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S U M M A R Y

Numerical simulations of earthquake ground motions are used both to anticipate the effects

of hypothetical earthquakes by forward simulation and to infer the behaviour of the real

earthquake source ruptures by the inversion of recorded ground motions. In either application

it is necessary to assume some Earth structure that is necessarily inaccurate and to use a

computational method that is also inaccurate for simulating the wavefield Green’s functions.

We refer to these two sources of error as ‘propagation inaccuracies’, which might be considered

to be epistemic. We show that the variance of the Fourier spectrum of the synthetic earthquake

seismograms caused by propagation inaccuracies is related to the spatial covariance on the

rupture surface of errors in the computed Green’s functions, which we estimate for the case

of the 2009 L’Aquila, Italy, earthquake by comparing erroneous computed Green’s functions

with observed L’Aquila aftershock seismograms (empirical Green’s functions). We further

show that the variance of the synthetic seismograms caused by the rupture variability (aleatory

uncertainty) is related to the spatial covariance on the rupture surface of aleatory variations in

the rupture model, and we investigate the effect of correlated variations in Green’s function

errors and variations in rupture models. Thus, we completely characterize the variability of

synthetic earthquake seismograms induced by errors in propagation and variability in the

rupture behaviour. We calculate the spectra of the variance of the ground motions of the

L’Aquila main shock caused by propagation inaccuracies for two specific broad-band stations,

the AQU and the FIAM stations. These variances are distressingly large, being comparable or

in some cases exceeding the data amplitudes, suggesting that the best-fitting L’Aquila rupture

model significantly overfits the data and might be seriously in error. If these computed variances

are typical, the accuracy of many other rupture models for past earthquakes may need to be

reconsidered. The results of this work might be useful in seismic hazard estimation because

the variability of the computed ground motion, caused both by propagation inaccuracies and

variations in the rupture model, can be computed directly, not requiring laborious consideration

of multiple Earth structures.

Key words: Earthquake ground motions; Earthquake hazards; Earthquake source observa-

tions.

1 I N T RO D U C T I O N

Numerical simulations of earthquake ground motions are used both

to anticipate the effects of hypothetical earthquakes (e.g. Graves

& Pitarka 2014) by forward simulation and to infer the behaviour

of the real earthquake source ruptures by the inversion of recorded

ground motions (e.g. Olson & Apsel 1982). In either application

it is necessary to assume some Earth structure, represented as a

seismic velocity, density and anelastic attenuation structure, which

is necessarily inaccurate, and to use a computational method like ray

theory or finite differences which is also inaccurate for simulating

the wavefield Green’s functions. Presently, there is no method for

making quantitative estimates of the errors, caused by the errors in

the assumed Earth structure and the inaccurate calculation method,

in the simulated Green’s functions for either type of study.

Typically in seismic hazard studies using synthetic seismograms

(e.g. Wang & Jordan 2014; Villani & Abrahamson 2015) the error

in the synthetic earthquake seismograms caused by inaccuracies

in the Earth structure and in the computational methods is not

considered.

Recently, however, attention has turned to the inclusion of Green’s

function errors (‘theory errors’) in inversions of observed ground
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Synthetic earthquake ground motion variability 347

Figure 1. Three covariance functions for heterogeneous velocity structure models. Normalizations are somewhat arbitrary. Only the shapes of the curves are

significant.

motions to infer the rupture process. In a very important paper Yagi

& Fukahata (2011) presented a method to include the uncertain-

ties in Green’s functions into an inversion for earthquake rupture

behaviour. Other significant works that look at theory errors in a

Bayesian inversion context are papers by Bodin et al. (2012), Du-

putel et al. (2012), Dettmer et al. (2014), Minson et al. (2014)

and Ragon et al. (2018). In all these papers the estimates of the-

ory error were obtained from theoretical considerations. None of

the investigators actually measured Green’s function errors. Large

earthquakes typically have aftershocks, which, if their rupture sur-

faces are physically small enough, can be considered to be point

evaluations of the real Green’s functions of the Earth. In our work

we simulate small aftershock ground motions with (erroneous) the-

oretical Green’s functions. The differences between the aftershock

ground motions and the simulated motions are taken to be the

‘theory error’, and we develop a statistical model of the sources of

discrepancies between the calculated and the real Green’s functions.

We use this with a frequency-domain version of the time-domain

Yagi & Fukahata (2011) theory to derive the expected variance γ 2

caused by Green’s function error in the Fourier amplitude spectra of

ground motions from a larger (non-point) earthquake that we seek

to model. This variance might possibly be useful both in ground

motion inversions and in seismic hazard studies.

We also investigate the total variability of a synthetic seismo-

gram for a large earthquake, which is caused by errors in the wave

propagation model and by the natural variability of the earthquake

source. We will show that the total variability of the ground motion

is given by an equation with three terms. One term is controlled by

errors in the Green’s function, which are epistemic errors, one term

is controlled by variations in the rupture source, which are aleatory

variations, and a third term that is new to seismic hazard studies and

quantifies the effects of correlated variations in the rupture models

and the errors in the Green’s functions.

2 A D I S C R E T I Z E D

F R E Q U E N C Y- D O M A I N D E R I VAT I O N O F

T H E Ya g i & F u k a h a t a ( 2 0 1 1 ) T H E O RY,

W I T H A D D I T I O N S A N D C O M M E N T S

In their insightful paper Yagi & Fukahata (2011) (henceforth YF)

presented a time-domain theory in which they derived the effect

of Green’s function errors on the covariance matrix of predicted

large earthquake ground motions and they included this covariance

matrix in a ground motion inversion. However, their theory did not

measure the errors in the Green’s functions themselves. We derive a

frequency-domain version of the YF theory, and we also add some

terms which they have neglected, with comments.

Our notation varies somewhat from YF. Let the true traction on a

fault at point x caused by a point force in the j-direction at the ob-

server at y be g( j)(x, ω; y) = [g
( j)

1 (x, ω; y) g
( j)

2 (x, ω; y)]T , where

1- and 2-directions are orthogonal directions tangent to the fault at

the point x , let its numerical approximation be g̃( j)(x, ω; y), and the

error in g̃( j) be δg( j)(x, ω; y), with expectation E[δg( j)(x, ω; y)] = 0,

so we have

g( j) (x, ω; y) = g̃( j) (x, ω; y) + δg( j) (x, ω; y) . (1)

Similarly, let the relation between the true slip velocity distribution

at x, the assumed slip velocity distribution and the variation in slip
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348 P. Spudich et al.

Figure 2. Map of the fault geometry and stations used to retrieve the rupture model of the 2009 L’Aquila earthquake, Italy, by Cirella et al. (2012). The red

box is the vertical projection of the assumed fault rupture area. The red star is the epicentre. Black triangles are selected permanent strong motion stations,

open circles are broad-band stations, blue dots are GPS stations, and white dots are continuous GPS stations. The rupture surface dips 54◦ to the southwest.

velocity be

s (x, ω) = s̃ (x, ω) + δs (x, ω) (2)

with expectation E[δs(x, ω)] = 0. We also have that the observed

ground velocity in the j-direction d j (ω, y) equals the noise-free

velocity v j (ω, y) plus the ground noise n j (ω, y),

d j (ω, y) = v j (ω, y) + n j (ω, y) . (3)

The noise-free ground velocity is given by

v j (ω, y) = ∫
x∈A

s (x, ω) � g( j) (x, ω; y) dA (4)

= ∫
x∈A

s̃ � g̃( j)dA + ∫
x∈A

δs � g̃( j)dA + ∫
x∈A

s̃ � δg( j)dA

+ ∫
x∈A

δs � δg( j)dA. (5)

Here, A is the rupture surface, the dot operator is the usual vector

dot product of two vectors, and we have suppressed all the arguments

for clarity. Eq. (5) is very important: it shows how variations in the

rupture model and errors in the Green’s functions contribute to the

total motion. Discussing the terms individually, we define

ṽ
sg

j = ∫
x∈A

s̃ � g̃( j)dA, (6)

δvs
j = ∫

x∈A

δs � g̃( j)dA, (7)

δv
g

j = ∫
x∈A

s � δg( j)dA, (8)

δv
sg

j = ∫
x∈A

δs � δg( j)dA = ∫
x∈A

(
δs1 δg1

( j) + δs2 δg2
( j)

)
dA. (9)

Eq. (6) is just the usual finite-fault synthetic seismogram calcu-

lated using an approximate numerical method for an assumed rup-

ture model in an erroneous assumed geologic structure. The ground

velocity δvs
j is caused by the variation δs in the rupture source.

The variance ρ2
j of δvs

j is a measure of the aleatory variability in the

ground velocity caused by the rupture source variability. The ground

velocity δv
g

j is caused by the error δg in the assumed Green’s func-

tion. The variance γ 2
j of δv

g

j is a measure of the epistemic variability

in the ground velocity because errors in the geologic structure and

the computational method can both be reduced with the addition

of more information. Finally, δv
sg

j is the ground velocity caused by

the interaction of δs and δg, and we denote its variance ξ 2
j . This

term has not been recognized in the seismic hazard literature and

might not be negligible depending on the amplitudes of δs and δg.

This term takes into account the possibility that variations in the

geologic structure might cause correlated variations in the rupture

behaviour, although this term will be nonzero even if δs and δg are

uncorrelated. We will comment later on the meanings of s̃(x, ω) and

δs(x, ω).

Most of this paper will concentrate on estimating the variance γ 2
j

of δv
g

j given real-world measurements of Green’s function errors.

However, we will show that the variance ρ2
j of δvs

j is given by

a nearly identical result, and we will give an expression for the

variance ξ 2
j of δv

sg

j .
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Synthetic earthquake ground motion variability 349

Figure 3. (a) Focal mechanisms of 41 selected aftershocks. (b) Event sequence numbers of aftershocks (see Table 1). Red triangles indicate the broadband

stations used in this work.
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350 P. Spudich et al.

Table 1. Aftershock identification codes, origin times, mechanisms and seismic moments.

AF ID Origin time Strike [◦] Rake [◦] Dip [◦] Mo [dyn cm]

AF01 2009/04/06 12:54:12 345 −80 60 1.065e + 21

AF02 2009/04/07 00:40:53 0 −50 40 1.159e + 20

AF03 2009/04/07 10:28:13 160 −75 60 1.11e + 21

AF04 2009/04/07 16:14:34 105 −80 70 5.698e + 19

AF05 2009/04/07 19:45:55 110 −100 60 1.064e + 20

AF06 2009/04/07 23:38:23 130 −110 60 1.447e + 20

AF07 2009/04/08 02:59:44 0 −50 25 4.944e + 21

AF08 2009/04/08 18:35:20 145 −80 35 9.322e + 19

AF09 2009/04/08 23:17:14 350 −60 40 1.71e + 21

AF10 2009/04/09 05:44:19 125 −100 70 9.639e + 19

AF11 2009/04/10 19:06:30 130 −100 40 9.294e + 20

AF12 2009/04/11 05:48:26 160 −90 55 7.566e + 19

AF13 2009/04/12 18:08:53 160 −80 70 3.738e + 20

AF14 2009/04/13 07:07:40 140 −75 55 6.849e + 20

AF15 2009/04/13 19:08:50 10 −50 40 2.919e + 21

AF16 2009/04/13 20:07:35 350 −50 35 5.402e + 20

AF17 2009/04/15 11:43:52 15 −40 25 9.815e + 20

AF18 2009/04/16 19:33:41 160 −90 50 1.437e + 20

AF19 2009/04/19 14:23:23 160 −70 60 2.671e + 20

AF20 2009/04/19 22:24:49 145 −70 65 4.445e + 19

AF21 2009/04/20 07:39:46 140 −100 50 1.142e + 20

AF22 2009/04/20 17:02:12 120 −100 65 1.882e + 20

AF23 2009/04/21 08:16:20 145 −70 60 2.64e + 20

AF24 2009/04/21 15:05:20 155 −70 60 1.152e + 20

AF25 2009/04/21 15:43:44 0 −60 40 1.816e + 21

AF26 2009/04/24 15:52:53 350 −55 25 6.49e + 20

AF27 2009/04/25 02:07:33 5 −45 25 1.073e + 21

AF28 2009/04/25 13:16:42 145 −75 50 5.73e + 20

AF29 2009/04/26 15:50:58 110 −110 60 1.028e + 20

AF30 2009/05/03 05:13:40 345 −70 35 7.906e + 20

AF31 2009/05/10 15:59:15 335 −90 45 1.847e + 21

AF32 2009/05/30 02:54:06 5 −50 40 1.792e + 21

AF33 2009/06/19 19:46:20 160 −80 40 1.062e + 21

AF34 2009/06/20 05:40:27 -10 −70 35 4.233e + 20

AF35 2009/06/25 20:16:24 140 −100 50 1.569e + 20

AF36 2009/07/03 01:13:17 355 −70 40 2.014e + 21

AF37 2009/07/03 09:43:04 350 −65 40 1.417e + 21

AF38 2009/07/12 08:40:44 140 −110 35 3.347e + 19

AF39 2009/07/12 22:22:51 120 −80 55 1.227e + 20

AF40 2009/07/21 07:41:30 110 −100 65 8.407e + 19

AF41 2009/07/22 03:08:39 110 −110 35 1.258e + 20

We note that our γ 2 is identical to YF’s τ 2. We have changed

notation to avoid confusion with the measure of interevent (between-

event) variability τ used widely in the seismic hazard literature

(Al-Atik et al. 2010).

YF do not explicitly write eq. (5). They make an important as-

sumption. They assume that when their inversion converges, it con-

verges to the true slip velocity model, so δs(x, ω) = 0. This enables

them to drop the terms in δs above, yielding:

d j (ω, y) = ∫
x∈A

s̃ (x, ω) � g̃( j) (x, ω; y) dA + ∫
x∈A

s̃ (x, ω) �

δg( j) (x, ω; y) dA + n j (ω, y) . (10)

We can de-clutter this equation by letting the index j refer to the

jth channel of data, j = 1, 2, · · · , J where a channel is meant to

be a single component of motion at a single observation location y

and there are J total channels. Then observer location y is subsumed

into index j and we have

d j (ω) = ∫
x∈A

s̃ �

[
g̃( j) + δg( j)

]
dA + n j (ω) . (11)

YF assemble their slip model from K constant-slip-velocity sub-

faults:

s̃ (x, ω) =

2∑

q=1

K∑

k=1

aqk T (ω) e−iωtk Xk (x) (12)

where aqk is the total (final) slip of the kth subfault in the orthogonal

q = 1 and q = 2 directions on the fault, T (ω) is the Fourier spec-

trum of the slip-velocity time function normalized to unit total slip,

assumed constant over each subfault, tk is the rupture time of the

kth subfault, assumed constant over the subfault, and Xk(x) := 1 if

x is in the kth subfault, := 0 otherwise. In eq. (12) we omit YF’s

sum over source-time functions without loss of generality.

Let the integral of a single component q of the approximate

Green’s functions over the kth subfault be

G̃qk j (ω) := ∫
x∈A

g̃( j )
q (x, ω) Xk (x) dA, (13)

with a similar equation for the integral of δg( j)
q (note - this latter

integral is never evaluated). Combining these last two relations into
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Synthetic earthquake ground motion variability 351

Figure 4. Observed aftershock ground velocity (red) and synthetic velocity (blue), plotted at the same scale as the observations, for the RF velocity structure

at AQU. Numbers are peak velocities of data seismogram in cm s−1. First 40 s of total 60 s seismograms are shown. Code AFnn is the aftershock number

shown in Fig. 3(b) and Table 1.

the preceding one gives

d j (ω) =
∑

q

∑

k

aqk T (ω) e−iωtk
[
G̃qk j (ω) + δGqk j (ω)

]
+ n j (ω) .

(14)

Further, assume that the data are filtered with some bandpass

filter B(ω). Then the filtered data are

b j (ω) = B (ω) d j (ω) =
∑

q

∑

k

aqk T (ω) e−iωtk B (ω)

[
G̃qk j (ω) + δGqk j (ω)

]
+ B (ω) n j (ω) . (15)

Define H̃qk j (ω) := T (ω)e−iωtk B(ω) G̃qk j (ω) and Aqk(ω) :=

aqk T (ω) e−iωtk B(ω) .

Combining all these relations gives YF’s eq. (7) in different

notation:

b j (ω) =
∑

q

∑

k

aqk H̃ qk j (ω) +
∑

q

∑

k

Aqk (ω) δGqk j (ω)

+ B (ω) n j (ω) . (16)

Here the term Aqk(ω) is YF’s term P̃qk(t) ∗ B(t). The first term

on the right-hand side of the equal sign is just the slip-velocity

model ‘convolved’ with the erroneous numerical Green’s function,

in other words it is the usual finite-fault forward synthetic in this

type of inversion. Another way to write eq. (16) is

b j (ω) =

P∑

p

Ap (ω) G pj (ω) + B (ω) n j (ω) , (17)

where the double sum over slip-direction index q and subfault index

k has been replaced by a single sum over p, with P = 2K and where

G pj (ω) = G̃ pj (ω) + δG pj (ω) . (18)

Denoting the first term on the right-hand side of eq. (17) as u j (ω)

and using the multidimensional delta method, the variance of u j (ω)

for a single frequency ω is (Spudich et al. 2017; see the Appendix)

γ 2
j = ∇u j

†C j ∇u j (19)

where the dagger connotes complex-conjugate transpose, where we

suppress the ω argument to avoid clutter and where

∇u j =

[
∂u j

∂G1 j

∂u j

∂G2 j

· · ·
∂u j

∂G P j

]T

= [A1 A2 · · · AP ]T . (20)

We have used the transpose notation for typographical conve-

nience to denote a column vector. Note that the right-hand side of

eq. (20) contains only source terms; the data channel dependence j

drops out. The pr element of the P × P complex covariance matrix

C j , again with the frequency argument suppressed, is

C pr j = E
[(

G pj − G̃ pj

)∗ (
Gr j − G̃r j

)]
= E

[
δG∗

pjδGr j

]
, (21)

where r = 1, 2, · · · , P is a dummy index, where the asterisk de-

notes complex conjugation and where the expectation is taken over

many realizations of G̃. The covariance matrix C j has the dimen-

sion P × P , which is related to the gridding of the source on the

rupture surface. In this frequency-domain derivation C j describes

the covariance of Green’s function errors on the rupture surface; it
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352 P. Spudich et al.

Figure 5. More data-synthetic comparisons at AQU for RF structure. Observed aftershock ground velocity (red) and synthetic velocity (blue), plotted at the

same scale as the observations. Numbers are peak velocities of data seismogram in cm s−1. First 40 s of total 60 s seismograms are shown. Code AFnn is the

aftershock number shown in Fig. 3(b). Data seismograms omitted from analysis owing to excessive noise or processing glitches are haloed in grey.

is not a data covariance matrix. We then have

γ 2
j =

P∑

p

P∑

r

A∗
pC pr j Ar , (22)

where the ω dependence is implicit. Because the covariance matrix

is Hermitian, γ 2
j (ω) is real. To show that our derivation is correct,

we reproduce the form of YF’s result (their eq. 16, omitting the

ground noise contribution) in the frequency domain by following

them and letting

C pr j (ω) = δpr σ
2
g (ω) S2

pj (ω) , (23)

where δpr is the Kroeneker delta, σ 2
g (ω) is a scaling factor and S2

pj (ω)

is the maximum amplitude of the theoretical Green’s function for

slip component p and data channel j. Eq. (23) makes the reasonable

guess that the covariance matrix is diagonal and its elements are

proportional to the maximum amplitude of the theoretical Green’s

function. Inserting eqs (20) and (23) into eq. (19) gives

γ 2
j =

P∑

p=1

σ 2
g

∣∣Ap

∣∣2
S2

pj , (24)

where again we suppress the ω argument to avoid clutter. Note that

eq. (24) lacks YF’s Toeplitz matrix Pqk j which contains the time-

shifted source functions and is used in the time domain convolutions

not needed in the frequency domain. While it is reasonable to guess

that the Green’s function error is proportional to the maximum value

of the theoretical Green’s function, it is preferable to measure the

actual error, which we do later in this paper.

3 T H E C O N T I N U O U S I N T E G R A L C A S E

YF pose their result in terms of constant-slip subfaults. The gen-

eralization to a continuous spatial variation of the slip function is

straightforward. From eq. (11) we have

d j (ω) = ∫
x∈A

s̃ � g( j)d A + n j (ω) , (25)

where the 2 × 2 covariance matrix of the Green’s function error for

the jth data channel is

C j
(
x, x′, ω

)
= E

[
δg( j)∗ (x, ω) T δg( j)

(
x′, ω

)]

= E

[[
δg

( j)

1 (x)

δg
( j)

2 (x)

]∗ [
δg

( j)

1 (x′) δg
( j)

2 (x′)
]]

. (26)

This result is obtained because the mean of the Green’s function

errors is assumed to be zero (the theoretical Green’s functions are

assumed to not have long-wavelength or frequency-domain biases),

and inspection of the actual data show them to have a mean that is

essentially zero, as we will see later. It should be noted that in the

discrete case C j (ω) (with the lowered index) was a P × P matrix,

where P was the number of grid points on the rupture and the

covariance was taken between pairs of grid points, and C j (x, x′, ω)

(with a raised index) in the continuous case is a 2 × 2 matrix,

where the covariance between points x and x′ on the rupture will

be given below by a continuous function. The use of a continuous

function is one of the ways in which our work goes beyond YF.

The raised and lowered indices are not meant to indicate covariant

or contravariant components. Then, for a particular rupture model
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Synthetic earthquake ground motion variability 353

Figure 6. Observed aftershock ground velocity (red) and synthetic velocity (blue,) plotted at the same scale as the observations, for the CIA velocity structure

at FIAM. Numbers are peak velocities of data seismogram in cm s−1. First 40 s of total 60 s seismograms are shown. Code AFnn is the aftershock number

shown in Fig. 3(b) and Table 1. Data seismograms omitted from analysis owing to excessive noise or processing glitches are haloed in grey. This figure corrects

the erroneous fig. 6 of Spudich et al. (2017).

Figure 7. Remainder of the observed aftershock ground velocity (red) and synthetic velocity (blue,) plotted at the same scale as the observations, for the CIA

velocity structure at FIAM. Numbers are peak velocities of data seismogram in cm s−1. First 40 s of total 60 s seismograms are shown. Code AFnn is the

aftershock number shown in Table 1 and Fig. 3(b). Data seismograms omitted from the analysis owing to excessive noise or processing glitches are haloed in

grey. This figure corrects the erroneous fig. 7 of Spudich et al. (2017).
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354 P. Spudich et al.

Figure 8. The Argand plot of the scaled complex differences between real and synthetic AQU ground velocities using the CIA model as a function of frequency.

Datum colour is proportional to frequency. Lines connect complex difference data for an individual aftershock.

Figure 9. The Argand plot of the scaled complex differences between real and synthetic AQU ground velocities using the RF model. Datum colour is

proportional to frequency. Lines connect complex difference data for an individual aftershock.
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Synthetic earthquake ground motion variability 355

Figure 10. Blue plus signs are real part of the covariance data formed from rigidity- and moment-scaled data for all three components of motion at station

AQU using the RF velocity model for the 0.26672–0.30006 Hz frequency band. Vertical positions of red plus signs indicate the median value of the covariance

data in each distance bin, horizontal position is the centre of each distance bin.

s̃(x, ω), the variance of the ground motion caused by errors in the

Green’s functions is

γ 2
j (ω) =

∫

x∈A

∫

x′∈A

s̃† (x, ω) C j
(
x, x′, ω

)
s̃
(
x′, ω

)
dx dx′. (27)

Physically we might expect two different functional forms for

the spatial covariance. If it is dominated by finite-frequency effects,

we might expect that an element of the covariance of the Green’s

function errors might be of the form

C j
(
x, x′, ω

)
∝ f

(∣∣x − x′
∣∣ ω

/
β
)

(28)

where β is the shear wave speed of the medium and f is some

decreasing function like a Gaussian centred at the origin. We expect

scaling to be related to the shear wave speed because the S wave

is typically much stronger than the P wave in finite-source seismo-

grams. In such a model the errors in the Green’s functions would be

correlated at progressively longer distances as the wavelengths of

the shear wave increased. On the other hand, if errors in the Green’s

functions are related to unmodelled spatial variations in the rigid-

ity along the fault surface, this function might have no frequency

dependence and would have the same form as the covariance of

rigidity along the fault.

Expanding eq. (27), we have

γ 2
j (ω) =

∫

x⊂A

∫

x′⊂A

[
s̃∗

1 (x) s̃∗
2 (x)

]
C j

(
x, x′

) [
s̃1 (x′)

s̃2 (x′)

]
dx dx′, (29)

where

C j
(
x, x′, ω

)
= E

[
δg

( j)∗

1 (x) δg
( j)

1 (x′) δg
( j)∗

1 (x) δg
( j)

2 (x′)

δg
( j)∗
2 (x) δg

( j)

1 (x′) δg
( j)∗
2 (x) δg

( j)

2 (x′)

]
. (30)

In these equations the ω dependence of the right-hand side terms

is implied. Eq. (27) is the general result, but we can simplify for

the common case that the rake in an earthquake rupture is primarily

unidirectional. We can simplify by choosing the ê1 unit vector to

be directed along the dominant slip direction and assuming that the

other component of slip is negligible, which is true for the L’Aquila

earthquake. We further simplify by assuming that the ê1 component

of Green’s function error is uncorrelated with the ê2 component, so

C j becomes diagonal and we finally have

γ 2
j (ω) =

∫

x∈A

∫

x′∈A

s̃∗
1 (x, ω) C

j

11

(
x, x′, ω

)
s̃1

(
x′, ω

)
dx dx′. (31)

We have verified numerically that the estimates of γ 2
j (ω) obtained

from eq. (31) agree very well with the variance of an ensemble of

ground motions calculated from an ensemble of δg having a given

covariance function. In considering the differences between true

Green’s traction function g( j)(x, ω) and its theoretical approxima-

tion g̃( j)(x, ω), we expect that the theoretical approximation is devel-

oped in some simplified Earth model that is on the whole unbiased,

and that the real Earth structure is equal to the theoretical structure

plus some random heterogeneities. If a main-shock fault zone has

an extensive low velocity zone, we assume that this feature is in-

cluded in the theoretical traction functions g̃( j)(x, ω). The position

vector x is a vector in 3-space, meaning that we are not assuming

that our main-shock rupture is located on a 2-D surface (although
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356 P. Spudich et al.

Figure 11. Blue plus signs are the imaginary part of the covariance data formed from rigidity- and moment-scaled data for all three components of motion

at station AQU using the RF velocity mode for the 0.26672–0.30006 Hz frequency band. Vertical positions of red plus signs indicate the median value of the

covariance data in each distance bin, horizontal position is the centre of each distance bin. The median of the imaginary part of the covariance data at small

separation is approximately zero, as expected.

the aftershocks we use define a fairly planar structure). We are ex-

amining the variation in the traction wavefield in the main-shock

source volume.

Following Frankel & Clayton (1986), the covariance function

may be derived from observed teleseismic traveltime and ampli-

tude variations between g( j)(x, ω) and g̃( j)(x, ω) that will depend on

the wavenumber spectrum of the heterogeneities. Frankel & Clayton

(1986) studied these variations in spatially stationary random media

with Gaussian and exponential spatial correlation functions and in

a self-similar medium with equal variation of seismic velocity over

a broad range of length scales. Because their assumed random me-

dia were spatially stationary, their covariance functions were func-

tions of spatial separation only. It should be noted that even though

these random media had different spatial correlation functions, the

amplitude distribution of the velocity perturbations was Gaussian.

They concluded that random media with self-similar velocity fluc-

tuations with a correlation length of a = 10 km can explain both

teleseismic traveltime anomalies and the presence of seismic coda

at high frequencies. Each of the three types of media has its own

correlation function, shown in Fig. 1. The exponential and Gaus-

sian covariance functions are normalized to unit amplitude at zero

separation; the Von Karman correlation function is proportional to

the Bessel function K0(r/a), where r is separation and is arbitrar-

ily normalized to K0(1/10) = 1 in Fig. 1 (K0(0) = ∞). Even for

the self-similar heterogeneity spectrum, some nonzero covariance

is expected at 10 km separation. Given a particular heterogeneity

spectrum, we expect that there will be some spatially correlated

traveltime and amplitude variations in the Green’s functions. If we

consider the covariance of true Green’s traction function g( j)(x, ω)

and its theoretical approximation g̃( j)(x, ω), we expect that there

will be some nonzero covariance between different frequencies to

account for traveltime errors. Some evidence of this appears in the

next sections.

An important distinction to note is that Frankel & Clayton (1986)

specified the covariance of their random seismic velocity struc-

tures, and their variations in wave amplitude were the result of the

random structures. We, on the other hand, are using observations

of aftershock seismograms to look directly at the random varia-

tion of the traction wavefield δg( j)(x, ω) = g̃( j)(x, ω) − g( j)(x, ω),

without the intervening mechanism of a random velocity struc-

ture. Our model is that the wavefield δg( j)(x, ω) is spatially sta-

tionary (meaning that spatial covariance is a function of separation

|x − x′| between δg( j)(x, ω) and δg( j)(x′, ω)), and has zero mean,

averaged over either many realizations or averaged over many cor-

relation lengths. Consequently, the results of Frankel & Clayton

(1986) are not directly applicable to our problem. What is needed

now are finite-difference studies of the covariance of wavefields

in three-dimensionally varying media. It might be that such co-

variance functions might have fundamentally different characteris-

tics, such as having an oscillatory behaviour with the covariance

function, being positive at some separations and negative at other

separations.

YF’s eq. (16) and our result (31) have implications for an im-

portant practical problem, namely, the problem of estimating the

variability in a deterministic forward synthesis of ground motions

from a hypothetical earthquake. When performing such a synthesis
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Synthetic earthquake ground motion variability 357

Figure 12. Median covariance as a function of separation distance in 10 frequency bands for station AQU using RF velocity model lumping data from all

components of motion together.

for a site-specific prediction of ground motion, the result has an

uncertainty caused by ignorance of the exact seismic velocity struc-

ture of the region and an uncertainty caused by the variability of the

rupture source behaviour. The YF result and the continuous integral

form eq. (31) are important results because they quantify the errors

caused by inability to calculate accurate Green’s functions, both be-

cause of inadequate computational methods (e.g. ray theory versus

elastic finite differences) and poor knowledge of Earth’s structure.

Both of these sources of error can easily be better quantified af-

ter an earthquake by addition of more information, for example,

a more accurate computational method or a better Earth structure

model, and are therefore epistemic. Moreover, regardless of our

state of knowledge of Earth’s structure, some informed estimate

of Green’s function error covariance function can be made using

Frankel & Clayton’s method, even if there are no recordings of

small local earthquakes that can be considered empirical Green’s
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358 P. Spudich et al.

Figure 13. Solid lines: median covariance at AQU as a function of separation distance for 10 frequency bands lumping all components of motion together and

normalizing to unit amplitude at the smallest separation. Dashed line: average of all the solid lines.

functions. The second part of estimating the variability of a de-

terministic ground motion synthesis is the rupture variability. The

aleatory part of the error in ground motion prediction is caused

by the variability of the characteristics of the earthquake source. It

could be that inclusion of a statistical representation of the source

such as that by Mai & Beroza (2002) could yield the total variability

of a Green’s-function-based prediction of ground motion including

both aleatoric and epistemic uncertainties. We comment more on

this later in the paper.

4 E S T I M AT I N G T H E C OVA R I A N C E

M AT R I X O F G R E E N ’ S F U N C T I O N

E R RO R S

In order to measure the errors in theoretical Green’s functions, we

are assuming that recordings of ground motions from small af-

tershocks are true point-dislocation Green’s functions (after some

scaling to be discussed below). The error in the theoretical Green’s

function is related to the difference between the aftershock seismo-

grams and theoretical point source simulations of the aftershocks.
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Synthetic earthquake ground motion variability 359

Figure 14. Solid lines: median covariance at FIAM as a function of separation distance for 10 frequency bands lumping all components of motion together

and normalizing to unit amplitude at the smallest separation. Dashed line: average of all the solid lines.

4.1 The 2009 L’Aquila, central Italy, main shock and

aftershock sequence

We have selected for study the 2009 April 6 Mw 6.1 L’Aquila, Italy,

earthquake and its aftershocks. The main shock and many after-

shocks were well recorded by permanent strong motion instruments

and broad-band sensors deployed in the epicentral area. In addition,

Cirella et al. (2009, 2012) have derived rupture models for the main

shock using the simulated annealing algorithm of Piatanesi et al.

(2007), so considerable preliminary work was already done. A map

of the area is shown in Fig. 2. In this paper we concentrate on af-

tershocks recorded at broad-band stations AQU and FIAM that are

essentially collocated with the strong-motion stations that recorded

the main shock. Note that FIAM was collocated with strong mo-

tion station FMG. We chose to work with a set of 41 aftershocks

recorded at station AQU (Fig. 3) that had focal mechanisms within

30◦ of the main-shock mechanism and had corner frequencies above

2.68 Hz. We will comment on the possible biasing effects of this

30◦ mechanism variation later.
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360 P. Spudich et al.

Figure 15. Covariance at zero separation for various combinations of component and frequency bands for the three components of motion at AQU and FIAM.

Measured values of �sc(ω) are shown by circles, triangles and crosses. Piecewise linear functions are interpolants.

Figure 16. Best-fitting L’Aquila main-shock rupture model. Colours show peak slip velocity (m s−1), solid white contours show rupture time (s), dashed

contours show the parameter ‘acceleration time’ Tacc in the Yoffe slip function of Tinti et al. (2005) and black arrows show the direction of slip.

As our highest frequency of interest for the study was 0.5 Hz,

these events were point sources to a good approximation. 33 of

these aftershocks were recorded at station FIAM. Theoretical trac-

tion Green’s functions have been calculated for them using the

frequency–wavenumber integration method (Saikia 1994; imple-

mented in the TDMT software of Dreger 2003) for two different

seismic velocity structures (realizations), the CIA model of Her-

rmann et al. (2011), which was used by Cirella et al. (2012) for
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Synthetic earthquake ground motion variability 361

Figure 17. γ as a function of frequency for station AQU using RF velocity structure. Sawtooth spectra result from using the individual coloured covariance

functions from Fig. 13 in their respective frequency bands. Red: N133E (strike-parallel) component of motion at AQU; green: N223E (strike-perpendicular)

component of motion; blue: vertical component of motion.

station FMG and the receiver function (RF) model of Bianchi et al.

(2010), which was used for station AQU. The theoretical tractions

were calculated for the fault geometry indicated by each aftershock

moment tensor solution (Table 1) obtained from Herrmann et al.

(2011) and Valoroso et al. (2013). Data-synthetic comparisons for

these stations and aftershocks are shown in Figs 4–7. The moment-

tensor solutions were obtained by fitting lower frequency data at

more distant stations. Thus, fits shown in these figures are not the

result of inversions of the observed aftershock data but rather of

forward modelling of these events. We removed from the analysis

those data for which the observed data had obvious ground noise or

processing glitches. They were events labelled AF31, AF33, AF37

and AF39 for AQU, leaving 37 events, and AF28, AF23, AF20,

AF12, AF11, AF07 and AF04 for FIAM, leaving 27 events.

4.2 Recovering tractions from ground velocity

Our observations in this section are differences between the Fourier

transforms of aftershock ground velocities and synthetic ground

velocities calculated using an assumed seismic velocity structure

and the aftershock’s seismic moment. Specifically, let index i be the

aftershock index, i = 1, 2, · · · na , where na is the number of after-

shocks. Let index j indicate the jth realization of a random variable

(the error associated with the jth erroneous velocity structure). For

each frequency and component of motion we form the complex

difference

�
j

i = vi − s
j

i (32)

where

vi =
Mi

μi

gi (33)

is the observed aftershock datum, which is a product of rigidity at

the aftershock depth, the aftershock’s true moment Mi and its true

traction Green’s function gi , and s
j

i is the synthetic from the jth er-

roneous velocity structure for the ith aftershock. We also implicitly

assume that the above equations apply separately to the real and

imaginary components of the complex quantities, so that when we

write vi we mean Re(vi ) or Im(vi ). Let P̃
j

i be our jth incorrect esti-

mate of Mi/μi and let g̃
j

i be our jth incorrect synthetic traction. The

incorrect moments might come from different sources, for example,

a moment-tensor solution using broad-band data, or a long period

spectral level from a 2 Hz geophone, and the incorrect traction

Green’s functions might come from different velocity structures.

Then our synthetic aftershock seismogram is

s
j

i = P̃
j

i g̃
j

i (34)

and (the real or imaginary part of) our complex difference is

�
j

i = vi − s
j

i = vi − P̃
j

i g̃
j

i . (35)

Normalizing by seismic moment, rigidity and a scaling factor

yields a quantity with the units of the traction Green’s function,

namely, the scaled complex difference (or equivalently the empirical

traction error)

�̃
j

i =

(
c �

j

i

/
P̃

j

i

)
=

(
vi

P̃
j

i

− g̃
j

i

)
c (36)
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362 P. Spudich et al.

Figure 18. γ as a function of frequency for station AQU using RF velocity structure. Smooth spectra result from using the dashed average covariance function

from Fig. 13. Red: N133E (strike-parallel) component of motion at AQU; green: N223E (strike-perpendicular) component of motion; blue: vertical component

of motion.

where c = 106m2km−2 is a constant scaling factor whose only ef-

fect is to remove many decimal places from the plot annotations.

The units of this empirical traction error are km−2 and are identical

to the units of the Fourier transform of the traction Green’s func-

tions and hence identical to the units of the errors in the traction

Green’s functions. For this reason, the units of the covariance of

the errors in Fourier transform of the traction Green’s functions are

km−4.

We can use our empirical traction errors to determine whether

the RF or the CIA model is better at AQU. Plots of the empirical

traction errors differences in the complex plane for station AQU

using the CIA and RF velocity models are shown in Figs 8 and 9,

respectively. They show that the empirical traction errors grow in

magnitude as frequency increases, justifying the appropriateness of

our frequency-domain approach, and they also show that the CIA

model is considerably better than the RF model (smaller complex

differences) at AQU. However, since Cirella et al. (2009, 2012)

used the RF model for station AQU, we continue to use that model

for AQU. The coloured dots showing the empirical traction errors

for a particular aftershock are strung together with a black line.

For many aftershocks the empirical traction errors form expanding

helices, corresponding to progressive phase shifts as a function of

frequency caused by time mismatches between the synthetic and real

seismograms. The progressive phase shifts are evidence of nonzero

covariance of Green’s function errors at differing frequencies. No-

tably, we have not introduced ‘static corrections’ into the theoretical

Green’s functions to remove these time mismatches because time

mismatches are errors in the theoretical Green’s functions, the effect

of which we hope to quantify.

4.3 Covariance as a function of separation on the fault

To determine the variance γ 2
j (ωn) we need the spatial covariance

matrix from (31), C
j

11(xi , xk, ωn), where j is the channel number

(a single component of motion at a single station), xi and xkare

two points on the fault (in this work, aftershock locations), and the

11-subscript indicates the covariance of Green’s function error in

the ê1 direction (taken to be the dominant direction of the main-

shock slip) at xi with the Green’s function error in the ê1 direction

at xk . Including the index on ω, C
j

11(xi , xk, ωn) has six indices. For

notational simplicity we suppress some of these indices by defining

new spatial covariance matrix

K
j

ik (ωn) = C
j

11 (xi , xk, ωn) = E
[
δg

j

1 (xi , ωn)∗ δg
j

1 (xk, ωn)
]

= E
[
�̃ j (xi , ωn)∗ �̃ j (xk, ωn)

]
(37)

where we omit the slip direction indices entirely as the aftershock

rakes are chosen to be within 30◦ of the dominant slip direc-

tion. �̃ j (xi , ωn) is the rigidity- and moment-scaled complex dif-

ference (or empirical traction) introduced earlier. We have previ-

ously speculated that the covariance would be a function of sep-

aration of the aftershocks, rik = |xi − xk |. Individual values of

E[Re(�̃ j (xi , ωn)∗ �̃ j (xk, ωn))] (which we will refer to as a co-

variance datum) as a function of rik are shown by blue plus signs

in Fig. 10, where the expectation is taken by averaging the result

for each i–k pair over three components of motion and three val-

ues of n corresponding to three adjacent Fourier components in the

band 0.2667–0.300 Hz. Because the data and theoretical Green’s

functions have a 60 s duration, there are a total of 30 frequency

components with a frequency interval of 1/60 s = 0.01667 Hz. For
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Synthetic earthquake ground motion variability 363

Figure 19. γ as a function of frequency for station FIAM using CIA velocity structure. Red: N133E (strike-parallel) component of motion at FIAM; green:

N223E (strike-perpendicular) component of motion; blue: vertical component of motion

the 37 events recorded at AQU, there are 703 non-redundant i–k

pairs for fixed j and n (including the i = k pairs) and 703 blue plus

signs in the figure for AQU.

In order to take the expected values we should further average

the covariance data within distance bins. However, the perturbations

of the covariance data values caused by moment errors are skewed

(because a moment error of a factor of 2 doubles some data while

only halving others). Numerical tests of the effect of moment errors

show that the covariance function inferred from the median of the

covariance data is largely unbiased while the mean of the covariance

data is systematically biased high (see the Appendix). The same

argument applies to the effect of a 30 degree mechanism error. For

some take-off angles the ratio of the true radiation pattern to the

assumed radiation pattern will be greater than unity, and for others

the ratio will be less than unity, with a ratio of infinity being possible

in principle. While we have not checked this specifically, we believe

that use of the median ameliorates the effects of mechanism errors.

For both stations AQU and FIAM we divided the distance range

into 10 bins, with each bin width adjusted to hold the same num-

ber (about 70) of covariance data. To estimate the covariance as a

function of separation we used the median of the covariance data in

each distance bin. See the caption of Fig. 10 for more information.

The covariance function at zero separation is expected to be pure

real, meaning that the imaginary part of the covariance data should

be zero, which is shown in Fig. 11. The median of the imaginary

part of the covariance data for all distance ranges and tested stations

was not significantly different from zero, so we have assumed that

it is identically zero for all subsequent computations.

The median covariance function for data from all components of

motion in 10 frequency bands at AQU is shown in Fig. 12.

Surprisingly, if we normalize all these curves to unit amplitude at

zero separation, we see different behaviours with frequency for the

AQU/RF covariance data and the FIAM/CIA data. For AQU there is

a conspicuous variation of the coherence functions with frequency,

seen as the high-frequency covariance functions lying below the

dashed average and the low-frequency data lying above the dashed

average in Fig. 13, vaguely consistent with the behaviour predicted

in eq. (28). On the other hand, a weak frequency dependence in the

opposite sense of AQU is seen in Fig. 14 for FIAM. As the source

zone for the aftershocks at AQU and FIAM are the same, it is difficult

to identify a physical mechanism that would produce the differing

frequency behaviours. The dashed average covariance functions in

Figs 13 and 14 are similar in shape to Frankel & Clayton’s (1986)

covariance functions for exponential and self-similar media shown

in Fig. 1, although our covariance functions suggest a covariance

distance less than their 10 km. This suggests that the way to approach

the theory-error problem in ground motion inversions is to treat the

problem as one of waves in random media.

4.4 A covariance model

Our work goes beyond YF because we develop a smooth covariance

function to encapsulate all the behaviour noted in the raw observa-

tions (e.g. Fig. 10) and hopefully to inject some theoretical insight

into the smooth covariance function. We have noted empirically

that the covariance functions for the three components of motion at

AQU differ systematically, with the vertical component having the

lowest covariance and the strike-perpendicular component having

the highest covariance at high frequencies, whereas the component

differences are not so strong at FIAM (Fig. 15). As the frequency
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Figure 20. The top row shows observed L’Aquila main-shock ground velocities (red) at station AQU and the synthetic ground velocities (blue) calculated

from the best-fitting slip model shown in Fig. 16. The bottom row shows the Fourier amplitude spectrum of γ (ω) in black and the spectra of the data residual

(observed minus synthetic) shown in green. Columns show the three components of motion. The expected error (black curve) for the strike-parallel component

is much greater than the spectrum of the data residual, implying that the data for this component of motion are overfit. The expected error (black curve) for the

vertical component is lower in the 0.2–0.4 Hz band than the spectrum of the data residual, implying that the data for this component of motion are underfit.

dependence of the FIAM covariance was weaker and contrary to that

of AQU, we arbitrarily chose to treat it as frequency-independent.

An in-depth study on this is beyond the main goal of this work.

We are developing a continuous empirical covariance function

to insert into eq. (31) in place of the discretized term K
j

ik(ωn) in

eq. (37). At this point it is necessary to separate the dependence

on station s from the dependence on component of motion c. We

parametrize the covariance as a continuous function of r and ω as

K sc (r, ω) = �sc (ω) N s (r ) (38)

where N s(r ) for FIAM is the frequency-independent dashed average

correlation function of Fig. 14 normalized to unit amplitude at zero

separation, and �sc(ω), c = 1, 2, or 3 and s = AQU or FIAM, is

the covariance at minimum separation of the c component of mo-

tion at station s, as a function of frequency. To calculate �sc(ω)

we applied the same analysis as in Fig. 10 to individual compo-

nents of motion, this time in three frequency bands with bandwidth

0.1667 Hz consisting of 10 Fourier components each (Fig. 15).

The centre frequencies of the three bands were 0.0917, 0.2584 and

0.4251 Hz. The piecewise linear curves in Fig. 15 were used to inter-

polate the value of �sc(ω) at frequencies between the frequencies at

which �sc(ω) was measured (the circles, triangles and crosses). For

AQU, because its covariance functions showed a systematic varia-

tion with frequency, which we wanted to preserve, the individual

coloured piecewise linear functions in Fig. 13 were used for N s(r )

(making it frequency-dependent). Unfortunately, we do not have a

smooth theoretical model of the expected behaviour of these curves

N s(r ), and each curve is less well defined than the dashed average

curve, so we expect that the ultimate effect of using these frequency-

dependent curves will be to make the frequency dependence of the

resulting γ 2(ω) somewhat irregular.

4.5 Epistemic error of finite-source synthetic seismograms

With this parametrization we now have everything necessary to

estimate the epistemic error of our finite-source synthetic seismo-

grams. Eq. (31) for the variance becomes

γ 2
sc (ω) =

∫

x∈A

∫

x′∈A

s̃∗
1 (x, ω) K sc (r, ω) s̃1

(
x′, ω

)
dx dx′ (39)

where r = |x − x′|. As a computed example, for the rupture model

s̃1(x, ω) we use the (unpublished) best fitting model found by Cirella

et al. (2009), shown in Fig. 16. Because r = |x − x′|, eq. (39) is a

spatial convolution over x (or x′), performed using a 2D Fourier

transform, followed by a simple area integral over the other integra-

tion variable. Derived values of standard deviation γsc(ω) (calcu-

lated as the square root of real γ 2
sc(ω)) are shown in Figs 17 and 18
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for AQU using the RF velocity structure and Fig. 19 for the station

FIAM (which is collocated with the strong motion station FMG)

using the CIA velocity structure.

The spectrum of standard deviation γ seen in Fig. 17 is serrated.

The alternately depressed and elevated spectral levels are caused by

use of the individual coloured piecewise linear median covariance

functions for the ten different frequency bands from Fig. 13. Each

of them is the result of averaging over three adjacent frequencies.

It will be possible to smooth these curves intelligently when some

smooth theoretical model of the covariance function behaviour is

available. For comparison, Fig. 18 shows the result of using the

average covariance function (dashed curve in Fig. 13) for all fre-

quencies. The results in Figs 17 and 19 are therefore used in the next

section to discuss the goodness of fit of the main-shock synthetics

and data.

4.6 Implications for inversion

One of the problems in most inversions for rupture behaviour is that

no estimate of confidence in the resulting rupture models can be

given because the effects of unknown errors in the Green’s func-

tions (‘theory errors’) have not been assessed. In inversion for rup-

ture behaviour, these theory errors are usually bigger than the errors

in data caused by ground noise and instrumental limitations. Con-

sequently, it is probably common for such inversions to overfit the

data, that is, to obtain an excessively good fit to the data consid-

ering the non-negligible theory errors. This meaning differs from

the typical usage in statistics where overfit implies that a model has

been overparametrized and fits noise as well as signal.

In Figs 20 and 21we compare the actual difference between the

main-shock synthetic and observed ground velocities for stations

AQU and FMG calculated using Cirella’s best-fitting rupture model

(shown in Fig. 16) with γ (ω), the Fourier amplitude spectrum of the

expected standard deviation of the synthetic caused by errors in the

Green’s functions. In Fig. 20 the fact that the error spectrum (black)

exceeds the data residual spectrum (red) for the strike-parallel com-

ponent of motion may be telling us that these data at AQU are overfit

by the inversion. For the strike-normal component the two spectra

are in good agreement, possibly telling us that these data are being

appropriately fit by the inversion. The residual spectrum exceeds the

error spectrum in the 0.2 to 0.4 Hz band for the vertical component,

telling us that these data are possibly under-fit by the inversion. The

situation is different for FMG (Fig. 21), where all components of

motion appear to be overfit.

These error estimates are very disturbing. Most investigators

would consider the waveform fit of the strike-parallel component

at AQU and all components at FMG as being good fits, and they

would consider the strike-normal fit at AQU to be poor. If these

error estimates are correct and representative of typical errors in

rupture inversions using numerical Green’s functions, it implies

that the slip models of the many rupture models derived from past

earthquakes are much less well resolved than currently thought, and

a major reassessment of these models is necessary, a conclusion

which Beresnev (2003) has previously advocated.

4.7 Total variability of synthetic seismograms

We have thus far concentrated on finding γ 2
j (ω), the variance of

δv
g

j , the Fourier amplitude spectrum of the ground velocity caused

by errors in the Green’s functions (eq. 8). Recall that eq. (5) shows

that there are two other sources of variability in earthquake ground

velocity: eq. (7) for variance ρ2
j of δvs

j , the Fourier amplitude spec-

trum (FAS) of the ground velocity caused by perturbations of the

rupture model and eq. (9) for variance ξ 2
j of δv

sg

j , the FAS of the

ground velocity caused by joint perturbations of the rupture model

and errors in the Green’s functions. Considering first ρ2
j , the vari-

ance of ground velocity caused by statistical variation in the rupture

model is easily found, because the exact symmetry between eqs (7)

and (8) implies that the variance is

ρ2
j (ω) =

∫

x⊂A

∫

x ′⊂A

g̃(j)†(x, ω)S(x, x′, ω)g̃(j)(x′, ω)dxdx′ (40)

where

S
(
x, x′, ω

)
= E

[
δs∗

1 (x) δs1 (x′) δs∗
1 (x) δs2 (x′)

δs∗
2 (x) δs1 (x′) δs∗

2 (x) δs2 (x′)

]
(41)

and the ω dependence of the δsi terms on the right-hand side of eq.

(41) is suppressed to reduce clutter. We can simplify eq. (41) by

assuming that δs2 is negligible (this assumption is not necessarily

true in all cases), yielding

ρ2
j (ω)=

∫

x⊂A

∫

x′⊂A

g̃
( j)∗
1 (x, ω) S11

(
x, x′, ω

)
g̃

( j)

1

(
x′, ω

)
dx dx′. (42)

This shows that the variance ρ2
j (ω) of the Fourier amplitude

spectrum of the ground velocity, calculated for a specific Green’s

function model, depends on the spatial covariance of perturbations

of the rupture model. At this point it is helpful to discuss the meaning

of δs in greater detail. We foresee the primary use of eq. (42)

will be in seismic hazard studies to calculate the variability of

synthetic seismograms given an ensemble of rupture models. These

rupture models might be obtained by performing many dynamic

rupture simulations. It might be that in the seismic hazard study

the investigator wants to include the effect of unknown hypocentre

location, and the investigator’s ensemble contains rupture models s

that have many different hypocentres. Then s̃ would be the average

of all the individual rupture models (even though they have differing

hypocentres), and S(x, x′, ω) would be obtained from the deviations

δs from the average.

The approach here differs from the pseudo-dynamic approach

used by Schmedes et al. (2010), Song & Somerville (2010), Song

et al. (2014) and Lee & Song (2017). In these four papers the spatial

correlation of rupture parameters, such as rupture time and peak slip

speed, is determined and then used to generate a family of rupture

parameter models sharing the determined correlation statistics. This

family of parameter models can then be used to generate a family

of ground motions, from which the statistics (like the variance) of

the ground motions can be determined. In eqs (40) and (42) rupture

parameters are not used. The δs terms are variations in the Fourier

spectrum of slip velocity itself. Further, the variance of the ground

motion is determined directly, skipping the step of calculating the

ground motions of many rupture models.

The final contributor to the variability of the ground velocity is

the term given by eq. (9), the interaction between δg and δs. If slip

is only in the ê1 direction, the variance ξ 2
j (ω) of δv

sg

j , the interaction

term, is

ξ 2
j (ω)=

∫

x∈A

∫

x′∈A

Cov
[
δs1

(
x′

)
δg1

( j)
(
x′

)
, δs1(x) δg1

( j) (x)
]
dx dx′. (43)

The derivation of this result is straightforward following the steps

in https://stats.stackexchange.com//questions/226657/variance-of-
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Figure 21. The top row shows observed L’Aquila main-shock ground velocities (red) at station FIAM and the synthetic ground velocities (blue) calculated

from the best-fitting slip model shown in Fig. 16. The bottom row shows the Fourier amplitude spectrum of γ (ω) in black and the spectra of the data residual

(observed minus synthetic) shown in green. Columns show the three components of motion. The expected error (black curve) for all components is much

greater than the spectrum of the data residual, implying that the data for all components of motion are overfit.

the-integral-of-a-stochastic-proceess. We have verified the correct-

ness of eq. (43) by direct calculation of the variance of an en-

semble of δv
sg

j calculated from an ensemble of functions ψ(x) =

δs(x) δg(x) having a given covariance as a function of |x − x′|. This

expression (43) is new to seismic hazard research. Because |δs|

or |δg| might not be small, ξ 2
j (ω) might be significant, even if the

covariance between |δs| and |δg| is zero. A note of caution: it is

tempting to use the rule that the variance of sum of the individ-

ual variances δvs
j , δv

g

j and δv
sg

j is the variance of the noise free

ground velocity, but correlations between the individual variance

might exist that invalidate the rule in this case.

5 D I S C U S S I O N

There are several unanswered questions left from this research. First,

what is the proper functional form for the covariance of Green’s

function errors? We have previously speculated that it might be

something like C j (x, x′, ω) ∝ f (|x − x′|ω/β), but we have seen

ambiguous evidence of its inverse scaling with shear wavelength

β/ω. It might depend only weakly on spatial variations of material

properties because some components of stress are continuous across

material discontinuities. We also need to determine whether the two

components of Green’s function error are generally uncorrelated

with each other, as we assumed in simplifying eq. (29) to get eq.

(31). These questions could be answered by numerical studies of

Green’s function error in heterogeneous media. Similar questions

apply to the covariance of rupture variations δs.

The possibility of a nonzero covariance between |δs| and |δg|

in the error interaction term opens an interesting line of research.

We can imagine that spatial variations of rigidity in the fault zone

might cause spatial variations of |δg|. These spatial variations of

rigidity might also cause correlated variations in the rupture pro-

cess |δs|. It would be very interesting to look for such correlations

in numerical simulations of spontaneous rupture in heterogeneous

media.

A practical difficulty for applying eq. (31) for γ 2
j , the variance of

ground motions calculated for a particular rupture model, is that the

user has to specify a Green’s function error covariance function. We

have speculated that such a covariance function in regions having

little ambient seismicity might be derived from measurements of

teleseismic traveltime and amplitude anomalies and coda-Q, but

this speculation must be checked in regions where there are ample

small earthquakes that can be used as empirical Green’s functions,
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Synthetic earthquake ground motion variability 367

and direct observation of |δg| and construction of the covariance

function are possible.

If we can determine Green’s function error covariance functions

for several different tectonic regimes, can they be regionalized? One

might imagine that the covariance function for stable continental

interiors might have more long-distance correlations than those for

active tectonic regimes. If regionalization is possible, it would allow

the investigator to use for peninsular India a covariance function

derived for stable North America, for example.

We can offer only a few hints on how to include traveltime errors

(or equivalently, phase errors) in the analysis. As our analysis gives

the Fourier amplitude spectrum of the variance, the phase spectrum

of the error is unspecified. Hence, specific realizations of the error

could be generated from assumed phase spectra, which might be

random or which might be phased to produce pulses at desired

arrival times.

With the definition of covariance in eq. (26) including a complex

conjugate, the resulting variance is real. If the complex conjugation

is omitted, the result leads to complex valued covariances (called

pseudo-covariances) and complex variances (Mandic & Goh 2009),

which might be used in the future to include the effects of traveltime

errors. Another alternative is to attempt to characterize the Green’s

function error covariance matrix in the time domain using empirical

Green’s functions, in other words form real covariance matrix

E

[
δg

( j)

1 (x, t) δg
( j)

1 (x′, t ′) δg
( j)

1 (x, t) δg
( j)

2 (x′, t ′)

δg
( j)

2 (x, t) δg
( j)

1 (x′, t ′) δg
( j)

2 (x, t) δg
( j)

2 (x′, t ′)

]
(44)

from observed empirical Green’s function errors. This is the ap-

proach of Yagi & Fukahata (2011). The resulting difficulty is that

for practical calculations it is necessary to have some smooth, phys-

ically motivated interpolating function, like ours (38).

Finally, are ground motion inversions as corrupted by Green’s

function errors as Figs 20 and 21 seem to imply? There is one deci-

sion that we made that might have led to excessively large γ , namely

our decision not to set the covariances to zero at large separations

(see the Appendix). However, we did not have a good theoretical

reason for doing so. One might argue that our comparison of Green’s

functions to aftershock waveforms (Figs 4–7) is quite bad; for ex-

ample, there is no hope of fitting the aftershock codas. However, the

observed main-shock seismograms contain the codas of early rup-

turing parts of the rupture, so it is necessary to consider the codas

in the aftershock modelling. It might be possible to create a time-

variable weighting scheme to reduce the weighting of aftershock

late codas, but that is out of the scope of this paper. One might also

argue that even after our removal of noisy aftershocks there seem

to be some aftershocks left in our data set that have noise before

the first arrival. However, such apparent noise might be actually a

difference in the theoretical and observed first arrival times, which

introduce phase errors which contribute to the covariances. This is

the reason that our ‘data tornadoes’ (Figs 8 and 9) grow with fre-

quency. An objective assessment of errors in source models must

also include error caused by pulse traveltime errors.

It should also be noted that no measurement of Green’s function

error is typically done for crustal earthquakes, so it might be that

rather than being catastrophically bad, our comparison is one of the

best achievable.
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A P P E N D I X A

In order to determine whether the median of the covariance data was

less biased than the mean when there were errors in the aftershock

seismic moments, we did the following test. We created a test data set

X i j , i = 1 · · · na, j = 1 · · · nr of nr = 10 independent realizations

of na = 37 Gaussian random variables (corresponding to the 37 af-

tershocks used in the AQU/RF data set and the 9 or 10 frequencies

over which averages were taken). To each random variable (simu-

lated aftershock datum) we assigned the corresponding aftershock’s

location, and we calculated the spatial separations r between the lo-

cations. We used the Cholesky factorization method (Song et al.

2014) to modify the random variables to have a spatial covariance

function approximating a Gaussian given by exp(−r 2)/(2σ 2
r ). To

simulate the effect of random moment errors, we multiplied all 10

realizations of each random datum by the same random moment

error factor 10log10(σM )Ni (0,1) where Ni (0, 1) is the ith realization of a

Gaussian distributed random variable with zero mean and unit stan-

dard deviation, and i = 1 · · · na . If σM = 2, then the moment errors

will vary roughly from a factor of 1
2

to a factor of 2. For this test

we used σM = 1(no error), 2, 3 and 4. To calculate covariances the

expectations were taken over the nr = 10 independent realizations.

Fig. A1 shows that for no moment error the median and the mean

agree quite well, which should be expected because the distribu-

tion is not skewed. Fig. A2 shows that the median for the case of

σM = 4 is much less biased than the mean. Note that the means for

σM = 4 (blue crosses) are biased very high compared to the means

(red crosses) for σM = 1. Blue circles are medians for σM = 4 and

are comparable to the red circles, medians for σM = 1 (no moment

error), justifying our use of the medians. Let the example shown

in Fig. A2 be called a trial. To check the statistics we performed

100 trials and examined the ratio of the median covariance of the

simulated data with σM = 2, 3 or 4 to the median with σM = 1(no

moment error) for the cases of σr = 10 km (Fig. A3) and σr = 3

km (Fig. A4). For the case of σr = 10 km the median is unbiased

for all tested values of the moment error. However, for the AQU and

FIAM data (see Figs 10, 13 and 14) the case of σr = 3km seems

more appropriate. The median is not biased for separations less than

3 km in Fig. 4, but appears to be biased low (factor of 0.5–0.8) for

greater separations. We do not have a good theoretical model for the

expected variation of covariance as a function of separation at large

separations. We assumed that the imaginary part of the covariance

was identically zero because we had theoretical reasons to believe

that it was everywhere zero, which seemed to be confirmed by the

data (see Fig. 11). We could have assumed that the covariance was

identically zero for separations greater than the apparent σr in the

data, but lacking a theoretical reason we chose not to. We instead

used the inferred medians from the covariance analysis, reasoning

that if they were in fact biased low, the error was not contributing

much as the covariance for separations greater than the apparent σr

in the data were small. It should be noted that if we had instead

‘corrected’ our biased medians by factors of 1/0.5 or 1/0.8, the

inferred γ values in (see Figs 20 and 21) would have been even

bigger.
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Synthetic earthquake ground motion variability 369

Figure A1. Test covariance data for the case σr = 10, σM = 1 (no moment error). Solid black line shows the target covariance function with σr = 10, green

symbols are the approximating simulated covariance data from the Cholesky method. Red crosses are the mean values of the covariance data in 10 distance

bins; red circles are the median values in the same bins. Medians and means are very similar for this level of moment error (none).
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Figure A2. Test covariance data for the cases σr = 10, σM = 1 (no moment error) and σr = 10, σM = 4. Green symbols are the simulated covariance data

from the Cholesky method with moment errors included. Green symbols at ordinates greater than 2 are not shown. Red and blue crosses are the mean values

of the covariance data in 10 distance bins for σM = 1 and σM = 4 respectively; red and blue circles are the median values for σM = 1 and σM = 4 respectively

in the same distance bins. Blue crosses with arrows are mean value data that exceeded the maximum plotting range.
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Figure A3. Test to determine the bias of the median covariance as a function of σM , moment error factors 2 (red), 3 (green) and 4 (blue) for the case σr = 10 km.

Mean ratio and population standard deviation shown at the centres of 10 separation bins containing the same number of covariance data. Blue and green

symbols are shifted left and right slightly to avoid overplotting.
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Figure A4. Test to determine the bias of the median covariance as a function of σM , moment error factors 2 (red), 3 (green) and 4 (blue) for the case σr = 3 km,

which is roughly the decay distance of the data. Mean ratio and population standard deviation shown at the centres of 10 separation bins containing the same

number of covariance data. Blue and green symbols are shifted left and right slightly to avoid overplotting. Medians for all values of moment error are unbiased

for separations less than σr .
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