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A new optical setup is described that allows the reflectivity at grazing incidence

to be measured, including ultrathin films and two-dimensional electron systems

(2DES) down to liquid-helium temperatures, by exploiting the Berreman effect

and the high brilliance of infrared synchrotron radiation. This apparatus is well

adapted to detect the absorption of a 2DES of nanometric thickness, namely

that which forms spontaneously at the interface between a thin film of LaAlO3

and its SrTiO3 substrate, and to determine its Drude parameters.

1. Introduction

Within the solid-state community, interest in the properties

of ultrathin conducting films has rapidly grown in the last

decades with the implementation of a variety of hetero-

structures, and nanoribbons of nanometric thickness, which

have also shown interesting quantum effects related to elec-

tron confinement. An extreme case is represented by the two-

dimensional electron systems (2DES), where, in principle, the

thickness d of the conducting layer goes to zero. Well known

examples are the topological surface states of topological

insulators (Hasan & Kane, 2010; Moore, 2010) and the 2DES

at the interface between two insulators like LaAlO3 and

SrTiO3 (LAO/STO) (Ohtomo et al., 2002; Ohtomo & Hwang,

2004). Quasi-2DES are also present in the promising graphene

ultrathin films shaped in the form of nanoribbons for future

electronics (Barone et al., 2006).

Fourier-tranform infrared spectroscopy (FTIR) is tradi-

tionally a powerful tool for studying the low-energy electro-

dynamics of conducting materials, as it measures, directly

and independently, the charge density (through the plasma

frequency) and the scattering rate of the Fermi liquid (Dressel

& Grüner, 2002). However, its application to systems of

nanometric thickness is generally prevented by their low

specific absorbed intensity, which increases exponentially with

d and thus becomes vanishingly small in ultrathin films and in

2DES. The problem can be solved by replacing a conventional

reflectivity setup for quasi-normal incidence measurements by

an apparatus for grazing-angle spectroscopy with polarized

radiation. In this way, one can exploit the Berreman effect

(Berreman, 1963), a powerful spectroscopic tool that has been

successfully used to study the 2DES (Dubroka et al., 2010;

Yazdi-Rizi et al., 2017; Nucara et al., 2018) of LAO/STO and

topological insulator systems like Bi2Se3 (Falsetti et al., 2018).

ISSN 1600-5775

# 2019 International Union of Crystallography

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600577519010920&domain=pdf&date_stamp=2019-09-11
http://crossmark.crossref.org/dialog/?doi=10.1107%2FS1600577519010920&domain=pdf&date_stamp=2019-09-11


In the Berreman effect, the p-component (in the plane of

incidence) of the electric field E undergoes enhanced

absorption through a film of thickness d (if d is much smaller

than both the radiation wavelength � and the field penetration

depth dp) at frequencies ! close to zero in the real part of the

system dielectric function "1(!). Therein, indeed, the normal

component E a;f
n ð!Þ = D f

n ð!Þ="1ð!Þ, where D f
n ð!Þ is the normal

component of the electric displacement field, becomes much

larger than when in vacuum. Thus, in a film thinner than both

� and dp, En(!) creates a dynamical dipole moment which

resonates with the longitudinal excitations of the sample

(Harbecke et al., 1985). By use of the Fresnel formulas for the

optical response of a multilayer, one then obtains the para-

meters of the ultrathin film, namely, if it is metallic, the plasma

frequency !p, the carrier relaxation rate � and its thickness d.

In order to determine these parameters, it is necessary to

implement an optical device suitable to perform reflectivity

measurements at high angles of incidence, so that the electric

field of the incident radiation has a strong p component

normal to the surface. As this increases the area of the illu-

minated sample, one needs to use a highly brilliant source,

which moreover should be broad-band to allow for FTIR

spectroscopy, properties being both characteristic of infrared

synchrotron radiation (Roy et al., 2001). Finally, a compelling

requirement of solid-state studies is that the sample can be

cooled down to liquid-helium temperatures. Therefore, the

grazing-angle optics must be adapted to a cryogenic apparatus,

which can be placed in the sample compartment of the inter-

ferometer, or in an external vacuum chamber. These

constraints do not allow a commercial optical device to be

used. Because of its complexity, such a combination is scarce

(see, for example, Stanislavchuk et al., 2013). In the present

paper, we describe the apparatus built at one of the experi-

mental stations of the infrared synchrotron beamline AILES

at the facility SOLEIL. We shall also describe the measure-

ments successfully performed on the 2DES at the LAO/STO

interface. For the measurements of the Berreman effect, we

used a single polarizer placed on the incident radiation path.

However, this apparatus can also be easily adapted to ellip-

sometry measurements by the addition of a second polarizer

– the analyzer – which intercepts the reflected radiation, and

of two compensators on the beam path as considered by

Yazdi-Rizi et al. (2017).

2. Specifications and constraints

As mentioned above, the purpose of the new apparatus is to

perform reflectivity measurements at high incidence angles,

with variable polarization, on samples mounted on the closed-

cycle cryogenerator whose cold finger is thermically connected

to the sample holder. The cooled sample is placed at the center

of an in-house-developed chamber external to the inter-

ferometer (Bruker IFS 125HR), referred to as the Cryostat

Compartment (CC). The original Back Sample Compartment

of the interferometer (BSC) is used here to host the optics

which redirects the radiation to the CC. The operating

temperature range is 7–300 K, and the position of the sample

holder can be finely adjusted to compensate for any contrac-

tion at low temperature. The chamber, of dimensions 262 mm

� 184 mm � 162 mm, can be kept at the same high vacuum

(P < 10�6 mbar) as the spectroscopic system or, alternatively,

isolated by a set of windows adapted for each spectral range.

Requirements for the setup are (i) to focus the radiation on

the sample at an angle of incidence of 72� � 2�, (ii) to include

a polarizer, and (iii) to take into account the dimensional

constraints due to the chamber size and the cryostat position.

It is designed to operate in the frequency range 10–3000 cm�1,

using either the synchrotron radiation or the internal sources

of the interferometer. In order to focus the entire synchrotron

beam in the far-infrared domain, the sample has to be 5 mm�

3 mm or larger. Furthermore, one can place in the sample

compartment a mobile gold evaporator. This option allows a

reliable reflectivity reference to be obtained when the sample

is a single crystal, whose surface may still be rough after

polishing, on the wavelength scale. Finally, the setup has to be

user-friendly, given that the beamline AILES of SOLEIL is a

facility open to researchers having limited beam time.

3. Design and implementation of the optical setup

Unlike other grazing-incidence setups where the cryostat

vacuum chamber only contains the sample holder, our

selected optical solution was based on inserting both the

focusing optics and the sample holder in the same vacuum

chamber. In addition to the CC, a second assembly of optics is

inserted in the BSC. A general schematic aerial view is shown

in Fig. 1. Therein, for the sake of clarity, each mirror holds a

number that will be used below to separately describe the

optics in the two compartments.

3.1. Optical assembly of the BSC

A schematic of the BSC optical setup, before its insertion

into the BSC, is shown in Fig. 2. In the description of the

optical elements we shall refer to the numbers shown in Fig. 1.

The BSC optical assembly is mounted on an aluminium

plate. It includes four flat mirrors (1, 3, 8 and 10) with 20 mm

� 20 mm surface and a pair of paraboloid mirrors (2 and 9)

with effective focal length f = 38.1 mm. All mirrors are gold

plated and have two screws on the back for the rotation

around the vertical and horizontal axis allowing alignment. As

shown in Fig. 1, a first focus point allowing insertion of optical

elements such as polarizers, filters or iris is located between

mirrors 1 and 2. The polarizer selects the electric field of the

incident radiation either in the (horizontal) plane of incidence

(p polarization) or orthogonally to it (s polarization). Mirror 2

is a paraboloid placed at the distance f from the focus, to act as

a collimator. The parallel beam is then sent to the flat mirror 3,

which deviates the beam toward the CC. The beam exits from

the cryostat chamber and travels toward the detector through

the other side of the BSC along a symmetric path through the

flat (8 and 10) and the paraboloid (9) mirrors, which have the

same f as 2 (38.1 mm). In order to simplify the alignment,

mirrors 1 and 10 are placed on the same rail which is parallel
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to the incident beam. Mirrors 3, 2, 9 and 8 are placed on a

second rail, also parallel to the incident beam. Two screws are

used for rotations around the vertical and horizontal axes.

Both their height and the position along the rail are adjus-

table.

3.2. Optical assembly of the CC

A schematic of the second optical setup, taken before its

insertion in the CC, is shown Fig. 3. Here also, the optical

elements are identified by the numbers reported in Fig. 1.

They are mounted on an aluminium board which holds a large

aperture in order to allow for turbo pumping of the chamber.

Flat mirror 4 deviates the parallel beam toward the paraboloid

5, that focuses the beam onto the sample under an angle of

72�. The reflected radiation is collected and collimated again

by paraboloid 6, while flat mirror 7 reflects the parallel beam

back to the BSC toward the detector. Both 5 and 6 have f =

38.1 mm and the same adjustment screws mentioned above for

mirrors 2 and 9. Details of the mechanical mounting are given

in the next section for both the flat and the parabolic mirrors.

3.3. Details of the translation and rotation stages

The parabolic mirrors are mounted onto a stacking of small

translation and rotation stages shown in Fig. 4, in order to fulfil

the operational constraints of the two chambers. In order to

define the angle of incidence i, we adjust movement (1) (see

Fig. 4), which rotates the mirror around the z-axis. The linear

translation along y (2) allows for centering the grazing beam

onto the sample for a given i. A groove allows adjustment

along z (3), and a linear translation stage along x (4) permits

adjustment of the focusing of the beam onto the sample.

Finally, a rotating stage is mounted on the x translation stage

in order to permit rotation around the y axis (5).
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Figure 2
Schematic of the optical setup to be inserted in the back sample
compartment. Mirrors 1, 3, 8 and 10 are flat. Mirrors 2 and 9 are
paraboloids with focal length f = 38.1 mm.

Figure 3
Schematic of the optical setup inserted in the cryostat compartment.
Mirrors 4 and 7 are flat. Mirrors 5 and 6 are paraboloids mounted on a set
of stages. The modulated beam is focused on the sample holder which is
in thermal contact with the cryostat through copper braids. Note that the
cold finger of the cryostat is not rigidly fixed to the sample holder in order
to avoid large thermal contractions.

Figure 1
Schematic of the grazing-angle optical setup viewed from above. The
modulated beam from the interferometer is focused and collimated by
parabolic and flat mirrors numbered in the order of the optical path as
described in the text. The focus point between mirrors 1 and 2 allows
optical elements such as polarizers, filters or iris to be inserted. The
position of the sample holder is indicated by the letter S. The camera at
the bottom allows for checking the visible-light spot on the sample. The
gold evaporator is below the camera axis.



3.4. Sample holder

The surface of the sample is oriented toward the spectro-

meter. The sample holder, made of two oxygen-free, high-

conductivity (OFHC) copper pieces, as shown in Fig. 5,

ensures a good thermal contact with the cold finger of the

cryogenerator. The sample (2) is fixed on a truncated pyramid

(2) with a cryogenic varnish in order to reject the ‘excess’ of

radiation out of the optical path. Piece (1) is an adapter with

a trapezoidal groove where the pyramid is placed. It has a

square base, so that it can be inserted in two orthogonal

directions. This can be useful for rotating the polarization on

anisotropic samples by exploiting the full intensity of the

highly linearly polarized radiation coming from the synchro-

tron port. The position into the groove is fixed by a lateral

screw which also allows for a good thermal contact. In order to

make the position of the sample reproducible, the back of the

adapter is inserted into a tight slit providing an accurate

positioning onto the cryostat and a good thermal contact.

4. An application to the two-dimensional electron
system at the LAO/STO interface

As already reported in previous work (Roy et al., 2001, 2006;

Voute et al., 2016), infrared spectroscopy takes much advan-

tage from the high brilliance of synchrotron radiation with

respect to conventional (blackbody) wide-band sources,

especially in the far-infrared and the terahertz range. The gain

in terms of signal-to-noise ratio, which is already remarkable

in reflectivity measurements at normal incidence, increases

even further with the angle of incidence. At grazing incidence,

the advantage of using synchrotron radiation is important also

in the mid-infrared up to 3000 cm�1 as shown in Fig 6.

Such an advantage can be exploited both in ellipsometry

and in the measurements based on the Berreman effect as

mentioned in the Introduction. As an example of the latter

application, measurements on SrTiO3/LaAlO3 thin films were

performed at beamline AILES of Synchrotron SOLEIL with

the aforementioned apparatus and are presented in the

following.

At the interface between a SrTiO3 (STO) substrate and a

LaAlO3 (LAO) film thicker than four unit cells, a thin layer of

free charges was found to appear spontaneously (Ohtomo et

al., 2002; Mannhart & Schlom, 2010). Having a thickness

certainly smaller than 10 nm (Basletic et al., 2008; Dubroka et

al., 2010; Yazdi-Rizi et al., 2017; Nucara et al., 2018), it is

considered as a 2DES. According to several authors (Ohtomo

et al., 2002; Ohtomo & Hwang, 2004; Caviglia et al., 2010), the

2DES forms within the upper layer of STO, through a top-

down charge transfer triggered by the need to avoid a ‘dipolar

catastrophe’ in LAO. According to others (Willmott et al.,

2007; Kalabukhov et al., 2007), self-doping by oxygen non-

stoichiometry at or around the interface can play a major role.

This layer has been investigated by infrared spectroscopy

combined with a full ellipsometric apparatus (Dubroka et al.,

2010). It is therefore an ideal system to test our new setup

using a single polarizer at SOLEIL. To this purpose, two

samples of crystalline LAO films deposited on TiO2-termi-

nated SrTiO3 substrates were prepared by pulsed laser

deposition (Aurino et al., 2013). In sample A the 2DES was

present, as demonstrated by transport measurements (Nucara

et al., 2018), while in sample B – to be used as reference - the

2DES had been erased by ion etching. The reflectivity R(!) of
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Figure 6
Mid-infrared reproducibility for synchrotron (SR) light compared with a
blackbody (BB) source for the grazing-angle reflectivity setup available
on the AILES beamline of Synchrotron SOLEIL. SR: red curve; BB: blue
curve. Both curves were obtained under the same conditions of
measurement: MCT detector, 1.5 mm iris opening, KBr beamsplitter
and 400 scans.

Figure 4
Schematic of the stages of rotation and translation used to hold and adjust
the paraboloids 5 and 6. Numbers correspond to the alignment controls as
described in the text.

Figure 5
The sample holder: exploded view (left) and assembled (right): adaptor
(1); sample (2); pyramid (3).



A and that of B were measured independently, firstly with the

electric field parallel to the plane of incidence [Rp(!)] and

then orthogonally to it [Rs(!)], see Fig. 7. We thus extracted

for both samples the ellipsometric angle

�ð!Þ ¼ arctan Rp=Rs

� �1=2
; ð1Þ

and finally the difference �� = �A � �B, at various

temperatures, as plotted in Fig. 8. Therein, one observes a

Berreman resonance at 868 cm�1, which is better defined at

low temperature. This frequency corresponds to the reflec-

tivity edge of a longitudinal phonon of STO, as predicted by

theory (Berreman, 1963; Dubroka et al., 2010). Thanks to this

resonance, we could isolate the spectral contribution of the

2DES at the interface. The refraction index for the no-2DES

sample (sample B) is obtained with the Lyddane–Sachs–Teller

(LST) equation which allows the dielectric function of the

substrate to be expressed as a function of the ratio of the

longitudinal and transverse phonon frequencies. In turn, the

refractive index in the sample with 2DES (sample A) is

obtained by adding to the LST expression, a free-electron

Drude term. Then, the ellipsometric angle is expressed as a

function of the reflection coefficient of the entire multilayer

from the so-called Fresnel equations, taking into account that

the two interfaces of the 2DES are both transmitting and

reflecting, and is fitted with the experimental data. For more

details and exact equations see Nucara et al. (2018). We

obtained its physical and electrodynamic parameters, namely

the thickness d of the 2DES, the plasma frequency !p and the

electron relaxation rate �D . The resulting Drude parameters

are summarized in Table 1. From these parameters we can

deduce the sheet carrier density Ns and the mobility � at 250

and 10 K. In Table 2 we compare these values with those

reported by Dubroka et al. (2010). Our samples were not

obtained with the same annealing procedure and it is known

that the charge density depends on the oxygen concentration

at the interface which is sample dependent. In view of the

above considerations, we can conclude that our values are

consistent with the previous work showing that the apparatus

here described, in combination with a synchrotron source, is

fully adapted for this kind of measurement.

5. Conclusion

We have described an optical setup for reflectivity measure-

ments at grazing incidence which can work both with the

internal sources of the interferometer and, more efficiently,

with infrared synchrotron radiation, down to the far-infrared

range. Moreover, the sample can be temperature controlled

down to 7 K. It has been tested to investigate the electro-

dynamic properties of two-dimensional conducting systems by

use of the Berreman effect, but it can also be applied to the

spectroscopy of other ultrathin films, like for instance those

formed by molecules adsorbed on surfaces. With a few

changes, the apparatus can also be used for ellipsometry or
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Table 1
Fitting parameters for the 2DES at the interface between a crystalline
LAO film and its STO substrate: 2DES thickness (d), carrier plasma
frequency !p and relaxation rate �D .

T (K) d (nm) !p (cm�1) �D (cm�1)

250 4 � 1 980 � 80 155 � 20
10 4 � 1 950 � 80 5 � 2

Table 2
Comparison of our values of sheet carrier density Ns and mobility � with
those reported by Dubroka et al. (2010) in a previous work.

Dubroka et al. Our work

Ns (300 K) = 6 � 1 � 1013 cm�2 Ns (250 K) = 1.4 � 0.3 � 1013 cm�2

Ns (� 10 K) = 9 � 1 � 1013 cm�2 Ns (10 K) = 1.3 � 0.3 � 1013 cm�2

� (300 K) ’ 3 cm2 V�1 s�1 � (250 K) = 20 � 2 cm2 V�1 s�1

� (� 10 K) = 600 � 300 cm2 V�1 s�1 � (10 K) = 580 � 40 cm2 V�1 s�1

Figure 7
Reflectivity of LAO/STO with 2DES (top) (sample A) and without 2DES
(bottom) (sample B), measured at T = 10 K with the radiation parallel
(Rp) and orthogonal (Rs) to the plane of incidence of the infrared
radiation. The resonance is observed on the dip of the reflectivity edge of
the longitudinal phonon as indicated by the arrows. For both samples the
reference was a gold mirror.

Figure 8
Contribution to the Berreman effect of the 2DES at the interface
between crystalline LAO and STO, as obtained by subtracting from the
ellipsometric angle �(!) of sample A (with the 2DES) that of sample B
where the 2DES had been erased by ion etching.



photo-modulated infrared reflection absorption spectroscopy

(Buffeteau et al., 1991). In a first test of the optical setup, we

detected the Berreman resonance of a 2DES of nanometric

thickness, formed spontaneously at an LAO/STO interface.

We obtained results similar to those of a previous experiment

performed with an ellipsometric apparatus (Dubroka et al.,

2010). We could determine the Drude parameters of the 2DES

which is only 4 nm thick. Such a setup is also well adapted for

studying further 2DES like the topological surface states

(Falsetti et al., 2018) or graphene-based systems.
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D., Patterson, B. D., Delley, B., Clarke, R., Kumah, D., Cionca, C. &
Yacoby, Y. (2007). Phys. Rev. Lett. 99, 155502.

Yazdi-Rizi, M., Marsik, P., Mallett, B. P. P., Sen, K., Cerreta, A.,
Dubroka, A., Scigaj, M., Sánchez, F., Herranz, G. & Bernhard, C.
(2017). Phys. Rev. B, 95, 195107.

research papers

1950 Marine Verseils et al. � Low-temperature IR spectroscopy of 2D systems J. Synchrotron Rad. (2019). 26, 1945–1950

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=il5040&bbid=BB23

