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We report new results from the search for neutrinoless double-beta decay in 130Te with the
CUORE detector. This search benefits from a fourfold increase in exposure, lower trigger thresholds,
and analysis improvements relative to our previous results. We observe a background of
ð1.38� 0.07Þ × 10−2 counts=ðkeV kg yrÞ) in the 0νββ decay region of interest and, with a total exposure
of 372.5 kg yr, we attain a median exclusion sensitivity of 1.7 × 1025 yr. We find no evidence for 0νββ
decay and set a 90% credibility interval Bayesian lower limit of 3.2 × 1025 yr on the 130Te half-life for this
process. In the hypothesis that 0νββ decay is mediated by light Majorana neutrinos, this results in an upper
limit on the effective Majorana mass of 75–350 meV, depending on the nuclear matrix elements used.

DOI: 10.1103/PhysRevLett.124.122501

The search for neutrinoless double-beta (0νββ) decay is
one of the top priorities in nuclear and astroparticle physics.
The observation of this process would unambiguously
demonstrate the non-conservation of lepton number and
the Majorana nature of neutrinos [1–4]. This matter-
creating process could provide corroborating evidence
for the leptogenesis explanation of the baryon asymmetry
of the Universe [5], and would imply a new mechanism for
generating neutrino masses. In the simplest scenario
whereby 0νββ decay is mediated by the exchange of a
light Majorana neutrino, the rate of the process depends on
the effective Majorana mass mββ, though other scenarios
exist [6–13]. Even in the absence of direct observation,
constraints on the 0νββ decay rate can provide important
information on the scale, ordering, and origin of neutrino
masses [14].
Since the 0νββ decay involves a transition from a

nucleus with (Z, N) protons and neutrons to (Z þ 2,
N − 2) with the emission of two electrons and no neutrinos,
the signature is a peak in the summed energy spectrum of
the final-state electrons at the end point of the two neutrino
double-beta decay spectrum (Qββ). A discovery of the
process requires low backgrounds nearQββ, large masses of
isotope, and good energy resolution. A wide range of
detector technologies is employed in the worldwide search
for 0νββ decay across a number of isotopes. The current
generation experiments probe half-life values between
1025–1026 yr corresponding to mββ Oð100 meVÞ [15–19].
The next generation experiments are planning to instrument
Oð1000 kgÞ of isotope and be sensitive to half-lives beyond
1027 yr [14].
CUORE [20,21] is a ton-scale cryogenic detector located

at Laboratori Nazionali del Gran Sasso (LNGS) in Italy
searching for 0νββ decay in 130Te. The experiment consists
of an array of 988 TeO2 crystals operating as cryogenic
calorimeters [22–24]—also denoted as bolometers—at a
temperature of about 10 mK. The detector features excel-
lent energy resolution of <10 keV FWHM in the 0νββ
region of interest (ROI), large detection efficiency, and
low background. CUORE chose 130Te because of its
high Qββ ¼ ð2527.518� 0.013Þ keV [25–27]—above
most of the natural radioactive background—and isotopic
abundance of ð34.167� 0.002Þ% [28], which allows

cost-effective use of natural tellurium. CUORE is the
culmination of decades of development of large-scale
bolometric detectors [29–33] and its successful operation
demonstrates the high potential of this technology.
The CUORE crystals are cubes of 5 × 5 × 5 cm3 and

mass of 750 g [31], arranged in 19 towers. Each crystal is
instrumented with a neutron-transmutation-doped germa-
nium thermistor [34] to record thermal pulses and a silicon
heater [35,36] that provides reference pulses for thermal gain
stabilization. The detector is housed in a state-of-the-art
cryostat, which shields the detectors from both thermal and
gamma radiation. Cooling at the 10 mK stage is achieved by
a custom 3He=4He dilution refrigerator [24,37–43].
In this Letter, we present an analysis of the data collected

between May 2017 and July 2019, including a reanalysis
of data already published [44]. The data are collected in
runs of about one day duration, and grouped into datasets
which cover roughly a month. Each dataset consists of
0νββ decay search (physics) data bracketed by a few days
of calibration data collected at the beginning and end. The
calibration is performed with either internal 232Th sources
[45] or external mixed 232Th–60Co sources, with consecu-
tive datasets sharing the intermediate calibration. Typically,
a few days per dataset are devoted to diagnostics and
detector validation measurements, such as noise optimiza-
tion [43], working point configuration, and energy thresh-
old measurements.
Since we began taking data, there have been two major

interruptions of the physics data collection due to important
maintenance of the cryogenic system, as shown in Fig. 1.
After the 2017 data campaign [44], we performed a few
modifications to improve the stability and uniformity of the
data collection: we decreased the cryostat operating temper-
ature from 15 to 11.8 mK, which improves signal-to-noise
ratio for injected heater events, and installed an external
calibration system, which has a comparable performance to
the inner detector calibration system but is less invasive to
deploy. During the second interruption in fall 2018 we
improved the stability of the cryostat and increased the live-
time fraction. Since spring 2019, CUORE has been stably
collecting data at an average rate of 50 kg yr=month.
In this Letter, we present an analysis of a 372.5 kg yr

TeO2 exposure from the first 7 datasets, corresponding to
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103.6 kg yr of 130Te exposure—a fourfold increase in
exposure compared to Ref. [44]. The main difference with
respect to the first data release is the trigger algorithm. The
CUORE data acquisition system [41] saves the full con-
tinuous data stream, giving the possibility of digitally
retriggering the continuous data samples off-line. In this
analysis, we use a trigger algorithm based on the optimum
filter (OF) [46] which optimizes the signal-to-noise ratio
and yields trigger thresholds a few times the detector
baseline rms [47]. The algorithm identifies a signal if
the amplitude of the optimum filtered waveform exceeds a
threshold automatically determined by the baseline reso-
lution of each calorimeter for each dataset. Figure 2 shows
the energy thresholds, at 90% trigger efficiency, obtained
with the previously used algorithm, denoted derivative
trigger (DT), and the optimum trigger (OT). The OT allows
us to lower the energy thresholds by a factor 2–10 with
respect to the DT. We set the analysis threshold to 40 keV to
minimize the background contribution in the ROI from the
2615 keV 208Tl line, while at the same time preserving a
>90% trigger efficiency for the majority (>97%) of the
calorimeters.

The analysis presented here is divided in three parts:
event reconstruction, detector response characterization,
and statistical 0νββ decay analysis. The goal of the event
reconstruction is to extract physical quantities from each
10 s long signal waveform. For each calorimeter and
dataset, we build the OF transfer function starting from
the average noise power spectrum and the average signal
obtained from selected calibration events with minimum
energies also tuned for each calorimeter and dataset, and
always above 100 keV. For each triggered event, we use the
waveform filtered with the OF to evaluate the signal
amplitude. To monitor the thermal response of the detector
we use injected heater pulses [48], and correct the ampli-
tudes of signal events for small temperature drifts. A second
procedure for thermal gain correction utilizes the 208Tl
events at 2615 keV from calibration data. This is the default
method for the calorimeters with an unstable pulser, or not
instrumented with a heater.
We use the data acquired in calibration runs to map the

stabilized amplitudes to energy values, and select the
stabilization procedure which yields the best energy
resolution. From Monte Carlo (MC) simulations, in
88% of cases, we expect 0νββ decay events to release
energy in just one crystal [49]. Hence, we apply an
anticoincidence cut by computing the number of calo-
rimeters with a >40 keV energy deposition within a
�5 ms time window, and keep only events with a
single energy deposition for the 0νββ decay analysis.
We apply a pulse shape analysis (PSA) to reject events
with nonphysical or noisy waveforms, and pileup—i.e.,
superimposed—events. We use a set of six pulse shape
parameters to compute the Mahalanobis distance [50]
from the mean value of a reference sample of clean events
from a physical γ line. We tune our cut on the Mahalanobis
distance on a per-dataset basis to optimize the sensitivity
to 0νββ decay events [44] (see Fig. 3). The PSA cut mostly
affects the continuum regions, without impacting the γ and
α lines. To avoid a human induced bias in the result, we
salt the ROI by moving a random fraction of events in the
½2615� 25� keV region into the ½Qββ � 25� keV region,
and vice versa [44,49]. The salting is reversed once the
analysis procedures are finalized.
The signal efficiency is calculated as the product of

the containment efficiency, the trigger and reconstruction
efficiency, the anticoincidence efficiency, and the PSA
efficiency. We compute the probability that the full energy
of 0νββ decay is contained in a single crystal using MC
simulations. We use the injected heater pulses to evaluate
the efficiency of correctly triggering all injected events,
reconstructing their pulse energy [44], as well as the
probability of false positives in the identification of pileup
events. Given the large number of heater events, the trigger,
energy reconstruction, and pileup rejection efficiencies are
obtained for each calorimeter and dataset separately, then
averaged over the entire dataset.
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FIG. 2. Distribution of energy thresholds at 90% trigger
efficiency for the DT and OT algorithms.
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FIG. 1. Exposure collected by CUORE starting from May
2017. The data in gray represent the exposure accumulated at the
time of writing, while the data in red are used for the present work
(372.5 kg yr).
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We extract the anticoincidence efficiency as the survival
probability of the 1460 keV γ line from 40K in the physics
data. This γ line follows an electron capture with a K-shell
energy of ∼3 keV, well below threshold; thus a fully
absorbed 1460 keV 40K γ line is uncorrelated to any other
event. Finally, we compute the PSA efficiency by calculat-
ing the survival probability of two samples of physical
events: double-crystal events whose sum energy is com-
patible with γ lines, or single-crystal events corresponding
to fully absorbed γ lines. The former method utilizes events
at all energies, since only the summed energy is fixed, and
provides a cleaner but smaller data sample. The latter
method profits from higher statistics for most γ lines, but it
requires background substraction and only allows for an
efficiency determination at a handful of energies. We
choose the PSA efficiency as the average of the efficiencies
obtained from these two samples (92.6� 0.1%) and treat
the difference between them as a systematic effect, adding a
scaling parameter common to all datasets in the final fit
(�0.7%). Given the limited statistics of the physics data,
the anticoincidence and PSA efficiencies can only be
extracted for an entire dataset, and have larger uncertainties
than the efficiencies obtained from heater data. The
exposure-weighted average efficiencies are reported in
Table I.
We extract the detector response function in the ROI for

each calorimeter in each dataset by fitting the 2615 keV
208Tl line in the calibration spectrum [51,52]. To evaluate
possible systematic shifts in the energy scale and the energy
dependence of the detector energy resolution, we use the
detector response function obtained from the 208Tl cali-
bration peak, with the addition of a linear function to model
the background, to fit the 5–7 most prominent γ lines of the
physics spectrum. We keep as free parameters the peak
position, the peak amplitude, and the ratio of the energy
resolution in physics and calibration data. We extract the

energy calibration bias—defined as the difference between
the reconstructed peak position and its nominal value—and
energy resolution, parameterize them quadratically as a
function of energy, and interpolate them to Qββ. The
exposure-weighted harmonic average of the energy reso-
lution atQββ in the physics data is 7.0� 0.4 keV, while the
energy bias is ≤ 0.7 keV. A summary of relevant quantities
for the 0νββ decay analysis is given in Table I.
The CUORE physics spectrum (Fig. 4) around Qββ

features a flat distribution with ∼90% of the events coming
from degraded α particles, as obtained by extrapolating
from the flat α background in the energy region above the
2615 keV 208Tl line, and ∼10% from 2615 keV γ events
undergoing multiple Compton scattering [53,54]. The
closest expected peak to Qββ is the 60Co sum peak at
2505.7 keV. We find an additional structure with a
significance of ≳2σ at ∼2480 keV, visible only in the
single-crystal spectrum. Its energy corresponds to a 60Co
sum peak, with an escaping Te x ray, but its amplitude is
much larger than expected from MC simulations, and it is
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FIG. 3. The CUORE spectrum after applying the base cuts to
remove heater events and periods affected by baseline or noise
instabilities (gray), after the anticoincidence cut (AC) (red), and
after the PSA cut (blue).

TABLE I. Relevant quantities and effective parameters of the
analysis. The FWHM of calibration data is the exposure-
weighted harmonic average over all calorimeters and datasets,
which is projected to Qββ in the physics data. The containment
efficiency is from MC simulations, while all other efficiencies
correspond to the exposure-weighted means.

Number of datasets 7
Number of valid calorimeters (min–max) 900–954
TeO2 exposure 372.5 kg yr
FWHM at 2615 keV in calibration data 7.73(3) keV
FWHM at Qββ in physics data 7.0(4) keV
Reconstruction efficiency 95.802(3)%
Anticoincidence efficiency 98.7(1)%
PSA efficiency 92.6(1)%
Total analysis efficiency 87.5(2)%
Containment efficiency 88.35(9)% [49]
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FIG. 4. ROI spectrum with the best-fit curve (solid red) and the
best fit-curve with the 0νββ decay component fixed to the 90% CI
limit (dashed blue).
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not visible in 60Co calibration spectra. We considered
various possible contamination, but none justifies the
presence of a peak at ∼2480 keV with the observed rate.
Thus, more data are needed to assess the significance of
this feature. As a consequence, we restrict the fit range to
the [2490, 2575] keV region, and fit the data with a
flat background plus peaks described by the detector
response function for the 60Co sum line and the potential
0νββ decay signal.
We perform an unbinned Bayesian fit combined over all

datasets using the BAT software package [55]. The model
parameters are the 0νββ decay rate (Γ0ν), a dataset
dependent background index (BI) in counts=ðkeV kg yrÞ,
the 60Co sum peak amplitude (R60Co) in counts=ðkeV kg yrÞ,
and its position μ60Co, which is a free parameter as in the
previous analysis [44]. The BIs are dataset dependent,
while all other parameters are common to all datasets,
including the 60Co rate, which is scaled by a dataset
dependent factor to account for its decay. We use flat
priors for all of the parameters, and restrict the range of the
BIs and all peak rates to the physical range, i.e., non-
negative values.
We find no evidence for 0νββ decay, obtaining the Γ0ν

posterior distribution reported in Fig. 5, and a limit of T0ν
1=2 >

3.2 × 1025 yr at 90% credibility interval (CI), corresponding
to the blue dashed curve in Fig. 4. Repeating the fit without
the 0νββ decay contribution, we obtain an average BI
of ð1.38� 0.07Þ × 10−2 counts=ðkeV kg yrÞ .
To compute the exclusion sensitivity, we generated 104

sets of pseudoexperiments populated with only the 60Co and
flat background components, and divided into 7 datasets
with the same exposure and BI of the actual datasets as
obtained from fitting the data with the background-only
model. We fit each pseudoexperiment with the standard
signal-plus-background model and obtain a median 90% CI
exclusion sensitivity of 1.7 × 1025 yr. The probability of
obtaining a stronger limit than 3.2 × 1025 yr is 3%.

We consider the following systematic effects. The
dominant one is the systematic error on the PSA efficiency.
Subdominant effects are induced by the uncertainties on the
energy scale, energy resolution, analysis and containment
efficiencies, the value ofQββ, and the 130Te natural isotopic
abundance. We implement all systematics as additional
nuisance parameters in the fit, which can be activated
independently, with the priors reported in Table II. We
evaluate the bias induced by each nuisance parameter by
looking at the effect on Γ0ν at the posterior global mode Γ̂0ν;
for this, we artificially release the Γ0ν ≥ 0 constraint,
allowing Γ0ν to be negative. The best fit with the artificially
extended range is Γ̂0ν ¼ ð−3.5þ2.2

−1.1Þ × 10−26 yr−1, with a
∼1.6σ background underfluctuation compatible with the p
value quoted above. The inclusion of the additional
nuisance parameters affects the global mode on Γ0ν by
≤0.04% (see also Table II), and yields a 0.4% weaker limit.
Assuming 0νββ decay is mediated by light neutrino

exchange, and using the phase space factor from Ref. [56],
the result above corresponds to a set of upper limits on the
effective Majorana mass ranging between 75 and 350 meV,
where the spread reflects the different nuclear matrix
element calculations available in literature [57–67].
Recent theoretical works [68,69] show that the inclusion
of a contact operator could significantly affect the limit on
mββ. The results reported in this Letter represent the most
stringent limit on 0νββ decay in 130Te, and our limit onmββ

is competitive with those reported by other leading experi-
ments in the field [15–19].
After a period of detector maintenance and optimization,

CUORE is stably collecting data at a rate of 50 kg yr=month.
The experiment is a proof of the power and scalability of
the bolometric technique to the ton scale. Recent develop-
ments in scintillating crystals demonstrate the technology for
a future zero-background search [19,53,54,70,71]. These
advances will be exploited in the next generation bolometric
experiment, CUPID [71], which will reuse the CUORE
cryostat and infrastructure.
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FIG. 5. Posterior on Γ0ν with all systematics included for the fit
on the physical range (Γ0ν > 0) and on the full range. The 90% CI
is shown in blue.

TABLE II. Systematics affecting the 0νββ decay analysis. Total
analysis efficiency I corresponds to the product of all efficiency
terms reported in Table I, while total analysis efficiency II
corresponds to the additional systematic on the PSA efficiency.
We report the systematic on the Γ0ν global mode obtained leaving
Γ0ν free to assume negative (nonphysical) values.

Fit parameter systematics

Systematic Prior Effect on Γ̂0ν

Total analysis efficiency I Gaussian 0.01%
Total analysis efficiency II Uniform 0.04%
Containment efficiency Gaussian 0.01%
Energy and resolution scaling Multivariate 0.02%
Qββ Gaussian 0.02%
Isotopic fraction Gaussian 0.02%
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