated solution set S for each problem was normalized with the functions range, therefore
each non-dominated solution sj ∈ [0, 1] and the anti-ideal reference point for the HV is {1}M

m=1 (see
Figure 1). The code provided in [41] is used for the computation of the HV metric.
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Table 1. Analytical test problems.

Problem q Name Reference N M

1 Deb 4.1 [42] 2 2
2 Deb 5.3 [42] 2 2
3 Deb 5.1.3 [42] 2 2
4 DTLZ1 [43] 7 3
5 DTLZ3 [43] 12 3
6 DTLZ3n2 [43] 2 2
7 DTLZ5 [43] 12 3
8 F2 [44] 2 2
9 Far1 [40] 2 2

10 FES2 [40] 10 3
11 I2 [40] 8 3
12 I5 [40] 8 3
13 IKK1 [40] 2 3
14 IM1 [40] 2 2
15 lovison4 [45] 2 2
16 lovison5 [45] 3 3
17 lovison6 [45] 3 3
18 MOP3 [40] 2 2
19 MOP4 [40] 3 2
20 MOP6 [40] 2 2
21 Sch1 [40] 1 2
22 TKLY1 [40] 4 2
23 VU2 [40] 2 2
24 WFG4 [40] 8 3
25 ZDT6 [46] 10 2
26 Freudenstein-Roth—Multi Modal [34] 2 2
27 Freudenstein-Roth—Sphere [34] 2 2
28 Freudenstein-Roth—Styblinski-Tang [34] 2 2
29 Freudenstein-Roth—Three-Hump Camel Back [34] 2 2
30 Levy 5 —Schubert [34] 2 2
31 Levy 10—Griewank [34] 2 2
32 Levy 15—Ackley [34] 2 2
33 Schubert P1—Matyas [34] 2 2
34 Schubert P2—Exponential [34] 2 2
35 Sphere—Booth [34] 2 2
36 Sphere—Schubert P1 [34] 2 2
37 Sphere—Six-Hump Camel Back [34] 2 2
38 Test Tube Holder—Ackley [34] 2 2
39 Test Tube Holder—Schubert [34] 2 2
40 Test Tube Holder—Schubert P1 [34] 2 2

5. Simulation-Based Design Optimization Problems

Two SBDO problems were solved pertaining to hull-form optimization of a high-speed catamaran
and a SWATH model. Details are provided in the following subsections.

5.1. Catamaran Problem

The stochastic (reliability-based and robust) design optimization of a high-speed catamaran in
irregular head waves was solved [1]. Realistic environment conditions are associated to the North
Pacific Ocean, whereas operating conditions include stochastic sea state and speed. A multi-objective
problem (M = 2) was solved, aiming at the reduction of the expected value of the mean total resistance
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in irregular waves ( f1) and the increase of the ship operational effectiveness (operability) referring to a
set of motion-related constraints ( f2). The SBDO problem reads

minimize { f1(x), − f2(x)}T

subject to f1 ≤ 0; f2 ≥ 0

and to l ≤ x ≤ u

(15)

The problem was solved by means of stochastic radial-basis function (SRBF) interpolation [47]
of high-fidelity unsteady Reynolds-averaged Navier–Stokes (URANS) simulations (CFDShip-Iowa
v4.5 [48]). Further details on design variables, objective functions, constraints, and conditions can be
found in [48]. A snapshot of the catamaran behavior in irregular head waves computed by the URANS
solver is shown in Figure 4.

The inequalities in Equation (15) are handled by a penalty function, so that, if f1 > 0 or f2 < 0,

fm = 10000 fm for m = 1, 2 (16)

whereas if domain bounds violation occurs

fm = fm + 100
N

∑
j=1

max(xj − uj, 0) + 100
N

∑
j=1

max(lj − xj, 0) for m = 1, 2 (17)

Four design variables (N = 4) control the catamaran hull global modifications, based on
the Karhunen–Loève expansion (KLE) of the shape modification vector [49] based on free-form
deformation. Further details can be found in [1]. The reference non-dominated solution setR is taken
from [6].

Figure 4. High-speed catamaran in irregular head waves by URANS simulations [50].

5.2. SWATH Problem

A multi-objective optimization problem (M = 2) was solved for calm water resistance ( f1) and
displacement ( f2) at constant speed [51]. The SBDO problems reads

minimize { f1(x), − f2(x)}T

and to l ≤ x ≤ u
(18)

The hydrodynamic resistance was evaluated by an adaptive multi-fidelity SRBF metamodel [52]
trained with high-fidelity URANS (χnavis [53]) and low-fidelity potential flow (WARP [54]) solvers.
Further details on design variables, objective functions, constraints, and conditions can be found in [51].
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Figure 5 shows non-dimensional pressure distribution on the SWATH torpedoes and wave elevation
for the original geometry by potential flow simulation.

Figure 5. Original SWATH, non-dimensional pressure distribution and wave elevation by potential
flow simulation.

Four design variables (N = 4) control SWATH hull global modifications, based on the KLE of
the shape modification vector [49] based on a CAD parametric model developed with the CAESES R©

software from FRIENDSHIP SYSTEMS [51]. The reference non-dominated solution set R is taken
from [55].

6. Numerical Results

The MODPSO setup was defined as in [6]: number of particles Z equal to 8MN, initialized using
a Hammersley sequence sampling [56] over variables domain and boundaries; coefficients χ = 0.721
and φ1 = φ2 = 1.655 [57]; box constraints handled by a semi-elastic wall-type method [15].

Three threshold values for DFMO activation parameter (see Equations (14)) were set as α? =

{1.0, 1.1, 1.2}. Three deepness parameters (budget of local search evaluations for each call) were
set as ω = {1, 5, 10}. The line-search step λ was halved at each local search step until it reached a
minimum step size λmin = 1 × 10−9. The starting local search step size was set equal to the 10% of the
variables-space dimension.

The computational budget was assessed by νMN problem evaluations (one problem evaluation
involves the evaluation of each objective function) where ν = 125× 2c, c ∈ N[0, 4] therefore ranges
between 125MN and 2000MN. The MODHA formulations under analysis performs ωZ local search
for each call, starting from the current solution set S i, and are activated by the HV threshold value α

(see Equation (14)).
A preliminary study on the analytical test problems (see Table 1) was used to identify the most

promising values of the activation and deepness parameters. The most promising parameters setup
was finally applied to the two SBDO problems and compared with its global (MODPSO) and local
(DFMO) counterparts, using a budget of 2000MN problem evaluations.

6.1. Analytical Benchmark Problems

Figure 6 shows the NHV metric versus the budget of problem evaluations. Average values are
presented, conditional to the local search activation parameter α (Figure 6 left) and deepness parameter
ω (Figure 6 right). It can be noted how MODHA effectiveness improves by using higher values of α,
meaning that the hybrid formulation is pushed to exploit local searches capability and its effectiveness
is enriched by global exploration only if a significant improvement of the HV is achieved between
iterations (i.e., the global exploration improves the algorithm performance if the HV improves by
10–20% between MODHA iterations). Considering the deepness parameter ω, the use of a low number
of local search (ω = 1, at each DFMO call) is more effective when a low computational budget is
available. On the contrary (using higher budgets), the “deeper” is the local search, the greater is the
effectiveness of the hybrid formulation.
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Figure 7 shows the relative variance σ2
r of the NHV retained by each of the aforementioned

parameters. The hybrid formulation is mainly affected by the local searches activation parameter α

rather than by the actual number of local searches (related to ω).
The MODHA performance is summarized in Table 2. For each budget of problem evaluations,

the NHV mean values are provided along with standard deviations. Furthermore, budget-averaged
performance is also provided. The hybridization scheme with α = 1.2 and ω = 1 is the most effective
on average, providing the highest NHV with the lowest standard deviation, in accordance with results
shown in Figure 6.

Finally, MODHA with the most promising parameters setup (α = 1.2, ω = 1) is compared with
MODPSO and DFMO. Comparison results are shown in Figure 8 and summarized in Table 2. MODHA
shows better average performance than its global and local counterparts. Furthermore, the results
achieved from MODHA with the most promising parameters setup are found always very close to
the results achieved with the ”best” parameters setup (see Figure 8). Some illustrative examples of
the non-dominated solution sets achieved by MODPSO, DFMO, and MODHA are shown in Figure 9.
It can be noted how MODHA improves the quality and accuracy of the non-dominated solution sets
(obtained by MODPSO and DFMO) in terms of both convergence towards the reference and diversity
of the solutions.
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Figure 6. MODHA average performance for the analytical test problems, conditional to: the local
search activation parameter α (left); and deepness parameter ω (right).
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Figure 7. Normalized hypervolume relative variability of MODHA parameters (α and ω) for the
analytical test problems.
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Figure 8. Comparison of MODHA average performance (on the analytical test problems) to MODPSO
and DFMO.

Table 2. MODHA average performance along with comparison to MODPSO and DFMO: test problems
NHV mean values and (in parenthesis) standard deviation.

MODHA Computational Budget Coefficient γ
Parameters 125 250 500 1000 2000 Average

α = 1.0, ω = 1 0.9458 0.9641 0.9725 0.9751 0.9770 0.9669
(9.0934 × 10−2) (7.7112 × 10−2) (7.3252 × 10−2) (7.0314 × 10−2) (6.8226 × 10−2) (7.5968 × 10−2)

α = 1.0, ω = 5 0.9464 0.9651 0.9745 0.9788 0.9808 0.9691
(9.2159 × 10−2) (7.7439 × 10−2) (7.1709 × 10−2) (6.8668 × 10−2) (6.6934 × 10−2) (7.5382 × 10−2)

α = 1.0, ω = 10 0.9462 0.9643 0.9743 0.9797 0.9817 0.9692
(9.4873 × 10−2) (7.6855 × 10−2) (7.1750 × 10−2) (6.7123 × 10−2) (6.5631 × 10−2) (7.5246 × 10−2)

α = 1.1, ω = 1 0.9634 0.9704 0.9854 0.9896 0.9915 0.9800
(5.8652 × 10−2) (5.0271 × 10−2) (3.1711 × 10−2) (2.3128 × 10−2) (1.5723 × 10−2) (3.5897 × 10−2)

α = 1.1, ω = 5 0.9580 0.9682 0.9742 0.9891 0.9941 0.9767
(7.0017 × 10−2) (6.6010 × 10−2) (5.6875 × 10−2) (2.4307 × 10−2) (1.4171 × 10−2) (4.6276 × 10−2)

α = 1.1, ω = 10 0.9583 0.9617 0.9815 0.9885 0.9933 0.9767
(7.1280 × 10−2) (6.9339 × 10−2) (3.8687 × 10−2) (2.3486 × 10−2) (1.7157 × 10−2) (4.3989 × 10−2)

α = 1.2, ω = 1 0.9675 0.9741 0.9859 0.9893 0.9910 0.9815
(5.5413 × 10−2) (4.6050 × 10−2) (3.1321 × 10−2) (2.6102 × 10−2) (1.9876 × 10−2) (3.5798 × 10−2)

α = 1.2, ω = 5 0.9621 0.9710 0.9765 0.9910 0.9939 0.9789
(6.6240 × 10−2) (6.0512 × 10−2) (5.1914 × 10−2) (2.3339 × 10−2) (1.5871 × 10−2) (4.3575 × 10−2)

α = 1.2, ω = 10 0.9623 0.9664 0.9785 0.9858 0.9924 0.9771
(6.4324 × 10−2) (6.1208 × 10−2) (4.3171 × 10−2) (2.9605 × 10−2) (2.2869 × 10−2) (4.4235 × 10−2)

MODSPO 0.9493 0.9647 0.9702 0.9715 0.9725 0.9659
(8.6609 × 10−2) (7.6035 × 10−2) (7.4521 × 10−2) (7.4430 × 10−2) (7.3635 × 10−2) (7.6978 × 10−2)

DFMO 0.9530 0.9594 0.9653 0.9684 0.9708 0.9641
(9.0301 × 10−2) (8.6761 × 10−2) (8.2138 × 10−2) (8.0448 × 10−2) (7.9084 × 10−2) (8.3362 × 10−2)
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(a) Problem Deb 5.3

(b) Problem Freudenstein-Roth – Sphere

(c) Problem Freudenstein-Roth – Styblinski-Tang

(d) Problem Levy 5 – Schubert

(e) Problem I2

Figure 9. Analytical test problems: example comparison of the (normalized) non-dominated solution
sets obtained by MODPSO, DFMO, and MODHA with the most promising parameters setup.
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6.2. Simulation-Based Design Optimization Problems

Figure 10 shows the non-dominated solution sets obtained for the catamaran and the SWATH
problems by MODPSO, DFMO, and their hybridization MODHA with the most promising parameters
setup (α = 1.2, ω = 1). Considering the catamaran problem (see Figure 10a), the hybrid algorithm
can cover effectively the reference solution, outperforming its global and local counterparts. It can
be noted that MODHA is able to accurately identify the upper right region of the reference solution
set R. Considering the SWATH problem, MODHA clearly improves the quality and accuracy
of the non-dominated solution set obtained by MODPSO, whereas it is comparable with DFMO.
SBDO problems results are summarized in Table 3, showing the NHV metric along with the number of
the non-dominated solutions achieved. MODHA achieves the best performance for the catamaran
problem, whereas MODHA and its local counterpart DFMO are comparable for the SWATH problem.

(a) Catamaran

(b) SWATH

Figure 10. SBDO problems: Comparison of the non-dominated solution sets obtained (from left to
right) by MODPSO, DFMO, and MODHA with the most promising parameters setup.

Table 3. SBDO problems, summary of the optimization results in terms of NHV *.

Problem N M MODPSO DFMO MODHA

Catamaran 4 2 0.9871 0.9895 0.9935
(915) (998) (1774)

SWATH 4 2 0.9732 0.9947 0.9900
(210) (367) (341)

* In parenthesis is the size of the non-dominated solution set.

7. Conclusions and Future Work

A global/local hybridization of the multi-objective deterministic particle swarm formulation
with a local derivative-free multi-objective line-search algorithm is presented, for the effective and
efficient solution of multi-objective SBDO for hull-form design. Specifically, the problems of interest
are characterized by a number of variables of the order of 10 and up to three objectives. A metric-based
memetic scheme is proposed. The hypervolume metric is selected for the current formulation,
since it provides information on both convergence and diversity of the non-dominated solution set.
The hybridization scheme is “dual” since both global and local algorithms are mutually enriched.
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Specifically, MODHA starts with the global exploration of the design variables space; if the HV
associated to the current solution set does not increase sufficiently (by a factor α) with respect to the
previous iteration, then MODHA activates the local exploitation starting the local search from each
point of the current non-dominated solution set and performing a prescribed number of problem
evaluations (proportional to the parameter ω). This process iterates until the budget of problem
evaluations is consumed.

With the aim of identifying reasonable values for the activation (α) and deepness (ω) parameters, a
full factorial combination of these was evaluated and the performance compared. The comparison was
performed on a test set of 40 analytical test problems, with 2–3 objectives, 1–12 variables, and several
features of variables and function spaces. The test functions were selected as representative of the
specific SBDO problem of interest. The results are presented and discussed based on the normalized
HV, assessing both the convergence and the diversity of the non-dominated solution set.

The performance of the hybridization scheme depends significantly on the local search activation
parameter α. The parameters setup formed by α = 1.2 and ω = 1 is the most effective overall.
This was compared to its global and local counterpart, whose setting parameters were taken from
earlier studies [6,29]. The proposed memetic algorithm showed the best performance on average.
MODHA algorithm with the most promising parameters setup was finally applied to the two
simulation-based design optimization problems of a high-speed catamaran (aimed at reducing the
resistance and increasing the operability in realistic ocean conditions) and a SWATH model (aimed at
reducing the calm water resistance and increasing the hull displacement), showing better results than
global and local algorithms.

The current achievements motivate further studies and analysis of the proposed metrics-based
formulation, focusing on the criterion for the selection of the local-search starting points, such as
subsampling of the non-dominated solution set or the use of crowding-distance metrics. Furthermore,
the analysis of the effects of the local search maximum and minimum step size (on the overall
performance) will be addressed. Future work includes also the investigation of alternative
multi-objective PSO formulations, such as the crowding-distance-based multi-objective PSO [58].
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