
Logical Methods in Computer Science
Volume 15, Issue 3, 2019, pp. 32:1–32:49
https://lmcs.episciences.org/

Submitted Aug. 30, 2018
Published Sep. 20, 2019

NASH EQUILIBRIUM AND BISIMULATION INVARIANCE

JULIAN GUTIERREZ a, PAUL HARRENSTEIN a,
GIUSEPPE PERELLI b, AND MICHAEL WOOLDRIDGE a

a Department of Computer Science, University of Oxford
e-mail address: {julian.gutierrez,paul.harrenstein,mjw}@cs.ox.ac.uk

b Department of Computer Science, University of Göteborg
e-mail address: perelli@chalmers.se

Abstract. Game theory provides a well-established framework for the analysis of concur-
rent and multi-agent systems. The basic idea is that concurrent processes (agents) can be
understood as corresponding to players in a game; plays represent the possible computation
runs of the system; and strategies define the behaviour of agents. Typically, strategies
are modelled as functions from sequences of system states to player actions. Analysing a
system in such a setting involves computing the set of (Nash) equilibria in the concurrent
game. However, we show that, with respect to the above model of strategies (arguably,
the “standard” model in the computer science literature), bisimilarity does not preserve
the existence of Nash equilibria. Thus, two concurrent games which are behaviourally
equivalent from a semantic perspective, and which from a logical perspective satisfy the
same temporal logic formulae, may nevertheless have fundamentally different properties
(solutions) from a game theoretic perspective. Our aim in this paper is to explore the issues
raised by this discovery. After illustrating the issue by way of a motivating example, we
present three models of strategies with respect to which the existence of Nash equilibria
is preserved under bisimilarity. We use some of these models of strategies to provide new
semantic foundations for logics for strategic reasoning, and investigate restricted scenarios
where bisimilarity can be shown to preserve the existence of Nash equilibria with respect
to the conventional model of strategies in the computer science literature.

1. Introduction

The concept of bisimilarity plays a central role in both the theory of concurrency [Mil89,
HM85] and logic [van76, HM85]. In the context of concurrency, bisimilar systems are regarded
as behaviourally equivalent—appearing to have the same behaviour when interacting with an
arbitrary environment. From a logical/verification perspective, bisimilar systems are known
to satisfy the same temporal logic properties with respect to languages such as LTL, CTL,
or the µ-calculus [Pnu77, CE81, Koz83]. These features, in turn, make it possible to verify
temporal logic properties of concurrent systems using bisimulation-based approaches [SR12].
For example, temporal logic model checking techniques [CGP02] may be optimised by
applying them to the smallest bisimulation equivalent model of the system being analysed;

Key words and phrases: Bisimulation, Nash Equilibrium, Logic and Games, Concurrency.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-15(3:32)2019
c© J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

32:2 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

or, indeed, to any other model within the system’s bisimulation equivalence class. This is
possible because the properties that one is interested in checking are bisimulation invariant.

Model checking [CGP02] is not the only verification technique that can benefit from
bisimulation invariance: consider abstraction and refinement techniques [CGL94, CC02]
(where a set of states is either collapsed or broken down in order to build a somewhat simpler
set of states); coinduction methods [San09] (which can be used to check the correctness of
an implementation with respect to a given specification); or reduced BDD representations of
a system [Bry92] (where isomorphic, and therefore bisimilar, subgraphs are merged, thereby
eliminating part of the initial state space of the system). Bisimulation invariance is therefore
a powerful and fundamental concept in the formal analysis and verification of concurrent
and multi-agent systems, which plays an important role in many verification tools.

Game theory provides another important framework for the analysis and verification
of concurrent and multi-agent systems. Within this framework, a concurrent/multi-agent
system is viewed as a game, where processes/agents correspond to players, system executions
(that is, computation runs) to plays, and individual process behaviours are modelled as
player strategies, which are used to resolve the possible nondeterministic choices available to
each player. A widely-used model for strategies in concurrent games is to view a strategy for
a process/agent/player i as a function fi which maps finite histories s0, s1, . . . , sk of system
states to actions fi(s0, s1, . . . , sk) available to i at state sk. (In what follows, we use the
terms process, agent, and player interchangeably.) We refer to this as the “conventional”
model of strategies, as it is the best-known and most widely-used model in logic, AI, and
computer science (and indeed in extensive form games [OR94]). For instance, specification
languages such as Alternating-time Temporal Logic (ATL [AHK02]), and formal models
such as concurrent game structures [AHK02] use this model of strategies. If we model a
concurrent/multi-agent system as a game in this way, then the analysis and verification
of the system reduces to computing the set of (Nash) equilibria in the associated game;
in some cases, the analysis reduces to the computation of a winning strategy in the game,
that is, a strategy that ensures that the players who follow such a plan will achieve their
goal no matter how the other players in the system play, i.e., against any other possible
counter-strategy.

Now, because bisimilar systems are regarded as behaviourally equivalent, and bisimilar
systems satisfy the same set of temporal logic properties, it is natural to ask whether the
Nash equilibria of bisimilar structures can be identified in a similar way; that is, we ask the
following question:

Is Nash equilibrium invariant under bisimilarity?

We show that, for the “conventional” model of strategies, the answer to this question is,
in general, no. More specifically, the answer critically depends on precisely how players’
strategies are modelled. With the conventional model of strategies, we find the answer
is positive only for some two-player games, but negative in general for games with more
than two players. This means, for instance, that, in the general case, bisimulation-based
techniques cannot be used when one is also reasoning about the Nash equilibria of concurrent
systems that are formally modelled as multi-player (concurrent) games.

For instance, given a concurrent and reactive system, represented as a collection of
individual system components, say P1, . . . , Pn, one may want to know if a given temporal
logic property, say ϕ, is satisfied by these system components whenever they choose to
use strategies that form an equilibrium, that is, we want to know whether for some/every

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:3

computation run ρ ∈ NE (P1, . . . , Pn) we have ρ |= ϕ, where NE (P1, . . . , Pn) denotes the set
of all computation runs that may be generated as a result of P1, . . . , Pn selecting strategies
that form a Nash equilibrium. Because we are interested in concurrent systems, and
bisimilarity is one of the most important behavioural equivalences in concurrency [Mil80,
HM85, DV95, vGW96], it is highly desirable that properties which hold in equilibrium
are sustained across all systems that are bisimilar to P1, . . . , Pn, meaning that for every
(temporal logic) property ϕ and every process P ′i , if P ′i is bisimilar to Pi ∈ {P1, . . . , Pn}, then
ϕ is satisfied in equilibrium by P1, . . . Pi . . . Pn if and only if is also satisfied in equilibrium by
P1, . . . P

′
i . . . , Pn, the system in which Pi is replaced by P ′i , that is, across all bisimilar systems

to P1, . . . , Pn. This property, called invariance under bisimilarity, has been widely used for
decades for the semantic analysis (e.g., for modular and compositional reasoning) and formal
verification (e.g., for temporal logic model checking) of concurrent systems. Unfortunately, as
shown here, and already discussed in [GHW15a], the satisfaction of temporal logic properties
in equilibrium is not invariant under bisimilarity, thus posing a verification challenge for
the modular and compositional reasoning of concurrent systems, since individual system
components in a concurrent system cannot be replaced by (behaviourally equivalent) bisimilar
ones, while preserving the temporal logic properties that the overall system satisfies in
equilibrium. This is also a problem from a synthesis point of view. Indeed, a strategy for a
system component Pi may not be a valid strategy for a bisimilar system component P ′i . As
a consequence, the problem of building strategies for individual processes in the concurrent
system P1, . . . Pi . . . Pn may not, in general, be the same as building strategies for a bisimilar
system P1, . . . P

′
i . . . Pn, again, dashing any hope of modular reasoning on concurrent systems.

Motivated by these observations—which bring together in a striking way a fundamental
concept in game theory and a fundamental concept in logic/concurrency—the purpose of the
present paper is to investigate these issues in detail. We first present a motivating example,
to illustrate the basic point that using the conventional model of strategies, bisimulation need
not preserve Nash equilibria. We then present three alternative models of strategies in which
Nash equilibria and their existence are preserved under bisimilarity. We also study the above
question for different classes of systems, for instance deterministic and nondeterministic ones,
and explore applications to logic. Specifically, we investigate the implications of replacing
the conventional model of strategies with some of the models we propose in this paper in
logics for strategic reasoning [MMPV14, CHP10], in particular, the semantic implications
with respect to Strategy Logic (SL [MMPV14]). We also show that, within the conventional
model of strategies, Nash equilibrium is preserved by bisimilarity in certain two-player games
as well as in the class of concurrent game structures that are induced by iterated Boolean
games [GHW15b], a framework that can be used to reason about the strategic behaviour
of AI, autonomous, and multi-agent systems [WGH+16]. Our main invariance results are
summarised in Table 1.

1.1. A Motivating Example. So far we have mentioned some cases where one needs or
desires a property to be invariant under bisimilarity. However, one may still wonder why
it is so important that the particular property of having a Nash equilibrium is preserved
under bisimilarity. One reason has its roots in automated formal verification. To illustrate
this, imagine that the system of Figure 1 is given as input to a verification tool. It is likely
that such a tool will try to perform as many optimisations as possible to the system before
any analysis is performed. Perhaps the simplest of such optimisations—as is being done by
virtually every model checking tool—is to reduce the input system by merging isomorphic

32:4 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

s0

p̄q̄

s′1
p̄q̄

s1

p̄q̄

s3

p̄q

s2

pq̄

s4

p̄q̄

a, b , a
a, b , a′

b , a, b
b , a, b′

b , a, a
b , a, a′

a, b , b
a, b , b′

a, a, ∗
b , b , ∗

b , ∗, a
a, ∗, b

∗, b , a′
∗, a, b′

b , ∗, a
a, ∗, b

∗, b , a′
∗, a, b′

a, ∗, a
b , ∗, b
∗, a, a′
∗, b , b′

a, ∗, a
b , ∗, b
∗, a, a′
∗, b , b′

∗, ∗, ∗

∗, ∗, ∗

∗, ∗, ∗

Figure 1: The game G0 on concurrent game structure M0 with a Nash equilibrium.

subtrees. This is done, e.g., when generating the ROBDD representation of a system. If
such an optimisation is made, the tool will construct the (bisimilar) system in Figure 2.
(Observe that the subgraphs rooted at s1 and s′1 are isomorphic.) However, with respect to
the existence of Nash equilibria, such a transformation is unsound in the general case.

For instance, suppose that the system in Figure 1 represents a 3-player game, where
each transition is labelled by the choices x, y, z made by player 1, 2, and 3, respectively, and
asterisk ∗ being a wildcard for any action for the player in the respective position. Thus,
whereas players 1 and 2 can choose to play either a or b at each state, player 3 can choose
between a, b, a′, or b′. The states are labelled by valuations xy over {p, q}, where x̄ indicates
that x is set to false. Assume that player 1 would like p to be true sometime, that player 2
would like q to be true sometime, and that player 3 desires to prevent both player 1 and
player 2 from achieving their goals. Accordingly, their preferences/goals can, respectively,
be formally represented by the LTL formulae

γ1 = Fp, γ2 = Fq, and γ3 = G¬(p ∨ q),
where, informally, Fϕ means “eventually ϕ holds” and Gϕ means “always ϕ holds”. Moreover,
given these players’ goals and the conventional model of strategies, we will see later in
Section 4 that the system in Figure 1 has a Nash equilibrium, whereas no Nash equilibria
exists in the (bisimilar) concurrent system presented in Figure 2.

This example illustrates a major issue when analysing (the existence of) Nash equilibria
in the most widely used models of strategies and multi-player games in the computer science
literature, namely, that even the simplest and most innocuous optimisations commonly used
in automated verification are not necessarily sound with respect to game-theoretic analyses.

Because the problem is so fundamental, one may wonder whether bisimilarity is not
the right behavioural equivalence for multi-player games, or whether Nash equilibrium is
not the right solution concept for game-theoretic analyses of concurrent and multi-agent
systems modelled as multi-player games. We will discuss these questions in more detail

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:5

s0

p̄q̄

s1

p̄q̄

s2

pq̄

s3

p̄q

s4

p̄q̄

a, b , ∗
b , a, ∗

b , ∗, a
a, ∗, b

∗, b , a′
∗, a, b′

a, a, ∗
b , b , ∗

a, ∗, a
b , ∗, b
∗, a, a′
∗, b , b′

∗, ∗, ∗

∗, ∗, ∗

∗, ∗, ∗

Figure 2: The game G1 on concurrent game structure M1 without a Nash equilibrium.

in Section 8, as we do not have a definite answer, but for now we would like to make a
couple of observations. On the one hand, that our results also hold both for “alternating”
(bisimilarity) relations, as defined in [AHKV98], which are intended to capture strategic
behaviour in multi-player games, as well as for trace equivalence, as defined in CSP [BHR84],
an equivalence much weaker than bisimilarity. On the other hand, that our negative results
also hold for solution concepts stronger than Nash equilibrium, e.g., for strong and subgame-
perfect Nash equilibria, suggesting that the problem is not a particular defect of Nash
equilibrium. Indeed, we think that the issue underlying the mismatch between bisimilarity
and Nash equilibrium lies elsewhere. We will propose a very general solution to this problem,
that is, a way to reconcile bisimilarity and Nash equilibrium, based on a new definition
of strategy in a multi-player game. To do this, some concepts and definitions have to be
introduced first.

2. Preliminaries

We begin by introducing the main notational conventions, models, and technical concepts
used in this paper.

Sets. Given any set S = {s, q, r, . . .}, we use S∗, Sω, and S+ for, respectively, the sets
of finite, infinite, and non-empty finite sequences of elements in S. If w1 ∈ S∗ and w2 is
any other (finite or infinite) sequence, we write w1w2 for their concatenation. The empty
sequence is denoted by ε.

Concurrent Game Structures. We use the model of concurrent game structures, which
are well-established in the logic and computer science literatures (see, for instance, [AHK02]).
A concurrent game structure (CGS) is a tuple M = (Ag,AP,Ac, St, s0M , λ, δ), where Ag =
{1, . . . , n} is a set of players or agents, AP a set of propositional variables, Ac is a set of
actions, St is a set of states containing a unique initial state s0M . With each player i ∈
Ag and each state s ∈ St, we associate a non-empty set Aci(s) of feasible actions that,

32:6 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

intuitively, i can perform when in state s. By a direction or decision we understand a profile
of actions d = (a1, . . . , an) in Ac× · · · ×Ac and we let Dir denote the set of directions. A
direction d = (a1, . . . , an) is legal at state s if ai ∈ Aci(s) for every player i. Unless stated
otherwise, by “direction” we will henceforth generally mean “legal direction”. Furthermore,
λ : St → 2AP is a labelling function, associating with every state s a valuation v ∈ 2AP.
Finally, δ is a deterministic transition function, which associates with each state s and every
legal direction d = (a1, . . . , an) at s a state δ(s, a1, . . . , an). As such δ characterises the
behaviour of the system when d = (a1, . . . , an) is performed at state s.

Computations, Runs, and Traces. The possible behaviours exhibited by a CGS can be
described at at least three different levels of abstraction. In what follows, we distinguish
between computations, runs, and traces. Computations carry the most information, while
traces carry the least, in the sense that every computation induces a unique run and every
run induces a unique trace, but not necessarily the other way round. The distinctions we
make between computations, runs, and traces may appear to be insignificant, but are in fact
central in our analysis of bisimilarity and Nash equilibrium.

A state s′ is accessible from another state s whenever there is some d = (a1, . . . , an) such

that d is legal at s and δ(s, a1, . . . , an) = s′. For easy readability we then also write s
d−→ s′.

An (infinite) computation is then an infinite sequence of directions κ = d0, d1, d2, . . . such that

there are states s0, s1, . . . with s0 = s0M and s0
d0−→ s1

d1−→ s2
d2−→ · · · . Observe that, having

assumed the transition function δ to be complete and deterministic, in every concurrent
game model the states s0, s1, . . . in the above definition always exist and are unique. A finite
computation is any finite prefix of a computation κ. We also allow a finite computation to be
the empty sequence ε of directions. The sets of infinite and finite computations are denoted
by compsωM and compsM , respectively. We also use δ∗(s, d0, d1, . . . dk) to denote the unique
state that is reached from the state s after applying the computation d0, d1, . . . dk.

An (infinite) run is an infinite sequence ρ = s0, s1, s2 . . . of states of sequentially accessi-
ble states, with s0 = s0M . We say that run s0, . . . , sk is induced by computation d0, . . . , dk−1

if s0
d0−→ s1

d1−→ s2
d2−→ · · · and s0 = s0M . Thus, every computation induces a unique run

and every run is induced by at least one computation. By a finite run or (finite) history we
mean a finite prefix of a run. The sets of infinite and finite runs are denoted by runsωM and
runsM , respectively.

An (infinite) trace is a sequence τ = v0, v1, v2, . . . of valuations such that there is
a run ρ = s0, s1, s2, . . . in runsωM such that vk = λ(sk) for every k ≥ 0, that is, τ =
λ(s0), λ(s1), λ(s2), In that case we say that trace τ is induced by run ρ, and if ρ is
induced by computation κ, also that τ is induced by κ. By a finite trace we mean a finite
prefix of a trace. We denote the sets of finite and infinite traces of a concurrent game
structure M by tracesM and tracesωM , respectively.

We use ρM (κ) to denote the run induced by a computation κ in CGS M , and write πM (κ)
if κ is finite on the understanding that πM (ε) = s0M . Also, if ρ = s0, s1, s2, . . . is a run, by
τM (ρ) we denote the trace λ(s0), λ(s1), λ(s2), . . . , and similarly for finite runs π ∈ runsM .
Finally, τM (ρM (κ)) is abbreviated as τM (κ). When no confusion is likely, we omit the
subscript M and the qualification ‘finite’.

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:7

Bisimilarity. One of the most important behavioural/observational equivalences in concur-
rency is bisimilarity, which is usually defined over Kripke structures or labelled transition
systems (see, e.g., [Mil89, HM85]). However, the equivalence can be uniformly defined
for general concurrent game structures, where decisions/directions play the role of, for
instance, actions in transition systems. Formally, let M = (AP,Ag,Ac,St, s0M , λ, δ) and
M ′ = (AP,Ag,Ac, St′, s0M ′ , λ

′, δ′) be two concurrent game structures. A bisimulation, de-
noted by ∼, between states s∗ ∈ St and t∗ ∈ St′ is a non-empty binary relation R ⊆ St× St′,
such that s∗ R t∗ and for all s, s′ ∈ St, t, t′ ∈ St′, and d ∈ Dir:

• s R t implies λ(s) = λ′(t),

• s R t and s
d−→ s′ implies t

d−→ t′′ for some t′′ ∈ St′ with s′ R t′′,

• s R t and t
d−→ t′ implies s

d−→ s′′ for some s′′ ∈ St with s′′ R t′.

Then, if there is a bisimulation between two states s∗ and t∗, we say that they are bisimilar
and write s∗ ∼ t∗ in such a case. We also say that concurrent game structures M and M ′

are bisimilar (in symbols M ∼M ′) if s0M ∼ s0M ′ . Since the transition functions of concurrent
game structures, as defined, are deterministic, we have the following simple but useful facts.
We say that runs ρ = s0, s1, . . . and ρ′ = s′0, s

′
1, . . . are statewise bisimilar (in symbols ρ ∼̇ ρ′)

if sk ∼ s′k for every k ≥ 0. Both bisimilarity and statewise bisimilarity are equivalence
relations, which is a standard result in the literature (see, for instance, [DGL16, BK08,
Mil89]).

We find, moreover, that the sets of (finite) computations as well as the sets of (finite)
traces of two bisimilar concurrent game structures are identical. In order to see this, the
following simple auxiliary result is useful.

Lemma 2.1. Let M ∼M ′, s, s′ ∈ St and t, t′ ∈ St′, and d a direction. Then, s ∼ t, s d−→ s′,

and t
d−→ t′ together imply s′ ∼ t′.

Proof. Assume s ∼ t, s
d−→ s′, and t

d−→ t′. As M ∼ M ′, there is a t′′ ∈ St such that

t
d−→ t′′ and s′ ∼ t′′. Since the transition function is deterministic, moreover, it follows that

t′′ = t′. Hence, s′ ∼ t′, as desired.

Using this observation we also have the following result.

Lemma 2.2. Let M and M ′ be bisimilar concurrent game structures. Then,

(1) compsωM = compsωM ′ and compsM = compsM ′,

(2) tracesωM = tracesωM ′ and tracesM = tracesM ′ .

Proof. For part 1, let κ = d0, d1, . . . , d2, . . . be a computation in compsωM and s0, s1, s2, . . .

the states in StM such that s0
d0−→ s1

d1−→ s2
d2−→ · · · . We show, by induction on k, that there

are states t0, t1, t2, . . . in StM ′ such that t0
d0−→ t1

d1−→ t2
d2−→ · · · , where t0 = s0M ′ . It suffices

to prove by induction on k that for every k ≥ 0 there is a tk+1 such that t0
d0−→ · · · dk−→ tk+1

and sk+1 ∼ tk+1. For k = 0, we have t0 = s0M ′ . Then, observe that, by definition, s0 = s0M
and, as M ∼ M ′, it immediately follows that s0 ∼ t0 and that there is a t1 such that

t0
d0−→ t1 and s1 ∼ t1. For the induction step, we may assume that there are t0, . . . , tk with

s0M ′ = t0
d0−→ · · · dk−1−−−→ tk and sk ∼ tk. By bisimilarity of M and M ′ we then immediately

obtain that there is a tk+1 such that t0
d0−→ · · ·

dk−1−−−→ tk
dk−→ tk+1. By Lemma 2.1 it then

follows that sk+1 ∼ tk+1. Hence, compsωM ⊆ compsωM ′ . As the inclusion in the opposite
direction is proven by an analogous argument, we may conclude that compsωM = compsωM ′ .

32:8 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

It also follows that compsM = compsM ′ , the latter being defined as the finite prefixes
of compsωM and compsωM ′ , respectively.

Observe that from the argument in part 1 it also follows that ρM (κ) ∼̇ ρM ′(κ) for
every κ ∈ compsωM = compsωM ′ . For part 2, consider an arbitrary trace τ ∈ tracesωM . Then,
there is a computation κ ∈ compsωM such that τM (κ) = τ . By part 1, also κ ∈ compsωM ′ .
Moreover, ρM (κ) ∼̇ ρM ′(κ). By the definition of (statewise) bisimilarity it then follows that
τ = τM (κ) = τM ′(κ). Accordingly, tracesωM ⊆ tracesωM ′ and the inclusion in the opposite
direction ensues by an analogous argument. We then conclude that tracesM = tracesM ′ , the
latter being defined as the finite prefixes of tracesωM and tracesωM ′ , respectively.

Moreover, every (finite) computation κ gives rise to statewise bisimilar (finite) runs and
identical (finite) traces in bisimilar concurrent game structures.

Lemma 2.3. Let M and M ′ be bisimilar concurrent game structures and κ ∈ compsωM and
κ′ ∈ compsM . Then,

(1) ρM (κ) ∼̇ ρM ′(κ) and πM (κ′) ∼̇ πM ′(κ′),
(2) τM (κ) = τM ′(κ) and τM (κ′) = τM ′(κ

′).

Proof. For part 1, first observe that by virtue of Lemma 2.2, we also have that κ ∈ compsωM ′
and κ ∈ compsM ′ . Let κ = d0, d1, d2, . . . , ρM (κ) = s0, s1, s2, . . . , and ρM ′(κ) = t0, t1, t2,
We prove by induction on k that sk ∼ tk for every k ≥ 0. If k = 0, then s0 = s0M ∼ s0M ′ = t0.

For the induction step, we may assume that sk ∼ tk. Then, sk
dk−→ sk+1 and tk

dk−→ tk+1.
Lemma 2.1 now yields sk+1 ∼ tk+1, as desired. The argument for the second part of 1
proceeds by an analogous argument.

Part 2 then follows almost immediately from part 1. Let ρM (κ) = s0, s1, s2, . . . and
ρM ′(κ) = t0, t1, t2, Now observe that for every k ≥ 0 we have that λM (sk) = λM ′(tk).
Accordingly, τM (κ) = τM ′(κ). For κ′ a similar argument yields the result.

However, as runs are sequences of states and the states of different concurrent game
structures M and M ′ may be distinct, even if they are bisimilar, no identification of their
sets runsωM and runsωM ′ of runs can generally be made.

3. Games on Concurrent Game Structures

Concurrent game structures specify the actions the players can take at each state and which
states are reached if they all concurrently decide on an action. In game theoretic terms,
these structures loosely correspond to what are called game forms. A full understanding
of the game-theoretic aspects of the system and the strategic behaviour of its constituent
players—and therefore which computations/runs/traces will be generated in equilibrium—
also essentially depends on what goals the players desire to achieve and on what strategies
they may adopt in pursuit of these goals. We therefore augment concurrent game structures
with preferences and strategies for the players. In this way CGSs define fully fledged
strategic games and as such they are amenable to game theoretic analysis by standard
solution concepts, among which Nash equilibrium is arguably the most prominent.

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:9

Strategies and Strategy Profiles. Based on the distinction between computations, runs,
and traces, we can also distinguish three types of strategy: computation-based, run-based,
and trace-based strategies. The importance of these distinctions is additionally corroborated
by Bouyer et al. [BBMU11, BBMU15], who show how the specific model of strategies
adopted affects the computational complexity of some standard decision problems related to
multi-agent systems.

A computation-based strategy for a player i in a concurrent game structure M is a
function

fcomp
i : compsM → Ac,

such that fcomp
i (κ) ∈ Aci(sk) for every finite κ ∈ compsM with πM (κ) = s0, . . . , sk. Thus,

in particular, fcomp
i (ε) ∈ Aci(s

0
M), where ε is the empty sequence of directions.

Similarly, a run-based strategy for player i is a function

f runi : runsM → Ac,

where f runi (s0, . . . , sk) ∈ Aci(sk) for every finite run (s0, . . . , sk) ∈ runsM . Finally, a
trace-based strategy for i is a function

f tracei : tracesM → Ac,

such that f tracei (τ) ∈ Aci(sk) for every trace τ ∈ tracesM and every run π = s0, . . . , sk such
that τ = λ(s0), . . . , λ(sk).

A computation-based strategy profile is then a tuple f = (f1, . . . , fn) that associates with
each player i a computation-based strategy fi. Run-based and trace-based strategy profiles
are defined analogously.

Every computation-based strategy profile f = (f1, . . . , fn) induces a unique computation

κM (f) = d0, d1, d2, . . .

in M that is defined inductively as follows:

d0 = (f1(ε), . . . , fn(ε))

dk+1 = (f1(d0, . . . , dk), . . . , fn(d0, . . . , dk)).

A run-based strategy profile f = (f1, . . . , fn) defines a unique computation κM (f) =
d0, d1, d2, . . . in a similar manner:

d0 = (f1(s
0
M), . . . , fn(s0M)), and

dk+1 = (f1(π(d0, . . . , dk)), . . . , fn(π(d0, . . . , dk))).

Finally, the computation κM (f) defined by a trace-based strategy profile f is given by

d0 = (f1(λ(s0M)), . . . , fn(λ(s0M)))

dk+1 = (f1(τ(d0, . . . , dk)), . . . , fn(τ(d0, . . . , dk))).

If M is clear from the context, we usually omit the subscript in κM (f). For f = (f1, . . . , fn)
a profile of computation-based, run-based, or trace-based strategies, we write with a slight
abuse of notation ρ(f1, . . . , fn) for ρ(κ(f1, . . . , fn)) and τ(f1, . . . , fn) for τ(ρ(f1, . . . , fn)).

As the computations of bisimilar concurrent games structures coincide (Lemma 2.2), we
can now establish that a player’s computation-based strategies coincide in bisimilar concurrent
game structures. Moreover, the computations induced by them will be identical. Also, from
the coincidence of traces between bisimilar concurrent game structures (Lemma 2.2), we can
establish also trace-based strategies coincide in bisimilar concurrent game structures.

32:10 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

Lemma 3.1. Let M and M ′ be bisimilar concurrent game structures and i a player. Then,
every computation-based strategy for i in M is also a computation-based strategy for i in M ′,
and every trace-based strategy for i in M is also a trace-based strategy for i in M ′. Moreover,
for every computation-based profile f for M we have that κM (f) = κM ′(f), and for every
trace-based profile g that κM (g) = κM ′(g).

Proof. First, let fi be a computation-based strategy for i in M . We show that fi is also a
computation-based strategy for i in M ′. To this end, consider an arbitrary κ ∈ compsM ′ .
Let πM ′(κ) = t0, . . . , tk. It suffices to prove that fi(κ) ∈ Aci(tk). To see this, first observe
that by Lemma 2.2 also κ ∈ compsM and let πM (κ) = s0, . . . , sk. In virtue of Lemma 2.1,
then sk ∼ tk. Moreover, because fi is a computation-based strategy for i in M , we have
fi(κ) ∈ Aci(sk). Now consider any legal direction dk = (a1, . . . , an) at sk with ai = fi(κ).

Then, there is some state sk+1 ∈ StM such that sk
dk−→ sk+1. As sk ∼ tk, moreover, there is

also a state tk+1 ∈ StM ′ such that tk
dk−→ tk+1. Accordingly, dk is legal at tk in M ′ and in

particular ai = fi(κ) ∈ Aci(tk) as desired.
The case if gi is a trace-based strategy for i in M is similar. We then have to prove

that gi is also a trace-based strategy for i in M ′ as well. To this end, consider an arbitrary
finite trace τ ∈ tracesM ′ and run π = t0, . . . , tk such that τ = λM ′(t0), . . . , λM ′(tk). It
then suffices to prove that gi(τ) ∈ Aci(tk). We may assume that π is induced by a
computation κ ∈ compsM ′ , that is, π = πM ′(κ). By Lemma 2.2 we have κ ∈ compsM
and by Lemma 2.3 both πM (κ) ∼̇ πM ′(κ) and τM (κ) = τM ′(κ). Let πM (κ) = s0, . . . , sk.
Hence, sk ∼ tk. As gi is a run-based strategy for i in M we have gi(τ) ∈ Aci(sk). Let,
furthermore, d = (a1, . . . , ak) be a legal direction at sk with ai = gi(τ). Then, there is some

state sk+1 ∈ StM such that sk
dk−→ sk+1. As sk ∼ tk, there is also a state tk+1 ∈ StM ′ such

that tk
dk−→ tk+1. Accordingly, dk is legal at tk in M ′ and in particular ai = gi(τ) ∈ Aci(tk).

For the second part of the lemma, let f = (f1, . . . , fn) be a computation-based strategy
profile in M . Then, f is a computation-based strategy profile in M ′ as well. Let κM (f) =
d0, d1, d2, . . . and κM ′(f) = d′0, d

′
1, d
′
2, We show by induction on k that for every k ≥ 0

we have dk = d′k. For k = 0, immediately, d0 = (f1(ε), . . . , fn(ε)) = d′0. For the induction
step we may assume that d0, . . . , dk = d′0, . . . , d

′
k. Hence,

dk+1 = (f1(d0, . . . , dk), . . . , fn(d0, . . . , dk)) = (f1(d
′
0, . . . , d

′
k), . . . , fn(d′0, . . . , d

′
k)) = d′k+1.

Finally, let g = (g1, . . . , gn) be a trace-based strategy profile. Again we let κM (f) =
d0, d1, d2, . . . and κM ′(f) = d′0, d

′
1, d
′
2, . . . and show by induction on k that for every k ≥ 0

we have that dk = d′k. If k = 0, observe that having assumed M ∼ M ′ also s0M = s0M ′ .
Accordingly, λM (s0M) = λM ′(s

0
M ′) and, hence,

d0 = (g1(λM (s0M)), . . . , gn(λM (s0M))) = (g1(λM ′(s
0
M ′)), . . . , gn(λM ′(s

0
M ′))) = d′k+1.

For the induction step, we may assume that d0, . . . , dk = d′0, . . . , d
′
k and by Lemma 2.3,

moreover, τM (d0, . . . , dk) = τM ′(d
′
0, . . . , d

′
k). Now the following equations hold:

dk+1 = (g1(τM (d0, . . . , dk)), . . . , gn(τM (d0, . . . , dk)))

= (g1(τM ′(d
′
0, . . . , d

′
k)), . . . , gn(τM ′(d

′
0, . . . , d

′
k)))

= d′k+1,

which concludes the proof.

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:11

With the states of bisimilar structures possibly being distinct, however, a statement
analogous to Lemma 3.1 cannot be shown to hold for run-based strategies.

Preferences and Goals. We assume the agents of a concurrent game structure to have
preferences on basis of which they choose their strategies. Formally, we specify the preferences
of a player i of a CGS M as a subset Γi of computations, that is, Γi ⊆ compsωM and refer
to Γi as i’s goal set. Player i is then understood to (strictly) prefer computations in Γi
to those not in Γi and to be indifferent otherwise. Accordingly, each player’s preferences
are dichotomous, only distinguishing between the preferred computations in Γi and the
not preferred ones not in Γi. Formally, player i is said to weakly prefer computation κ to
computation κ′ if κ ∈ Γi whenever κ′ ∈ Γi, and to strictly prefer κ to κ′ if i weakly prefers κ
to κ′ but not the other way round. If i both weakly prefers κ to κ′ and weakly prefers κ′

to κ, player i is said to be indifferent between κ and κ′.
Our choice to assume the players’ preferences to be computation-based preferences—that

is, to model their goals as sets of computations rather than, say, sets of runs or sets of
traces—is for technical convenience and flexibility. Recall that every set of runs induces a
set of computations, namely the set of computations that give rise to the same runs, and
similarly for every set of traces. Thus, we say that a goal set Γi ⊆ compsωM is run-based if for
any two computations κ and κ′ with ρ(κ) = ρ(κ′) we have that κ ∈ Γi if and only if κ′ ∈ Γ.
Similarly, Γi is said to be trace-based whenever τ(κ) = τ(κ′) implies κ ∈ Γi if and only if
κ′ ∈ Γi. In other words, in our setting, formally, run-based goals are computation-based goals
closed under induced runs, and trace-based goals are computation-based goals closed under
induced traces.1

Sometimes—as we did in the example in the introduction—players’ goals are specified
by temporal logic formulae [DGL16]. As the satisfaction of goals only depends on traces,
they will directly correspond to trace-based goals, given our formalisation of goals and
preferences.

Games and Nash Equilibrium. With the above definitions in place, we are now in a
position to define a game on a concurrent game structure M (also called a CGS-game) with
Ag = {1, . . . , n} as a tuple

G = (M,Γ1, . . . ,Γn),

where, for each player i in M , the set Γi ⊆ compsωM is a goal set specifying i’s dichotomous
preferences over the computations in M .

In a CGS-game the players can all play either computation-based strategies, run-based
strategies, or trace-based strategies. For each such choice of type of strategies, with the set
of players and their preferences specified, every CGS-game defines a strategic game in the
standard game-theoretic sense. Observe that the set of strategies is infinite in general. Thus
the game-theoretic solution concept of Nash equilibrium becomes available for the analysis
of games on concurrent game structures. If f = (f1, . . . , fn) is a strategy profile and gi a
strategy for player i, we write (f−i, gi) for the strategy profile (f1, . . . , gi, . . . , fn), which is

1We do not directly consider sets of runs or sets of traces as possible models of players’ preferences in this
paper—formally, they are induced sets of computations. Accordingly, when talking about preferences, we
need not make the distinction between ‘run-based’ (‘trace-based’) and ‘run-invariant’ (‘trace-invariant’) as we
do for strategies. Our run-based preferences and trace-based preferences can with as much justification be
referred to as run-invariant preferences and trace-invariant preferences, respectively.

32:12 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

identical to f except that i’s strategy is replaced by gi. Formally, given a CGS-game, we
say that a profile f = (f1, . . . , fn) of computation-based strategies is a Nash equilibrium in
computation-based strategies (or computation-based equilibrium) if, for every player i and
every computation-based strategy gi available to i,

κM (f−i, gi) ∈ Γi implies κM (f) ∈ Γi.

The concepts of Nash equilibrium in run-based strategies and Nash equilibrium in trace-
based strategies are defined analogously, where, importantly, the strategies in f−i and gi
are required to be of the same type, that is, either they are all run-based or they are all
trace-based. If κ(f) /∈ Γi whereas κ(f−i, gi) ∈ Γi, we also say that player i would like to
deviate from f (and play gi instead). Thus, a run-based profile f is a run-based equilibrium
whenever no player would like to deviate from it and play some run-based strategy different
from fi. Similarly, a trace-based profile f is a trace-based equilibrium if no player likes to
deviate and play another trace-based strategy.

We say that a computation κ, run ρ, or a trace τ is sustained by a Nash equilibrium f =
(f1, . . . , fn) (of any type) whenever κ = κ(f), ρ = ρ(f), and τ = τ(f), respectively. We
also refer to a computation, run, or trace that is sustained by a Nash equilibrium as an
equilibrium computation, equilibrium run, and equilibrium trace, respectively.

Computation-based equilibrium is a weaker notion than run-based equilibrium, in the
sense that if f is a run-based equilibrium there is also a corresponding computation-based
equilibrium, but not necessarily the other way round. Run-based equilibrium, in turn, is in
a similar way a weaker concept than trace-based equilibrium. As computation-based, run-
based, and trace-based strategies are set-theoretically of different types, a comparison cannot
be made directly. To make the comparison precise, we therefore identify two subclasses of
computation-based strategies, run-invariant strategies and trace-invariant strategies, that
characterise the behaviour of, respectively, run-based and trace-based strategies.

We say that a computation-based strategy fi : compsM → Aci is run-invariant in CGS M
whenever πM (κ) = πM (κ′) implies fi(κ) = fi(κ

′), for all computations κ, κ′ ∈ compsM .
Similarly, fi is trace-invariant in M whenever τM (κ) = τM (κ′) implies fi(κ) = fi(κ

′), for
all κ, κ′ ∈ compsM . Observe that thus a strategy fi being trace-invariant implies fi being
run-invariant, but not necessarily the other way around.

We observe that there are one-to-one correspondences between run-based strategies on the
one hand and run-invariant computation-based strategies on the other, and similarly between
trace-based strategies and trace-invariant computation-based strategies. Let fi : runsM → Ac
be a run-based strategy. Then define f̌i : compsM → Ac as the computation-based strategy
such that for every finite computation κ ∈ compsM we have f̌i(κ) = fi(πM (κ)). A similar
statment holds if gi : tracesM → Ac is a trace-based strategy. Then, define ˇ̌gi : comps → Aci
as the computation-based strategy such that for every finite computation κ ∈ compsM we
have ˇ̌gi(κ) = gi(τM (κ)).

Lemma 3.2. For run-based strategies fi and trace-based strategies gi, the mapping that
transforms fi into f̌i and the mapping that transforms gi into ˇ̌gi are both one-to-one.

Proof. Let fi a run-based strategy. We first show that f̌i is run-invariant. To this end, let
κ, κ′ ∈ compsM be computations such that πM (κ) = πM (κ′). Then,

f̌i(κ) = fi(πM (κ)) = fi(πM (κ′)) = f̌i(κ
′).

To show that the mapping is onto, let gi be an arbitrary run-invariant strategy. Now
define run-based strategy ĝi such that, for every run π ∈ runsM and κ ∈ compsM with

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:13

π = πM (κ) we have ĝi(π) = gi(κ). Observe that ĝi is well-defined since, by run-invariance
of gi, for all κ, κ′ ∈ compsM with πM (κ) = πM (κ′) = π we have that gi(κ) = gi(κ

′).
Finally, to see that the mapping is injective, let fi and f ′i be two distinct run-based

strategies. Then, there is a run π ∈ runsM such that fi(π) 6= f ′i(π). We may assume the
existence of a computation κ ∈ compsM such that πM (κ) = π. Then,

f̌i(κ) = fi(πM (κ)) = fi(π) 6= f ′i(π) = f ′i(πM (κ)) = f̌i(κ),

as desired. This concludes the proof.

Furthermore, each profile of run-invariant strategies induces the same computation in
a concurrent game structure as its run-based counterpart. A similar remark applies to
trace-invariant and trace-based profiles.

Lemma 3.3. Let f = (f1, . . . , fn) be a run-based profile and g = (g1, . . . , gn) a trace-based
profile. Then,

κM (f1, . . . , fn) = κM (f̌1, . . . , f̌n) and κM (f1, . . . , fn) = κM (ˇ̌f1, . . . ,
ˇ̌fn).

Proof. Let κM (f1, . . . , fn) = d0, d1, d2, . . . and κM (f̌1, . . . , f̌n) = d′0, d
′
1, d
′
2, We prove by

induction on k that d0, . . . , dk = d′0, . . . , d
′
k for every k ≥ 0.

If k = 0, recall that πM (ε) = s0M . Hence,

d0 = (f1(s
0
M), . . . , fn(s0M)) = (f1(πM (ε)), . . . , fn(πM (ε))) = (f̌1(ε), . . . , f̌n(ε)) = d′0.

For the induction step, we may assume that d0, . . . , dk = d′0, . . . , d
′
k. Now the following

equalities hold.

dk+1 = (f1(πM (d0, . . . , dk)), . . . , fn(πM (d0, . . . , dk)))

= (f̌1(d0, . . . , dk), . . . , f̌n(d0, . . . , dk))

=i.h. (f̌1(d
′
0, . . . , d

′
k), . . . , f̌n(d′0, . . . , d

′
k))

= d′k+1.

We may conclude that d0, . . . , dk+1 = d′0, . . . , d
′
k+1. The argument for trace-based and

trace-invariant strategies runs along analogous lines, mutatis mutandis.

We say that a computation-based profile f = (f1, . . . , fn) is a run-invariant equilibrium
in a CGS-game if f is run-invariant and no player i wishes to deviate from f and play
another run-invariant strategy f ′i . Similarly, a computation-based profile f = (f1, . . . , fn) is
a trace-invariant equilibrium in a CGS-game if f is trace-invariant and no player i wishes to
deviate from f and play another trace-invariant strategy f ′i . As an immediate consequence
of Lemmas 3.2 and 3.3 we have the following corollary.

Lemma 3.4. Let f = (f1, . . . , fn) and g = (g1, . . . , gn) be a run-based profile, respectively,
a trace-based profile in a CGS-game G = (M,Γ1, . . . ,Γn) based on M . Then,

(1) f is a run-based equilibrium if and only if f̌ is a run-invariant equilibrium ,
(2) g is a trace-based equilibrium if and only if ˇ̌g is a trace-invariant equilibrium.

Proof. For the run-based case, the following equivalences hold by virtue of Lemmas 3.2
and 3.3:

f is not a run-based equilibrium in G

iff κM (f) /∈ Γi and κM (f−i, f
′
i) ∈ Γi for some run-based strategy f ′i for some player i

32:14 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

iff κM (f̌) /∈ Γi and κM (f̌−i, f̌
′
i) ∈ Γi for some run-based strategy f ′i for some player i

iff κM (f̌) /∈ Γi and κM (f̌−i, f
′′
i) ∈ Γi for some run-invariant strategy f ′′i for some player i

iff f̌ is not a run-invariant equilibrium in G

The proof of the second part is by an analogous argument, mutatis mutandis.

Computation-based strategies grant a player more strategic flexibility than do run-
invariant strategies. A similar remark applies to run-invariant strategies and trace-invariant
strategies. Still, we find that, if a player i wishes to deviate from a computation-based
profile f and play another computation-based strategy, i would also like to deviate by playing
a run-invariant or even a trace-invariant strategy. This insight underlies the following result.2

Theorem 3.5. Let f = (f1, . . . , fn) be a run-invariant profile and g = (g1, . . . , gn) a
trace-invariant profile in CGS-game G = (M,Γ1, . . . ,Γn) based on M . Then,

(1) f is a run-invariant equilibrium if and only if f is a computation-based equilibrium,
(2) g is a trace-invariant equilibrium if and only if g is a computation-based equilibrium.

Proof. For part 1, first assume that f is a run-invariant equilibrium in G. For a contradiction
assume moreover that f is not a computation-based equilibrium. Then, there is a player i
and a computation-based strategy f ′i such that κM (f) /∈ Γi whereas κM (f−i, f

′
i) ∈ Γi. Let

κM (f−i, f
′
i) = d′0, d

′
1, d
′
2, Observe that f ′i need not be run-invariant. We therefore define

strategy f ′′i for player i such that f ′′i (ε) = f ′i(ε) and, for all finite computations d0, . . . , dk,

f ′′i (d0, . . . , dk) =

{
f ′i(d

′
0, . . . , d

′
k) if πM (d0, . . . , dk) = πM (d′0, . . . , d

′
k),

fi(d0, . . . , dk) otherwise.

As fi is run-invariant, this definition guarantees that f ′′i is run-invariant as well. Let
κM (f−i, f

′′
i) = d′′0, d

′′
2, d
′′
2, We prove by induction on k that d′0, . . . , d

′
k = d′′0, . . . , d

′′
k, for

every k ≥ 0, and hence that κM (f−i, f
′
i) = κM (f−i, f

′′
i). If k = 0, we immediately obtain

that

d′0 = (f1(ε), . . . , f
′
i(ε), . . . , fn(ε)) = (f1(ε), . . . , f

′′
i (ε), . . . , fn(ε)) = d′′0.

For the induction step, we may assume that d′0, . . . , d
′
k = d′′0, . . . , d

′′
k. and the following

equalities hold:

d′k+1 = (f1(d
′
1, . . . , d

′
k), . . . , f

′
i(d
′
1, . . . , d

′
k), . . . , fn(d′1, . . . , d

′
k))

= (f1(d
′
1, . . . , d

′
k), . . . , f

′′
i (d′′1, . . . , d

′′
k), . . . , fn(d′1, . . . , d

′
k))

=i.h. (f1(d
′′
1, . . . , d

′′
k), . . . , f

′′
i (d′′1, . . . , d

′′
k), . . . , fn(d′′1, . . . , d

′′
k))

= d′′k+1.

Observe that the second equality holds by virtue of the definition of f ′′i and πM (d′0, . . . , d
′
k) =

πM (d′′0, . . . , d
′′
k). It would follow that κM (f−i, f

′′
i) ∈ Γi as well, and, as f ′′i is run-invariant,

moreover that f is not a run-invariant equilibrium, a contradiction.
For the opposite direction, assume for contraposition that f is not a run-invariant

equilibrium. Then, there is some player i who would like to deviate from f and play some

2The situation can be compared to the relation between equilibria in pure and mixed (or randomised)
strategies in game theory. There every equilibrium in pure strategies is also an equilibrium in mixed strategies,
because, if a player wishes to deviate from a mixed profile, she wishes to deviate by playing a pure, that is,
not randomised, strategy.

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:15

run-invariant strategy f ′i . As run-invariant strategies are strategy-based by definition, it
follows that f is not a computation-based equilibrium either.

Part 2 follows by an analogous argument, mutatis mutandis.

Theorem 3.5 does not preclude the existence of computation-based equilibria that fail
to be run-invariant or trace-invariant, that is, the three equilibrium concepts—computation-
based, run-invariant, and trace-invariant equilibrium—are not equivalent. However, they
can be ordered with respect to how restrictive they are, that is, with respect to the sets of
profiles they exclude as solutions.

Corollary 3.6. Let f = (f1, . . . , fn) be a computation-based profile in some CGS-game G =
(M,Γ1, . . . ,Γn) based on M . Then,

(1) f is a run-invariant equilibrium implies f is a computation-based equilibrium,
(2) f is a trace-invariant equilibrium implies f is a run-invariant equilibrium.

Proof. Merely observe that if f is a run-invariant equilibrium, it is also a run-invariant
profile. If f is moreover trace-invariant it is also run-invariant. The result then immediately
follows from Theorem 3.5.

On basis of the findings in this section, we may with justification claim that every
trace-based equilibrium corresponds to a run-based equilibrium, and that every run-based
equilibrium corresponds with some computation-based equilibrium, even if the converses of
these statements do not generally hold.

4. Invariance of Nash Equilibria under Bisimilarity

From a computational point of view, one may expect games based on bisimilar concurrent
game structures and with identical players’ preferences to exhibit similar properties, in
particular with respect to their Nash equilibria. We find that that this is indeed the case for
games with computation-based strategies as well as for games with trace-based strategies.
Recall that (finite) computations and (finite) traces are unaffected by (state-splitting and
state-merging) operations on CGSs that preserve bisimilarity (Lemma 2.2). As a consequence
the sets of computation-based strategies and trace-based strategies available to an again are
the same in bisimilar CGSs (Lemma 3.1), providing the intuitive basis for these observations.

For games with run-based strategies the situation is considerably more complicated.
Here, a key observation is that, by contrast to computation-based and trace-based strategies,
there need not be a natural one-to-one mapping between the sets of run-based strategies in
bisimilar concurrent game models. By restricting attention to so-called bisimulation-invariant
run-based strategies, however, we find that order can be restored.

Invariance under Bisimilarity and Preference Types. We are primarily interested
in the Nash equilibria of games that are the same up to bisimilarity of the underlying
concurrent game structures. The Nash equilibria of a game, however, essentially depend on
the players’ preferences. Accordingly, the Nash equilibria of two bisimilar CGS-games can
only be meaningfully compared if we also we assume that the players’ preferences in these
two games are identical. We formalised players’ preferences as sets of computations, and,
due to Lemma 2.2, this enables a straightforward comparison of players’ goal sets across
bisimilar concurrent game structures.

32:16 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

s0
p

s1
p

s2
p

s3

p̄

a, a

a, b
b, a

b, b

∗, ∗

∗, ∗

∗, ∗

t0
p

t1
p

t2
p

t3

p̄

a, a
a, b

b, a

b, b

∗, ∗

∗, ∗

∗, ∗

Figure 3: Two games G2 (left) and G3 (right) based on M2 and M3, respectively, showing
that run-based preferences may not be preserved across bisimilar systems.

In Section 3, we also distinguished run-based and trace-based preferences, that is, goal
sets closed under computations that induce the same runs and traces, respectively. We are
also interested in the invariance of the existence of Nash equilibria in games on bisimilar
concurrent game structures where the players’ preferences games are what we will call
congruent, that is, both the same and of the same type in both games.

For computation-based and trace-based preferences the issue of congruence is moot.
Observe that for bisimilar concurrent game structures M and M ′, if a goal set Γi is
computation-based in M , then it is also computation-based in M ′. Due to Lemma 2.3, the
same holds for trace-based preferences.

This preservation of preference type under bisimilarity, however, does not extend to
run-based preferences. To see this, consider Figure 3 and let the goal set Γi of some player i
be given by all computations κ = d0, d1, d2, . . . with d0 = (a, a). Then, obviously, Γi is
run-based in the game G2 based on M2 on the left, but not in the game G3 based on M3 to
the right. To see the latter, consider any computation κ′ = d′0, d

′
1, d
′
2, . . . with d′0 = (a, b).

Then, κ′ /∈ Γi, but, nevertheless, in G3 we have ρM3(κ) = ρM3(κ′). By contrast, the goal set
given by all computations κ = d0, d1, d2, . . . such that d0 6= (b, b) is run-based in both games.

Computation-based Strategies. If strategies are computation-based, players can have
their actions depend on virtually all information that is available in the system. In an
important sense full transparency prevails and different actions can be chosen on bisimilar
states provided that the computations that led to them are different. Moreover, the strategies
available to players in bisimilar concurrent game structures are identical. Thus we obtain
our first main result.

Theorem 4.1. Let G = (M,Γ1, . . . ,Γn) and G′ = (M ′,Γ1, . . . ,Γn) be games on bisimilar
concurrent game structures M and M ′, respectively, and let f = (f1, . . . , fn) be a computation-
based profile. Then, f is a Nash equilibrium in computation-based strategies in G if and only
if f is a Nash equilibrium in computation-based strategies in G′.

Proof. First assume for contraposition that f = (f1, . . . , fn) is not a Nash equilibrium in
computation-based strategies in M ′. Then, there is a player i and a strategy gi for i in M ′

such that κM ′(f) /∈ Γi and κM ′(f−i, gi) ∈ Γi. Observe that, as the computation-based

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:17

strategies of players in bisimilar structures coincide (cf., Lemma 3.1), f is also a strategy
profile in M and gi a strategy for i in M . Moreover, recall that the computations induced by
the same strategy profile in different but bisimilar structures are identical (cf., second part
of Lemma 3.1). This yields κM (f) = κM ′(f) and κM (f−i, gi) = κM ′(f−i, gi). Accordingly,
κM (f) /∈ Γi whereas κM (f−i, gi) ∈ Γi. We may conclude that f is not a computation-based
equilibrium in M either. The opposite direction follows by an analogous argument.

Theorem 4.1 holds for computation-based preferences. As run-based preferences and
trace-based preferences are computation-based preferences of a special kind, the result
immediately extends to games in which the players’ preferences are run-based in both games
or trace-based preferences in both games. As a consequence of Theorem 4.1, moreover, we
find that sustenance of runs and traces by computation-based equilibrium is also preserved
under bisimilarity.

Corollary 4.2. Let G = (M,Γ1, . . . ,Γn) and G′ = (M ′,Γ1, . . . ,Γn) be games on bisimilar
concurrent game structures M and M ′, respectively, κ ∈ compsωM , and τ ∈ tracesωM . Then,

(1) κ is sustained by computation-based equilibrium in G if and only if κ is sustained by a
computation-based equilibrium in G′.

(2) τ is sustained by a computation-based equilibrium in G if and only if τ is sustained by a
computation-based equilibrium in G′.

Proof. Recall that by Lemma 2.2, we have that κ ∈ compsωM ′ and τ ∈ tracesωM ′ . For part 1,
let κM (f) = κ, where f is a computation-based equilibrium in G′. Then, by Theorem 4.1,
profile f is a computation-based equilibrium in G′ as well. By virtue of Lemma 3.1, moreover,
κM (f) = κM ′(f), which gives the result. The implication in the other direction follows by
the same argument mutatis mutandis.

The argument for part 2 runs along analogous lines. First assume that τ is sustained
by computation-based equilibrium f , that is, τ = τM (f). By Theorem 4.1, we have that f
is a computation-based equilibrium in G′ as well. Now consider κM (f). By Lemma 3.1
then κM ′(f) = κM (f). Lemma 2.3 then yields τM (κM (f)) = τM ′(κM ′(f)). It thus follows
that τ is sustained by f , a computation based Nash equilibrium, in G′. The argument in
the opposite direction is analogous, giving the result.

Trace-based Strategies. As we saw in Lemma 2.2, the sets of (finite) traces of two
bisimilar concurrent game structures coincide. Lemma 3.1 shows that the same holds for the
trace-based strategies that are available to the players. As a consequence, we can directly
compare their trace-based Nash-equilibria. We find that, like computation-based equilibria,
trace-based Nash equilibria are preserved in CGS-games based on bisimilar concurrent game
structures.

Theorem 4.3. Let G = (M,Γ1, . . . ,Γn) and G′ = (M ′,Γ1, . . . ,Γn) be games on bisimilar
concurrent game structures M and M ′, respectively, and f = (f1, . . . , fn) be a trace-based
strategy profile. Then, f is a Nash equilibrium in trace-based strategies in G if and only if f
is a Nash equilibrium in trace-based strategies in G′.

Proof. The proof is analogous to the one for Theorem 4.1 for the computation-based case.
First assume for contraposition that f = (f1, . . . , fn) is not a Nash equilibrium in trace-based
strategies in M ′. Then, there is a player i and a trace-based strategy gi for i in M ′ such
that κ(f) /∈ Γi and κ(f−i, gi) ∈ Γi. Observe that, as the trace-based strategies of players in

32:18 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

bisimilar structures coincide (cf., Lemma 3.1), we have that f is also a trace-based strategy
profile in M and gi a trace-based strategy for i in M . By the second part of Lemma 3.1,
moreover, κM (f) = κM ′(f) and κM (f−i, gi) = κM ′(f−i, gi). Accordingly, κM (f) /∈ Γi
whereas κM (f−i, gi) ∈ Γi. We may conclude that f is not a trace-based equilibrium in M
either. The opposite direction follows by an analogous argument.

Like Theorem 4.1, this result is for computation-based preferences in general, and as
such immediately extends to the case in which the players’ preferences are stipulated to
be run-based in both games or trace-based in both games. Theorem 4.3 has further the
following result as an immediate consequence, which is analogous to Corollary 4.2.

Corollary 4.4. Let G = (M,Γ1, . . . ,Γn) and G′ = (M ′,Γ1, . . . ,Γn) be games on bisimilar
concurrent game structures M and M ′, respectively, κ ∈ compsωM , and τ ∈ tracesωM . Then,

(1) κ is sustained by trace-based equilibrium in G if and only if κ is sustained by a trace-based
equilibrium in G′.

(2) τ is sustained by a trace-based equilibrium in G if and only if τ is sustained by a
trace-based equilibrium in G′.

Proof. The proof is analogous to the one for Corollary 4.2.

Run-based Strategies. The positive results obtained using computation-based and trace-
based strategies are now followed by a negative result, already mentioned in the introduction
of the paper, which establishes that Nash equilibria in run-based strategies—the most widely-
used strategy model in logic, computer science, and AI—are not preserved by bisimilarity.
Previously we observed that the players’ run-based strategies cannot straightforwardly be
identified across two different concurrent game structures, even if they are bisimilar. We
would therefore have to establish a correspondence between the run-based strategies in the
one game and the run-based strategies in the other in an arguably ad hoc way. To cut this
Gordian knot, we therefore show in this section the stronger result that the very existence of
run-based equilibria is not preserved under bisimilarity. That is, we can have two bisimilar
concurrent game structures, say M and M ′, on which we base two games G and G′ with
congruent preferences, such that G has a Nash equilibrium and G′ does not.

Theorem 4.5. The existence of run-based Nash equilibria is not preserved under bisimilarity.
That is, there are games (M,Γ1, . . . ,Γn) and (M ′,Γ1, . . . ,Γn) on bisimilar concurrent game
structures M and M ′ such that a Nash equilibrium in run-based strategies exists in G but
not in G′.

To see that the above statement holds, consider again the three-player game G0 on the
concurrent game structure M0 in Figure 1. Assume, as before, that player 1’s goal set Γ1

is given by those computations κ such that τM0(κ) = v0, v1, v2, . . . , implies p ∈ vk for some
k ≥ 0. Similarly, Γ2 consists of all computations κ with τM0(κ) = v0, v1, v2, . . . and q ∈ vk
for some k ≥ 0 and Γ3 by those computations κ with τM0(κ) = v0, v1, v2, . . . and vk = ∅ for
all k ≥ 0. Recall that, consequently, the preferences of players 1, 2, and 3 are trace-based and
can be represented by the LTL formulas γ1 = Fp, γ2 = Fq, and γ3 = G¬(p∨ q), respectively.

Let f∗1 and f∗2 be any run-based strategies for players 1 and 2 such that f∗1 (s0) =
f∗2 (s0) = a. Let, furthermore, player 3’s run-based strategy f∗3 be such that

f∗3 (s0) = a, f∗3 (s0, s1) = a′, and f∗3 (s0, s
′
1) = b.

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:19

Let f∗ = (f∗1 , f
∗
2 , f

∗
3) and observe that ρM0(f∗) = s0, s4, s4, s4, Accordingly, player 3

has her goal achieved and does not want to deviate from f∗. Players 1 and 2 do not
have their goals achieved, but do not want to deviate from f∗ either. To see this, let g1
be any run-based strategy for 1 such that g1(s0) = b; observe that this is required for
any meaningful deviation from f∗ by 1. Then ρM0(g1, f

∗
2 , f

∗
3) = s0, s1, s3, s3, s3, . . . or

ρM0(g1, f
∗
2 , f

∗
3) = s0, s1, s4, s4, s4, . . . , depending on whether f∗2 (s0, s1) = b or f∗2 (s0, s1) = a,

respectively. In either case, player 1 does not get his goal achieved and it follows that he
does not want to deviate from f∗. An analogous argument—notice that the roles of player 1
and 2 are symmetric—shows that player 2 does not want to deviate from f∗ either. We may
thus conclude that f∗ is a run-based equilibrium in G0.

Now, consider the game G1 on concurrent game structure M1 in Figure 2 with the players’
preferences as in M0. It is easy to check that M0 and M1 are bisimilar. Still, there is no
run-based equilibrium in G1. To see this, consider an arbitrary run-based strategy profile f =
(f1, f2, f3). First, assume that ρM1(f) = s0, s1, s2, s2, s2, Then, player 1 gets his goal
achieved and players 2 and 3 do not. If f1(s0, s1) = a then f3(s0, s1) = b and player 3 would
like to deviate and play a strategy g3 with g3(s0, s1) = a. On the other hand, if f1(s0, s1) = b,
player 3 would like to deviate and play a strategy g3 with g3(s0, s1) = b. Player 3 would
similarly like to deviate from f if we assume that ρM1(f) = s0, s1, s3, s3, s3 . . . , in whose case
it is player 2 who gets his goal achieved. Now, assume that ρM1(f) = s0, s1, s4, s4, s4 In
this case player 3 does get her goal achieved, but players 1 and 2 do not. However, player 1
would like to deviate and play a strategy g1 with g1(s0, s1) = b or g1(s0, s1) = a, depending
on whether f3(s0, s1) = a or f3(s0, s1) = b; in a similar fashion, player 2 would like to deviate
and play a strategy g2 with g2(s0, s1) = b if f1(s0, s1) = a′, and to one with g2(s0, s1) = a
if f1(s0, s1) = b′. Finally, assume that ρM1(f) = s0, s4, s4, s4, Then, neither player 1
nor player 2 gets his goal achieved. Now either f3(s0, s1) ∈ {a, b} or f3(s0, s1) ∈ {a′, b′}. If
the former, player 1 would like to deviate and play a strategy g1 with g1(s0) 6= f1(s0) and
g1(s0, s1) 6= f3(s0, s1). If the latter, player 2 would like to deviate and play a strategy g2 with
g2(s0) 6= f2(s0) and either g2(s0, s1) = b if f3(s0, s1) = a′ or g2(s0, s1) = a if f3(s0, s1) = b′.
We can then conclude that the CGS-game G1 does not have any run-based Nash equilibria.

The main idea behind this counter-example is that in G0 player 3 could distinguish
which player deviates from f∗ if the state reached after the first round is not s4: if that state
is s1, it was player 1 who deviated, otherwise player 2. By choosing either a′ or b′ at s1, and
either a or b at s′1, player 3 can guarantee that neither player 1 nor player 2 gets his goal
achieved (“punish” them) and thus deter them from deviating from f∗. This possibility
to punish deviations from f∗ by players 1 and 2 in a single strategy is not available in the
game on M1: choosing from a and b will induce a deviation by player 1, choosing from a′

and b′ one by player 2.
Observe that the games G0 and G1 do not constitute a counter-example against either

the preservation under bisimilarity of computation-based equilibria or the preservation of
trace-based equilibria. The reasons why such games fail to do so, however, are different. For
the setting of computation-based strategies, player 3 can still distinguish and “punish” the
deviating player in G1 as (a, b, a) and (b, a, a) are different directions and player 3 can still
have his action at s1 depend on which of these is played at s0. By contrast, if we assume
trace-based strategies, player 3 has to choose the same action at both s1 and s′1 in G0. As a
consequence, and contrarily to computation-based equilibria, trace-based equilibria exist in
neither G0 nor G1. Also note that the goal sets Γ1, Γ2, and Γ3 are run-based as well as

32:20 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

computation-based both in G1 and G2. Accordingly, the counter-example also applies to
settings wherein the players’ preferences are assumed to be finer-grained in these two ways.

Observe at this point that s1 and s′1 are bisimilar states. Yet, players are allowed to have
run-based strategies (which depend on state histories only) that choose different actions at
bisimilar states. The above counter-example shows how this relative richness of strategies
makes a crucial difference. This raises the question as to whether we actually want players
to adopt run-based strategies in which they choose different actions at bisimilar states. This
observation leads us to the next section.

Bisimulation-invariant Run-based Strategies. Bisimilarity formally captures an infor-
mal concept of observational indistinguishability on the part of an external observer of the
system. Now, the players in a concurrent game structure are in essentially the same situation
as an external observer if they are assumed to be only able to observe the behaviour of the
other players, without knowing their internal structure or their interaction.

Drawing on this idea of indistinguishability, it is natural that players cannot distinguish
statewise bisimilar runs and, as a consequence, can only adopt strategies that choose the
same action at runs that are statewise bisimilar. The situation is comparable to the one in
extensive games of imperfect information, in which players are required to choose the same
action in histories that are in the same information set, that is, histories that cannot be
distinguished (cf., e.g., [OR94, MSZ13]).

To make this idea formally precise, we say that a run-based strategy fi is bisimulation-
invariant if fi(π) = fi(π

′) for all histories π and π′ that are statewise bisimilar. The concept
of Nash equilibrium is then similarly restricted to bisimulation-invariant strategies. A profile
f = (f1, . . . , fn) of bisimulation-invariant strategies is a Nash equilibrium in bisimulation-
invariant strategies (or a bisimulation-invariant equilibrium) in a game (M,Γ1, . . . ,Γn) if
for all players i and every bisimulation-invariant strategy gi for i,

τ(f−i, gi) ∈ Γi implies τ(f) ∈ Γi

That is, f is a bisimulation-invariant equilibrium if no player wishes to deviate from f
by playing a different bisimulation-invariant strategy. In contrast to the situation for
general run-based strategies, we find that computations and traces that are sustained by
a bisimulation-invariant Nash equilibrium are preserved by bisimulation. We show this
by establishing a one-to-one correspondence between the bisimulation-invariant strategies
available to the players in two bisimilar structures.

Based on the concept of state-wise bisimilarity, we associate with every bisimulation-
invariant strategy fi for player i in concurrent game structure M , another bisimulation-
invariant strategy f̃i for player i in any bisimilar concurrent game structure M ′ such that
for all π ∈ runsM ′ and a ∈ Ac,

f̃i(π) = a if fi(π
′) = a for some π′ ∈ runsM with π ∼̇ π′.

Transitivity of ∼̇ guarantees that f̃i is well defined. To see this, observe that for all
π′, π′′ ∈ runsM with π′ ∼̇ π and π′′ ∼̇ π, we have π′ ∼̇ π′′. Having assumed that fi
is bisimulation-invariant, then fi(π

′) = fi(π
′′). By very much the same argument, f̃i is

bisimulation-invariant, if fi is.

Lemma 4.6. Let M and M ′ be bisimilar concurrent game structures and let fi be a
bisimulation-invariant strategy for player i in M . Then, f̃i is a bisimulation-invariant
strategy in M ′.

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:21

Proof. Consider two statewise bisimilar runs π, π′ ∈ runsM ′ , that is, π ∼̇ π′. Then, there are
computations κ, κ′ ∈ compsM ′ such that πM ′(κ) = π and πM ′(κ

′) = π′. By Lemma 2.3, we
have πM (κ) ∼̇ πM ′(κ) and πM (κ′) ∼̇ πM ′(κ′). Now, transitivity of ∼̇ yields πM (κ) ∼̇ πM (κ′).
Having assumed that fi is bisimulation-invariant, we obtain that fi(πM (κ)) = fi(πM (κ′)).

Finally, we may conclude that f̃i(π) = f̃i(π
′), as desired.

Moreover, it is easily appreciated that the mapping that transforms a strategy fi into
strategy f̃i is one-to-one. We will find that this is an essential property for bisimulation-
invariant equilibria to be preserved under bisimilarity.

For a profile of bisimulation-invariant strategies f = (f1, . . . , fn) in M we denote

f̃ = (f̃1, . . . , f̃n). We then find that profiles f and f̃ of bisimulation-invariant strategies
induce identical computations.

Lemma 4.7. Let M and M ′ be bisimilar concurrent game structures, f = (f1, . . . , fn) a

bisimulation-invariant strategy profile. Then, κM (f) = κM ′(f̃).

Proof. Let κM (f) = d0, d1, d2, . . . and κM ′(f̃) = d′0, d
′
1, d
′
2, We prove by induction on k

that dk = d′k for every k ≥ 0. If k = 0, we have d0 = (f1(s0M), . . . , fn(s0M)). Observe that, as

M ∼M ′ also s0M ∼ s0M ′ and, hence, fi(s
0
M) = f̃i(s

0
M ′). Therefore,

d′0 = (f̃1(s
0
M ′), . . . , f̃n(s0M ′)) = (f1(s

0
M), . . . , fn(s0M)) = d0.

For the induction step, we may assume that d0, . . . , dk = d′0, . . . , d
′
k. By Lemma 2.3,

then πM (d0, . . . , dk) ∼̇ πM ′(d
′
0, . . . , d

′
k). Accordingly, for every player i we have that

fi(πM (d0, . . . , dk)) = f̃i(πM ′(d
′
0, . . . , d

′
k)). It thus follows that

d′k+1 = (f̃1(πM ′(d
′
0, . . . , d

′
k)), . . . , f̃n(πM ′(d

′
0, . . . , d

′
k)))

= (f1(πM (d0, . . . , dk)), . . . , fn(πM (d0, . . . , dk)))

= dk+1.

This concludes the proof.

We are now in a position to state an equilibrium preservation theorem for bisimulation-
invariant strategies in a similar way as we were able to obtain Theorem 4.1, the analogous
result for computation-based and trace-based strategies.

Theorem 4.8. Let G = (M,Γ1, . . . ,Γn) and G′ = (M ′,Γ1, . . . ,Γn) be games on bisimilar
concurrent game structures M and M ′, respectively. Then, f is a bisimulation-invariant
equilibrium in G if and only if f̃ is a bisimulation-invariant equilibrium in G′.

Proof. First assume for contraposition that f̃ = (f̃1, . . . , f̃n) is not a Nash equilibrium in
bisimulation-invariant strategies in G′. Then, there is a player i and a bisimulation-invariant
strategy gi for i in M ′ such that κM ′(f̃) /∈ Γi and κM ′(f̃−i, gi) ∈ Γi. As the mapping that

transforms a strategy fi into strategy f̃i is one-to-one, there is a bisimulation-invariant
strategy f ′i for i in M with f̃ ′i = gi. Accordingly, κM ′(f̃−i, f̃

′
i) ∈ Γi. Lemma 4.7 then yields

that κM (f−i, f
′
i) ∈ Γi and κM (f) /∈ Γi. As f ′i is bisimulation-invariant, it follows that f is

not an equilibrium in bisimulation-invariant strategies in G.
The proof in the opposite direction runs along analogous lines.

As an immediate corollary of Theorem 4.8, it follows that the property of a computation
or trace to be sustained by a bisimulation-invariant equilibria is also preserved under
bisimilarity.

32:22 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

Corollary 4.9. Let G = (M,Γ1, . . . ,Γn) and G′ = (M ′,Γ1, . . . ,Γn) be games on bisimilar
concurrent game structures M and M ′, respectively. Then, for every computation κ ∈
compsωM = compsωM ′ and every trace τ ∈ tracesωM = tracesωM ′,

(1) κ is sustained by a bisimulation invariant equilibrium in G if and only if κ is sustained
by a bisimulation-invariant equilibrium in G′.

(2) τ is sustained by a bisimulation-invariant equilibrium in G if and only if τ is sustained
by a bisimulation-invariant equilibrium in G′.

Proof. For part 1, assume that κM (f) = κ. Then in virtue of Lemma 4.7 also κM ′(f̃) = κ.
Moreover, by Theorem 4.8 we have that profile f is a Nash equilibrium in bisimulation-
invariant strategies in G if and only if f̃ is a Nash equilibrium in bisimulation-invariant
strategies in G′, which gives the result.

The argument for part 2 runs along analogous lines. First assume that τ is sustained
by bisimulation-invariant Nash equilibrium f . Let κ = κM (f). Then, τ = τM (κ). By

Theorem 4.8, moreover, f̃ is a bisimulation-invariant Nash equilibrium in G′. An application
of Lemma 4.7 yields κM (f̃) = κM (f). By Lemma 2.3 then τM (κ) = τM ′(κ). It follows that

τ is sustained by f̃ , a bisimulation-invariant Nash equilibrium, in G′. The argument in the
opposite direction is analogous, giving the result.

5. Special Cases

In the previous section we provided results about the preservation of a given Nash equilibrium
under bisimilarity, specifically, as long as we do not consider run-based strategies or goals.
In this section we study two important special scenarios where this is not the case.

Firstly, consider the scenario where we have two-player games with run-based strategies
and trace-based goals. This is an important special case since run-based strategies, as we
emphasised in the introduction, are the “conventional” model of strategies used in logics
such as ATL∗ or SL, as well as in systems represented as concurrent game structures. In
particular, we show that with respect to two-player games with run-based strategies and
trace-based goals (which include temporal logic goals), the setting coincides with the one
with bisimulation-invariant strategies and trace-based goals, for which the preservation of
Nash equilibria under bisimilarity holds. A key observation in this case is that in two-player
games the existence of Nash equilibria can be characterised in terms of the existence of
certain winning strategies, which are preserved across bisimilar systems.

Secondly, we also study the scenario where concurrent game structures are restricted
to those that are induced by iterated Boolean games [GHW15b] and Reactive Modules
games [WGH+16], two frameworks for the strategic analysis of AI and multi-agent systems,
in particular, using model checking techniques.3 In this case, we show that bisimulation-
invariant strategies also coincide with run-based strategies, and therefore, that the positive
results for bisimulation-invariant strategies presented in the previous section also transfer to
this special case.

3For instance, Reactive Modules games provide a game semantics to formal specification languages such
as Reactive Modules [AH99], which is widely used in model checking tools, such as MOCHA [AHM+98] and
PRISM [KNP11].

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:23

s0

p̄q̄

s′1
p̄q̄

s1

p̄q̄

s3

p̄q

s2

pq̄

s4

p̄q̄

c , a

b , a

a, a

a, b
b , a

a, b′

b , a′

a, b
b , a

a, b′

b , a′

a, a
a, a′

b , b
b , b′

a, a
a, a′

b , b
b , b′

∗, ∗, ∗

∗, ∗, ∗

∗, ∗, ∗

Figure 4: The concurrent game structure M4 underlying the game G4.

s0

p̄q̄

s1

p̄q̄

s2

pq̄

s3

p̄q

s4

p̄q̄

b , a
c , a

a, b
b , a

a, b′

b , a′

a, a

a, a
a, a′

b , b
b , b′

∗, ∗, ∗

∗, ∗, ∗

∗, ∗, ∗

Figure 5: The concurrent game structure M5 underlying the game G5.

Two-Player Games. This section concerns the preservation under bisimilarity of Nash
equilibria under bisimulation in two-player games. We deal with the cases in which the
players’ preferences are computation-based, trace-based, and run-based separately.

Computation-based Preferences. The counter-example against the preservation of the exis-
tence of Nash equilibria in Section 4 involved three players. We find that, if preferences are
computation-based, the example can be adapted so as to involve only two players, which
gives rise to the following result.

32:24 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

Theorem 5.1. There are two-player games (M,Γ1,Γ2) and (M ′,Γ1,Γ2) on bisimilar con-
current game structures M and M ′ with Γ1 and Γ2 computation-based such that a run-based
Nash equilibrium exists in G but not in G′.

Proof. Consider the concurrent game structures M4 and M5 depicted in Figures 4 and 5,
respectively. Observe that Ac1(s0) = {a, b, c} and Ac1(s) = {a, b} at all states s distinct
from s0, and that Ac2(s0) = {a} and Ac2(s) = {a, a′, b, b′} at all states s distinct from s0.
We define the games G4 = (M4,Γ1,Γ2) and G5 = (M5,Γ1,Γ2) by letting Γ1 contain exactly
those computations κ = d0, d1, d2, . . . such that either d0 = (b, a) and d1 ∈ {(a, b), (b, a)} or
d0 = (c, a) and d1 ∈ {(a, b′), (b, a′)}, and letting Γ2 consist precisely of those computations
κ = d0, d1, d2, . . . such that d0 = (a, a) or d1 ∈ {(a, a), (a, a′), (b, b), (b, b′)}. By an argument
analogous to that presented in Section 4, it can then be appreciated that G4 has a run-based
equilibrium, whereas G5 has not.

To see the former, observe that any run-based profile f∗ = (f∗1 , f
∗
2) will be an equilibrium

if f∗1 (s0) = f∗2 (s0) = a, f∗2 (s1) ∈ {a′, b′}, and f∗2 (s′1) ∈ {a, b}. For every strategy g1 for
player 1, we then have κM4(g1, f

∗
2) /∈ Γ1, whereas κM4(f∗1 , f

∗
2) ∈ Γ2.

To see that G5 has no run-based equilibrium, first let f = (f1, f2) be a run-based profile
such that κM5(f1, f2) /∈ Γ1. Then, if f2(s0, s1) = a, player 1 would like to deviate and play a
strategy g1 with g1(s0) = g1(s0, s1) = b; if f2(s0, s1) = a′, to deviate and play a strategy g′1
with g′1(s0) = c and g′1(s0, s1) = b; if f2(s0, s1) = b to deviate and play a strategy g′′1 with
g′′1 (s0) = b and g′′1 (s0, s1) = a; and, finally, if f2(s0, s1) = b′ to deviate and play a strategy g′′′1
with g′′′1 (s0) = c and g′′′1 (s0, s1) = a. On the other hand, if κM3(f1, f2) /∈ Γ2, it must be the
case that f1(s0) ∈ {b, c}. Observe, however, that player 2 would then like to deviate and play
any strategy g2 with g2(s0, s1) = a if f1(s0, s1) = a and to a strategy g′2 with g′2(s0, s1) = b
if f1(s0, s1) = b. As, furthermore, Γ1 and Γ2 are disjoint, that is, the goals players 1 and 2
cannot simultaneously be satisfied, it follows that G5 has no run-based equilibria.

Run-based Preferences. We now address the preservation (of the existence) of Nash equilibria
in two-player CGS-games where both preferences and strategies are run-based. In contrast
to our findings in the previous section, we find that, under a natural closure restriction on
the players’ preferences, we are able to obtain a positive result. Our proof relies on the
equivalence of run-based profiles and run-invariant profiles as expounded in Section 3.

As already noted above, run-based strategies cannot generally be identified directly across
bisimilar CGS-games. The reason for this complication is that runs are sequences of states,
and the sets of states of the two CGS-games need not coincide. In Section 3, we saw, however,
how run-based strategies correspond to run-invariant strategies, which are computation-based
by definition. Lemma 2.2, moreover, allows us to compare computation-based strategies,
even if they may be run-invariant in the one model but not in the other.

Let f = (f1, f2) be a given run-invariant equilibrium in a CGS-game G = (M,Γ1,Γ2)
based on M and let G′ = (M ′,Γ1,Γ2) be a CGS-game based on a concurrent game struc-
ture M ′ bisimilar to M . We define a (computation-based) profile fK = (fK1 , f

K
2) that is a

run-invariant equilibrium in both G and G′. To prove that fK = (fK1 , f
K
2) is a run-invariant

equilibrium if f = (f1, f2) is, we exploit a characterisation of Nash equilibria in terms of
winning strategies.4 We say that a run-invariant strategy fi for player i is winning against

4Winning strategies have also been used to characterise the existence of Nash equilibria in other two-player
games with binary outcomes—see, e.g., [GHW15a, GW14].

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:25

player j whenever κM (fi, fj) /∈ Γj for all run-invariant strategies fj of player j. We then
have the following lemma, which is independent of the type of preferences that players have.

Lemma 5.2. Let G = (M,Γ1,Γ2) be a game. Then, a profile f = (f1, f2) is a run-invariant
equilibrium if and only if both

(1) κM (f1, f2) /∈ Γ1 implies that f2 is a winning strategy against player 1, and
(2) κM (f1, f2) /∈ Γ2 implies that f1 is a winning strategy against player 2.

Proof. For the “if” direction assume for contraposition that f = (f1, f2) is not a run-invariant
equilibrium. Then, either κM (f1, f2) /∈ Γ1 and κM (g1, f2) ∈ Γ1 for some run-invariant
strategy g1 for player 1, or κM (f1, f2) /∈ Γ2 and κM (f1, g2) ∈ Γ2 for some run-invariant
strategy g2 for player 2. If the former, f2 is not winning against player 1, refuting 1. If the
latter, f1 is not winning against player 2, which refutes 2.

The opposite direction is also by contraposition. Assume that either 1 or 2 is not
satisfied. Without loss of generality we may assume the former. Then, κM (f1, f2) /∈ Γ1

and f2 is not a winning strategy against player 1. Accordingly, there is some run-invariant
strategy g1 for player 1 such that κM (g1, f2) ∈ Γ1 and it follows that f = (f1, f2) is not a
run-invariant equilibrium.

In order to have a formally convenient characterisation of the goal sets Γ1 and Γ2 to
be run-based in two bisimilar CGS-games and to define the profile fK = (fK1 , f

K
2), we

furthermore introduce the following notations and auxiliary concepts. For a concurrent game
structure M and finite computations κ, κ′ ∈ compsM , we write κ ≡M κ′ if πM (κ) = πM (κ).
Furthermore, we say that finite computations κ and κ′ are finitely congruent in M and
M ′, in symbols κ ≡KM,M′ κ

′, whenever there are (not necessarily distinct) intermediate

computations κ0, . . . , κm such that

(1) κ = κ0,
(2) κ′ = κm, and
(3) κj ≡M κj+1 or κj ≡M ′ κj+1, for every 0 ≤ j < m.

As ≡M and ≡M ′ are equivalence relations, we may assume that here ≡M and ≡M ′ alternate
and κj ≡M κj+1 if j is even, and κj ≡M ′ κj+1 if j is odd. We will generally omit the
subscript in KM,M ′ when M and M ′ are clear from the context. For an example, see again
Figure 3. Consider the (one-step) computations κ1 = (a, a), κ2 = (a, b), κ3 = (b, a), and
κ4 = (b, b). Then, κ1 ≡M2,M3 κ3, because κ1 ≡M3 κ2 and κ2 ≡M2 κ3. On the other hand,
some reflection reveals that κ1 6≡KM1,M2

κ4. It is worth noting that finite congruence of two

computations implies statewise bisimilarity of the runs induced, that is, κ ≡KM,M′ κ
′ implies

πM (κ) ∼̇ πM (κ′).

Lemma 5.3. Let M and M ′ be two bisimilar concurrent game structures and κ = d0, . . . , dk
and κ′ = d′0, . . . , d

′
k. Then, κ ≡KM,M′ κ

′ implies πM (κ) ∼̇ πM (κ′).

Proof. Assume κ ≡KM,M′ κ
′. Then there are κ0, . . . , κm such that κ = κ0, κm = κ′, and,

for all 0 ≤ ` < m, πM (κ`) = πM (κ`+1) if ` is even and πM ′(κ`) = πM ′(κ`+1) if ` is odd.
We assume that m is even; the case where m is odd follows by the same argument mutatis
mutandis. By virtue of Lemma 2.3-1, we have πM (κ`) ∼̇ πM ′(κ`) for every 0 ≤ ` < m.
Hence,

πM (κ0) = πM (κ1) ∼̇ πM ′(κ1) = · · · = πM ′(κm−1) ∼̇ πM (κm−1) = πM (κm).

32:26 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

As obviously πM (κ`) = πM (κ`+1) and πM ′(κ`) = πM ′(κ`+1) imply, respectively, πM (κ`) ∼̇
πM (κ`+1) and πM ′(κ`) ∼̇ πM ′(κ`+1), also

πM (κ0) ∼̇ πM (κ1) ∼̇ πM ′(κ1) ∼̇ · · · ∼̇ πM ′(κm−1) ∼̇ πM (κm−1) ∼̇ πM (κm).

By transitivity of ∼̇ we may conclude that πM (κ) ∼̇ πM (κ).

For bisimilar concurrent game structures M and M ′, we say that a computation-based
strategy f is KM,M ′-invariant if κ ≡KM,M′ κ

′ implies f(κ) = f(κ′), for all finite computations

κ, κ′ ∈ compsM . We find that KM,M ′-invariance exactly captures the concept of a strategy
that is run-invariant in two bisimilar concurrent game structures.

Lemma 5.4. Let M and M ′ be bisimilar concurrent game structures and fi a computation-
based strategy for player i. Then, fi is KM,M ′-invariant if and only if fi is run-invariant in
both M and M ′.

Proof. For the “only if”-direction, assume that fi is KM,M ′-invariant and consider arbitrary
κ, κ′ ∈ compsM such that πM (κ) = πM (κ′), that is, κ ≡M κ′. By KM,M ′-invariance of fi
then immediately fi(κ) = fi(κ

′). Accordingly, fi is run-invariant in M . The argument for fi
being run-invariant in M ′ is analogous.

For the “if”-direction, assume that fi is run-invariant in both M and M ′, and consider
arbitrary κ, κ′ ∈ comps such that κ ≡K κ′. Then, we may assume that there are κ0, . . . , κm
such that

κ = κ0 ≡M κ1 ≡M ′ κ2 ≡M · · · ≡M ′ κm = κ′.

Having assumed that fi is run-invariant in both M and M ′, then also

fi(κ) = fi(κ0) = fi(κ1) = fi(κ2) = · · · = fi(κm) = fi(κ
′),

from which follows that fi is KM,M ′-invariant.

As we have argued in Section 1, for the question whether the Nash equilibria across two
bisimilar CGS-games are preserved to make sense, the players’ preferences in the two games
have to be congruent, that is, they have to be the same and of the same type in both games.
In this section we deal with run-based preferences. We have already seen in Section 4, that
identity of a player’s computation-based preferences in two CGSs does not guarantee their
being congruent as run-based preferences. By imposing an additional closedness restriction,
however, we find that a computation-based goal set can be guaranteed to be run-based in
two CGS-games based on bisimilar concurrent game structures M and M ′. Accordingly, call
a goal set Γi KM,M ′-closed if for all computations κ = d0, d1, d2, . . . and κ′ = d′0, d

′
1, d
′
2, . . . ,

we have that κ ∈ Γi implies κ′ ∈ Γi whenever d0, . . . , dk ≡KM,M′ d
′
0, . . . , d

′
k for all k ≥ 0.

Lemma 5.5. Let G = (M,Γ1, . . . ,Γn) and G′ = (M ′,Γ1, . . . ,Γn) be CGS-games on bisimilar
concurrent game structures M and M ′, and Γi is KM,M ′-closed for some player i. Then, Γi
is run-based in both M and M ′.

Proof. Assume that Γi is KM,M ′-invariant and consider arbitrary infinite computations
κ = d0, d1, d2, . . . and κ′ = d′0, d

′
1, d
′
2, . . . such that ρM (κ) = ρM (κ′). Also assume that

κ ∈ Γi. Let ρM (κ) = s0, s1, s2, . . . and ρM (κ′) = t0, t1, t2, Then, for every k ≥ 0, we
also have that

πM (d0, . . . , dk) = s0, . . . , sk+1 = t0, . . . , tk+1 = πM (d′0, . . . , d
′
k).

Having assumed Γi to be KM,M ′-invariant, it follows that κ′ ∈ Γi, as desired.

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:27

p

p

p

p

p

p

p̄

a, a

a, b
b, a

b, b

a, a

a, b

a, c

a, a

a, b

a, c

∗, ∗

∗, ∗

∗, ∗

∗, ∗

p

p

p

p

p

p

p̄

a, a
a, b

b, a

b, b

a, a

a, b

a, c

a, a

a, b

a, c

∗, ∗

∗, ∗

∗, ∗

∗, ∗

Figure 6: Two games G6 (left) and G7 (right) based on M6 and M7, respectively.

For the remainder, let G = (M,Γ1,Γ2) and G′ = (M ′,Γ1,Γ2) be two two-player CGS-
games based on bisimilar concurrent game structures M and M ′ such that both Γ1 and Γ2 are
KM,M ′-closed (and thus, in particular, run-based). We prove that if there is a run-invariant
equilibrium in M , then there is also a K-invariant profile that is a run-invariant equilibrium
in M . We construct for a given strategy profile f = (f1, f2) that is run-invariant in M a
KM,M ′-invariant profile fK = (fK1 , f

K
2) such that

(i) κM (f1, f2) = κM (fK1 , f
K
2),

(ii) if f1 is a winning strategy against player 2, then so is fK1 ,
(iii) if f2 is a winning strategy against player 1, then so is fK2 .

On basis of Lemma 5.2 we may then conclude that fK corresponds to a run-invariant
equilibrium inM . Having defined fK formally as a computation-based profile, by Theorem 4.1
it follows that fK is also a computation-based equilibrium in G′. Finally, because fK is
KM,M ′-invariant, we know that it furthermore corresponds to a run-invariant equilibrium
in both M and M ′.

For an example consider the games G6 and G7 depicted in Figure 6. The underlying
concurrent game structures M6 and M7 only differ with respect to direction (a, b) at the
initial state and their bisimilarity is easily established. Assume that the goal of player 1 is
to see p false at some point in the future, that is,

Γ1 = {d0, d1, d2, · · · ∈ compsω : d0 ∈ {(a, a), (a, b), (b, a)} and d1 = (a, c)},
and that player 2 tries to prevent this, that is, Γ2 = compsω \ Γ1. Observe that defined thus,
the players’ preferences are run-based in both G6 and G7. Concentrating on G6 first, define
the run-invariant strategy profile f = (f1, f2), such that,

f1(ε) = b f1(a, a) = a f1(a, b) = a f1(b, a) = a

f2(ε) = b f2(a, a) = a f2(a, b) = b f2(b, a) = b

We find that f = (f1, f2) is a run-invariant equilibrium in G6. Observe, however, that f =
(f1, f2) is not run-invariant in G7, as f2(a, a) 6= f2(a, b) even though πM7(a, a) = πM7(a, b).
Accordingly, f = (f1, f2) fails as a KM6,M7-invariant equilibrium. Let g2 be defined such
that,

g2(ε) = b g2(a, a) = b g2(a, b) = b g2(b, a) = b

32:28 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

Then, (f1, g2) is readily seen to be a KM6,M7-invariant equilibrium in G6. We will find that
under the conditions specified, this is no coincidence and that K-invariant equilibria can be
constructed from run-invariant equilibria in a systematic fashion.

We first define the strategy profile fK = (fK1 , f
K
2). The underlying idea is to carefully

choose for each finite computation d0, . . . , dk computations κd0,...,dkf1
and κd0,...,dkf2

from the

equivalence class of d0, . . . , dk under ≡KM,M′ , and set fK1 (d0, . . . , dk) = f1(κ
d0,...,dk
f1

) and

fK2 (d0, . . . , dk) = f2(κ
d0,...,dk
f2

), respectively. This guarantees that fK = (fK1 , f
K
2) is KM,M ′-

invariant. Here we give priority to prefixes of κ(f1, f2), that is if κ(f1, f2) = d′0, d
′
1, d
′
2, . . .

and d′0, . . . , d
′
k ≡KM,M′ d0, . . . , dk, then κd0,...,dkf1

= κd0,...,dkf2
= d′0 . . . , d

′
k. In a similar way, we

also choose κd0,...,dkf1
and κd0,...,dkf2

so as to preserve the two players’ punishment strategies.

This guarantees that fK = (fK1 , f
K
2) is an equilibrium, as it inherits this property from f =

(f1, f2).
5 To do so we assume a well-ordering of the action sets Ac1 and Ac2 of players 1

and 2, respectively. Then, for all finite computations κ = d0, . . . , dk in compsM , we define

inductively and simultaneously computations κd0,...,dkf1
and κd0,...,dkf2

as follows. For κ = ε we

have κεf1 = κεf2 = ε, and, for κ = d0, . . . , dk+1,

κ
d0,...,dk,dk+1

f1
= d′0, . . . , d

′
k, (x1, x2)

κ
d0,...,dk,dk+1

f2
= d′′0, . . . , d

′′
k, (y1, y2),

where κd0,...,dkf1
= d′0, . . . , d

′
k, κ

d0,...,dk
f2

= d′′0, . . . , d
′′
k, and

(i.1) x1 = f1(d
′
0, . . . , d

′
k) and x2 = f2(d

′
0, . . . , d

′
k), if

d′0, . . . , d
′
k, (f1(d

′
0, . . . , d

′
k), f2(d

′
0, . . . , d

′
k)) ≡K d0, . . . , dk, dk+1,

(i.2) y1 = f1(d
′′
0, . . . , d

′′
k) and y2 = f2(d

′′
0, . . . , d

′′
k), if

d′′0, . . . , d
′′
k, (f1(d

′′
0, . . . , d

′′
k), f2(d

′′
0, . . . , d

′′
k)) ≡K d0, . . . , dk, dk+1,

(ii.1) x1 = f1(d
′
0, . . . , d

′
k) and x2 is the least action available to player 2 such that

d′0, . . . , d
′
k, (x1, x2) ≡K d0, . . . , dk, dk+1,

if such an action x2 exists and (i.1) does not apply,

(ii.2) y2 = f2(d
′′
0, . . . , d

′′
k) and y1 is the least action available to player 1 such that

d′′0, . . . , d
′′
k, (y1, y2) ≡K d0, . . . , dk, dk+1,

if such an action y1 exists and (i.2) does not apply,

(iii.1) x1 and x2 are the least actions available to players 1 and 2, respectively, such that
d′0, . . . , d

′
k, (x1, x2) ≡K d0, . . . , dk, dk+1, if neither (i.1) nor (ii.1) apply,

(iii.2) y1 and y2 are the least actions available to players 1 and 2, respectively, such that
d′′0, . . . , d

′′
k, (x1, x2) ≡K d0, . . . , dk, dk+1, if neither (i.2) nor (ii.2) apply,

Observe that the actions x1 and x2 in the definition above always exist. The reason for this
is that, if d0, . . . , dk ≡KM,M′ d

′
0, . . . , d

′
k, by Lemma 5.3 also πM (d0, . . . , dk) ∼̇ πM (d′0, . . . , d

′
k).

5The precise definition is rather involved, and the reader may want to skip to page 33, where the main
theorem of the section is stated and proven.

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:29

Let π(d0, . . . , dk) = s0, . . . , sk, π(d′0, . . . , d
′
k) = s′0, . . . , s

′
k, and d′k+1 = (a1, a2). Then,

obviously, a1 and a2 are available to players 1 and 2 respectively at state s′k. As sk ∼
s′k, that should also be the case at sk. A similar argument applies to the case where
d0, . . . , dk ≡KM,M′ d

′′
0, . . . , d

′′
k.

We now define strategies fK1 and fK2 such that, for all finite computations κ = d0, . . . , dk
in compsM ,

fK1 (d0, . . . , dk) = f1(κ
d0,...,dk
f1

) and fK2 (d0, . . . , dk) = f2(κ
d0,...,dk
f2

).

To illustrate how fK = (fK1 , f
K
2) is constructed from f = (f1, f2), recall the games M6 and

G7 in Figure 6, and assume that actions for both players are ordered alphabetically. For the
empty computation ε, we have

fK1 (ε) = f1(κ
ε
f1) = f1(ε) = b and fK2 (ε) = f2(κ

ε
f2) = f2(ε) = b

Now consider the finite computations of length one. For computation (b, b), we find that

(b, b) ≡KM6,M7
(f1(κ

ε
f1

), f2(κ
ε
f1

)). Now case (i.1) applies and we obtain κ
(b,b)
f1

= (b, b).

Similarly, κ
(b,b)
f2

= (b, b). For the other one-step computations (x1, x2) ∈ {(a, a), (a, b), (b, a)},
we find that (x1, x2) 6≡KM6,M7

(f1(ε), f2(ε)). First consider (a, a), and to determine κ
(a,a)
f1

, first

observe that κεf1 = d′0, . . . , d
′
k = ε, d0, . . . , dk = ε, and dk+1 = (a, a). Now, for x1 = f1(ε) = b

we have that
(x1, a) = (b, a) ≡M6 (a, b) ≡M7 (a, a).

Accordingly, (x1, a) ≡M6,M7 (a, a) = dk+1, and case (ii.1) applies. With a being moreover

player 2’s alphabetically least action, we may therefore conclude that κ
(a,a)
f1

= (b, a). In a

similar way we obtain κ
(a,b)
f1

= κ
(b,a)
f1

= (b, a) as well as κ
(a,a)
f2

= κ
(a,b)
f2

= κ
(b,a)
f2

= (a, b). Hence,

fK1 (a, a) = f1(κ
(a,a)
f1

) = f1(b, a) = a fK2 (a, a) = f2(κ
(a,a)
f2

) = f2(a, b) = b

fK1 (a, b) = f1(κ
(a,b)
f1

) = f1(b, a) = a fK2 (a, b) = f2(κ
(a,b)
f2

) = f2(a, b) = b

fK1 (b, a) = f1(κ
(b,a)
f1

) = f1(b, a) = a fK2 (b, a) = f2(κ
(b,a)
f2

) = f2(a, b) = b

fK1 (b, b) = f1(κ
(b,b)
f1

) = f1(b, b) = b fK2 (b, b) = f2(κ
(b,b)
f2

) = f2(b, b) = b

We thus find that fK = (fK1 , f
K
2) coincides with the KM6,M7-invariant equilibrium (f1, g2)

that we identified above.
The definition of strategies fK1 and fK2 ensures that fK = (fK1 , f

K
2) is KM,M ′-invariant.

Lemma 5.6. Let κ = d0, . . . , dk be s finite computation in compsM . Then, for i = 1, 2,

d0, . . . , dk ≡K κd0,...,dkfi
.

Accordingly, fK = (fK1 , f
K
2) is KM,M ′-invariant.

Proof. Strategies fK1 and fK2 have been defined so as to be K-invariant. The claim then
follows by induction on the length of κ. Let i = 1; the case for i = 2 is analogous. If
the length of κ is 0, we have κ = κεf1 = ε, and it immediately follows that κ ≡K κεf1 . For

the induction step, let κ = d0, . . . , dk, dk+1 and assume that d0, . . . , dk ≡K κd0,...,dkf1
. Let

κ
d0,...,dk+1

f1
be denoted by d′0, . . . , d

′
k, d
′
k+1 where d′k+1 = (x1, x2). There are three possibilities.

32:30 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

First, assume that d′0, . . . , d
′
k, (f1(d

′
0, . . . , d

′
k), f2(d

′
0, . . . , d

′
k)) ≡K d0, . . . , dk, dk+1. Then,

clause (i.1) applies and we have x1 = f1(d′0, . . . , d
′
k) and x2 = f2(d′0, . . . , d

′
k). It then follows

that d′0, . . . , d
′
k, d
′
k+1 ≡K d0, . . . , dk, dk+1. Second, assume that

d′0, . . . , d
′
k, (f1(d

′
0, . . . , d

′
k), y2) ≡K d0, . . . , dk, dk+1

for some action y2 ∈ Ac2, but

d′0, . . . , d
′
k, (f1(d

′
0, . . . , d

′
k), f2(d

′
0, . . . , d

′
k)) 6≡K d0, . . . , dk, dk+1.

Then clause (ii.1) applies and we have that x1 = f1(d
′
0, . . . , d

′
k) and x2 is the least action

available to player 2 such that d′0, . . . , d
′
k, (f1(d

′
0, . . . , d

′
k), y2) ≡K d0, . . . , dk, dk+1. Again, it

immediately follows that d′0, . . . , d
′
k, d
′
k+1 ≡K d0, . . . , dk, dk+1.

Finally, assume that neither of the above, then clause (iii.1) applies and we have that x1
and x2 are the least actions available to players 1 and 2 such that d′0, . . . , d

′
k, (x1, x2) ≡K

d0, . . . , dk+1. As such actions exist, we conclude that d′0, . . . , d
′
k, d
′
k+1 ≡K d0, . . . , dk, dk+1.

We are now in a position to prove the following crucial lemmas.6

Lemma 5.7. Let f = (f1, f2) be a run-invariant strategy profile for concurrent game
structure M and fK defined as above. Then, κM (f1, f2) = κM (fK1 , f

K
2).

Proof. Let us use the following notations: κM (f1, f2) = d0, d1, . . . ; κ(fK1 , f
K
2) = dK0 , d

K
1 , . . . ;

κd0,...,dkf1
= d′0, d

′
1, . . . ; κ

d0,...,dk
f2

= d′′0, d
′′
1, . . . ; where, for every k ≥ 0,

dk = (ak1, a
k
2), dKk = (bk1, b

k
2), d′k = (xk1, x

k
2), d′′k = (yk1 , y

k
2).

It then suffices to prove by induction on k that for every k ≥ 0, we have

dk = dKk = d′k = d′′k.

For k = 0, let d0 = (a01, a
0
2) and dK0 = (b1, b2). Then,

a01 = f1(ε) = f1(κ
ε
f1) = fK1 (ε) = b01.

In a similar way we find that a02 = b02, and hence d0 = dK0 . Because both f1(ε) = a01 and
f2(ε) = a02, we also have d′0 = d0, and, a fortiori, d′0 ≡K d0. Hence, clause (i.1) applies and
therefore d′0 = (f1(ε), f2(ε)) = (a01, a

0
2) = d0. In a similar way we can establish that d′′0 = d0.

For the induction step, we may assume that

d0, . . . , dk = dK0 , . . . , d
K
k = d′0, . . . , d

′
k = d′′0, . . . , d

′′
k. (i.h.)

Then,

ak+1
1 = f1(d0, . . . , dk) =i.h. f1(d

′
0, . . . , d

′
k) = fK1 (d0, . . . , dk) =i.h. f

K
1 (d′0, . . . , d

′
k) = bk+1

1 .

Observe that the third equality holds because d′0, . . . , d
′
k = κd0,...,dkf1

. For player 2, the

following equalities hold:

ak+1
2 = f2(d0, . . . , dk) =i.h. f2(d

′′
0, . . . , d

′′
k) = fK2 (d0, . . . , dk) =i.h. f

K
2 (d′0, . . . , d

′
k) = bk+1

2 .

Now the third equality holds since d′′0, . . . , d
′′
k = κd0,...,dkf2

.

6The proofs of these two lemmas extend over a couple of pages and the reader may skip to page 33, where
the running text continues.

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:31

Finally, by the induction hypothesis, d′0, . . . , d
′
k = d0, . . . , dk. From the above, we already

had f1(d
′
0, . . . , d

′
k) = ak+1

1 and f2(d
′′
0, . . . , d

′′
k) = ak+1

2 Hence,

(f1(d
′
0, . . . , d

′
k), f2(d

′′
0, . . . , d

′′
k)) = dk+1.

It follows that, d′0, . . . , d
′
k, (f1(d

′
0, . . . , d

′
k), f2(d

′′
0, . . . , d

′′
k)) = d0, . . . , dk, dk+1. In particular,

d′0, . . . , d
′
k, (f1(d

′
0, . . . , d

′
k), f2(d

′′
0, . . . , d

′′
k)) ≡K d0, . . . , dk, dk+1.

Therefore, clause (i.1) is applicable, and both

xk+1
1 = f1(d

′
0, . . . , d

′
k) = ak+1

1 and xk+1
2 = f2(d

′′
0, . . . , d

′′
k) = ak+1

2 ,

signifying that dk+1 = d′k+1. By an analogous reasoning we show that dk+1 = d′′k+1.

The next lemma establishes that fK1 and fK2 are winning run-invariant strategies against
player 2 and player 1, respectively, if the goal sets Γ1 and Γ2 are to be run-based. Notice
that this result requires Γ1 and Γ2 to be KM,M ′-closed.

Lemma 5.8. Let f = (f1, f2) be a run-invariant strategy profile in game G = (M,Γ1,Γ2)
with Γ1 and Γ2 run-based and K-closed, and fK defined as above. Then,

(1) if f1 is a winning (run-invariant) strategy against player 2, then so is fK1 ,

(2) if f2 is a winning (run-invariant) strategy against player 1, then so is fK2 .

Proof. For part 1, assume for contraposition that fK1 is not winning against player 2. Then,
there is a strategy g2 for player 2 such that κ(fK1 , g2) ∈ Γ2. We define a K-invariant
strategy gK2 for player 2 such that d0, . . . , dk ≡K e0, . . . , ek for every k ≥ 0, where

κ(fK1 , g2) = d0, d1, d2, . . . and dk = (a1, a2),

κ(f1, g
K
2) = e0, e1, e2, and ek = (b1, b2).

By Γ2 being K-closed it then follows that also κ(f1, g
K
2) ∈ Γ2, which contradicts our initial

assumption that f1 is winning strategy against player 2. For each k ≥ 0, let furthermore

κd0,...,dk = d′0, . . . , d
′
k and d′k = (c1, c2).

In order to define the strategy gK2 , we may assume the existence of some K-invariant
strategy h2 for player 2. For the empty computation ε we have gK2 (ε) = x02 where

(i.3) x02 = f2(ε), if (f1(ε), f2(ε)) ≡K d0,

(ii.3) x02 is the least action y02 available to player 2 such that (f1(ε), y
k+1
2) ≡K d0, if such

an action yk+1
2 exists and case (i) does not apply,

(iii.3) xk+1
2 = h(ε) in all other cases.

For every finite computation d0, . . . , dk, we have that gK2 (d0, . . . , dk) = xk+1
2 , where

(i.4) xk+1
2 = f2(d0, . . . , dk), if

d0, . . . , dk, (f1(d0, . . . , dk), f2(d0, . . . , dk)) ≡K d0, . . . , dk, dk+1,

(ii.4) xk+1
2 is the least action yk+1

2 available to player 2 such that

d0, . . . , dk, (f1(d0, . . . , dk), y
k+1
2) ≡K d0, . . . , dk, dk+1,

if such an action yk+1
2 exists and case (i) does not apply,

(iii.4) xk+1
2 = h(d0, . . . , dk) in all other cases.

32:32 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

Observe that gK2 is K-invariant by construction.
We now prove by induction on k that e0, . . . , ek = d′0, . . . , d

′
k for every k ≥ 0. If k = 0,

recall that e0 = (b01, b
0
2) and d00 = (c01, c

0
2). Observe that fK1 (ε) = f1(κ

ε) = f1(ε). Thus we
have d0 = (f1(ε), g2(ε)) = (f1(ε), g2(ε)), and in particular d0 ≡K (f1(ε), g2(ε)). Hence, there
is some y02 such that (f1(ε), y

0
2) ≡K d0.

First consider the case where (f1(ε), f2(ε)) ≡K d0. Now clause (i.1) applies and c01 =
f1(ε) and c02 = f2(ε). Accordingly, clause (i.3) is applicable as well, and we obtain both

b01 = f1(ε) = c01 and b02 = gk2 (ε) = f2(ε) = c02.

Otherwise, there is some least x02 such that (f1(ε), x02) ≡K d0. Thus, due to clause (ii.1)
we have c01 = f1(ε) and c02 = x02. Clause (ii.3) now also applies and we obtain:

b01 = f1(ε) = c01 and b02 = gK2 (ε) = x02 = c02.

The induction step runs along similar lines. We may assume that

e0, . . . , ek = d00, . . . , dk. (i.h.)

Observe that

fK1 (d0, . . . , dk) = f1(κ
d0,...,dk) = f1(d

′
0, . . . , d

′
k).

Thus,

dk+1 = (fK1 (d0, . . . , dk), g2(d0, . . . , dk)) = (f1(d
′
0, . . . , d

′
k), g2(d0, . . . , dk)).

By Lemma 5.6, moreover, d0, . . . , dk ≡K d′0, . . . , d
′
k, and it follows that

d0, . . . , dk, dk+1 ≡K d′0, . . . , d
′
k, (f1(d

′
0, . . . , d

′
k), g2(d0, . . . , dk)).

Hence, there is some yk+1
2 such that

d0, . . . , dk, dk+1 ≡K d′0, . . . , d
′
k, (f1(d

′
0, . . . , d

′
k), y

k+1
2). (∗)

First assume that equation (∗) holds for yk+1
2 = f2(d′0, . . . , d

′
k). Then clause (i.1) applies

and for d′k+1 = (ck+1
1 , ck+1

2) we have

ck+1
1 = f1(d

′
0, . . . , d

′
k) and ck+1

2 = f2(d
′
0, . . . , d

′
k).

Recall that ek+1 = (bk+1
1 , bk+1

2). Now for player 1 we find that

bk+1
1 = f1(e0, . . . , ek) =i.h. f1(d

′
0, . . . , d

′
k) = ck+1

1 .

For player 2, observe that, in the case we are considering,

e0, . . . , ek, (f1(d
′
0, . . . , d

′
k), f2(d

′
0, . . . , d

′
k)) =i.h. d

′
0, . . . , d

′
k, (f1(d

′
0, . . . , d

′
k), f2(d

′
0, . . . , d

′
k))

= d′0, . . . , d
′
k, d
′
k+1.

Accordingly, clause (i.4) applies, that is, gK2 (e0, . . . , ek) = f2(d
′
0, . . . , d

′
k). Hence,

bk+1
2 = gK2 (e0, . . . , ek) = f2(d

′
0, . . . , d

′
k) = ck+1

2 ,

and we may conclude that ek+1 = (bk+1
1 , bk+1

2) = (ck+1
1 , ck+1

2) = d′k+1.

Finally, assume that equation (∗) does not hold for yk+1
2 = f2(d′0, . . . , d

′
k). Then, let xk+1

2

be the least action for player 2 for which equation (∗) does hold with yk+1 = xk+1
2 . As in

this case clause (i.2) applies and for d′k+1 = (ck+1
1 , ck+1

2), we have,

ck+1
1 = f1(d

′
0, . . . , d

′
k) and ck+1

2 = xk+1
2 .

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:33

Recall that ek+1 = (bk+1
1 , bk+1

2). For player 1 we again find that,

bk+1
1 = f1(e0, . . . , ek) =i.h. f1(d

′
0, . . . , d

′
k) = ck+1

1 .

For player 2, observe that, in the case we are considering,

e0, . . . , ek, (f1(d
′
0, . . . , d

′
k), x

k+1
2) =i.h. d

′
0, . . . , d

′
k, (f1(d

′
0, . . . , d

′
k), x

k+1
2)

= d′0, . . . , d
′
k, d
′
k+1.

Accordingly, clause (ii.4) applies and we have gK2 (e0, . . . , ek) = xk+1
2 . It then follows that,

bk+1
2 = gK2 (e0, . . . , ek) = f2(d

′
0, . . . , d

′
k) = ck+1

2 .

Again we may conclude that ek+1 = (bk+1
1 , bk+1

2) = (ck+1
1 , ck+1

2) = d′k+1, as desired.
The proof for part 2 is analogous to that of part 1.

The ground has now been cleared for the main result of this paper that the existence of
run-invariant equilibria is preserved under bisimulation in two-player games provided that
the run-based preferences of the players are KM,M ′-closed.

Theorem 5.9. Let G = (M,Γ1,Γ2) and G′ = (M ′,Γ1,Γ2) be two two-player games on
bisimilar concurrent game structures such that Γ1 and Γ2 are run-based and KM,M ′-closed.

Then, if f = (f1, f2) is a run-invariant strategy profile in M , then fK = (fK1 , f
K
2) is a

run-invariant equilibrium in M ′.

Proof. Assume that f = (f1, f2) is a run-invariant strategy profile in M . By Lemma 5.2,
then both

(1) κM (f1, f2) /∈ Γ1 implies that f2 is a winning strategy against player 1 in M , and
(2) κM (f1, f2) /∈ Γ2 implies that f1 is a winning strategy against player 2 in M .

On basis of 1, Lemma 5.7 yields κM (f1, f2) = κM (fK1 , f
K
2). Now assume κM (fK1 , f

K
2) /∈ Γ1.

Then, also κM (f1, f2) /∈ Γ1 and we may assume that f2 is a winning strategy against player 1
in M . In virtue of Lemma 5.8 we may then conclude that fK2 is a winning strategy against
player 1 in M . Assuming that κM (fK1 , f

K
2) /∈ Γ2, we can reason analogously and infer that f1

is a winning strategy against player 2 in M . Hence,

(1′) κM (fK1 , f
K
2) /∈ Γ1 implies that fK2 is a winning strategy against player 1 in M , and

(2′) κM (fK1 , f
K
2) /∈ Γ2 implies that fK1 is a winning strategy against player 2 in M .

Accordingly, fK is a computation-based equilibrium in M . By Theorem 4.1 we may infer
that fK is also a computation-based equilibrium in M ′. Lemma 5.6 then guarantees that fK

is KM,M ′-invariant, and it follows that fK is run-invariant in M ′ as well. By virtue of

Theorem 3.5 we may finally conclude that fK is also a run-invariant equilibrium in M ′.

As an immediate consequence of Theorem 5.9, we have the following result, which is phrased
in terms of run-based strategies instead of run-invariant strategies.

Corollary 5.10. Let G = (M,Γ1,Γ2) and G′ = (M ′,Γ1,Γ2) be two two-player games on
bisimilar concurrent game structures M and M ′ such that Γ1 and Γ2 are run-based and
KM,M ′-closed. Let furthermore ρ ∈ runsωM be a run in M that is sustained by a run-based
equilibrium in M . Then, there is a run ρ′ ∈ runsωM ′ in M ′ that is statewise bisimilar to ρ
and that is also sustained by a run-based equilibrium in M ′.

32:34 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

Proof. Let run ρ ∈ runsωM be sustained by a run-based equilibrium f = (f1, f2) in G and let

f̌ = (f̌1, f̌2) be the run-invariant strategy profile corresponding to f . Lemma 3.4 guarantees
that f̌ = (f̌1, f̌2) is a run-invariant equilibrium in G. Now construct profile f̌K = (f̌K1 , f̌

K
2),

which by virtue of Theorem 5.9 is then KM,M ′-invariant and is a run-invariant equilibrium in

both G and G′. By virtue Lemma 2.2-1, it moreover follows that ρM (gK1 , g
K
2) ∼̇ ρM ′(gK1 , gK2),

that is, ρM (gK1 , g
K
2) and ρM ′(g

K
1 , g

K
2) are statewise bisimilar, which concludes the proof.

A further corollary of Theorem 5.9 is that the existence of run-based equilibria is preserved
in two-player games with run-based and KM,M ′-closed preferences.

Trace-based Preferences. We find that, with a couple of slight modifications, essentially
the same construction as in the previous section can be leveraged to prove that run-
based equilibria are also preserved under bisimulation in two-player games with trace-based
preferences. It be emphasised that here we do not require the preferences to satisfy any
other condition than being trace-based.

Let two CGS-games G = (M,Γ1,Γ2) and G′ = (M ′,Γ1,Γ2) on bisimilar concurrent
game structures M and M ′ and with Γ1 and Γ2 trace-based be given. For a run-invariant
equilibrium f = (f1, f2) in game G, we define the KM,M ′-invariant strategy-profile fK =

(fK1 , f
K
2) as in the previous section. We prove that fK = (fK1 , f

K
2) is also a run-invariant

equilibrium in G′. To this end, we adapt Lemma 5.8 so as to apply to trace-based preferences
instead of preferences that are both run-based and KM,M ′-closed.

Lemma 5.11. Let f = (f1, f2) be a run-invariant strategy profile in game G = (M,Γ1,Γ2)
with Γ1 and Γ2 trace-based, and fK defined as above. Then,

(1) if f1 is a winning (run-invariant) strategy against player 2, then so is fK1 ,

(2) if f2 is a winning (run-invariant) strategy against player 1, then so is fK2 .

Proof. For part 1—part 2 follows by an analogous argument—assume for contraposition
that fK1 is not a winning strategy against player 2. Then, there is a strategy g2 for player 2
such that κ(fK1 , g2) ∈ Γ2. We define a KM,M ′-invariant strategy gK2 for player 2 exactly as
in the proof of Lemma 5.8. Accordingly, d0, . . . , dk ≡KM,M′ e0, . . . , ek for every k ≥ 0, where

κ(fK1 , g2) = d0, d1, d2, . . . and dk = (a1, a2),

κ(f1, g
K
2) = e0, e1, e2, and ek = (b1, b2).

Now consider an arbitrary k ≥ 0. Then, by Lemma 5.3, also πM (d0, . . . , dk) ∼̇ πM (e0, . . . , ek).
Letting πM (d0, . . . , dk) = s0, . . . , sk and πM (d′0, . . . , d

′
k) = s′0, . . . , s

′
k, we then also have sk ∼

s′k. It follows that ρM (fK1 , g2) ∼̇ ρM (f1, g
K
2) and hence τM (fK1 , g2) = τM (f1, g

K
2). As a

consequence of Γ2 being trace-based, we obtain κ(f1, g
K
2) ∈ Γ2, which contradicts our initial

assumption that f1 is winning strategy against player 2.

We are now in a position to prove the counterpart of Theorem 5.9 for trace-based prefer-
ences, showing that run-invariant equilibria are preserved under bisimulation if the players’
preferences are trace-based.

Theorem 5.12. Let G = (M,Γ1,Γ2) and G′ = (M ′,Γ1,Γ2) be two two-player games on
bisimilar concurrent game structures such that Γ1 and Γ2 are trace-based. Then, if f = (f1, f2)
is run-invariant in M , then fK = (fK1 , f

K
2) is a run-invariant equilibrium in M ′.

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:35

Proof. The proof is fully analogous to that for Theorem 5.9, invoking Lemma 5.11 instead
of Lemma 5.8.

As an immediate consequence of Theorem 5.12, we find that also the existence of run-invariant
equilibria is preserved in two-player games with trace-based preferences. Furthermore, also
the counterpart of Corollary 5.10 for trace-based preferences can easily be demonstrated.

Boolean Game Structures. We now consider a subclass of concurrent game structures in
which Nash equilibrium is invariant under bisimilarity. Specifically, we study games played
over the class of concurrent game structures induced by iterated Boolean games [GHW15b],
a framework that can be used to reason about Nash equilibria in games and multi-agent
systems modelled using the Reactive Modules specification language [AH99].

By a Boolean game structure we understand a special type of concurrent game structure
M = (Ag,AP,Ac,St, s0M , λ, δ) for which there is a partition {AP1, . . . ,APn} of AP such
that Aci(s) ⊆ (2APi \ ∅) for all players i and states s and for every direction d′ = (a1, . . . , an)
in 2AP1 × · · · × 2APn and every state s, it holds that

δ(s, d′) = s′ implies λ(s′) = a1 ∪ · · · ∪ an.

Then, informally, in a Boolean game structure, choice profiles correspond to system
states, which is not generally the case in concurrent game structures. In other words, in
a Boolean game structure M , if a strategy profile induces a run s0M , s1, s2, . . ., then we
know that it has been induced by the computation s1, s2, Even more, we also know
that the trace induced by such a computation is precisely s0M , s1, s2, This very strong
correspondence between computations, runs, and traces is key to the proof that in Boolean
game structures all strategies for a player are in fact bisimulation-invariant. This result,
in turn, can also be used to show that Nash equilibrium is invariant under bisimilarity,
regardless of the model of strategies or goals that one chooses. To see this, the following
preliminary results will be useful.

Lemma 5.13. Let M = (Ag,AP,Ac,St, s0, λ, δ) be a Boolean game structure with partition
{AP1, . . . ,APn}. Let π = s0, . . . , sk and π′ = s′0, . . . , s

′
k be statewise bisimilar finite histories,

that is, π ∼̇ π′. Then, π = π′.

Proof. We may assume that there are finite computations κ = d0, . . . , dk−1 and κ′ =

d′0, . . . , d
′
k−1 such that s0

d0−→ · · · dk−1−−−→ sk and s′0
d′0−→ · · · d

′
k−1−−−→ s′k. We show by induction

that sm = s′m for all 0 ≤ m ≤ k. For the basis, we have s0 = s0M = s′0. For the induction
step we may assume that sm = s′m. Moreover, as sm+1 ∼ s′m+1, also λ(sm+1) = λ(s′m+1).

Furthermore, sm
dm−−→ sm+1 and s′m

d′m−−→ s′m+1. As M is a Boolean game structure, it follows
that dm = (λ(sm+1)∩AP1, . . . , λ(sm+1)∩APn) and d′ = (λ(s′m+1)∩AP1, . . . , λ(s′m+1)∩APn)
and, hence, dm = d′m. By determinism of δ, we may conclude that sm+1 = δ(sm, dm) =
δ(s′m, d

′
m) = s′m+1.

The above lemma can be used to show that in fact, for Boolean game structures, all
models of strategies collapse to the model of bisimulation-invariant strategies.

Lemma 5.14. In Boolean game structures, all strategies for every player are bisimulation-
invariant.

32:36 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

Preferences
computation-based run-based trace-based

computation-based + (Th. 4.1) + (Th. 4.1) + (Th. 4.1)
run-based (general) − (Th. 4.5) − (Th. 4.5) − (Th. 4.5)

Strategies run-based (two players) − (Th. 5.1) +† (Th. 5.9) + (Th. 5.12)
trace-based + (Th. 4.3) + (Th. 4.3) + (Th. 4.3)
bisimulation-invariant + (Th. 4.8) + (Th. 4.8) + (Th. 4.8)

†Assuming the players’ (run-based) preferences to be KM,M′ -closed.

Table 1: Summary of main bisimulation-invariance results for multi-player games in deter-
ministic systems as well as the results in this paper they are based on. In this
figure, + means that Nash equilibria are preserved in (computation/run/trace)-
based strategy profiles with preferences given by sets of computations/runs/traces,
while − indicates that they are not for such a pair.

Proof. Consider an arbitrary strategy fi of a player i in a Boolean game structure M along
with arbitrary statewise bisimilar histories π, π′ ∈ runsM , that is, π ∼̇ π′. By Lemma 5.13,
then π = π′. Hence, trivially, fi(π) = fi(π

′).

We can now present the main result of this section.

Theorem 5.15. In Boolean game structures, (the existence of a) Nash equilibrium is
invariant under bisimilarity.

Proof. Observe that because of Lemma 5.14, in Boolean game structures, a strategy pro-
file f = (f1, . . . , fn) is a Nash equilibrium if and only if f is a Nash equilibrium in bisimulation-
invariant strategies. The result then immediately follows from Corollary 4.9.

6. Nondeterminism

Our results so far, summarised in Table 1, apply to profiles of deterministic strategies and
deterministic systems. In this section, we investigate the case of nondeterministic systems. In
this more general setting, most of our notations and definitions remain the same, except for
two that are particularly relevant: the notions of outcome of a game and Nash equilibrium.

Note that in a deterministic system, a profile of deterministic strategies induces a unique
system path (and therefore a unique computation, run, and trace). However, if the system
is nondeterministic, a profile of deterministic strategies might, instead, determine a set of
paths of the system: all those complying with the profile of strategies. For instance, in the
system in Figure 7, the deterministic strategy profile where every player i chooses to play ai
at the beginning determines two different runs and traces of the system.

Therefore, formally, a deterministic strategy profile f on a nondeterministic system M
may determine a set of computations in compsωM . To simplify notations, we will write
κM (f) ⊆ compsωM for such a set, which will correspond to the set of computations that
could result in M when playing strategy profile f . Likewise, we will write ρM (f) ⊆ runsωM
and τM (f) ⊆ tracesωM , respectively, for the sets of runs and traces determined by f on M .
These three sets of computations, runs, and traces determined by f , namely κM (f), ρM (f),
and τM (f), will correspond to our more general notion of (computation, run, trace) outcome

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:37

s0M
x

s1
z

s2
y

a1, . . . , ak

a1, . . . , ak

∗, . . . , ∗

∗, . . . , ∗

Figure 7: Nondeterministic system with sets of infinite runs given by s0M .(s
ω
1 + sω2) and

infinite traces given by x.(zω + yω).

of a multi-player game. Clearly, for deterministic systems, these sets of computations, runs,
and traces will correspond to the special case where outcomes are singleton sets.7

Our more general definition of outcome call for a (just slightly) more general definition
of equilibrium. The generalisation is rather simple. With respect to a nondeterministic
system M , we will define the preferences Γi of a player i as a set of sets of computations
of M , rather than just a set of computations, as in the deterministic case. In other words,
while in a deterministic system we have Γi ⊆ compsωM , in a nondeterministic system we
have Γi ⊆ 2compsωM . With this definition in place, we can define a Nash equilibrium in
exactly the same way that it is defined for deterministic systems, that is, as a strategy
profile f = (f1, . . . , fn) such that for every player i and every strategy gi available to i,

κM (f−i, gi) ∈ Γi implies κM (f) ∈ Γi.

As for deterministic systems, the concepts of Nash equilibrium in run-based strategies and
Nash equilibrium in trace-based strategies are defined analogously.

We first note that all negative results for deterministic systems immediately carry over
to this more general setting as those are simply the case when deterministic strategy profiles
induce a unique computation (a singleton set of computations). On the other hand, although
positive results for computations and traces also carry over to nondeterministic systems,
this is not something that one can immediately conclude. A couple of technical results are
needed. In the reminder of this section we will study why positive results for computations
and traces do carry over to nondeterministic systems.

The first observation to make is that the set of strategy profiles across bisimilar systems
is invariant, that is, that every collection of (computation-based, trace-based) strategies f =
(f1, . . . , fn) is a strategy profile in a system M if and only if f is a strategy profile in M ′,
for every M ′ that is bisimilar to M .

Lemma 6.1. Let M and M ′ be two bisimilar systems. For all (computation-based, trace-
based) strategy profiles f :

f is a strategy profile in M if and only if f is a strategy profile in M ′.

7Later on, in this section, we will present some examples of how sets of computations/runs/traces can be
induced by (deterministic) computation-based/run-based/trace-based strategies in nondeterministic systems.

32:38 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

Proof. By induction on the length of computations/traces, and noting that, for every player,
the set of actions available to a player in bisimilar states is the same (as otherwise the two
states would not be bisimilar).

The second observation is that, despite nondeterminism, the outcome of games across
bisimilar systems is invariant. Formally, we have the following result.

Lemma 6.2. Let M and M ′ be two bisimilar systems. For all (computation-based, trace-
based) strategy profiles f we have

κM (f) = κM ′(f) and τM (f) = τM ′(f) .

Proof. There are four different cases to consider here: either f is computation-based or f is
trace-based, and either the outcome of the game is taken to be the set of computations, or
the outcome of the game is taken to be the set of traces.

By double inclusion, we show the first case: f being computation-based and the outcome
of the game taken to be the set of computations. To show that κM (f) ⊆ κM ′(f), with f
computation-based, reason by contradiction. Suppose that there is a computation κ∗

in κM (f) that is not in κM ′(f). Since M and M ′ are bisimilar, κ∗ is also a computation
of M ′, and due to Lemma 6.1, for every prefix κ∗k of κ∗, we know that f(κ∗k) is defined.
Since f is functional, f(κ∗k) in M ′ is the same as f(κ∗k) in M , which must be precisely the
last direction of κ∗k+1. By an inductive argument we can conclude that κ∗ must also be a
computation of κM ′(f), which is a contradiction to our hypothesis, proving the statement.
We can reason in a symmetric way to prove the inclusion in the other direction. Note that
for computation-based strategies not only κM (f) = κM ′(f), but also they are singleton sets.

The second case we consider is when f is trace-based and the outcome of the game is
taken to be the set of traces. To show this case, we can reason similarly, but, unlike for
computation-based strategies, the sets τM (f) and τM ′(f) may not be singleton sets. We,
again, show the result by double inclusion, and each direction by contradiction. Thus, first,
suppose that there is a trace τ∗ in τM (f) that is not in τM ′(f). Since M and M ′ are bisimilar,
τ∗ is also a trace of M ′, and due to Lemma 6.1, for every prefix τ∗k of τ∗, we know that f(τ∗k)
is defined. Let τ∗k be the smallest prefix of τ∗ that is not a prefix of any trace in τM ′(f),
and let s be any state that can be reached after following the finite trace τ∗k−1 from s0M , the

initial state of M . Then, we know that s
f(τ∗k−1)−−−−−→ q, for some q such that λ(q) is the last

element of τ∗k . Necessarily, the prefix τ∗k−1 is the prefix of some trace in τM ′(f) that leads to

a state, say s′, that is bisimilar to s. Because s and s′ are bisimilar, s′
f(τ∗k−1)−→ q′ for some

state q′ that is bisimilar to q. Lemma 6.1 ensures that f is defined at τ∗k−1 in M ′. Since q
and q′ are bisimilar, it also follows that λ(q) = λ(q′), and therefore that τ∗k , with λ(q′) being
the last element of τ∗k , is the prefix of some trace in τM ′(f), which is a contradiction to our
hypothesis. Therefore, via induction on the length of traces, we can conclude, in particular,
that τ∗ ∈ τM ′(f), and in general that every trace in τM (f) must also be a trace in τM ′(f).
The inclusion in the other direction is, as before, obtained by symmetric reasoning.

The third case we consider is when f is computation-based and the outcome of the game
is taken to be the set of traces. This proof is almost identical to the previous case. To show
this case we, again, show the result by double inclusion, and each direction by contradiction.
First, suppose that there is a trace τ∗ in τM (f) that is not in τM ′(f). Since M and M ′ are
bisimilar, τ∗ is also a trace of M ′, and due to Lemma 6.1, for every prefix τ∗k of τ∗ and
every computation κk ∈ κ(τ∗k), we know that f(κk) is defined. Let τ∗k be the smallest prefix

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:39

of τ∗ that is not a prefix of any trace in τM ′(f), and let s be any state that can be reached
after following the finite trace τ∗k−1 from s0M , the initial state of M . Then, we know that for

some computation κk−1 ∈ κ(τ∗k−1), we have s f(κk−1)−−−−−→ q, for some q such that λ(q) is the last
element of τ∗k . Necessarily, the prefix τ∗k−1 is the prefix of some trace in τM ′(f) that leads to

a state, say s′, that is bisimilar to s. Because s and s′ are bisimilar, s′ f(κk−1)−−−−−→ q′ for some
state q′ that is bisimilar to q. Lemma 6.1 ensures that f is defined at κk−1 in M ′. Since q
and q′ are bisimilar, it also follows that λ(q) = λ(q′), and therefore that τ∗k , with λ(q′) being
the last element of τ∗k , is the prefix of some trace in τM ′(f), which is a contradiction to our
hypothesis. Therefore, via induction on the length of traces, we can conclude, in particular,
that τ∗ ∈ τM ′(f), and in general that every trace in τM (f) must also be a trace in τM ′(f).
The inclusion in the other direction is also obtained by symmetric reasoning.

The fourth and final case we consider is when f is trace-based and the outcome of the
game is taken to be the set of computations. This proof is also almost identical to the
previous two cases. To show this case we, again, show the result by double inclusion, and
each direction by contradiction. First, suppose that there is a computation κ∗ in κM (f) that
is not in κM ′(f). Since M and M ′ are bisimilar, κ∗ is also a computation of M ′, and due
to Lemma 6.1, for every prefix κ∗k of κ∗ and every trace τk ∈ τ(κ∗k), we know that f(τk) is
defined. Let κ∗k be the smallest prefix of κ∗ that is not a prefix of any computation in κM ′(f),
and let s be any state that can be reached after following the finite computation κ∗k−1
from s0M , the initial state of M , while complying with τ∗k−1, that is, any state s such that

Θk−1 = s0M
f(λ(s0M))
−−−−−−→ s1

f(λ(s0M),λ(s1))−−−−−−−−−→ . . . f(τk−1)−−−−−→ s

with
τ∗k−1 = λ(s0M), λ(s1), . . . , λ(s)

and
κ∗k−1 = f(λ(s0M)), f(λ(s0M), λ(s1)), . . . , f(τk−1) .

Then, for trace τk−1 ∈ τ(κ∗k−1) as above, we have s
f(τ∗k−1)−−−−−→ q, for some q such that λ(q)

is the last element of τ∗k . Necessarily, the prefix κ∗k−1 is the prefix of some computation
in κM ′(f) that leads to a state, say s′, that is bisimilar to s, that is, a computation

κ∗k−1 = f(λ(s0M ′)), f(λ(s0M ′), λ(s′1)), . . . , f(τk−1)

with
τ∗k−1 = λ(s0M ′), λ(s′1), . . . , λ(s′)

and

Θ′k−1 = s0M ′
f(λ(s0

M′))−−−−−−→ s′1
f(λ(s0

M′),λ(s
′
1))−−−−−−−−−−→ . . . f(τk−1)−−−−−→ s′

and Θk−1(i) bisimilar to Θ′k−1(i), for every 0 ≤ i ≤ k − 1.
Because f is functional and

λ(s0M), λ(s1), . . . , λ(s) = λ(s0M ′), λ(s′1), . . . , λ(s′)

it follows that f(λ(s0M), λ(s1), . . . , λ(sk)) = f(λ(s0M ′), λ(s′1), . . . , λ(s′)) and that s′
f(τ∗k−1)−−−−−→ q′

for some state q′ bisimilar to s′. Lemma 6.1 ensures that f is defined at κk−1 in M ′. Since q
and q′ are bisimilar, it also follows that λ(q) = λ(q′), and therefore that τ∗k , with λ(q′)
being the last element of τ∗k , is the prefix of some trace in τM ′(f). Since τ∗k is indeed a
trace in τM ′(f) which can be obtained following some computation κ∗k in M ′, then we can
conclude that κ∗k is the prefix of some computation κ∗ in κM ′(f), which is a contradiction

32:40 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

s0M
x

s0M ′

y

∗ ∗

Figure 8: Two non-bisimilar systems where every computation-based strategy profile deter-
mines two different (infinite) trace outcomes, namely, xω in the system on the left
(M) and yω in the system on the right (M ′).

to our hypothesis. Therefore, via induction on the length of computations, we can infer, in
particular, that κ∗ ∈ τM ′(f), and in general that every computation in κM (f) must also be
a computation in κM ′(f). As in all previous cases, because M and M ′ are bisimilar, the
inclusion in the other direction is also obtained by symmetric reasoning.

Using Lemma 6.1 and Lemma 6.2, we can then show that the set of (computation-based,
trace-based) Nash equilibria across bisimilar systems remains invariant too.

Theorem 6.3. Let G = (M,Γ1, . . . ,Γn) and G′ = (M ′,Γ1, . . . ,Γn) be games on bisimilar
nondeterministic concurrent game structures M and M ′, respectively. Let further fκ be a
computation-based strategy profile and f τ be a trace-based strategy profile. Then,

(1) fκ is a computation-based Nash equilibrium in G if and only if fκ is a computation-based
equilibrium in G′, and

(2) f τ is a trace-based Nash equilibrium in G if and only if f τ is a trace-based equilibrium
in G′.

Proof. Both proofs are by double implication, where each direction is proved by contradiction.
For part (1), first assume that there is some computation-based equilibrium fκ in G that
is not a computation-based equilibrium in G′. Because of Lemma 6.2, every player i who
gets its goal achieved in M also gets its goal achieved in M ′. Then, they will not deviate
in M ′. Therefore, there must be a player j who does not get its goals achieved in M and
has a beneficial deviation gj in M ′, that is, while κM (fκ) 6∈ Γj , we have κM ′(f

κ
−j , gj) ∈ Γj .

Lemma 6.1 then ensures that gi is also a strategy in M , and Lemma 6.2 that κM (fκ−j , gj) ∈ Γj ,
which is a contradiction with fκ being a computation-based Nash equilibrium in M . We can
reason in a symmetric way to show the implication in the opposite direction. Notice that
because of Lemmas 6.1 and 6.2, the result holds for both computation-based preferences
and trace-based preferences. Finally, the proof for trace-based strategies (part (2)), with
either computation-based or trace-based preferences, follows the exact same reasoning.

We note that the main idea behind the proofs in this section is that if a given strategy
profile f , whether computation-based or trace-based, does not determine the same set of
computations and traces in bisimilar systems, then that computation or trace could be used
to show that the two systems are in fact not bisimilar. This is the main argument behind
the four cases in Lemma 6.2, each requiring slightly different proofs that such a witness to
the non-bisimilarity of M and M ′ does not exist. However, it is also important to note that
if M and M ′ are not bisimilar, then a given strategy profile f , well defined in both systems,
may not determine the same set of outcomes—see, for instance, the example in Figure 8.

We would also like to note that even though for deterministic systems, computation-
based strategies strictly generalise run-based strategies, and run-based strategies strictly
generalise trace-base strategies, for nondeterministic systems this is no longer the case.

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:41

s0M
x

s1
y

s2
z

a

a

c

b

Figure 9: A nondeterministic system in which no computation-based strategy can be defined,
but where both run-based and trace-based strategies can be defined.

s0M
x

s1
y

s2
z

a

a

a

a

Figure 10: A system in which any computation-based strategy induces a set of runs and a
set of traces containing, respectively, runs s0Ms

ω
1 and s0Ms

ω
2 and traces xyω and

xzω.

Run-based strategies still generalise trace-based strategies, but not other relation like this
holds between any other pair of models of strategies. For instance, as shown in the example
in Figure 9, there is a system in which, for instance, a trace-based strategy can be defined
(as well as a run-based strategy) while a computation-based strategy cannot.

In case strategies are well defined, as mentioned before, they can induce sets of computa-
tions, runs, and traces in a nondeterministic system, except for one case: whenever defined, a
computation-based strategy always determines a unique computation of the system, whether
deterministic or nondeterministic. Examples of all other cases (8 in total) are easy to build.
For instance, in the nondeterministic system in Figure 9, any run-based or trace-based
strategy will induce a set of computations containing both abω and acω. Correspondingly,
they will also induce a set of runs and a set of traces, namely, those containing, respectively,
s0Ms

ω
1 and s0Ms

ω
2 in case of runs, and xyω and xzω in case of traces. For the two remaining

cases, a set of runs and a set of traces induced by a computation-based strategy, consider
the nondeterministic system in Figure 10, which is almost the same as the system in Fig-
ure 9, save that a computation-based strategy can be defined. In such a system, any well
defined computation-based strategy will induce a set of runs and a set of traces containing,
respectively, s0Ms

ω
1 and s0Ms

ω
2 in case of runs, and xyω and xzω in case of traces.

Finally, the reader may have noticed that in this section we did not study the case
considering run-based preferences (for run-based strategies we know that the negative results
for deterministic systems carry over). The reason is that, as shown for deterministic systems,

32:42 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

s0M
x

s1
x

s2
x

a, a
b, b

a, b
b, a

∗

∗

s0M ′

x

s1
x

∗ ∗

Figure 11: A pair of bisimilar systems, M and M ′, where the sets of run-based preferences
given by Γ1 = {s0M , s1, s1, . . .} for player 1 and Γ2 = {s0M , s2, s2, . . .} for player 2
in system M , do not have a congruent counterpart in system M ′.

we can ensure invariance of (the existence of) Nash equilibria with respect to bisimilarity
only if the sets of run-based preferences are congruent between bisimilar systems. As this is
regarded as a major drawback, even for deterministic systems as illustrated in the example
in Figure 11, it is really not an interesting question to be investigated any further.

7. Strategy Logics: New Semantic Foundations

Several logics for strategic reasoning have been proposed in the literature of computer science
and AI, such as ATL∗ [AHK02], Strategy Logic [MMPV14, CHP10], Coalition Logic [Pau02],
Coordination Logic [FS10], Game Logic [PP03], and Equilibrium Logic [GHW17b]. In
several cases, the model of strategies that is used is the one that we refer to as run-based in
this paper, that is, strategies are functions from finite sequences of states (of some arena)
to actions/decisions/choices of players in a given game. As can be seen from our results
so far, of the four options we have explored, run-based strategies form the least desirable
model of strategies from a semantic point of view since in such a case Nash equilibrium is
not preserved under bisimilarity.

This does not necessarily immediately imply that a particular logic with a run-based
strategy model is not invariant under bisimilarity. For instance, ATL∗ is a bisimulation-
invariant logic and, as shown in [GHW15a] one can reason about Nash equilibrium using ATL∗

only up-to bisimilarity. A question then remains: whether any of these logics for strategic
reasoning becomes invariant under bisimilarity—as explained before, a desirable property—if
one changes the model of strategies considered there to, for instance, computation-based
or trace-based strategies. We find that this question has a satisfactory positive answer in
some cases. In particular, we will consider the above question in the context of Strategy
Logic as studied in [MMPV14], and in doing so we will provide new semantic foundations
for strategy logics.

Let us start by introducing the syntax and semantics under the run-based model of
strategies for Strategy Logic (SL [MMPV14]) as it has been given in [MMPV16]. Syntactically,
SL extends LTL with two strategy quantifiers, 〈〈x〉〉 and [[x]], and an agent binding operator
(i, x), where i is an agent and x is a variable. Intuitively, these operators can be understood as

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:43

“there exists a strategy x”, “for all strategies x”, and “bind agent i to the strategy associated
with the variable x”, respectively. Formally, SL formulae are inductively built from a set of
atomic propositions AP, variables Var, and agents Ag, using the following grammar, where
p ∈ AP, x ∈ Var, and i ∈ Ag:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | 〈〈x〉〉ϕ | [[x]]ϕ | (i, x)ϕ.

We also use the usual abbreviations for LTL formulae, that is, those for Boolean and temporal
logic formulae.

We can now present the semantics of SL formulae. Given a concurrent game structure
M , for all SL formulae ϕ, states s ∈ St in M , and assignments χ ∈ Asg = (Var∪Ag)→ Str,
mapping variables and agents to strategies, the relation M,χ, s |= ϕ is defined as follows:

(1) M,χ, s |= p if p ∈ λ(s), with p ∈ AP.
(2) For all formulae ϕ, ϕ1, and ϕ2, we have:

(a) M,χ, s |= ¬ϕ if not M,χ, s |= ϕ;
(b) M,χ, s |= ϕ1 ∧ ϕ2 if M,χ, s |= ϕ1 and M,χ, s |= ϕ2.

(3) For all formulae ϕ and variables x ∈ Var we have:
(a) M,χ, s |= 〈〈x〉〉ϕ if there is a strategy f ∈ Str such that M,χ[x 7→ f], s |= ϕ;
(b) M,χ, s |= [[x]]ϕ if for all strategies f ∈ Str we have that M,χ[x 7→ f], s |= ϕ.

(4) For all i ∈ Ag and x ∈ Var, we have M,χ, s |= (i, x)ϕ if M,χ[i 7→ χ(x)], s |= ϕ.
(5) Moreover, for all formulas ϕ, ϕ1, and ϕ2, we have:

(a) M,χ, s |= Xϕ if M, (χ, s)1, δ(s, d) |= ϕ, where d is the decision taken from s by

following χ and (χ, s)1 is the update of the assignment function as described
in [MMPV14];

(b) M,χ, s |= ϕ1 Uϕ2 if there exist k ∈ N such that M, (χ, s)k, δ(s, ~d) |= ϕ2 and, for all

h ∈ N with h ≤ k, we have M, (χ, s)h, δ(s, ~d≤h) |= ϕ1, where ~d is the sequence of

decisions identified by the assignment function χ starting from s, and (χ, s)k is the
update of the assignment given by the execution of k steps of the strategy profile
in χ starting from s.

Intuitively, rules 3a and 3b, respectively, are used to interpret the existential 〈〈x〉〉 and
universal [[x]] quantifiers over strategies, and rule 4 is used to bind an agent to the strategies
associated with variable x. All other rules are as in LTL over concurrent game structures.

As can be seen from its semantics, SL can be interpreted under different models of
strategies and goals. As it was originally formulated, SL considers run-based strategies and
trace-based preferences/goals. More specifically, the model of goals is a proper subset of the
trace-based one, represented by LTL goals over the set AP of variables. In SL, it is possible
to represent the existence of a Nash equilibrium in a concurrent game structure [MMPV14].
This implies, given Theorem 4.5, that SL under the standard interpretation is not invariant
under bisimulation, as the formula expressing the existence of a Nash equilibrium can
distinguish between two bisimilar models.

Given the semantics of SL formulae given above, we now consider SL under the model
of computation-based strategies, and find that in such a case SL becomes invariant under
bisimilarity. Formally, we have the following result.

Theorem 7.1. Let M1 = (Ag,AP,Ac, St1, s
0
1, λ1, δ1) and M2 = (Ag,AP,Ac,St2, s

0
2, λ2, δ2)

be two bisimilar CGSs. Moreover, let χ be an assignment of strategies and s1 ∼ s2 be two
bisimilar states. Then, for all ϕ ∈ SL, it holds that

M1, χ, s1, |= ϕ if and only if M2, χ, s2 |= ϕ.

32:44 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

Proof. The proof proceeds by induction on the structure of ϕ. First note that we do not
need to prove all the cases, as, for example, we have that ψ1 ∨ ψ2 = ¬(¬ψ1 ∧ ¬ψ2) and
[[x]]ϕ = ¬〈〈x〉〉¬ϕ. Moreover, recall from Lemma 3.1 that every computation-based strategy
in M1 is also a computation-based strategy in M2 and vice-versa. We have the following.

• ϕ = p ∈ AP. We have that M1, χ, s1 |= p if and only if p ∈ λ1(s1) = λ2(s2) if and only if
M2, χ, s2 |= p;
• ϕ = ¬ψ. We have that M1, χ, s1 |= ¬ψ if and only if M1, χ, s1 6|= ψ if and only if, by

induction hypothesis, M2, χ, s2 6|= ψ if and only if M2, χ, s2 |= ¬ψ.
• ϕ = ψ1 ∧ ψ2. We have that M1, χ, s1 |= ψ1 ∧ ψ2 if and only if M1, χ, s1 |= ψ1 and
M1, χ, s1 |= ψ2, which holds, by induction hypothesis, if and only if M2, χ, s2 |= ψ1 and
M2, χ, s2 |= ψ2 if and only if M2, χ, s2 |= ψ1 ∧ ψ2.

• ϕ = Xψ. We have that M1, χ, s1 |= Xψ if and only if M1, (χ)1, δ1(s1, d) |= ψ, where
d = (χ(1)(ε), . . . χ(n)(ε)) is the decision taken by the agents on the first round of the
game, according the assignment χ. By bisimilarity, we have that δ1(s1, d) ∼ δ2(s2, d),

and so, by induction hypothesis, that M2, (χ)1, δ2(s2, d) |= ψ, that holds if and only if
M2, χ, s2 |= Xψ.
• ϕ = ϕ1 Uϕ2. We have that M1, χ, s1 |= ϕ1 Uϕ2 if and only if there exists k ∈ N such that

M1, χ
k, δ∗1(s1, ~d) |= ϕ2 and M1, χ

h, δ∗1(s1, ~d≤h) |= ϕ1 for every h < k, where ~d is the unique
sequence of decisions identified by the k-steps application of the transition function that

follows χ. Observe that, for each h ≤ k, we have that δ1(s1, ~d≤h) ∼ δ2(s2, ~d≤h) and so, by

induction hypothesis, we have that M2, χ
k, δ∗2(s2, ~d) |= ϕ2 and M2, χ

h, δ∗2(s1, ~d≤h) |= ϕ1

for every h < k, that is, if and only if M2, χ, s2 |= ϕ1 Uϕ2.
• ϕ = (i, x)ψ. We have that M1, χ, s1 |= (i, x)ψ if and only if M1, χ[i 7→ χ(x)], s1 |= ψ if and

only if, by induction hypothesis, M1, χ[i 7→ χ(x)], s2 |= ψ if and only if M2, χ, s2 |= (i, x)ψ.
• ϕ = 〈〈x〉〉ψ. We have that M1, χ, s1 |= 〈〈x〉〉ψ if and only if there exists a strategy f ∈ Str

such that M1, χ[x 7→ f], s1 |= ψ if and only if, by induction hypothesis M2, χ[x 7→ f], s2 |=
ψ, if and only if M2, χ, s2 |= 〈〈x〉〉ψ.

This concludes the proof.

As an immediate corollary, we then obtain the following result about the semantic
relationship between the properties that can be expressed in SL and the concept of bisimilarity.

Corollary 7.2. SL with the computation-based model of strategies is invariant under bisim-
ilarity.

Finally, an analogous statement to the above Corollary can also be proved if we consider
the model of trace-based strategies, leading to the next result on the semantics of SL.

Corollary 7.3. SL with the trace-based model of strategies is invariant under bisimilarity.

8. Concluding Remarks and Related Work

In this paper we showed that with the conventional model of strategies used in the logic,
computer science, and AI literatures, the existence of Nash equilibria is not necessarily
preserved under bisimilarity—in particular this is the case for multi-player games played over
deterministic concurrent games structures. By way of some examples, we also illustrated
some of the implications of this result—for example, in the context of automated formal
verification. To resolve this difficulty, we furthermore investigated alternative models of

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:45

strategies which exhibit some desirable properties, in particular, allowing for a formalisation
of Nash equilibrium that is invariant under bisimilarity, even on nondeterministic systems.

We studied applications of these models and found that through their use, not only Nash
equilibria become invariant under bisimilarity, but also full logics such as Strategy Logic. This
renders it possible to combine commonly used optimisation techniques for model checking
with decision procedures for the analysis of Nash equilibria, thus overcoming a critical
problem of this kind of logics regarding practical applications via automated verification.
Some work also in the intersection between bisimulation equivalences, concurrent game
structures, Nash equilibria, and automated formal verification is summarised next.

Logics for Strategic Reasoning. There is now a large literature on logics for strategic
reasoning. From this literature, ATL∗ [AHK02] and SL [MMPV14] stand out, both due to
their use within a number of practical tools for automated verification, and because of their
expressive power. On the one hand, ATL∗ is known to be invariant under bisimilarity using
the conventional model of strategies. As such, Nash equilibria can be expressed within ATL∗

only up to bisimilarity [GHW15a]. On the other hand, SL, which is strictly more expressive
than ATL∗, allows for a simple specification of Nash equilibria, but suffers from not being
invariant under bisimilarity with respect to the conventional model of strategies. In this
paper, we have put forward a number of solutions to this problem. An additional advantage
of replacing the model of strategies for SL (and therefore for concurrent game structures) is
that other solution concepts in game theory also become invariant under bisimilarity. For
instance, subgame-perfect Nash equilibria and strong Nash equilibria—which are widely used
when considering, respectively, dynamic behaviour and cooperative behaviour in multi-agent
systems—can also be expressed in SL. Our results therefore imply that these concepts are
also invariant under bisimilarity, when considering games over concurrent game structures
and goals given by LTL formulae (which correspond to preferences over traces).

Bisimulation Equivalences for Multi-Agent Systems. Even though bisimilarity is
probably the most widely used behavioural equivalence in concurrency, in the context of
multi-agent systems other relations may be preferred, for instance, equivalence relations
that take a detailed account of the independent interactions and behaviour of individual
components in a multi-agent system. In such a setting, “alternating” relations with natural
ATL∗ characterisations have been studied [AHKV98]. Our results also apply to such
alternating equivalence relations. Alternating bisimulation is very similar to bisimilarity
on labelled transition systems [Mil80, HM85], only that when defined on concurrent game
structures, instead of action profiles taken as possible transitions, one allows individual
player’s actions, which must be matched in the bisimulation game. Because of this, it
immediately follows that any alternating bisimulation as defined in [AHKV98] is also a
bisimilarity as defined here. Despite having a different formal definition, a simple observation
can be made: that the counter-example shown in Figures 1 and 2 also apply to such
alternating (bisimulation) relations. This immediately implies that Nash equilibria are
not preserved by the alternating (bisimulation) equivalence relations in [AHKV98] either.
Nevertheless, as discussed in [vB02], the “right” notion of equivalence for games and their
game theoretic solution concepts is, undoubtedly, an important and interesting topic of
debate, which deserves to be investigated further.

32:46 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

Computations vs. Traces. An important remark about the difference between computa-
tions and traces is that even though Nash equilibria and their existence are preserved under
bisimilarity by three of the four strategy models we have studied, it is not the case that with
each strategy model we obtain the same set of Nash equilibria in a given system, or that we
can sustain the same set of computations or traces. For instance, consider again the games
in Figures 1 and 2. As we discussed above, if we consider the model of computation-based
strategies and LTL goals (i.e., trace-based goals) as shown in the example, then we obtain
two games, each with an associated non-empty set of Nash equilibria, which are preserved
by bisimilarity. However, if we consider, instead, the model of trace-based strategies and
the same LTL goals, then we obtain two concurrent games both with empty sets of Nash
equilibria—thus, in this case, the non-existence of Nash equilibria is preserved by bisimilarity!
To observe this, note that whereas in the case of computation-based strategies player 3 can
implement a uniform “punishment” strategy for both player 1 and player 2, in the case of
trace-based strategies player 3 cannot do so, even in the game in Figure 1.

Two-Player Games with Trace-Based Goals. We also showed that if we consider two-
player games together with the conventional model of strategies, the problems that arise
with respect to the preservation of Nash equilibria disappear. This is indeed an important
finding since most verification games (e.g., model and module checking, synthesis, etc.) can
be phrased in terms of zero-sum two-player games together with temporal logic specifications
(e.g., using LTL, CTL, or ATL∗). Our results, then, provide conclusive proof that, if only
two-player games and temporal logic goals are needed, then all equilibrium analyses can be
carried out using the conventional model of strategies—along with their associated reasoning
tools and formal verification techniques.

Nondeterminism. We extended our main bisimulation-invariant results to nondetermin-
istic systems, making it possible to analyse more complex systems. This was possible, in
turn, because our two main models of strategies, namely computation-based and trace-based,
are themselves oblivious to nondeterministic choices. As a consequence, given a particular
strategy (or strategy profile, more generally), the set of outcomes of a multi-player game
across bisimilar structures remains the same. Indeed, the definitions of strategies in the
computation-based and trace-based models can be used to show that the set of Nash equi-
libria in strategy profiles given by these two models is invariant across systems that are
equivalent with respect to equivalences for concurrency that are weaker than bisimilarity;
for instance, across trace equivalent systems as defined in CSP [BHR84]. Thus, with respect
to this kind of systems, all our positive results also carry over, even for nondeterministic
processes.

Tools for Model Checking and Equilibrium Analysis. Due to the success of temporal
logics and model checking in the verification of concurrent and multi-agent systems, some
model checking tools have been extended to cope with the strategic analysis of concurrent
systems modelled as multi-player games. For instance, tools such as MCMAS [CLMM14],
EAGLE [TGW15], PRALINE [Bre13], MOCHA [AHM+98], and PRISM [KPW16], allow
for the analysis of some strategic properties in a system. Because all of these tools rely
on underlying algorithms for temporal logic model checking, hardly any optimisations are
possible when moving to the more complex game-theoretic setting where Nash equilibria

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:47

needs to be analysed. In this way, our results find a powerful, and immediate, practical
application. Indeed, based on the work presented in this paper, we have developed a new
tool for temporal equilibrium analysis [GNPW18], which uses the computation-based model
of strategies studied here.

As mentioned before, we have developed a new tool for temporal equilibrium analysis,
which we call EVE [GNPW18] (Equilibrium Verification Environment). EVE uses the
computation-based model of strategies and trace-based preferences given by LTL formulae.
EVE is a formal verification tool for the automated analysis of temporal equilibrium properties
of concurrent and multi-agent systems modelled using the Simple Reactive Module Language
(SRML [AH99, vdHLW06]) as a collection of independent system components (players/agents
in a game). In particular, EVE automatically solves three key decision problems in rational
synthesis and verification [GHW17a, WGH+16, FKL10]: Non-Emptiness, E-Nash, and
A-Nash. These problems ask, respectively, whether a multi-player game has at least one
Nash equilibrium, whether an LTL formula holds on some Nash equilibrium, and whether
an LTL formula holds on all Nash equilibria. EVE uses a technique based on parity games
to check for the existence of Nash equilibria in a concurrent and multi-player game, which
crucially relies on the underlying model of strategies being bisimulation invariant.

Acknowledgment

This paper is a revised and extended version of [GHPW17]. All authors acknowledge with
gratitude the financial support of ERC Advanced Investigator Grant 291528 (“RACE”) at
the University of Oxford. Paul Harrenstein was also supported in part by ERC Starting
Grant 639945 (“ACCORD”) also at the University of Oxford. Michael Wooldridge and Paul
Harrenstein furthermore acknowledge the financial support of the Alan Turing Institute in
London. Giuseppe Perelli was also supported in part by the ERC Consolidator Grant 772459
(“DSynMA”). We also thank Johan van Benthem, the reviewers of CONCUR 2017, and the
participants of Dagstuhl seminar 17111 (“Game Theory in AI, Logic, and Algorithms”) for
their comments and helpful discussions. Finally, we would also like to thank the reviewers
of Logical Methods in Computer Science for their detailed and thoughtful comments.

References

[AH99] Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal Methods in System Design,
15(1):7–48, 1999.

[AHK02] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-Time Temporal Logic. Journal of the
ACM, 49(5):672–713, 2002.

[AHKV98] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. Alternating refine-
ment relations. In CONCUR, volume 1466 of LNCS, pages 163–178. Springer, 1998.

[AHM+98] Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shaz Qadeer, Sriram K. Rajamani,
and Serdar Tasiran. MOCHA: modularity in model checking. In CAV, volume 1427 of LNCS,
pages 521–525. Springer, 1998.

[BBMU11] P. Bouyer, R. Brenguier, Nicolas Markey, and M. Ummels. Nash equilibria in concurrent games
with Büchi objectives. In S. Chakraborty and A. Kumar, editors, 31st International Conference
on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’11), pages
375—386, 2011.

[BBMU15] P. Bouyer, R. Brenguier, Nicolas Markey, and M. Ummels. Pure Nash equilibria in concurrent
deterministic games. Logical Methods in Computer Science, 11(2:9):1–72, 2015.

[BHR84] Stephen D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential
processes. Journal of the ACM, 31(3):560–599, 1984.

32:48 J. Gutierrez, P. Harrenstein, G. Perelli, and M. Wooldridge Vol. 15:3

[BK08] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.
[Bre13] Romain Brenguier. PRALINE: A tool for computing nash equilibria in concurrent games. In

CAV, volume 8044 of LNCS, pages 890–895. Springer, 2013.
[Bry92] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM

Comput. Surv., 24(3):293–318, 1992.
[CC02] Patrick Cousot and Radhia Cousot. On abstraction in software verification. In CAV, volume

2404 of LNCS, pages 37–56. Springer, 2002.
[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons

using branching-time temporal logic. In Logics of Programs, volume 131 of LNCS, pages 52–71.
Springer, 1981.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and abstraction. ACM
Trans. Program. Lang. Syst., 16(5):1512–1542, 1994.

[CGP02] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2002.
[CHP10] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Strategy logic. Inf. Comput.,

208(6):677–693, 2010.
[CLMM14] Petr Cermák, Alessio Lomuscio, Fabio Mogavero, and Aniello Murano. MCMAS-SLK: A model

checker for the verification of strategy logic specifications. In CAV, volume 8559 of LNCS, pages
525–532. Springer, 2014.

[DGL16] S. Demri, V. Goranko, and M. Lange. Temporal Logics in Computer Science, volume 58 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2016.

[DV95] R. De Nicola and F. W. Vaandrager. Three logics for branching bisimulation. Journal of the
ACM, 42(2):458–487, 1995.

[FKL10] Dana Fisman, Orna Kupferman, and Yoad Lustig. Rational synthesis. In TACAS, volume 6015
of LNCS, pages 190–204. Springer, 2010.

[FS10] Bernd Finkbeiner and Sven Schewe. Coordination logic. In Anuj Dawar and Helmut Veith,
editors, CSL, volume 6247 of LNCS, pages 305–319. Springer, 2010.

[GHPW17] Julian Gutierrez, Paul Harrenstein, Giuseppe Perelli, and Michael Wooldridge. Nash equilibrium
and bisimulation invariance. In CONCUR, volume 85 of LIPIcs, pages 17:1–17:16. Schloss
Dagstuhl, 2017.

[GHW15a] Julian Gutierrez, Paul Harrenstein, and Michael Wooldridge. Expresiveness and complexity
results for strategic reasoning. In CONCUR, volume 42 of LIPIcs, pages 268–282. Schloss
Dagstuhl, 2015.

[GHW15b] Julian Gutierrez, Paul Harrenstein, and Michael Wooldridge. Iterated Boolean games. Inf.
Comput., 242:53–79, 2015.

[GHW17a] Julian Gutierrez, Paul Harrenstein, and Michael Wooldridge. From model checking to equilibrium
checking: Reactive modules for rational verification. Artificial Intelligence, 248:123–157, 2017.

[GHW17b] Julian Gutierrez, Paul Harrenstein, and Michael Wooldridge. Reasoning about equilibria in
game-like concurrent systems. Ann. Pure Appl. Logic, 168(2):373–403, 2017.

[GNPW18] Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael Wooldridge. EVE: A tool for
temporal equilibrium analysis. In ATVA, LNCS. Springer, 2018.

[GW14] Julian Gutierrez and Michael Wooldridge. Equilibria of concurrent games on event structures. In
CSL-LICS, pages 46:1–46:10. ACM, 2014.

[HM85] Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and concurrency. J.
ACM, 32(1):137–161, 1985.

[KNP11] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In CAV, volume 6806 of LNCS, pages 585–591. Springer, 2011.

[Koz83] Dexter Kozen. Results on the propositional mu-calculus. Theoretical Computer Science, 27:333–
354, 1983.

[KPW16] Marta Kwiatkowska, David Parker, and Clemens Wiltsche. Prism-games 2.0: A tool for multi-
objective strategy synthesis for stochastic games. In TACAS, volume 9636 of LNCS, pages
560–566. Springer, 2016.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer, 1980.
[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[MMPV14] F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. Reasoning About Strategies: On the

Model-Checking Problem. ACM Transactions On Computational Logic, 15(4):34:1–42, 2014.

Vol. 15:3 NASH EQUILIBRIUM AND BISIMULATION INVARIANCE 32:49

[MMPV16] F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. Reasoning about Strategies: on the
Satisfiability Problem. CoRR, abs/1611.08541, 2016.

[MSZ13] M. Maschler, E. Solan, and S. Zamir. Game Theory. Cambridge University Press, 2013.
[OR94] M.J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, 1994.
[Pau02] Marc Pauly. A modal logic for coalitional power in games. J. Log. Comput., 12(1):149–166, 2002.
[Pnu77] Amir Pnueli. The temporal logic of programs. In FOBS, pages 46–57. IEEE Computer Society,

1977.
[PP03] Marc Pauly and Rohit Parikh. Game logic—an overview. Studia Logica, 75(2):165–182, 2003.
[San09] Davide Sangiorgi. On the origins of bisimulation and coinduction. ACM Trans. Program. Lang.

Syst., 31(4), 2009.
[SR12] Davide Sangiorgi and Jan Rutten, editors. Advanced Topics in Bisimulation and Coinduction,

volume 52 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
2012.

[TGW15] Alexis Toumi, Julian Gutierrez, and Michael Wooldridge. A tool for the automated verification of
nash equilibria in concurrent games. In ICTAC, volume 9399 of LNCS, pages 583–594. Springer,
2015.

[van76] J. van Benthem. Modal Correspondence Theory. PhD thesis, University of Amsterdam, 1976.
[vB02] Johan van Benthem. Extensive games as process models. Journal of Logic, Language and

Information, 11(3):289–313, 2002.
[vdHLW06] Wiebe van der Hoek, Alessio Lomuscio, and Michael Wooldridge. On the complexity of practical

ATL model checking. In AAMAS, pages 201–208. ACM, 2006.
[vGW96] R: J. van Glabbeek and W. P. Weijland. Branching time and abstraction in bisimulation semantics.

Journal of the ACM, 43(3):555–600, 1996.
[WGH+16] Michael Wooldridge, Julian Gutierrez, Paul Harrenstein, Enrico Marchioni, Giuseppe Perelli,

and Alexis Toumi. Rational verification: From model checking to equilibrium checking. In AAAI,
pages 4184–4191. AAAI Press, 2016.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	1.1. A Motivating Example

	2. Preliminaries
	Sets
	Concurrent Game Structures
	Bisimilarity

	3. Games on Concurrent Game Structures
	Strategies and Strategy Profiles
	Preferences and Goals
	Games and Nash Equilibrium

	4. Invariance of Nash Equilibria under Bisimilarity
	Invariance under Bisimilarity and Preference Types
	Computation-based Strategies
	Trace-based Strategies
	Run-based Strategies
	Bisimulation-invariant Run-based Strategies

	5. Special Cases
	Two-Player Games
	Boolean Game Structures

	6. Nondeterminism
	7. Strategy Logics: New Semantic Foundations
	8. Concluding Remarks and Related Work
	Logics for Strategic Reasoning
	Bisimulation Equivalences for Multi-Agent Systems
	Computations vs. Traces
	Two-Player Games with Trace-Based Goals
	Nondeterminism
	Tools for Model Checking and Equilibrium Analysis

	Acknowledgment
	References

