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LOCATION AND SCALE BEHAVIOUR OF THE QUANTILES OF A

NATURAL EXPONENTIAL FAMILY

Mauro Piccioni1, Bartosz Ko lodziejek2 and Gérard Letac3,*

Abstract. Let P0 be a probability on the real line generating a natural exponential family (Pt)t∈R.
Fix α in (0, 1). We show that the property that Pt((−∞, t)) ≤ α ≤ Pt((−∞, t]) for all t implies that
there exists a number µα such that P0 is the Gaussian distribution N(µα, 1). In other terms, if for all
t, the number t is a quantile of Pt associated to some threshold α ∈ (0, 1), then the exponential family
must be Gaussian. The case α = 1/2, i.e. when t is always a median of Pt, has been considered in Letac
et al. [Statist. Prob. Lett. 133 (2018) 38–41]. Analogously let Q be a measure on [0,∞) generating a
natural exponential family (Q−t)t>0. We show that Q−t([0, t

−1)) ≤ α ≤ Q−t([0, t
−1]) for all t > 0

implies that there exists a number p = pα > 0 such that Q(dx) ∝ xp−1dx, and thus Q−t has to be a
gamma law with parameters p and t.
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1. Introduction

Let P0 be a probability on the real line and assume that its moment generating function

M(t) =

∫ +∞

−∞
etxP0(dx) (1.1)

is finite for all real t. Such a probability generates the natural exponential family

Pt(dx) =
etx

M(t)
P0(dx), t ∈ R, (1.2)

parametrized by the natural parameter t.
For example, the Gaussian probability P0(dx) = (2πσ2)−1/2e−(x−m)2/2σ2

i.e. P0 = N(m,σ2), with m ∈ R
and σ2 > 0, generates the natural exponential family (Pt) = (N(m+ tσ2, σ2)). In this case, if Xt ∼ Pt for any
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t ∈ R, then Xt ∼ X0 + σ2t. In other words (Pt) is a location family generated by P0 with location parameter
σ2t. It is easily verified that the property Xt ∼ X0 + σ2t forces a natural exponential family to be generated
by P0 = N(m,σ2) for some m. A way to see this is to compute the moment generating function of Xt and
substitute X0 + σ2t to Xt, getting the equation

M(t+ s) = M(t)M(s)eσ
2ts, t, s ∈ R.

Taking logs and deriving with respect to t and s we get that the cumulant generating function k = logM of P0

satisfies k′′(u) = σ2 for all u ∈ R, from which k(u) = −mu+ u2/2σ2, that is precisely the cumulant generating
function of N(m,σ2).

A complete characterization of the general exponential families which are location families has been given in
[2]. However, if we restrict our attention to natural exponential families only the Gaussian families mentioned
remain.

The following remark is quite natural: the assumption that Xt ∼ X0 + σ2t, for any t ∈ R, means that the
distribution function of Xt − σ2t is independent of t, and so the same is true for the quantile function. If we
make the weaker assumption that for some fixed α ∈ (0, 1) an α–quantile of Xt−σ2t does not depend on t, does
one obtain the same characterization established above? In slightly simplified words, if Xt ∼ Pt, as defined in
(1.2), is such that Pr(Xt ≤ σ2t+ b) = α for any t ∈ R, for some fixed b ∈ R, does this imply that P0 is N(m,σ2)
for some m?

A recent paper [3] gives the answer to this question for α = 1/2, b = 0 and σ2 = 1. Indeed it is proved there
that if t is a median of Pt, for any t ∈ R, then P0 is the standard Gaussian N(0, 1). The first result of the
present paper is the extension of this result for any α ∈ (0, 1) (and arbitrary b and σ2).

Theorem 1.1. Let P0 be a probability on the real line which generates the exponential family (1.2). Let b ∈ R
and suppose that b+ σ2t is an α-quantile of Pt, for t ∈ R, that is∫

(−∞,b+σ2t)

etxP0(dx) ≤ αM(t) ≤
∫

(−∞,b+σ2t]

etxP0(dx), t ∈ R. (1.3)

Then P0 = N(m∗, σ2), where m∗ = b−σΦ−1(α), Φ being the standard Gaussian distribution function; moreover
Pt = N(m∗ + σ2t, σ2).

For proving Theorem 1.1 we will make use (see (2.3)) of a function proportional to αx− + (1− α)x+ (where
x+ = max(0, x) and x− = (−x)+). Notice that

t 7→ E(α(Z − t)− + (1− α)(Z − t)+)

obtains its minimum on the α-quantile of the integrable random variable Z. This last fact implies that the
empirical α-quantiles are M -estimators (for a definition, see [5], p. 41).

We describe now our second result: Let Q be a Radon measure on the non-negative real half-line such that
its Laplace transform

L(t) =

∫
[0,+∞)

e−tyQ(dy) (1.4)

is finite for all t > 0. Such a measure generates the exponential family

Q−t(dy) =
e−ty

L(t)
Q(dy), t > 0 (1.5)
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parametrized by the natural parameter t (notice the change of sign w.r.t. the standard usage). In principle this
family could be smaller than the natural exponential family generated by Q, but it will turn out not to be the
case. As an example, the measure

Qp(dy) =
1

Γ(p)
yp−1dy, (1.6)

defined for p > 0 generates the natural exponential family Qp−t = Ga(p, t), with t > 0, where Ga(p, t) is the
gamma law with parameters p and t. Now it is immediately verified that if Yt ∼ Qp−t then Yt ∼ Y1/t, that is
(Qp−t) is a scale family generated by Qp−1 = Ga(p, 1), with scale parameter t−1. It is relatively easy to verify
that this property forces Q to be of the form (1.6). However the argument in the scale case is slightly more
involved than in the location case and we prefer to give the statement as a proposition.

Proposition 1.2. Suppose that (Q−t)t>0 is the natural exponential family defined in (1.5), for some measure Q
on the non-negative real half-line. With Yt ∼ Q−t, assume that Yt ∼ Y1

t for any t > 0. Then, up to a multiplicative
constant, Q = Qp defined by (1.6), for some p > 0.

Proof. Proof of Proposition 1.2 Compute the Laplace transform of Yt in the point st, where s, t > 0. Then using
the assumption Yt ∼ Y1

t one arrives at

L(t+ ts)

L(t)
=
L(1 + s)

L(1)
.

Defining c(t) = logL(t), for t > 0 and deriving w.r.t. t and s this implies

uc′′(u) + c′(u) = 0,

where u = t + ts > 0. Integrating twice one arrives at c(u) = −p log u + `, with p > 0 and an arbitrary ` ∈ R,
from which L(u) = e`/up, the Laplace transform of e`Qp.

Again the statement of the previous proposition is a special case of the general result contained in [2], where
all the general exponential families which are scale families are determined. However, only the above ones are
natural exponential families.

The assumption Yt ∼ Y1/t for any t > 0 is equivalent to say that the distribution function of tYt is independent
of t, and so the same is true for the quantile function. If we make the weaker assumption that, for some fixed
α ∈ (0, 1), an α-quantile of tYt does not depend on t, is it enough to obtain the characterization stated in
Proposition 1.2? In slightly simplified words, if Yt ∼ Q−t as defined in (1.5), is such that Pr(Yt ≤ a/t) = α for
all t > 0, for some a > 0, does this still imply that Q is proportional to Qp for some p > 0? Our second result
gives a positive answer to this conjecture.

Theorem 1.3. Let Q be a Radon measure on the non-negative real half-line which generates the exponential
family (1.5). Let a > 0 and suppose that a/t is an α-quantile of Q−t, for t > 0, that is∫

(0,a/t)

e−tyQ(dy) ≤ αL(t) ≤
∫

(0,a/t]

e−tyQ(dy), t > 0. (1.7)

Then Q is proportional to Qp
∗
, where p∗ = p∗(α) is the unique solution in p > 0 of the equation Ep(a) = α, Ep

being the distribution function of Ga(p, 1). In addition Q−t = Ga(p∗, t/a).

It is convenient to comment on the existence and the uniqueness of p∗. The family (Ga(p, 1), p > 0) is a
convolution semigroup of laws supported by [0,∞). Hence, for any fixed a > 0 the function p 7→ Ep(a) is strictly
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decreasing in p and is continuous. From the Markov inequality and the fact that the expectation of Ga(p, 1) is
p we have 1−Ep(a) ≤ p/a and this implies limp↓0Ep(a) = 1. The limit of Ep(a) as p→∞ is zero from the law
of large numbers.

The proofs of Theorems 1.1 and 1.3 are given in the next sections. These proofs deduce from (1.3) and (1.7)
two convolution equations of type

f = f ∗H

in additive and multiplicative forms, respectively. The solutions to these equations have been investigated in
[1]. The result for additive convolutions is reported in the final section of [1]. The result for multiplicative
convolutions can be obtained with a passage to the additive convolution form by taking logarithms. In the next
proposition we report both of them explicitly.

Proposition 1.4. (1) Suppose H is a probability density on R, and consider the equation

f(t) =

∫ +∞

−∞
H(t− x)f(x)dx, t ∈ R, (1.8)

where f is a locally integrable, non-negative function. Then f is necessarily a linear combination, with
non-negative coefficients, of a constant function with an exponential function of the form e−s

∗x, where
s∗ 6= 0 is a solution of the following equation in the real unknown s∫ +∞

−∞
esxH(x)dx = 1. (1.9)

If there is no solution of this form then f is necessarily constant.
(2) Suppose K is a probability density on the positive real half-line and consider the equation

g(t) =

∫ +∞

0

K(
t

y
) g(y)

dy

y
, t > 0, (1.10)

where g is a locally integrable and non-negative function on (0,∞). Then g(t) is necessarily a linear
combination, with non-negative coefficients, of the function t−1 with a power function of the form t−1−u∗

,
where u∗ 6= 0 is a solution of the following equation in the real unknown u∫ +∞

0

yuK(y)dy = 1. (1.11)

If there is no solution of this form then g(t) = c/t, where c ≥ 0.
Both the equations (1.9) and (1.11) have at most one non zero solution in s and u, respectively. Indeed, the

logarithm of the l.h.s of of these equations are convex functions of s and u respectively.

A last section mentions that such a characterization of the normal distribution could be used to design a test
of Gaussianity based only on a fixed quantile, and that a similar test could be done for a gamma distribution.

2. Proof of Theorem 1.1

We notice that it is enough to prove the result with σ2 = 1. Indeed, it easily proved that if (Pt, t ∈ R) is a
natural exponential family and Xt ∼ Pt, then, for any σ > 0 the family (P ′t , t

′ ∈ R), where σ−1Xt/σ ∼ P ′t , is
another natural exponential family with natural parameter t. Moreover if (Pt) is a location family with location
parameter σ2t, then (P ′t ) is a location family with location parameter t.
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Let us prove the theorem with b = 0. Then we will adjust the solution to take into account an arbitrary
value of b. First we prove that P0 is absolutely continuous. Take −A ≤ s < t ≤ A, for some constant A > 0 and
compute

P0((s, t)) =

∫
(s,t)

e−txetxP0(dx) ≤ eA
2

∫
(s,t)

etxP0(dx)

≤ eA
2

(∫
(−∞,t)

etxP0(dx)−
∫

(−∞,s]
esxP0(dx) +

∫
(−∞,s]

(
esx − etx

)
P0(dx)

)
.

Using (1.3) and the inequality |eu − ev| ≤ |u− v| ew, for |u|, |v| ≤ w, this is bounded by

eA
2

(
α (M(t)−M(s)) + |t− s|

∫
R
|x|eA|x|P0(dx)

)
≤ cA|t− s|

since M , being analytic, is locally Lipschitz, and the integral at the l.h.s. is finite by the existence of the moment
generating function of P0 on R.

So we can assume that P0 has a density p0. Setting α = C
1+C , with C > 0, the quantile relation (1.3) leads to

∫ t

−∞
etxp0(x)dx = C

∫ +∞

t

etxp0(x)dx. (2.1)

Differentiating w.r.t. t both sides and multiplying by e−t
2

one gets

p0(t) + e−t
2

∫ t

−∞
xetxp0(x)dx = −Cp0(t) + Ce−t

2

∫ +∞

t

xetxp0(x)dx. (2.2)

Introduce the function defined by

absC(x) = −Cx1{x<0} + x1{x>0}. (2.3)

Multiply both sides of (2.1) by te−t
2

and subtract from (2.2). We obtain

p0(t) =
1

1 + C

∫ +∞

−∞
absC(t− x)et(x−t)p0(x)dx. (2.4)

As expected, a solution to the equation (2.4) is given by ϕ(t−m∗), where ϕ is the standard Gaussian density
function, and m∗ = −Φ−1(α). Next set

p0(x) = ϕ(x−m)f(x), (2.5)

with m = m∗. We aim to prove that f(x) has to be constant to solve the equation (2.4), with the substitution
(2.5). Rewriting the equation for f , one gets

f(t)emt−t
2/2 =

1

1 + C

∫ +∞

−∞
absC(t− x)et(x−t)+mx−x

2/2f(x)dx

which is equivalent to

f(t) =
e

m2

2

1 + C

∫ +∞

−∞
absC(t− x)e−

(t−x+m)2

2 f(x)dx (2.6)
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which has the form (1.8) with

H(x) =
e

m2

2

1 + C
absC(x)e−

(x+m)2

2 . (2.7)

The moment generating function of H can be exactly computed

∫ +∞

−∞
esxH(x)dx = 1 +

√
2πe(s−m)2/2(s−m) (Φ(s−m)− α) . (2.8)

This is clearly equal to 1 only if s = 0 (hence H is a density) and if s = m. We apply Proposition 1.4, 1) to
the equation (2.6). When m = 0, that is if α = 1

2 , the r.h.s. of (2.8) is equal to 1 only in 0, hence the only
non-negative non trivial solutions of the convolution equation (1.8) with kernel H given by (2.7) are the positive
constants. This yields immediately that p0(x) = ϕ(x), as desired. In the case α 6= 1

2 the solutions f(x) are
linear combinations with non-negative coefficients of the constant 1 and the function e−mx. Coming back to
p0(x) = f(x)ϕ(x−m), this gives density solutions for p0 which are mixtures of N(m, 1) with N(0, 1). But only
the first one has the distribution function at 0 equal to α 6= 1/2, therefore a positive component from N(0, 1) is
forbidden. This proves that p0(x) has to be ϕ(x−m).

Finally, to deal with an arbitrary value for b, define τ−b(x) = x− b. Now observe that if Pt has α-quantile b+ t
then P ∗t = Pt ◦ τ−1

−b has α-quantile t and it is still a natural exponential family, for t ∈ R. So P ∗t = N(−Φ−1(α), t)
and Pt = N(−Φ−1(α) + b+ t, 1), ending the proof of Theorem 1.1. �

3. Proof of Theorem 1.3

First we prove the result with a = 1. Assume the relation (1.7) and let t→ 0+. From the inequality

∫ 1/t

0

e−xtQ(dx) ≤ α
∫ ∞

0

e−xtQ(dx)

where 0 < α < 1 we see easily that A = Q(R+) cannot be finite: for if A was finite the dominated convergence
for fn(x) = e−x/n1[0,n](x) ≤ 1 would lead to the contradiction A ≤ αA. Hence the natural parameter space of
the natural exponential family (Qs) coincides with the negative reals.

Next we prove that Q is absolutely continuous. Take 0 < s < t < +∞ and compute

Q((t−1, s−1)) =

∫
(t−1,s−1)

esxe−sxQ(dx) ≤ e
∫

(t−1,s−1)

e−sxQ(dx)

= e

(∫
(0,s−1)

e−sxQ(dx)−
∫

(0,t−1]

e−txQ(dx) +

∫
(0,t−1]

(
e−tx − e−sx

)
Q(dx)

)
.

By (1.7) the difference between the first two integrals at the r.h.s. is bounded by α (L(s)− L(t)), whereas the
remaining integral is non positive. Again since L is analytic in the positive real half-line it is locally Lipschitz
and this proves the absolute continuity of Q, that is Q(dx) = q(x)dx, with q non-negative and locally integrable.

Now we can write (1.7) in the form of an equality, setting again α = C
1+C , namely

∫ t−1

0

e−tyq(y)dy = C

∫ +∞

t−1

e−tyq(y)dy, t > 0. (3.1)
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Differentiating both sides w.r.t. t, one gets

1 + C

t2
e−1q(t−1) = C

∫ +∞

t−1

ye−tyq(y)dy −
∫ t−1

0

ye−tyq(y)dy.

Adding the l.h.s. of (3.1) and subtracting the r.h.s., both multiplied by t−1, to the r.h.s. of the above equality,
we get for any t > 0

q
(
t−1
)

=
et2

1 + C

{∫ t−1

0

(t−1 − y)e−ytq(y)dy + C

∫ +∞

t−1

(y − t−1)e−ytq(y)dy

}
. (3.2)

With the help of the function absC defined in (2.3) , equality (3.2) is rewritten as

q(t−1) =
et

(1 + C)

∫ ∞
0

absC (1− ty) e−tyq(y)dy, t > 0. (3.3)

Next, for any p > 0, define qp(x) = 1
Γ(p)x

p−11(0,+∞)(x). Recall from the introduction that for p = p∗(α) one has

∫ 1

0

yp
∗−1e−ydy = C

∫ +∞

1

yp
∗−1e−ydy. (3.4)

Now multiply both sides of (3.3) by tp
∗−2 and change the variable of integration at the r.h.s. to be z = y−1.

One gets

tp
∗−2q(t−1) =

etp
∗−1

1 + C

∫ ∞
0

absC
(
1− tz−1

)
e−t/zg

(
z−1
) dz
z2
. (3.5)

Defining the l.h.s. of the above equality to be g(t), one has

q(t) = g(t−1)tp
∗−2, (3.6)

and turns the equation (3.5) into an equation of the form (1.10) in g with

K(y) =
e

1 + C
absC(1− y)e−yyp

∗−11(0,+∞)(y). (3.7)

The Mellin transform of K can be easily computed∫ ∞
0

yuK(y)dy = 1 + eΓ(p∗ + u)(p∗ + u− 1){α− Ep∗+u(1)}. (3.8)

Now observe that the quantity inside the brackets of (3.8) at the r. h. s. is always increasing in u; moreover it
is equal to 0 for u = 0, due to (3.4). Hence for any value of C > 0 the function K is always a density. When
p∗ = 1 (equivalently, C = e − 1, or α = 1 − e−1), u = 0 is the unique global minimum point of the r. h. s. of
(3.8). Then, by Proposition 1.4, 2), the only non negative non trivial solutions to the equation (1.10), with K
given by (3.7), have necessarily the form g0(t) = c0t

−1, with c0 > 0. Thus q(y) = c0qp∗(y) = c′0y
p∗−1. Moreover,

for p∗ 6= 1 (equivalently, C 6= e− 1, or α 6= 1− e−1) the value u = 1− p∗ 6= 0 makes the expression at the r. h.
s. of (3.8) equal to 1, too. As a consequence g1(t) = tp

∗−2 is also a solution of the multiplicative convolution
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equation with K given by (3.7). Applying again Proposition 1.4, 2) all the non negative non trivial solutions
are linear combinations

g0(t) + c1g1(t) = c0t
−1 + c1t

p∗−2,

with c0, c1 ≥ 0 not both zero. Substituting in (3.6) we get that the solutions to (3.2) have the form

q(y) = c′0y
p∗−1 + c1.

But for c1 > 0 the condition (3.1) is violated for t = 1. Indeed, in this case the difference between the l.h.s.
and the r.h.s. of (3.1) is equal to c1(1− 1+C

e ) and this is different from 0 as soon as C 6= e− 1. So as desired

q(y) = c′0y
p∗−1.

Finally, to deal with an arbitrary value of a > 0, first define σa−1 to be the multiplication by a−1. Now
observe that, if Q−t has α-quantile at−1 then Q∗−t = Q−t ◦ σ−1

a−1 has α-quantile t−1 and it is still a natural
exponential family, for t > 0. So Q∗−t = Ga(p∗, t) and Q−t = Ga(p∗, at−1), ending the proof of Theorem 1.3. �

4. Statistical considerations

A statistical application of the above characterization consists in the following exploratory testing procedure
for normality. Let X1, . . . , Xn be an i.i.d. sample from a probability measure P0 on the real line. The obvious
estimate of the α-quantile of P0 is the empirical α-quantile, computed on the sample X1, . . . , Xn and a graph
of the different α-quantiles gives an indication about the Gaussianity of P0: this is what a Q-Q plot does (see
[6]). However, Theorem 1.1 justifies a different procedure which consists in estimating the α-quantiles of Pt, as
given by (1.2), for the same α and various values of t, and fitting to them a line.

The general principle is this: observing a sample drawn from the unknown distribution P0, we can approximate
Pt(dx) = etxP0(dx)/M(t) with the random probability measure

P
(n)
t (dx) =

n∑n
j=1 e

tXj
× 1

n

n∑
i=1

etXiδXi
,

which, by the law of large numbers, converges weakly towards Pt a.s. The α-quantile of Pt can be estimated with

the α-quantile q
(n)
t of P

(n)
t and a good fitting of a line to the points (ti, q

(n)
ti ) for some choice of ti, i = 1, . . . ,m, is

an indication favouring the hypothesis that P0 is Gaussian. In a similar fashion, the characterization of Theorem
1.3 can be used for an exploratory test of the hypothesis that a sample is drawn from a Gamma distribution:
in this case the estimated α-quantiles are plotted against the natural parameter t on a log–log scale and fitted
with a line of slope −1.
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