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Thesis Summary - English

The main driving notion behind my thesis research is to explore the connection between the dy-
namics and the static in a prototypical model of glass transition, i.e. the mean-field p-spin spherical
model. This model was introduced more than 30 years ago with the purpose of offering a simplified
model that had the same equilibrium dynamical slowing down, theoretically described a few years
earlier by mode-coupling theory. Over the years, the p-spin spherical model has shown to be a very
meaningful and promising model, capable of describing many equilibrium and out-of-equilibrium
aspects of glasses. Eventually it came to be considered as a prototypical model of glassiness. Having
such a simple but rich reference model allows a coherent examination of a subject, in our case the
glass behavior, which presents a very intricate phenomenology. Thus, the main purpose is not to
have a quantitative prediction of the phenomena, but rather a broader view with a strong analytical
basis. In this sense the p-spin model has assumed a role for disordered systems which is comparable
to that of the Ising model for understanding ferromagnetism. My research is a natural path to
reinforce our knowledge and comprehension of this model.

In the first chapter, we provide a general introduction to supercooled liquids and their phe-
nomenology. The introduction is brief, and the main goal is to give a general overview, mainly from
the point of view of the Random First Order Transition, while considering other perspectives on
the subject and attempting to provide a ‘fair’ starting bibliography to whomever wants to study
supercooled liquids. The last section focuses on the Potential Energy Landscape paradigm (PEL),
which in my view, gives a very solid modelization of glassy phenomenology, and shares many aspects
with mean-field analysis.

In the second chapter, the p-spin spherical model is presented in details. The equilibrium analysis
is performed with the replica formalism, with a focus on the ultrametric structure. Then, different
tools to study its free energy landscape are introduced: the TAP approach, the Franz-Parisi potential
and the Monasson method. These three different ways of selecting states are carefully contrasted
and their analogies and differences are underlined, in particular highlighting the different behavior
played by pure and mixed p-spin models. Then the equilibrium dynamics is discussed, and a
selection of classical results on the dynamical slowing down are analyzed by numerical integration.
To conclude, the out-of-equilibrium dynamics in the two temperature protocol is analyzed. This
shows two different regimes, the state following and the aging. For both, an asymptotic analysis and
a numerical integration are performed and compared. A strong emphasis is given to the possibility
of describing the asymptotic dynamics with a static potential.

The third chapter presents all the new results that emerged during my research. The study fo-
cuses on the two temperature protocol, starting in equilibrium and setting the second temperature
to zero, which corresponds to a gradient descent dynamics. This protocol is especially interesting
because it corresponds to the search of inherent structure of the energy landscape. The integrated
dynamics, depending on the starting temperature, shows three different regimes, one that corre-
sponds to a new phase, which shows aging together with memory of the initial condition. This new
phase is not present in pure p-spin models, only in mixed ones. In order to theoretically describe
this new phase, a constrained analysis of the stationary points of the energy landscape is performed.
A numerical simulation of the system is also presented to confirm this new scenario.



Résumé de la Thèse - Français

L’objectif principal de cette thèse est d’explorer le lien entre la dynamique et la statique dans un
modèle prototypique de transition vitreuse, i.e. le modèle à champ moyen du p-spin sphérique.
Ce modèle a été introduit il y a plus de 30 ans dans le but d’offrir un modèle simplifié ayant, à
l’équilibre, le même ralentissement dynamique décrit théoriquement quelques années plus tôt par la
théorie des modes couplés. Au fil des ans, le modèle du p-spin sphérique s’est révélé être un modèle
très significatif et prometteur, capable de décrire de nombreux aspects d’équilibre et hors équilibre
des verres. Avoir un tel modèle de référence simple mais riche permet un examen cohérent d’un
sujet, dans notre cas le comportement du verre qui présente une phénoménologie très complexe.
Ainsi, le but principal n’est pas d’avoir une prédiction quantitative des phénomènes, mais plutôt
une vue plus large avec une forte base analytique. En ce sens, le modèle du p-spin a assumé un
rôle pour les systèmes désordonnés qui est comparable à celui du modèle Ising pour comprendre le
ferromagnétisme. Ma recherche est une voie naturelle pour renforcer notre connaissance et notre
compréhension de ce modèle.

Dans le premier chapitre, nous donnons une introduction générale aux liquides surfondus et leur
phénoménologie. L’introduction est brève, et l’objectif principal est de donner un aperçu général,
principalement du point de vue de la transition aléatoire du premier ordre, tout en tenant compte
d’autres points de vue sur le sujet et en essayant de fournir une ‘bonne’ bibliographie de départ à
quiconque veut étudier les liquides surfondus. La dernière section se concentre sur le paradigme
du surface d’énergie potentielle (PEL), qui, à mon avis, donne une modélisation très solide de la
phénoménologie vitreuse, et partage de nombreux aspects avec l’analyse du champ moyen.

Dans le deuxième chapitre, le modèle du p-spin sphérique est présenté en détail. L’analyse
d’équilibre est réalisée avec le formalisme des répliques, avec un accent sur la structure ultramétrique.
Ensuite, différents outils pour étudier son paysage d’énergie libre sont présentés: l’approche TAP, le
potentiel de Franz-Parisi et la méthode de Monasson. Ces trois manières différentes de sélectionner
les états sont soigneusement contrastées et leurs analogies et différences sont soulignées, en partic-
ulier le comportement différent joué par les modèles du p-spin purs et mixtes. Ensuite, la dynamique
d’équilibre est discutée, et une sélection de résultats classiques sur le ralentissement dynamique sont
analysés par intégration numérique. Pour conclure, la dynamique hors équilibre dans le protocole à
deux températures est analysée. Cela montre deux régimes différents, des états suivables et du vieil-
lissement. Pour les deux, une analyse asymptotique et une intégration numérique sont effectuées
et comparées. L’accent est mis sur la possibilité de décrire la dynamique asymptotique avec un
potentiel statique.

Le troisième chapitre présente tous les nouveaux résultats qui ont émergé au cours de mes
recherches. L’étude se concentre sur le protocole à deux températures, commençant à l’équilibre et
fixant la deuxième température à zéro, ce qui correspond à une dynamique de descente du gradi-
ent. Ce protocole est particulièrement intéressant car il correspond à la recherche de la structure
inhérente du paysage énergétique. La dynamique intégrée, en fonction de la température de départ,
montre trois régimes différents. Une de ceux-ci corresponde à une nouvelle phase, qui présente
le vieillissement avec la mémoire de la condition initiale. Cette nouvelle phase n’est pas présente
dans les modèles du p-spin pure, seulement dans les modèles mixtes. Afin de décrire théoriquement
cette nouvelle phase, une analyse des points stationnaires du paysage énergétique est effectuée. Une
simulation numérique du système est également présentée pour confirmer ce nouveau scénario.



Riassunto della Tesi - Italiano

L’obiettivo principale di questa tesi è di esplorare il legame tra la dinamica e la statica in un
modello prototipico di transizione vetrosa, i.e. il modello di campo medio del p-spin sferico. Questo
modello è stato introdotto più di 30 anni, come modello prototipico per il rallentamento critico
all’equilibrio, quale era stato descritto alcuni anni prima dalla teoria dei modi accoppiati. Nel corso
degli anni, il modello del p-spin sferico si è rivelato molto pregnante, capace di descrivere diversi
aspetti dei vetri, sia all’equilibrio che fuori dall’equilibrio. Avere un simile modello di riferimento,
semplice ma ricco, permette un esame coerente di un soggetto, quale è il comportamento dei vetri,
con una fenomenologia molto complessa. Lo scopo principale non è quello di avere una previsione
quantitativa dei fenomeni, ma piuttosto una visione più ampia con una forte base analitica. In
questo senso, il modello del p-spin ha assunto un ruolo per i sistemi disordinati che è paragonabile
a quello del modello di Ising per il ferromagnetismo. La mia ricerca è volta a rafforzare la nostra
conoscenza e comprensione di questo modello.

Nel primo capitolo è fornita un’introduzione generale ai liquidi sopraffusi e alla loro fenomenolo-
gia. L’introduzione è breve, e l’obiettivo principale è quello di fornire una panoramica generale,
soprattutto dal punto di vista della transizione disordinata del primo ordine (RFOT), pur tenendo
conto di altri punti di vista sul soggetto e cercando di fornire una ‘buona’ bibliografia di partenza
a chiunque voglia studiare i liquidi sopraffusi. L’ultima sezione si concentra sul paradigma della
superficie di energia potenziale (PEL), che, a mio parere, fornisce una modellazione molto solida
della fenomenologia vetrosa, e condivide molti aspetti con l’analisi di campo medio.

Nel secondo capitolo è presentato in dettaglio il modello del p-spin sferico. L’analisi dell’equilibrio
è realizzata con il formalismo delle repliche, con un accenno alla struttura ultrametrica. Vengono
poi presentati vari strumenti per studiare il paesaggio di energia libera: l’approccio TAP, il poten-
ziale di Franz-Parisi e il metodo di Monasson. Questi tre diversi modi di selezionare gli stati sono
accuratamente confrontati e le loro analogie e differenze sono messe in evidenza, in particolare il
diverso comportamento dei modelli di p-spin puri e misti. Poi viene discussa la dinamica di equi-
librio, e alcuni risultati classici sul rallentamento dinamico sono analizzati attraverso l’integrazione
numerica della dinamica. In conclusione, si analizza la dinamica fuori dall’equilibrio nel protocollo
a due temperature. Questo mostra due diversi regimi dinamici, di inseguimento degli stati e di
invecchiamento. In entrambi i casi, sono effettuate e confrontate l’analisi asintotica e l’integrazione
numerica. L’accento è posto sulla possibilità di descrivere la dinamica asintotica attraverso un
potenziale statico.

Il terzo capitolo presenta i nuovi risultati emersi nel corso della mia ricerca. Lo studio si con-
centra sul protocollo a due temperature, iniziando dall’equilibrio e fissando la seconda temperatura
a zero, il che corrisponde ad una dinamica di discesa del gradiente. Questo protocollo è particolar-
mente interessante perché corrisponde alla ricerca delle strutture inerenti nel paesaggio energetico.
Questa dinamica, in funzione della temperatura di partenza, mostra tre differenti regimi. Uno di
questi corrisponde ad una nuova fase, che presenta invecchiamento insieme alla memoria della con-
dizione iniziale. Questa nuova fase non è presente nei modelli di p-spin puro, ma solo nei modelli
misti. Per descrivere teoricamente questa nuova fase, si effettua un’analisi dei punti stazionari del
paesaggio energetico. Inoltre, per confermare questo nuovo scenario, viene presentata una simu-
lazione numerica del sistema.
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Introduction

The main driving notion behind my thesis research is to explore the connection be-
tween the dynamics and the static in a prototypical model of glass transition, i.e. the
mean-field p-spin spherical model. This model was introduced more than 30 years
ago with the purpose of offering a simplified model that had the same equilibrium
dynamical slowing down, theoretically described a few years earlier by mode-coupling
theory. Since its birth, statistical mechanics has always searched in the static analysis
of some ‘carefully’ defined landscape; a path to avoid impossible dynamical calcu-
lations. One first fundamental concept is the idea of mapping temporal averages of
observables into measures over phase space. This approach has allowed us to attain
many fundamental relations between equilibrium observables. The same emphasis,
in identifying the ensemble of dynamical paths in a static measure, continues to
nourish the spirit of many researchers, and has been the drive all along my PhD
research.

Over the years, the p-spin spherical model has shown to be a very meaningful and
promising model, capable of describing many equilibrium and out-of-equilibrium as-
pects of glasses. Eventually it came to be considered as a prototypical model of
glassiness. Having such a simple but rich reference model allows a coherent exam-
ination of a subject, in our case the glass behavior, which presents a very intricate
phenomenology. Thus, the main purpose is not to have a quantitative prediction of
the phenomena, but rather a broader view with a strong analytical basis. In this
sense the p-spin model has assumed a role for disordered systems which is compara-
ble to that of the Ising model for understanding ferromagnetism. My research is a
natural path to reinforce our knowledge and comprehension of this model.

Over my three years of PhD research, I have concentrated on the out-of-equilibrium
phenomenology of p-spin models, and in particular on a specific, two temperature
protocol: a system prepared at one temperature and relaxed at another one. In the
study of this out-of-equilibrium dynamics some unexpected phenomena were discov-
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2 . INTRODUCTION

ered, which revealed a new interesting path of research and added a new brick to this
prototypical structure of glassiness. In particular, we can assert now with certainty
that there is no absolute threshold in the energy landscape of mean-field models.
The region of phase space asymptotically explored by the dynamics depends on the
chosen cooling path from high temperature. This was already known for finite-
dimensional models, but not for mean-field ones. This new observation questions
some paradigms that were built because of a pathological symmetry, present only in
a subclass of these models, i.e., pure models.

In our attempt to understand this new unexpected behavior, my supervisors
and me, have tackled the problem from many different angles; from the numerical
integration of the long-time dynamics to the analytical study of the asymptotic
dynamics, from the numerical simulation of finite-size systems to the theoretical
study of the energy landscape. All these studies have clarified the origin of this
anomalous behavior, and in particular, the parallelism aforementioned between static
and dynamics. The major result of this work has been to introduce a new out-of-
equilibrium mean-field phase and to characterize it in great detail.

In the first chapter, we provide a general introduction to supercooled liquids and
their phenomenology. The introduction is brief, and the main goal is to give a general
overview, mainly from the point of view of the Random First Order Transition,
while considering other perspectives on the subject and attempting to provide a
‘fair’ starting bibliography to whomever wants to study supercooled liquids. The
last section focuses on the Potential Energy Landscape paradigm, which in my view,
gives a very solid modelization of glassy phenomenology, and shares many aspects
with mean-field analysis.

In the second chapter, the p-spin spherical model is presented in details. The
equilibrium analysis is performed with the replica formalism, with a focus on the
ultrametric structure. Then, different tools to study its free energy landscape are in-
troduced: the TAP approach, the Franz-Parisi potential and the Monasson method.
These three different ways of selecting states are carefully contrasted and their analo-
gies and differences are underlined, in particular highlighting the different behavior
played by pure and mixed p-spin models. Then the equilibrium dynamics is discussed,
and a selection of classical results on the dynamical slowing down are analyzed by
numerical integration. To conclude, the out-of-equilibrium dynamics in the two tem-
perature protocol is analyzed. This shows two different regimes, the state following
and the aging. For both, an asymptotic analysis and a numerical integration are
performed and compared. A strong emphasis is given to the possibility of describing
the asymptotic dynamics with a static potential.

The third chapter presents all the new results that emerged during my research.
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The study focuses on the two temperature protocol, starting in equilibrium and
setting the second temperature to zero, which corresponds to a gradient descent
dynamics. This protocol is especially interesting because it corresponds to the search
of inherent structure of the energy landscape (PEL perspective). The integrated
dynamics, depending on the starting temperature, shows three different regimes, one
that corresponds to a new phase, which shows aging together with memory of the
initial condition. This new phase is not present in pure p-spin models, only in mixed
ones. In order to theoretically describe this new phase, a constrained analysis of the
stationary points of the energy landscape is performed. A numerical simulation of
the system is also presented to confirm this new scenario.

I wish to remark that all the thesis has been written with the continuous attention
of providing my personal view over each subject. Therefore, sometimes things are
not presented in a customary way, but I hope that this can stimulate a further
understanding of the subject matter.
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Glass Transition

1.1 Super-Cooled Liquids

A supercooled liquid is a liquid followed down to temperatures at which the crystal
would be the stable phase. It is possible to follow this metastable branch if the
cooling is fast enough so that the characteristic time to nucleate the crystal is much
larger than the equilibrium relaxation time of the supercooled liquid (SCL). If this is
the case, the SCL can be followed down in temperature until it starts to develop a fast
increase of the relaxation time, such that it is no longer possible to equilibrate it on
an experimental time scale τexp, thus the observed system is out of equilibrium. This
marks the temperature Tg at which the “non-equilibrated” SCL is considered a glass.
Conventionally Tg has been fixed to the temperature at which the viscosity overcomes
the threshold νg = 1013 Poise∗. This convention however is ‘dangerous’ because the
temperature at which the system gets out of equilibrium strictly depends on the
protocol used to prepare it. The glass is a memorius phase of matter†. In a normal
phase of matter physical properties are uniquely defined by a small set of intensive
variables (T, P, ...), while each glass has its own properties, depending on how it has
been prepared. This is very clear when thinking of commercial silica-based glasses.
The dependence on the preparation protocol is closely related to the way in which the
system has gone out of equilibrium, which in turn is connected to the experimental
time scale considered. Therefore the properties of the glass depend on the time scale
at which we observe it. Waiting for an incredibly long time τSCL the system is expect
to relax to the equilibrium underlying SCL. And by waiting for an even longer period

∗which corresponds to relaxation times of the order of 10-100s for molecular and atomic glass
formers

†if it can be defined so

5



6 1. GLASS TRANSITION
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Figure 1.1: (left): idealized plot of entropy vs temperature in a SCL and in the relative crystal.
The arrow highlights the enormous difference in time scalesτexp � τSCL � τcry when the system
gets out of equilibrium (right): dynamic susceptibility of o-terphenyl as a function of frequency,
with different relaxations regimes highlighted. [Pet+13],

of time τcry the system should find the really stable crystalline phase. Each relaxation
time is expected to depend on some activated dynamics (nucleation-type). As long
as τexp � τSCL � τcry the glass is “well defined” and its properties depend on its
history and in particular on the path it has been driven through, in the space of
intensive variables, from the point it has fallen out-of-equilibrium (τexp ≈ τSCL).

From this discussion the difficulties in building a theory that embodies all this
history dependence should appear clear. As it is custom in statistical mechanics,
such a theory should transform the average over dynamical path into a measure
upon the phase space, which at equilibrium is the well known Boltzmann-Gibbs
distribution (e−βH). One of the main foci of this thesis is to build such a measure
for a two-temperatures protocol: a quench from an initial temperature T ′ to a final
temperature T .

In the following sections, in order to elucidate the major peculiarities of SCL we
will follow the perspective of random first order transition RFOT, which drives all
the modelization from a mean-field viewpoint (see [BB09] for a comprehensive re-
view). We will simplify as much as possible the discussion and not introduce spatial
description if not indispensable - even hough in recent years spatial and temporal
heterogeneities have acquired an essential role in the description of ‘glassiness’ [Edi00;
Ber11]. For the interested reader a plethora of very interesting reviews about SCL
are available, each one with its theoretical background dependent on the commu-
nity of reference. For a very brief and in-depth panorama of the glass transition
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[DS01; Cha+14a]. From the MCT perspective [GS92]. For a short and dense review
of RFOT [LW07]. For a pedestrian introduction to SCL with a RFOT-replica per-
spective [Cav09]. For a perspective RFOT closer to the numerical results [BB11].
To focus only on the dynamical (and not thermodynamical) description of the glass
transition[CG10]. For a question-answer experimental point of view [Ang+00c]. For
other experimental perspectives [Dyr06; EH12]. For an introduction to the Potential
Energy Landscape paradigm [Sci05]. For a very detailed analysis of PEL [Heu08].
For a theoretical focus towards out-of-equilibrium dynamics [Cug02].

1.1.1 Equilibrium Regimes

We wish here to sketch the equilibrium regimes of a SCL, upon changing temper-
ature T . In the following we use s to denote a configuration in phase space. This
configuration evolves following a Hamiltonian dynamics. One very effective observ-
able to characterize this dynamics - in and out-of-equilibrium - is the overlap of the
configuration at a time t′ with the configuration at a subsequent time t:

C(t, t′) = s(t) · s(t′) (1.1)

where · is a scalar product in phase space. This correlation function gives a di-
rect characterization of different regimes and phases of matter. The system is at
equilibrium if:

C(t, t′) = C(t− t′) (1.2)

together with the fact there is no energy flux in and out of the system, i.e. fluctuation
dissipation theorem (FDT) holds. The system is ergodic if:

lim
t→0

C(t) = 0 (1.3)

At equilibrium, an ergodic SCL is in the liquid phase, while a non-ergodic SCL is
considered in the glassy phase.

Given this observable, let’s sketch what happens to a SCL starting from high
temperatures (a cartoon of the transition is shown in figure 1.2.1). Above a so-
called onset temperature Ton the equilibrium SCL is ergodic and a fast exponential
relaxation occurs:

C(t) ∝ exp(−t/τα)) τα ∝ exp(T−1) (1.4)

where τβ is the relaxation time of the system and follows an Arrhenius law. In this
regime the kinetic energy dominates.

Around Ton the system starts feeling the presence of the energy landscape, kinetic
and potential energies compete and the dynamics becomes sluggish. The relaxation
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dynamics decouples into two different regimes, α-relaxation (slow) and β-relaxation
(fast), which in terms of the correlation C(t) signifies the development of a plateau.
This is often described as a “cage forming” behavior. On short time scale τβ each
constituent of the system is trapped in a cage and experiences a fixed landscape. On
another time scale τα the cages deform and the system diffuses. At this point the
role of the observation τexp time in the modelization of the system starts to become
appreciable. In fact if τβ � τexp � τα the system can be considered a fully-fledged
glass.

Going down in temperature the largest time scale τα diverges with a power-law
and the correlation C(t) shows a critical behavior in the development of a plateau:

C(t) ' (t/τβ)−a + qMCT ∼ qMCT − (t/τα)b τα ∝ (T − TMCT)
−γ (1.5)

where a, b are the exponents that govern the approach to and the depart from the
plateau, respectively. All this behavior is predicted by the mode coupling theory
(MCT)∗ (see [RC05] for a review). This is a critical theory and for this reason
it has some sort of universality, however it ignores activated events which occur
before reaching TMCT . Thus in finite dimensional systems TMCT flags a crossover
region, which, in the extreme case of mean-field models (fully connected, infinite
dimensional,...), becomes a sharp thermodynamic transition that separates the SCL
from glass states. In finite dimensional systems, however, no metastable state is well
defined because activated events are always possible with finite probability and the
system can diffuse from one pseudo-glass to another†. While there is one ergodic SCL,
there exist many (pseudo-)glasses, which in mean-field correspond to metastable
states. The logarithm of their number Sc is extensive, it is called ‘configurational
entropy’ and it goes linearly to zero at a finite temperature TK, the Kauzmann
temperature.

Further decreasing the temperature below TMCT , the system keeps ergodic but the
divergence of the time scale τα then scales as:

τα ∝ exp(∆F ) ≈ exp(σd/Sθc )
1/(d−θ) ≈ (T − TK)θ/(d−θ) (1.6)

where σ is the surface tensions between pseudo-glasses. Thus the relaxation dy-
namics is directly connected to the structure of free energy landscape through the
configurational entropy. Behind this prediction lies a nucleation ‘argument’, which in
the literature is dubbed “mosaic picture” (see section 1.1.2). Glasses nucleate inside

∗each exponent is given by the theory
†‘pseudo-glass’ is obtained whenever one considers the short time dynamics below TMCT in a

real system



9

exponential number 

of quasi-glassy states

exponential number 

of glassy states one ergodic statenon-exponential number 


of glassy states 

TonTMCTTK

“mosaic” MCT ‘free’‘glass’

activated dynamics ergodic dynamics

0

0.2

0.4

0.6

0.8

1

10-4 10-2 100 102 104 106 108

C
(t)

t

T/TMCT = 0.1
T/TMCT = 0.3
T/TMCT = 0.5
T/TMCT = 0.7
T/TMCT = 0.9

RFOT

mean-
field

avoided 
criticality

d→∞

sharp 
criticality

0

0.2

0.4

0.6

0.8

1

10-4 10-2 100 102 104 106 108

qMCT

C
(t)

t

T/TMCT = 1.00001
T/TMCT = 1.0001
T/TMCT = 1.001
T/TMCT = 1.01
T/TMCT = 1.1
T/TMCT = 1.

Tg

arbitrary

Figure 1.2: Random First Order Transition stems from the perspective that the real ‘glass’ can
be described around an underlying mean-field core

glasses and the plateau continue to elongate. The mosaic picture is the most de-
bated and weakest part of the RFOT perspective, but it continues to be stringently
supported since it is powered by a strong mean-field core. One of the strongest
mathematical prediction of mean-field in this temperature region is the partitioning
of the phase space in many ‘well separated’ basins ∗ which gives a total free energy
partitioned in a ‘large’ number of states S :

− βF = log
(∑

S

∑
s∈S

e−βH[s]
)

= log
(∑

S

e−βfS

)
= log

(∫
dfe−βf+Sc(f)

)
(1.7)

which, in mean-field models, is dominated by the saddle point ∂fSc(f
∗) = β, which

is analogous to the equilibrium relation ∂ES(E∗) = β, but at the level of states S .
We see that the temperature T plays the role of an equilibrium parameter (Legendre
transform) at two different scales. Inside basins the temperature is what defines the
thermal bath perceived at a configuration level and between basins it regulates the
exchange of free energy. This suggests an abstract interpretation of the decoupling
of time scales described at the level of the correlations.

Below TK, the dynamics is non-ergodic also for a real system, at least with the
RFOT perspective. At TK there is a true thermodynamic transition, below which
phase space is ergodically broken and the system is confined into one of many glassy
state. However, given the nature of the transition there is no direct way to verify

∗basin and state are used interchangeably



10 1. GLASS TRANSITION

this prediction. Whether the glass formation is a purely dynamical effect or the
result of an underlying static transition is far from understood, but following the
Occam’s razor principle, RFOT∗ has for now all the ingredients to be considered a
‘good candidate’ to describe the SCL phenomenology.

1.1.2 Statical vs Dynamical Signatures

In this section we briefly overview the main theoretical interpretation and experi-
mental observations concerning the aforementioned temperatures TK, TMCT , Ton which
constitute the backbone of RFOT interpretation. For each temperature a brief his-
torical account will be presented together with some different theoretical perspective
on the transition, with a particular emphasis on the contrast between statical and
dynamical perspectives.

The Onset Temperature

The onset temperature Ton
† marks the passage from uncorrelated dynamics above

to the “landscape dominated dynamics” below. It is a ‘quite sharp’ crossover that
appears in a variety of materials, such as molecular liquids, colloids, metallic liquids...
[Wee+00; Sas02; Jai+16]. And it has been studied in many numerical simulations
[KA95a; SDS98; Sas00; Sin+12; Ban+17]. Above Ton the characteristic relaxation
time of the system follows an Arrhenius law and two times observables presents an
exponential decay:

τα ∝ exp(T−1) C(t) ∝ exp(−t/τα) (1.8)

Below Ton cooperative behavior between constituents of the system begins which find
the way to continue their motion while in a very crowded environment. This deep
change can be seen in many different aspects. First the deviation from the Arrhenius
law and the stretching of the exponential relaxations‡:

τα 6∝ exp(T−1) C(t) ∝ exp
(
− (t/τα)β

)
(1.9)

where β ∈ [0, 1] is a stretching exponent that decreases with temperature. Another
very crucial aspects is the decoupling of time scales τα and τβ, respectively the scale
of fast vibration in “cages” and the scale of slow rearrangement of “cages”. This is

∗by design MCT is compatible with RFOT, since the birth of the second [KT87b]
†in literature it is also called TA, for Arrhenius or ,To
‡Kohlrausch–Williams–Watts law
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Figure 1.3: Landscape vs Equilibrium Dynamics around the Ton. Simulation of a Lennard
Jones binary mixture [SDS98] (left): average energy of sampled Inherent Structures changing the
temperature. For T < Ton the dynamics becomes “landscape dominated”. TMCT ≈ 0.44 (right):
stretched exponential relaxation dynamics below Ton. For T > Ton almost exponential relaxation
β ≈ 1.

to say that the spectrum of vibration in the frequency domain develops two peaks.
Moreover the violation of Stokes-Einstein relation is observed:

Dτα 6∼ T (1.10)

The diffusion coefficient D and the relaxation time τα are not inversely proportional
as is the case with a simple Brownian motion. This is a direct consequence of the
presence of more than one relaxation times [CE96] and it is a signature together
with the stretched exponential relaxation of an underneath emerging phenomenon,
the spatially heterogeneous dynamics [Kob+97].

What about the “landscape dominated dynamics” definition? In 1998 S.Sastry,
P.G.Debenedetti and F.H.Stillinger found a correspondence between equilibrium dy-
namics and potential energy landscape in a simulation of Lennard Jones binary
mixture [SDS98]. The idea was to run a gradient descent dynamics to find the clos-
est energy minimum (Inherent Structure) to the starting equilibrated configuration
and study the statistical properties of these minima. They found that below Ton the
average IS energy was dependent on the starting temperature.

Another static concept recently introduced, which again marks the onset tem-
perature is the “residual multiparticle entropy”, which is the contribution to the
entropy that comes from correlations of more than two particles. This entropy is
found to vanish at Ton, and becomes positive below, in the range of temperature of
cooperative behavior [Ban+17].
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Let’s briefly mention that Ton has a very special role from another theoretical
perspective, that of dynamical facilitations. It has the same role of TMCT for MCT, it
defines a reference temperature around which to develop an ‘expansion’. It follows
a prediction for the divergence of relaxation time τα = exp

(
(T − Ton)2

)
for T < Ton.

This law was shown to be very good in fitting the behavior of very different liquids
down to Tg [ECG09]. It has been later recovered in another work with completely
different theoretical assumption and in place of Ton a melting temperature [Wei+16].

Finally, all the aforementioned phenomenology can be found exactly in the p-
spin mixed spherical model, which will be our mean-field reference model throughout
this thesis. Mixed, because in the pure version, as we will see in great detail in chapter
2, the potential energy landscape is trivial and does not show any connection with
the equilibrium dynamics. In particular in the mixed model we found evidence of
IS energy dependence on temperature around Ton [FFR19], which will be carefully
illustrated in chapter 3. It is striking that despite the lack of spatial dimension,
and thus the lack of heterogeneity, the same picture arises. There are two possible
resolutions of to this apparent paradox, either space is not really necessary in the
picture, or ‘distances’ arise in a non trivial way, even in models without spatial
dimensions.

The Mode Coupling Temperature

The mode-coupling temperature TMCT
∗ takes its name from the homonymous theory

developed by W. Götze and collaborators [Göt09], starting from the two seminal
papers in 1984 [BGS84; Leu84]†. This theory is fully dynamical, but takes as input
the static structure factor S(k), which is Fourier transform of the spatial density
correlation. It has great predictive power and it has been tested very intensively both
numerically and experimentally, over the years [KA95a; Göt99; DP01; Nan+15]. The
MCT formulation departs from the equation that describes the equilibrium dynamics
at temperature T of a tagged-particle of mass m in the SCL:

∂2
t F (k, t) +

k2T

mS(k)
F (k, t) = −

∫ t

0

dsM(k, t− s)∂sF (k, s) (1.11)

where F (k, t) is the Fourier transform of time-dependent spatial density correlation
‡ with F (k, 0) = S(k). The lhs is just the (pseudo-)diffusive motion of the particle,
while M(k, t − s) is a memory kernel. In the MCT approximation, this can be

∗in literature it is also called T× whenever the focus is more on Goldstein
†written concomitantly by different groups
‡also known as van Hove’s correlation function
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written as a function of the correlation F (k, t), which closes the equation. The past
trajectory of the particle influences the actual dynamics in a feedback loop. For a
short review with all calculations see [RC05], while for a reference book [Göt09].

In absence of spatial dependence, F (k, t) → C(t), the equation becomes purely
temporal and it coincides with the dynamics of the correlation function in p-spin models:

∂tC(t) + TC(t) = −
∫ τ

0

dsM [C(τ − s)]∂sC(s) (1.12)

where we considered the limit of overdamped dynamics. We will study this equation
in detail in section 2.6. The temperature TMCT fixes a critical point, in the asymptotic
evaluation of this equation, at which the dynamics develops an infinite plateau with
two power-laws approaching and departing from it (see fig. 1.4). The elongation of
the plateau represents the further decoupling of fast and slow time scales.

In real systems at TMCT there is no singularity, because activated processes in-
tervene. This idea of a crossover temperature that sets “activated dynamics” was
already present before MCT; Martin Goldstein introduced it in 1969 [Gol69; Ang88].
It is interesting that TMCT defines a sharp thermodynamic transition in the mean-field
limit, usually referred to as “dynamical transition”. It marks the temperature below
which the dynamics is non-ergodic and glasses dominate Gibbs measure. In real sys-
tems, below this crossover, the most accepted view - remaining in RFOT paradigm
- is the “mosaic picture”, which we will discuss in the following section.

To conclude the section we go back to the PEL perspective. It has been shown
in computer simulations that the Goldstein crossover can be quantified and it was
found that the temperature so obtained T× ≈ TMCT , which confirms a correspondence
between dynamical MCT and statical PEL [Sch+00]. The idea behind this analysis
was to mirror at the level of IS the molecular dynamics and to find the temperature
at which dynamics become dominated by IS jumps. In another couple of almost
equivalent works it has been shown that at TMCT the typical closest saddle to an
equilibrium configuration has a spectrum that is marginal, which means with a zero
lowest eigenvalue [Ang+00b; Bro+00]. In a very recent work this correspondence
between the geometry of the landscape and the equilibrium dynamics has been re-
formulated by distinguish between localized and delocalized modes and noticing that
only the seconds take part to the geometric transition [CNB19].

The Kauzmann Temperature

The Kauzmann transition temperature TK is perhaps the most debated and at the
same time the least characteristic temperature. In fact it is deep in the experimentally
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Figure 1.4: Towards “activated dynamics” around TMCT .
Simulation of a Lennard Jones binary mixture for which
TMCT ≈ 0.59 [Sch+00] (A): elongation of the plateau of the
correlation function. (B): double-well development in the dif-
fusion of particles (C): correspondence between real motion
and motion between underlying Inherent Structures. (D): Dis-
tribution of typical jumps between ISs.

a

b

TMCT

Ton

Figure 1.5: Landscape sig-
nature of TMCT through the
Hessian of ISs. Same simula-
tion of fig. 1.3, from [Bro+00].
(a): marginal Hessian of ISs
at TMCT (b): the harmonic ap-
prox for the energy around ISs
δ(T ) works between TMCT and
Ton.

unreachable zone. It becomes strictly fundamental when some theory is based on it.
In 1948 Walter Kauzmann wrote “the nature of the glassy state and the behavior of
liquids at low temperatures” [Kau48], where he describes that:

[...] trends seem to indicate that the entropies and enthalpies, but not
the free energies, of many non-vitreous liquids would become less than
those of the corresponding crystalline phases at temperatures well above
the absolute zero. This paradoxical result [...] the existence of such a
“pseudocritical temperature”.

The Pandora’s box was opened. Here we won’t discuss the philosophical questions,
we just reread Kauzmann’s result in the perspective of RFOT, and thus in regard
to a mean-field core. The first and largest step in this direction was took by Gerold
Adam and Julian H. Gibbs in 1965 [AG65]. They connected the configurational
entropy Sc and the dynamical most accepted fit - at the time and still now - for the
diverseness of relaxation times in SCL, the Vogel-Fulcher-Tamman-(Hesse) empirical



15

law (VFT):

τα ∝ exp
( 1

TSc

)
⇐⇒ τα ∝ exp

( 1

KV FT(T/TV FT − 1)

)
(1.13)

where T0 is a fitted temperature and KV FT is a material-specific parameter quantifying
the kinetic fragility. Assuming the Kauzmann’s thermodynamic result for entropy,
SSCL(TK) − Scry(TK) = (∂TSSCL(TK) − ∂TScry(TK))(T − TK) + o(T − TK) and this is
considered a good approximation for the configurational entropy:

Sc ≈ ∆Cp(T/TK − 1) (1.14)

where ∆Cp = (∂TSSCL(TK)−∂TScry(TK)) is the liquid-crystal difference in specific heat
around TK

∗. Plugging this expression into (1.13) we find the double correspondence:

TV FT ≈ TK KV FT ≈ T∆Cp (1.15)

This fixes two parameters of the VFT fit from calorimetric calculations, which are
very well verified in experiments [RA98]. If we accept the picture this tells us two
important things: the TV FT is a thermodynamic transition and the fragility KV FT is
proportional to the jump of the specific heat at the glass transition.

To obtain lhs of (1.13) Adam and Gibbs adopted the concept of cooperative rear-
ranging region (CRR), the smallest region that can rearrange into another configura-
tion independently of its environment. This perspective has been developed during
the years and was reformulated in 1989 by Kirkpatrick, Thirumalai and Wolynes,
into the so-called “mosaic picture”, to connect it to mean-field models [KTW89].
This association is considered to be the birth of RFOT. Here we briefly describe
their argument in a revisited formulation [BB04]. In a SCL equilibrated at T , let’s
take a spherical cavity of radius ξ and fix all particles† outside. The smaller the
cavity, the stabler the particles inside. Let’s admit that they form a state α that is
stable. The partition function for the cavity in d-dimensions is:

Z = Zin + Zout = e−βfαξ
d+βσξθ +

∫
dfe−βfξ

d+Sc(f)ξd (1.16)

here fα is the free energy density which gives the bulk contribution, σ is the surface
cost given by the borders of the cavity and Sc(f) is the configurational entropy
density. Zout can be on first approximation given by the saddle point (see 1.7),

∗considered almost constant in the range around Tg
†molecules, granules, ...
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Figure 1.6: Configurational Entropy and Activated Dynamics near TK . (A): Configurational
entropy from calorimetric analysis (CA) extrapolate to zero at finite TK . Open circles are from
VFT fit of relaxation dynamics. From [RA98] (B): Glasses of different fragilities and liquid-solid
specific heat ratio [Ang95]

Figure 1.7: Inherent Structures near TK LJ simulation [Sas01]. (a): configurational entropy
Sc(EIS) vs IS energy EIS from PEL analysis. (b): Sc obtained from CA (lines), and from analysis
of the PEL (points) plotted against temperature T.

which gives the typical free energy density f ∗. Moreover the free energy fα = f ∗

because at equilibrium we expect the reference state α to be a typical one. This
gives a standard nucleation argument. The free energy of such a nucleus (cavity) is:

∆F = Sc(f
∗)ξd − βσξθ with ∂fSc(f

∗) = β (1.17)

and following an Arrhenius approximation, the relaxation time behaves as:

τα ∝ exp
(

arg max β∆F
)

= exp
[(σd
Sθc

)1/(d−θ)
]

(1.18)

in the case of θ = d/2 we re-obtain the famous VFT law (1.13). The reason for
this equality is not clear and the question is still debated. This concludes our fast
excursion on the “mosaic picture”.

All this supports the idea that the dynamical divergence of relaxation time is the
reflection of a true thermodynamic transition, at which the configurational entropy
becomes zero. Many experiments tested this correspondence [AS82; Ric84; RA98].

There are also opposite views on the problem. Certain papers disagree with a
VFT law [Hec+08] and propose other possible perspectives which do not consider
thermodynamic TK to have any influence on the SCL dynamics (see [BG13] for a
critical review).
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What is sure is that in p-spin spherical models, a true thermodynamic transition
takes place at TK , which corresponds to the temperature at which the Gibbs mea-
sure condenses on the deepest available states. However there is not any dynamical
divergence because above TK, glassy states were already well defined, ergodicity was
broken at TMCT .

To conclude the section we again consider the PEL perspective. Srikanth Sastry
in a work of 2001 shows how the fragility of a system is connected to the multiplicity
of states, their spread and the changes in each basin entropy [Sas01]. It is a direct
application of the Gaussian harmonic approximation, which we will briefly explore
in the next section.

There are still many unresolved question about this transition, for a broader view
see [BB09; Cav09].
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1.2 Potential Energy Landscape

Martin Goldstein in 1969 in the abstract of its famous paper “Viscous Liquids and
the Glass Transition: A Potential Energy Barrier Picture” wrote:

The model is based on the idea that in ”viscous” liquids (shear relaxation
time ≥ 10−9 sec) flow is dominated by potential barriers high compared
to thermal energies, while at higher temperature, this will no longer be
true.

This is the picture that every scholar of supercooled liquid has in mind. Nowadays
TMCT is considered by many to be the crossover temperature to activated dynamics,
and we will see that the Goldstein picture is often a good approximation until the
onset of temperature Ton.

Following the path of Goldstein, F.H.Stillinger and T.A.Weber wrote in 1982
“Hidden structure in liquids” [SW82], which was the first of a series of papers in
which they developed one of the major paradigms in the investigation of SCL, the
Potential Energy Landscape approach [SW83; SW84; SW85]. The central idea is to
build both the thermodynamic and the dynamics starting from the structure of the
underneath PEL.

Over the years, this perspective has grown fast, made possible by the increase
of computer’s power. In fact since the beginning this theory has build a strong
connection with computer simulations which are necessary to validate the theory. In
some sense this paradigm follows the epistemology:

PEL⇐⇒ numcerical simulations⇐⇒ real experiments (1.19)

numerical simulations are a necessary ‘medium’ between nature and theory. This is
a path that an ever-increasing area of science has been pursuing in the last 30 years,
which is very fascinating, and new to history [Win99].

1.2.1 Inherent Structures Partitioning

In this introduction to PEL we will more or less follow the review of F. Sciortino
[Sci05], who is one of the greatest contributors to the development of PEL. The first
thing is to define a model of SLC. A N -particles system, whose evolution is described
by a Hamiltonian H, which has a kinetic K and potential contribution U . Usually
the potential is given by the sum of pair potentials:

U =
∑
ij

U ij(ri, rj) ULJ(r) = 4ε ·
[(σ

r

)12

−
(σ
r

)6
]

(1.20)
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in the simplest case it depends only on the distance |ri − rj| between particles. The
suffix ij refers to the possibility of having different kinds of particles. One of the most
studied systems is the Lennard-Jones binary mixture (LJBM), where two kinds of
particles interact through ULJ . The most famous of all is the so-called Kob-Andersen
model [KA94], a LJBM which has a fine-tuned composition to avoid crystallization∗.
This is all we will say about the numerical part, which requires a huge effort, for now
we are interested to the theoretical part.

The PEL of the system is a very rough landscape defined by the coordinates ri
of the N particles. In order to study it thermodynamically, the fundamental concept
is that of the Inherent Structure (IS), which denotes the configuration that lies at a
local minimum of the PEL.

Each IS ι labels a basin of attraction B(ι), which
is defined by the locus of configurations which are
connected to IS by a gradient descent path. In this
way all the PEL is unambiguously partitioned in
basins of attraction, each labeled by its IS (filled
circles). The interesting thing about this partition-
ing is that it can be further explored, considering
that each border between basins is an (N − 1)-
dimensional space for which one can define the IS,
which would be in the original landscape a sad-
dle of order 1 (crosses). Thus defining an ulterior
partitioning in basins of dimension (N − 1) on the
border of the original basins.

P E L

This procedure can be repeated an arbitrary number of times, giving a hierarchical
partitioning of borders, which has been give an interesting perspective in the study
of the aging dynamic [KL95]. In this brief overview we concentrate on ISs (minima)
and we will just allude to the role of saddles.

Having partitioned the phase space in basins, we rewrite the partition function
as a sum of the free energy of each basin:

Z(β) =
∑
ι

∑
σ∈B(ι)

e−βH[σ] =
∑
ι

e−βE(ι)+F (B(ι)) (1.21)

where σ ∈ B(ι) stands for the configurations that belongs to the basin B(ι), E(ι)

∗crystallization still occurs for long enough simulations [PSD18]
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is the energy of the inherent structure ι and F (B(ι)) the free energy of the relative
basin. Each basin has its own volume V (B(ι)) and its free energy is given by:

F (B(ι)) = ∆E(B(ι))− T log V (B(ι)) (1.22)

where ∆E(B(ι)) is the internal energy of the basin having subtracted the energy of
bottom E(ι). If each basin is considered an independent system all its thermody-
namic properties can be characterized. But one should keep in mind that basins are
not ’truly’ independent. The borders that separate them are typically not extensive.
Thus in each canonical computation, which is typically the simplest one, all basins
are connected through thermal paths. It is better to rethink this partitioning in mi-
crocanonical terms. In this perspective, low energy orbits are non ergodic whenever
restricted inside a basin. Anyhow, canonical or micronanonical, the point is that this
decomposition in basins gives a valid method of approximation. Selecting basins on
the base of the energy of their inherent structure E(ι), in the thermodynamic limit
we expect them to have a ‘well defined’ ∗ free energy F (B(ι)). Thus the partition
function can be rewritten as:

Z(β) =

∫
dEIS

∑
ι

δ(EIS − Eι)e−β
(
E(ι)+F (B(ι))

)
=

∫
dEISN (EIS)e

−β
(
EIS+F (EIS)

)
(1.23)

where F (EIS) is the typical free energy for a basin with energy E(ι) = EIS. The last
N (EIS) is the number of inherent structures of energy EIS, from which the concept
of configurational entropy is derived:

Sc(EIS) = log(N (EIS)) (1.24)

Thus we have that the total partition function can be decomposed in a two-layer
hierarchy, configuration in basins, and basins in system. This is a typical feature
of mean-field models with Random First Order Transition, and in particular our
reference model, the p-spin spherical model. The key difference is that in mean-field
models this partitioning has no ambiguity, since barriers between basins are extensive
and each basin corresponds to a well defined thermodynamic state. This is not the
case in finite dimensional systems, but in many cases it is a very good approximation,
because over the temperature range studied by PEL, activated dynamics dominate
(T ≤ TMCT), therefore the relaxation time scale inside the basin τB is well separated
from the time scale for jumping between basins τα.

∗delta distributed
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1.2.2 The Gaussian PEL Approximation

In the previous section we have seen how to partition the configuration space on the
base of the potential energy landscape and consequently rewrite the partition func-
tion. Here we concentrate on one effective approximation, the so-called “Gaussian
harmonic” approximation. Gaussian refers to the distribution of inherent structure
energies, while harmonic refers to the approximation of free energy for each basin.
Let’s start with the first:

NGauss(EIS) = NtotN(E0,∆E0) (1.25)

N(E0,∆E0) is a normal distribution with average E0 and standard deviation ∆E0,
and Ntot = exp(αN) is the total number of inherent structures and its logarithm
is extensive in the dimension of the system. This is the Gaussian part of the ap-
proximation and it corresponds exactly to what is known as Random Energy Model
[Der80]. On top of this REM modelization of IS energies, another layer is added,
the structure of each basin. The simplest possible approximation is to consider each
basin as a harmonic well. It follows that the free energy of each basin is given by
normal modes around the IS:

Fharm(EIS) =
N∑
i

log(
1

βωi
) = −3N log(βω0)−

∫
dωD(ω) log(ω/ω0) (1.26)

which says that the total free energy is the sum of free energy of independent har-
monic oscillators with spectral density D(ω). And we rescaled all the frequencies
by the lowest one ω0. Both ω0 and D(ω) are strictly dependent on EIS. This is
the general form for the harmonic approximation. We remark that the frequencies
are simply given by the diagonalization of the Hessian matrix at the IS. We do a
further simplification considering that the harmonic free energy Fharm has a linear
dependence on EIS around the most probable inherent structure energy E0:

Fharm(EIS) = Fharm(E0) + b(EIS − E0) (1.27)

Here we introduce another parameter b which must be added to E0,∆E0 and α. All
these parameters have an implicit dependence on volume and should be inferred from
computer simulations. Putting all these approximations together we obtain the free
energy (1.23):

−βF (β) =SGauss(EIS)− β
(
EIS + Fharm(EIS)

)
=Nα− (EIS − E0)2

2∆E2
0

− βEIS − βFharm(E0)− βb(EIS − E0)
(1.28)
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In order to find the IS that dominate the measure, this free energy must be extremized
with respect to EIS, which gives the equation:

EIS = E0 − (β + b)∆E2
0 (1.29)

which defines the temperature dependence of the IS energy, which is linear in inverse
temperature β. The two parameters E0, b can be directly fitted from simulations.
Reinserting it in the configurational entropy one obtains:

SGauss(EIS) = αN − (β + b)2

2∆E2
0

(1.30)

from which one can fit the parameters α and ∆E0. Thus the model is completely
defined. Remember, however, that for each volume the four parameters must be
refitted. Then one can deduce many thermodynamic properties, such as the existence
of a Kauzmann transition (SGauss(EIS) = 0) at:

TK = 1/(
√

2αN/∆E0 − b) EK = E0 −
√

2αN∆E0 (1.31)

Here we have considered the simplest possible model of PEL which has all the
essential ingredients to describe a supercooled liquid. The Gaussian distribution of
ISs (REM like) is the most robust feature, since it comes directly from the central
limit theorem∗, for what concern the free energy of each basin, many possible ap-
proximations have been considered, considering anharmonicities as well as different
dependences on the EIS. The literature is vast. Here we wanted only to draw the
picture given by PEL’s perspective of analyzing the thermodynamics properties of
disordered systems. Moreover, the general ideas given in this brief introduction to
PEL will be very useful in understanding our reference mean-field model.

∗consider the extraction of independent basins
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2

Prototypical model of Supercooled
Liquid

2.1 The p-spin spherical model

2.1.1 A short History

The p-spin model with ising spin was firstly introduced in 1980 en passant by B.Derrida
as a model for which the limit (p→∞) gives the famous “Random Energy Model”
[Der80]. In 1987 T.R.Kirkpatrick and D.Thirumalai introduced the spherical (soft)
version of the p-spin model and put forward the analogy between this model and
the structural glasses [KT87b; KT87a]. In particular, they focused on the equilib-
rium dynamics, extending the work of H.Sompolinsky and A.Zippelius on the 2-spin
(soft) dynamics [SZ82]. In 1992-1993 in two coupled works, A.Crisanti, H.-J. Som-
mers and (in the second) H. Horner firstly solved, by means of a 1RSB scheme,
the statics of the model in presence of an external field and analyzed the equilib-
rium and out-of-equilibrium dynamics of the model [CS92; CHS93]. At the same
time L.F.Cugliandolo and J.Kurchan were solving the out of equilibrium dynamics
from random conditions and confronted it with results gained about the free energy
landscape from TAP analysis [KPV93; CS95].

In 1995 S.Franz and G.Parisi introduced a potential to select equilibrium states
and follow them in temperature, strengthening the correspondence between dynamics
and statics of p-spin models [FPV92]. This analysis was later extended to mixed
models [Bar97]. In the subsequent years in a series of papers A.Cavagna, I. Giardina
and G.Parisi explored in more details the energy landscape and TAP free energy
in the pure p-spin model [CGP97a; CGP98; CGP01]. Starting in 2003, L.Leuzzi

29
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Figure 2.1: Number of publications about the “spherical p-spin ”

and A.Cristanti have revealed the zoology of phases achievable with mixed models
[CL04; CL06; CL07], and coincidently was understood that the mixed model can
reach different asymptotic states depending on the cooling schedule [Cap+06].

Nearly a decade later, Y. Sun and collaborators asserted that the asymptotic
dynamics cannot be described with standard replica calculations in mixed models
[Sun+12]. In the same years the p-spin model was gaining interest in a small mathe-
matical community led by G.Ben Arous, and the many of the aforementioned results
were recasted in a mathematical framework [ADG01; ASZ18]. In recent years, in the
attempt of making the model attractive to computer scientists, it has been sometimes
referred to as “spiked tensor model” [Ros+19; Man+19]. Finally in 2019 we have
understood that in mixed model the out-of-equilibrium dynamics preserves memory
of the ergodic phase [FFR19].

2.1.2 The Model

The p-spin spherical model is a fully connected model with continuous spins σi ∈ <
constrained over a sphere (

∑
i σ

2
i = N) whose Hamiltonian reads∗:

H[σ] =
∑
p

αpJp • σ⊗p (2.1)

where Jp ≡ Ji1i2...ip are rank-p N -dimensional symmetric Gaussian tensors (natural
extension of Wigner matrices) [Com+08; LNV18], i.e. their elements are indepen-

∗for example: J3 • σ⊗3 ≡
∑
i1<i2<i3

Ji1i2i3σi1σi2σi3
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dently extracted from a Gaussian distribution of zero mean and variance:

J2
i1i2...ip

=
1

2
N/

(
N

p

)
(2.2)

where
(
N
p

)
is the total number number of p-couplings∗. The coefficients αp define

the mixture of the model. In the case of only one non zero p-body interaction αp,
the model is called pure. In all other cases the model is mixed. Throughout this
thesis, we will focus in particular on the pure 3-spin model (α3 = 1) and the mixed
(3+4)-spin model (α3 = 1 and α4 = 1). The disorder of the couplings Js is quenched,
in the sense that all the statistical equilibrium and out-of-equilibrium averages are
performed with a given realization of them (model). There are two different levels
of statistics: the disorder averaging which will be marked by an overline and the
thermal averaging which will be marked by angle brackets 〈 〉.

One first observation that will be crucial in all future calculations is that, the
quenched disorder of the couplings can be read as a fluctuation of Hamiltonian in
different models, when changing the distance of two reference configurations (σ and
τ)†:

H[σ]H[τ ] = N
∑
p

α2
p

2
qp ≡ Nf(q) (2.3)

where q ≡
∑

i σiτi/N is the overlap between configuration σ and τ . Moreover, if one
evaluates higher order of correlations, these are subdominant in N . Therefore, in the
thermodynamic limit (N → ∞) the Hamiltonian of different samples are Gaussian
correlated:

exp(H[σ] +H[τ ]) = exp((H[σ] +H[τ ])2/2) (2.4)

more details can be found in appendix section A.1. This way of threating disorder
has been introduced in the context of Random Media [KZ87; Hal89; MP90]. The
function f(q) fully defines the structure of the Gaussian quenched disorder. In the
pure model this function is homogeneous (f(q) = α2

pq
p/2) and this will have very

strong effects on both static and dynamics properties of the system.

2.1.3 Replica Trick

In models with quenched disorder, one is interested in evaluating the free energy:

FJ(β) = − 1

β
log(

∑
σ∈Σ

e−βHJ [σ])

∗(N
p

)
≡ N !

(N−p)!p! =
∑
i1<i2<...<ip

†for the p-spin pure model: H[σ]H[τ ] = Jp • σ⊗pJp • τ⊗p ≈ 1
2N/

(
N
p

)
σ⊗p • τ⊗p = N

2 q
p
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where the subscript J means that one particular coupling sample∗ was extracted.
Now, to simplify the calculus, the important consideration is that FJ(β), since it
is an extensive quantity (in N), must be self-averaging with regard to the disorder.
Thus, we can substitute its value on a typical sample with its average over different
samples:

−βF (β) = log(
∑
σ∈Σ

e−βHJ [σ]) = logZ

The problem is that we do not know how to calculate the logZ (quenched aver-
age). Because we know how to calculate logZ (annealed average), the replica trick
[EA75], which is a formal substitution that will bring us a lot of physical interpreta-
tions, can be considered instead. We just use one of the following equivalences:

logZ = lim
n→0

Zn − 1

n
= lim

n→0

log(Zn)

n
= lim

n→0
∂nZn (2.5)

where Z is the partition function. The idea is very common in physics, we bring the
calculus to some discretization that we know how to deal with, and then we do an
analytic continuation. It is a sort of moment transformation, in the sense that from
the moments of the distribution P (Z) we rebuilt the moments of the distribution
P (logZ). The annealed calculation gives us a lower bound to the free energy, by
Jensen’s inequality: logZ ≥ logZ. Using the replica trick (2.5) the free energy
becomes:

F (β) = − 1

β
lim
n→0

(
∑

σ∈Σ e
−βHJ [σ])n − 1

n
(2.6)

This expression is our point of departure to evaluate the free energy of the p-spin
spherical model.

2.1.4 The Replicated Free Energy

Let’s specialize (2.6) to our prototypical p-spin spherical model. In the thermody-
namic limit (N→∞) the average n-replicated partition function gets †:

Zn =

∫
SN

Dσ e
∑n
a=1 βH[σa] =

∫
SN

Dσ e
∑n
a,b=1

N
2
β2f(

σa·σb
N

) (2.7)

where SN recalls the N -dimensional spherical constraint and the Gaussianity of
Hamilitonian fluctuations is used (2.3). The next step is to make a change of integra-
tion variables from configurations σi to overlaps qab = σa ·σb/N . This transformation

∗using sample for J couplings and configurations for σ spins
†Dσ ≡

∏N
i

∏n
α=1 dσ

α
i
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will induce a volume contraction (determinant of the Jacobian) which needs to be
evaluated. The standard approach is to use Lagrange multipliers [CC05], however,
to get more intuition we here follow a direct geometrical approach.

The goal is to measure the total volume of configurations σ1, σ2, ...σn that lie on
the SN sphere and are constrained by fixing their reciprocal overlaps {qab}na=1,b=1.
Since all the replicas are equivalent, we take the first one σ1 as the reference replica.
This will give the total volume of the N -dimensional sphere SN of radius r1 =

√
N .

The second replica is constrained at a fixed overlap q12 from the first one. Thus, we
can decompose its vector as:

σ2 =
√
Nq12σ̂1 +

√
N(1− q12)σ̂2⊥1 (2.8)

where σ̂1 is a unit vector parallel to σ1 and σ̂2⊥1 a generic unit vector orthogonal
to σ1. The volume spanned by σ̂2⊥1 is the volume (SN−1) of a sphere of N − 1
dimensions and radius r2 =

√
N(1− q12). In the thermodynamic limit N →∞ the

total entropic contribution of the first two replicas gets:

log
(
SNr

N/2
1 SN−1r

(N−1)/2
2

)
N→∞

= 2
N

2
(1 + log 2π) +

N

2
log(1− q12)) (2.9)

The third replica is at fixed overlap q12 from the first replica and q23 from the sec-
ond. At this point we notice that we can decompose σ3 in an orthonormal basis
σ̂1,σ̂2⊥1,σ̂3⊥1&2. This is the second step of the Gram–Schmidt decomposition. We
continue this procedure till the vector σn. Therefore, the total volume available to
n replicas, having fixed all the reciprocal overlaps, qab is given by the product of the
volume spanned by the σ̂k⊥1→(k−1), each one with its own radius rk:

Vn =
n−1∏
k=1

(SN−k)r
(N−k)/2
k+1

N→∞
= SnN

n−1∏
k=1

r
N/2
k+1 (2.10)

But
∏n−1

k=1 rk+1 is by definition the volume of the parallelotope of vertices σ1, ..., σn
that lies on a sphere, which is equal to the determinant of the scalar product matrix
{
√
Nqab}na=1,b=1 =

√
NQ:

Vn = SnN vol(σ1, ..., σn) = (SN
√
N)n

√
detQ (2.11)

This is the volume factor connected to the change of variables from configurations
σi to overlaps qab. Let’s finally rewrite (2.7) as a function of the overlaps:

Zn =

∫
DQ e

N
2

(
n logS∞+log detQ+

∑n
a,b=1 β

2f(qab)

)
(2.12)
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where logS∞ = limN→∞ log(SNN
N/2)/N = 1 + log 2π. Now we come back to the

replica trick, and here, an inversion of limits must be considered. First, we evaluate
the thermodynamic limit N →∞ which concentrates the measure on saddle points of
the overlap action and only after the replica n→ 0 limit. This inversion is canonical
in replica calculations and has been demonstrated to be “safe” for some particular
models [Gue03]. Finally the free energy gets:

− βF (β) = lim
n→0

∂n lim
N→∞

1

N
Zn = lim

n→0
∂ne

1
2

(
n logS∞+G[Q∗]

)
(2.13)

where

G[Q] = β2

n∑
a,b

f(qab) + log det[Q] (2.14)

Q∗ stands for the dominant(s) saddle point of the action. As it is always the case in
mean-field calculations, the problem stands in extremizing an action. In this case,
the action is defined over the space of overlap matrices Q of dimension shrinking to
zero (n→ 0).

2.1.5 Replica Symmetric Ansatz

The simplest route is the annealed average, which in the p-spin model is given by:

− βNF an
β = logZ = log

( ∫
SN

Dσ e
N
2
β2f(1)

)
= N

(
logS∞ +

1

2
β2f(1)

)
(2.15)

where we used (2.7) applied to the case n = 1. This is the annealed free energy which
is also referred to as the paramagnetic free energy, since it is the correct solution at
high temperature. As we have seen, this fixes the lower bound for any quenched
average.

Now let’s proceed to estimate logZ. We need to find the dominant saddle point
Q∗ of the action G[Q] (given in 2.14).
Since the space of all overlap matrices Q is tremendously
huge, we have to restrict it, fixing a structure for the saddle
point Q∗ and a posteriori verifying that the chosen Q∗ is
stable if the structure is relaxed. The simplest choice is the
Replica Symmetric matrix QRS:

qab = δab + (1− δab)q (2.16)

in which each configuration has the same overlap with all
the others and the self-overlap qaa = 1 for the spherical
constraint.

RS matrix
q

n
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This matrix has two eigenvalues:

1 + (n− 1)q with degeneracy 1

1− q with degeneracy n− 1

Plugging QRS into (2.14) and taking the n→ 0 limit:

lim
n→0

∂nG[QRS] =

= lim
n→0

∂n

(
nβ2

(
f(1) + (n− 1)f(q)

)
+ log

(
1 + (n− 1)q

)
+ (n− 1) log

(
1− q

))
= β2

(
f(1)− f(q)

)
+

q

1− q
+ log(1− q)

And substituting this in (2.13) the RS free energy reads:

F RS

β (q) = − 1

2β

(
β2
(
f(1)− f(q)

)
+

q

1− q
+ log(1− q) + logS∞

)
(2.17)

Now we need to extremize it over q, which is the only free parameter having chosen
the RS ansatz. This gives the equation for the saddle point q∗:

∂qF
RS

β (q) = 0 =⇒ β2f ′(q∗) =
q∗

(1− q∗)2
(2.18)

which in order to be stable has to satisfy:

∂2
qF

RS

β (q) > 0 =⇒ β2f ′′(q∗) <
1 + q∗

(1− q∗)3
(2.19)

This is the so-called longitudinal stability. For a generic matrix Q it is the stability
with regard to homogeneous scaling Q → αQ. But what if the Q∗RS that satisfies
2.18 is not stable to a change of the shape of the matrix i.e. there is a generic small
perturbation δQ such that:

Fβ[Q∗RS + δQ] < Fβ[Q∗RS] (2.20)

To verify this possibility, we go back to (2.14) and evaluate first and second order
Taylor expansion in the overlap matrix space (see appendix section A.3):

∂qabG[Q] = β2f ′(qab) + [q−1]ab

∂qcd∂qabG[Q] = δacδbdβ
2f ′′(qab)− [q−1]ac[q

−1]bd
(2.21)
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where we implicitly considered only ordered indexes: a < b and c < d. Inserting the
QRS matrix into the stability condition:

∂qcd∂qabG[QRS] = δacδbd
(
β2f ′′(q)− 1

(1− q)2

)
+ (δac + δbd)

q

(1− q)3
+

q2

(1− q)4

to study the eigenspaces, we project this expression in ad-hoc directions. In partic-
ular, homogeneous perturbations δqLab = ε are eigenmatrices and correspond to the
longitudinal eigenvalue:

λL(q) = −(β2f ′′(q)− 1

(1− q)2
) + 2

q

(1− q)3
(2.22)

thus, to second order G[Q∗RS+ε] = G[Q∗RS]−λL(q∗)ε2+O(ε3). For λL(q
∗) > 0 the RS

solution is stable against longitudinal perturbations and, as it should, it gives back
the stability condition (2.19). Another eigenspace of perturbations is represented by
δqRab s.t.

∑
b δq

R

ab = 0 for each a. We are perturbing the system in such a way, not to
change the average overlap of every replica with all the others:

qa =
∑
b

qab =
∑
b

(qab + δqRab) = qa + δqRa

The relative eigenvalue of this pertubation is the so-called replicon mode:

λR = −(β2f ′′(q)− 1

(1− q)2
) (2.23)

There is a third eigenspace called anomalous that is represented by perturbations
δqAab that satisfy the condition

∑
ab δqab = 0 but

∑
b δqab 6= 0. It is called anomalous,

because it is projecting in the direction in which replicas are not equivalent; the
average qa 6= qa + δqa but at the same time

∑
a δqa = 0. The relative eigenvalue

turns out to be equal to the replicon one: λA = λR.
From this fast excursion on the stability of the solutions, we have obtained two

independent stability conditions λL > 0 and λR = λA > 0. The first one is directly
obtained by evaluating stability in the restricted space of matrices considered, in our
case QRS. The second condition is related to the stability with regard to the change
in shape of the matrix and it directly breaks the symmetry between replicas (RSB) in
the sense that the perturbed matrix no longer has a constant overlap qab = q∗+ δqRab.
This stability against the change in shape will be further explored in the section
subsection 2.1.7. The complete analysis of the stability of the RS solution can be
found in [CS92].
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We are ready to explore the RS solution (2.18). We first notice that, as long as
q is positive λL > λR, therefore, we only need to consider λR. The solution q∗ = 0 is
always stable and gives back the annealed (paramagnetic) free energy (2.15), and, any
solution with q 6= 0 is always unstable. Therefore, the search for another structure
of the overlap matrix Q is needed and the Replica Symmetry Breaking must be
introduced.

2.1.6 One Step of Replica Symmetric Breaking

Because we were unable to find a stable solution other than the paramagnetic one
within an RS ansatz QRS, we propose a new structure of overlap matrix Q1RSB, a one
step of replica symmetry breaking. This was one of the greatest intuitions of Giorgio
Parisi [Par79b; Par02]. Instead of considering the typical configuration σa to have
the same overlap with all other configurations σb, we consider that there are two
possible overlaps q0 < q1 with different weights.
Transferred in the language of overlap matrices, this pre-
scribes a block matrix (see figure), where each row and each
column is a permutation of the structure:

(1, q1, ..., q1︸ ︷︷ ︸
x− 1

, q0, ..., q0︸ ︷︷ ︸
n− x

) (2.24)

Any matrix with this shape belongs to Q1RSB. Ordering in
blocks and sub-blocks is essential to understand the physi-
cal hierarchical organization of configurations.

1-RSB matrix
q0q1

q1

q1

n

x

Configurations that are far from each other have the smallest overlap q0 (inter-
state) and in the matrix are far from the diagonal. Configurations that are close to
each other have the largest overlap q1 (intra-state) and in the matrix are close to the
diagonal. On the diagonal, the self-overlap of each configuration is identically 1 for
a spherical model. It is clear from the structure of matrices Q1RSB that each replica
σa has the same role, since each row (column) has the same entries. The weight x
is directly connected to the probability of finding a configuration that has overlap
q0 or q1 between each other. This is seen after the computation of the n → 0 limit.
Let’s define the probability of one typical configuration σa of having overlap q:

Pa(q) = lim
n→0

1

n− 1

∑
b 6=a

δ(q − qab) = lim
n→0

x− 1

n− 1
δ(q − q1) +

n− x
n− 1

δ(q − q0) (2.25)

Therefore, picking randomly a second configuration σb, with probability x their over-
lap is q0 and with probability 1 − x their overlap is q. Having introduced the new
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class of matrices Q1RSB that depends on three parameters q0, q1, x, we need to plug
this matrix shape into (2.14) and extremize it. To do so, the first difficulty is com-
puting the entropic term log det[Q1RSB], which requires a diagonalization. We leave
this task to the following section in which we will diagonalize a general k-steps RSB
matrix QkRSB. For now, let’s write directly the result free energy:

F 1RSB

β (q0, q1, x) =
β

2

(
x(f(q1)− f(q0)) + (f(1)− f(q1))

)
+
β−1

2

( q0

λ(q0)
+ x−1 log

λ(q0)

λ(q1)
+ log λ(q1)

)
+ const

(2.26)

where
λ(q0) = 1− (1− x)q1 − xq0 λ(q1) = 1− q1 (2.27)

are the two eigenvalues of the overlap matrix Q1RSB. This must be extremized to find
the optimal q0, q1, x:
∂q0F

1RSB

β

∂q1F
1RSB

β

∂xF
1RSB

β

⇒


β2f ′(q0) = q0λ(q0)−2

β2
(
f ′(q1)− f ′(q0)

)
= x(λ(q1)−1 − λ(q0)−1)

β2
(
f(q1)− f(q0)

)
= −x−2 log λ(q0)

λ(q1)
− (q1 − q0)

(
x−1λ(q0)−1 − q0λ(q0)−2

)
(2.28)

For a general f(q) these three equations are not analytically solvable. One must then
rely on a numerical approach. Once all possible solutions are found, their stability
should be checked, which, as we will see in the next section, gives the conditions:{

λ(q0)−2 ≥ β2f ′′(q0)

λ(q1)−2 ≥ β2f ′′(q1)
(2.29)

The second condition is the marginal condition that corresponds to the stability of
thermodynamics states. Thus corresponds to what we have defined in the previous
section as the stability of the overlap matrix in the replicon direction (λR > 0). As we
will see in chapter 3, this condition is strongly connected to the out-of-equilibrium
dynamics. Taking the first inequality (2.29) together with the first extremization
condition (2.28) gives the inequality:

f ′(q0) ≥ q0f
′′(q0) (2.30)

which is satisfied only by the value q0 = 0. Physically this result is quite intuitive.
Two arbitrary configurations taken on the sphere, will typically be orthogonal to
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each other. The only way to break this condition is to put an external field (or a
reference configuration), which breaks the spherical symmetry.

Thus, eq. (2.28) simplifies to:

{
β2f ′(q1) = q1

(1−q1)(1−(1−x)q1)

β2f(q1) = −x−2 log λ(q0)
λ(q1)
− q1

(
x−1λ(q0)−1 − q0λ(q0)−2

) (2.31)

together with the marginal condition (1− q1)−2 ≥ β2f ′′(q1). The first equation fixes
x, which can be plugged into the second one, that is solved numerically to find q1.
It is found that for any T < TTAP there is a stable solution, which has a free energy
lower than the paramagnetic for T < TK < TTAP . Thus, following this solution branch
in the space of overlap matrices, there is a first order transition at TK and a spinodal
transition at TTAP . As we will see using other methods to probe the free energy
landscape, this solution corresponds to deepest states, which below TK dominate the
Gibbs measure; here a sort of ‘condensation’ occurs. We further discuss the general
picture in the next sections.

2.1.7 k-RSB Solution

Our point of departure is the p-spin free energy functional (see 2.13):

G[Q] = β2

n∑
a,b

f(Qab) + log(det[Q]) (2.32)

where Nf(Qab) = H[σa]H[σb] and Q = (Qab) = (〈σa · σa〉/N) is the overlap matrix
and a, b are the replica indices. The free energy of the model reads:

−2βFβ = logS∞ − lim
n→0

G[Q]

n
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The Ultrametric Structure

In order to minimize the functional (2.32) we restrict
the space of overlap matrices to ultrametric matrices Q̃
[Par79a]. These matrices depend on (2k + 1) parame-
ters (see figure on the right): xi with i = 1..k are the
length of sub-boxes, qi with i = 0..k the overlap inside
the relative sub-boxes, and k is the number of replica
symmetry breaking (RSB) steps. The structure of the
matrix does not privilege any of the replicas and, as a
consequence, any two columns (or rows) can be mapped
on each other by permutation. Our goal is to recover
a general formula for (2.32) that can handle a k-RSB
replica broken Q̃.

2-RSB matrix
q0q1q2

q2
q2
q2

q1q2
q2
q2
q2

q1q2
q2
q2
q2

n

x1

x2

2-RSB tree
q0

q1

q2

1

n
x1

x2

Any ultrametric matrix Q̃ can be mapped into
an ultrametric tree [RTV86]. In order to have a
physical ultrametric tree, we require that qa < qb
and xa < xb for every a < b. The tree can be
thought as a probability flux, starting from the ma-
jor branch of overlap q0 (the smallest possible over-
lap) end ending with the smallest branch of overlap
qk = qEA (self-overlap within a state). The proba-
bility that two configurations have overlap q ≥ qr
is given by the ratio between the number of paths
that connect one given configuration to another
configuration in the same cluster xr − 1 and the
number of paths to another whatever configuration
n− 1. Thus:

P (q ≥ qr) = (xr − 1)/(n− 1)

In the limit n → 0 the probability that two extracted configurations belong to a
same cluster is:

P (q = qr) = P (q ≥ qr)− P (q ≥ qr+1)

= xr+1 − xr
(2.33)

By convention x0 ≡ n → 0. For convenience, we also define qk+1 = 1 which is the
norm of a single configuration (from the spherical constraint) and xk+1 = 1.
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Recursive Diagonalization

Let’s define the average overlap inside a r-cluster:

qr ≡
∫ 1

q−r

dqP (q)q = lim
n→0

1

n− 1

xr∑
b=2

Q1b (2.34)

where P (q) ≡
∑k

r=0 δ(q− qr)(xr+1−xr). We also introduce
the cumulant distribution:

x(q) ≡
∫ q−

0

dq′P (q′) (2.35)

In the following, we will see that qr are directly connected
to the eigenvalues of Q̃.

2-RSB x(q)
x

q
0 q0q1 q2 1

x1

x2

1

Let’s recall that since the matrices considered are symmetric, their eigenspaces
are mutually orthogonal. Now we build a recursive procedure to diagonalize Q̃. Since
all replicas are equivalent, we concentrate on the first row of Q̃ (overlaps with replica
1). We introduce the 00-eigenspace (related to the overlap q0) as the homogeneous
eigenvector:

~v00 = (1, 1, ..., 1)︸ ︷︷ ︸
n

λ00 = Q̃~v0 = Q11 +
n∑
b=2

Q1b = 1− q0 + nq0

µ00 = 1

where λ0 is the eigenvalue and µ0 is the dimension of the space. The 0-eigenspace is
spanned by eigenvectors homogeneous in sub-blocks of dimension x1 and orthogonal
to the 00-eigenspace:

~v0 = (1, ..., 1︸ ︷︷ ︸
x1

,−x1/(n− x1), ...,−x1/(n− x1))︸ ︷︷ ︸
n− x1

s.t. ~v0 · ~v00 = 0

λ0 = Q̃~v0 = Q11 +

x1∑
b=2

Q1b − x1q0 = 1− (q1 + x1q0) = 1− q0

µ0 =
n

x1

− 1 = n(x−1
1 − n−1)

The recursive structure then appears. The 1-eigenspace is spanned by homogeneous
eigenvectors in n/x2 blocks of dimension x2, but orthogonal to the (00⊕0)-eigenspace.
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Considering that the blocks of dimension x2 are inside x1-blocks, we can consider
this recursion equal to the previous one from the 00-eigenspace to the 0-eigenspace.
Remembering that there are n/x1 of such recursions, we have:

~v1 = (1, ..., 1︸ ︷︷ ︸
x2

,−x2/(x1 − x2), ...,−x2/(x1 − x2))︸ ︷︷ ︸
x2 − x1

s.t. ~v1 · ~v0 = 0

λ1 = Q̃0~v1 = Q11 +

x2∑
b=2

Q1b − x2q1 = 1− (q2 + x2q1)

µ1 = (
x1

x2

− 1)
n

x1

= n(x−1
2 − x−1

1 )

where Q̃0 is the matrix restricted inside one x1-block. Iterating this procedure we
obtain:

~vr = (1, ..., 1︸ ︷︷ ︸
xr+1

,−xr+1/(xr − xr+1), ...,−xr+1/(xr − xr+1)︸ ︷︷ ︸
xr+1 − xr

s.t. ~vr · ~vr−1 = 0

λr = Q̃r−1~vr = Q11 +

xr+1∑
b=2

Q1b − xr+1qr =
n→0

1− (qr+1 + xr+1qr)

µr = (
xr
xr+1

− 1)
n

xr
= n(x−1

r+1 − x−1
r )

(2.36)
With k-RSB steps the last eigenvalue is λk = 1 − qk. The first two eigenvalues λ00

and λ0 have a non-trivial n-dependence and must be treated carefully to get a finite
n→ 0 limit. To this aim, we define two mixed eigenvalues:

λ01 = λ0/λ1 = 1 +
nq0

1− q0

with µ01 = 1

λ02 = λ1 = 1− q0 with µ02 = nx−1
1

(2.37)

All the other eigenvalues are ordered λr+1 < λr till the smallest λk+1 one which is
connected to perturbations inside a state q = qk. Equations (2.36) can be recasted
in the continuous form λr → λ(q):

λ(q) = 1−
(
q

∫ q−

0

dq′P (q′) +

∫ 1

q−
dq′P (q′)q′

)
=

∫ 1

q

dq′x(q′)

µ(q) =
∂x−1(q)

∂q
for q0 < q < qk

(2.38)
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the first line results from an integration by parts. Taking λr = 1
qr+1−qr

∫ qr+1

qr
λ(q)dq

and µr = 1
qr+1−qr

∫ qr+1

qr
µ(q)dq gives back (2.36). The function λ(q) is directly con-

nected to the probability measure P (q) > 0:

P (q) = ∂qx(q) x(q) = −∂qλ(q) (2.39)

this forces λ(q) to be a concave and monotonously decreasing function, which satisfies
the Cauchy boundary conditions:

λ(1) = 1 and ∂qλ(1) = −1 (2.40)

In case of a k-RSB ansatz we have:

P̂ (q) =
k∑
i=0

δ(q − qi)(xi+1 − xi)

x̂(q) =
k∑
i=0

θ(q − qi)xi+1

λ̂(q) =
k+1∑
i=0

θ(qi − q)(qi − q)(xi − xi+1) xk+2 ≡ 0

(2.41)

P̂ (q)

P

q
0 q0 q1 q2 1

x1

x2 − x1

1− x2

x̂(q)
x

q
0 q0 q1 q2 1

x1

x2

1

λ̂(q)

λ

q
1

x2

x1

0 q0 q1 q2 1

1− q2

1− q0

The k-RSB free energy and stability

Let’s rewrite the free energy (2.32) using the diagonal form (eqs. (2.36) to (2.38)):

1

n
G[Q̃] = β2

n∑
b=1

f(Q1b) +
1

n
log(

k+1∏
i=0

λµii )
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In the functional formalism the energy term becomes:

β2

n∑
b=1

f(Q1b) = β2
(
f(1)−

∫ 1

q−0

dqP (q)f(q)
)

= β2

∫ 1

q0

dq x(q)f ′(q)

= β2

∫ 1

0

dq λ(q)f ′′(q)

(2.42)

where we used two consecutive integrations by parts together with (2.39), and the
entropic contribution:

lim
n→0

1

n
log(

k+1∏
i=0

λµii ) = lim
n→0

( 1

n
log(λµ01

01 ) +
1

n
log(λµ02

02 ) +
1

n
log(

k+1∏
i=2

λµii )
)

=
q0

1− q0

+ x−1
1 log(1− q0) +

∫ qk

q+
0

dq µ(q) log λ(q)

=

∫ qk

0

dqλ−1(q) + log λ(qk)

(2.43)

where to get the last line we used an integration by parts ∗. Finally, the free energy
of the system in terms of the eigenvalues λ(q) of the overlap matrix Q̃ reads:

Fβ[λ(q)] =
1

2

∫ 1

0

dq
(
βλ(q)f ′′(q) + β−1λ(q)−1

)
+ log(0)− (1 + log 2π) (2.44)

where we have a little abuse of notation log(0), which compensates the divergence

in
∫ 1

1−ε dq β
−1λ−1(q). To find the thermodynamic free energy we need to minimize

Fβ[λ(q)] with regards to λ(q). This minimization is not made easy by the auxiliary
condition that λ(q) must be a concave and monotonic function (see eq. 2.39). Let’s
first consider the minimization of F [λ(q)] without any restriction to the space of
functions λ(q):

0 =
δFβ[λ(q)]

δλ(q)
=
β

2
f ′′(q)− β−1

2
λ−2(q) (2.45)

λ◦(q) = β−1f ′′(q)−1/2 is the solution.
Now let’s specialize to the pure 3-spin model (fig.2.2): λ◦(q) = β

√
3q. This

solution is convex, but we know that the optimal λ∗(q) should be concave. The

∗µ log λ→ x−1∂qλ λ
−1
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Figure 2.2: Stable solutions of the F [λ(q)]
minimization over the space of continuous con-
cave functions λ(q), with the Cauchy boundary
conditions λ(1) = 0 and ∂qλ(1) = 1. At β = 1
only the paramagnetic solution λ(q) = (1 − q)
is stable (orange dotted line). While at β = 5/2
both 1-RSB solution and RS are locally stable,
but 1-RSB dominate.
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Figure 2.3: Each time a stationary solution
of δF/δλ = 0 has a node of the k-RSB ansatz
which lies above λ◦(q) this node is unstable to
small perturbations, since a further local replica
step can lower the free energy. From this fol-
lows the condition for the stability of a r-node:
λ∗(qr) < λ◦(qr), which gives the standard sta-
bility condition for 1-RSB [CS92].

simplest possible concave solution is the paramagnetic RS solution (q0 = 0) (see
section 2.1.5), which in our functional language corresponds to λ∗(q) = (1 − q) ≡
λpara(q). This can be checked to be stable for any temperature, but is not always
the optimal solution. The second simplest choice is the 1-RSB (with q0 = 0) λ(q) =
θ(1 − q)(1 − q)+θ(q1 − q)(q1 − q)(1 − x), which bifurcates from the paramagnetic
solution at TMCT but remains subdominant until T < TK, where it becomes the
dominant one. We now show that further RSB steps do not produce stable solutions.
This is a general statement each time that λ◦(q) is a convex function, at most, one
can have a 1-RSB stable solution [CS92]. Here we present a graphical proof. The
first observation is that if the paramagnetic solution λpara(q) < λ◦(q) for 0 < q < 1,
since it is an upper-bound for any λ∗(q) (from the convexity and the right border
condition ∂λ∗(1) = −1), it is evident that any attempt to put nodes (RSB steps)
locally increases the total free energy (see fig. 2.3 A). This reasoning can be extended
to each kind of solution in the region of small q in which λ∗(q) < λ◦(q). It also
always gives the condition q0 = 0, which is connected to the partitioning of the
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phase space. The second statement is that if λpara(q) intersects λ◦(q), in the region
where λpara(q) > λ◦(q) there cannot be any node, this would be unstable (see fig.
2.3 B). This gives the generalized stability condition:

λ∗(qr) < λ◦(qr) (2.46)

which when specializing to the highest overlap qk reads:

(1− qk)−2 > β2f ′′(qk) (2.47)

because λk = 1−qk. This condition defines the stability of states and in the literature
it also corresponds to the Plefka stability criterion [Ple82]. The last statement is that
for q near 1 and larger than the left-most intersection, there can be at most one node
(see fig. 2.3 C). This is a sketch of proof which can be formally characterized and it
is simply extensible to any number of RSB steps with fullRSB enclaves (see fig. 2.3
D). Moreover, it gives a simple algorithm to find solutions that are stable: starting
from high temperature and following bifurcations at the intersection of a section of
λ∗(q) with λ◦(q). For example, the bifurcation point T = TMCT emerges exactly when
it is locally stable to create a node.

We have shown that in p-spin models, in order to have at most a 1-RSB solution,
the necessary condition is given by the the convexity of λ◦(q):

∂2λ◦(q)

∂q2
≥ 0 ∀q ∈ (0, 1] (2.48)

This is verified by both our reference models, the pure 3-spin and mixed (3+4)-spin.
Since our main interest is to study a mean-field model that presents a RFOT and
1-RSB structure, as we will see, it is a necessary condition to have a well defined frag-
mentation of the phase space. For the rest of this thesis, we will restraint ourselves
to models that satisfy the above convexity condition.

This formalism to study the k-RSB solution has been introduced in appendix 2
of [CS92], and has been explored in more details in a series of papers [CL04; CL06;
CL07]. In this section we have revisited this formalism in what we hope to be a more
intuitive presentation.
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2.2 Following States

In pure p-spin models there exists a bijective map that connects each minimum of
the energy landscape EIS with a minimum of the free energy landscape Fmin at
temperature T :

EIS

T−−−−→ Fmin(T ) (2.49)

Each energy minimum, followed in temperature, gets dressed by thermal fluctuations:
〈E〉 = EIS + ∆E(T ), until it becomes unstable at a certain temperature Tsp(EIS).
This map is obtained by a simple manipulation of the TAP (Thouless Anderson
Palmer) free energy [TAP77]. There is another complementary way of following
free energy minima, starting from the ones at equilibrium in the dynamical phase
(Tk < T < TMCT ):

Fmin(Teq)
T−−−−→ Fmin(T ) (2.50)

A typical free energy minimum at the equilibrium temperature Teq can also be fol-
lowed to a different temperature T , by the Franz-Parisi (FP) potential [FP95]. The
same kind of reasoning can be extended to mixed models, but the troubles arises.
Energy minima there cannot be followed in temperature, and equilibrium configura-
tion can only be partially followed with the FP potential. In what follows, I will show
the exact matching of the two methods for pure models and highlight differences and
limits of this approach in mixed models.

2.2.1 Following Energy Minima

Let’s start directly from the TAP free energy that will be recovered in the dedicated
appendix A.4:

− βFβ[m] =
N

2
log(1− q)− βH[m] + β2N

2

(
f(1)− f(q)− (1− q)f ′(q)

)
(2.51)

where q =
∑

im
2
i /N . This is the free energy of a spherical p-spin model with average

magnetization per site mi, before averaging over the quenched disorder J . We are
considering a general mixed structure H[m] =

∑
p αpJp •m⊗p. We now rescale the

magnetization as mi → σiq
1/2, with

∑
i σ

2
i = N , which clarifies the connection to the

zero temperature energy landscape:

Fβ[m] =
∑
p

αpHp[σ]qp/2 +NRβ(q) (2.52)
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Figure 2.4: Following of TAP states in the 3-spin model. Three different energies of inherent
structures (T = 0) are considered: EIS = Eth, (Eth +E0)/2, E0. The energies of the corresponding
basins are followed in temperature, until they lose their stability at Tsp(EIS) (red line). The dashed
violet line highlights the states which are typical at equilibrium between TK and TMCT and it
coincides with the energy of the paramagnetic state.

where Hp[σ] = Jp • σ⊗p is the p-body interaction term in the Hamiltonian and

Rβ(q) = −β−1

2
log(1− q)− β

2

(
f(1)− f(q)− (1− q)f ′(q)

)
. Stationary points of Fβ[m]

are defined by the conditions:

∂miFβ[m] = 0 ⇒

{
∂σi
(∑

p αpq
p/2Hp[σ] + µσ2/2

)
= 0∑

imi∂mi
(∑

p αpHp[σ]qp/2 +NRβ(q)
)

= 0
(2.53)

where µ is a Lagrange multiplier that enforces the spherical constraint
∑

i σ
2
i = N .

The second equation gives the extremization in the radial direction mi. To have the
stability in the radial direction, we need to consider a further equation:∑

ij

mimj∂mi∂mj
(∑

p

αpHp[σ]qp/2 +NRβ(q)
)
> 0 (2.54)

Now we select one inherent structure σIS i.e. a configuration that corresponds to
a minimum of the energy landscape:

σIS s.t. H ′[σIS] + µσIS =
∑
p

αpH
′
p[σIS] + µσIS = 0 (2.55)



52 2. PROTOTYPICAL MODEL OF SUPERCOOLED LIQUID

where H ′ stands for ∂σiH. The corresponding energy is H[σIS] = NEIS. We wish
to follow this energy minimum in temperature. In pure models (H[σ] = Hp[σ])
something special occurs. The homogeneity of the Hamiltonian is then such that
a σIS satisfying (2.55) also satisfies the first equation of (2.53). Geometrically this
means that in pure models each stationary point of H[σ] on the sphere of radius

√
N

is followed radially by Fβ[m]. However, this is not possible in mixed models. One
could imagine to repeat the same construction at a different temperature, finding a
minimum of Fβ[m] and then changing the temperature a little bit. This minimum
could not be radially followed. This is sometimes related to a physical impossibility.
The so-called chaos in temperature [RC03], i.e. the overlap between any pair of
equilibrium states at different temperatures is zero. And it has been shown to hold
in mixed p-spin models at low temperatures [CP17; ASZ18].

Now we concentrate on p-spin pure models and study the properties of the ra-
dially followed minima. We have a σIS of energy EIS. For convenience, we define
HTAP(q, EIS) = EISq

p/2. The spherical part of (2.53) is automatically satisfied, while
for the radial part we have:

∂q
(
NHTAP(q, EIS) +NRβ(q)

)
= H ′

TAP
+R′β(q) = 0 (2.56)

This is a second order equation in inverse temperature β with a stable branch:

βTAP(q, EIS) = (1− q)−1
(√

H ′2
TAP
− f ′′p (q)−H ′TAP

)−1
(2.57)

where fp(q) = 1/2qp since we are specializing to pure models. The condition of
stability (2.54) then reads in terms of q∗:

∂2
q

(
HTAP(q, EIS) +Rβ(q)

)
> 0 ⇒ (E2

IS
− 2

p− 1

p
)(q − p− 2

p
) < 0 (2.58)

from which we define:

qsp =
p− 2

p
Eth = −

√
2
p− 1

p
(2.59)

qsp is the minimal overlap when following minima of energy EIS in temperature,
below which they become unstable. Eth, as we will argue later in section 2.3.1, is the
energy of highest stable stationary points (minima) of the energy landscape. The
relative spinodal temperature is:

Tsp(EIS) ≡ β−1
TAP

(qsp, EIS) =

√
(p− 2)p−2

pp

(√
E2

IS
p2 − 2p(p− 1)− EISp

)
(2.60)

∗∑
ijmimj∂mi∂mjg(q) = 4∂2

qg(q)q2 + 2∂qg(q)q, but ∂qg(q) = 0
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Given (2.57), we can follow in overlap q the free energy (2.52) of the state ∗ with
inherent structure energy EIS:

FTAP(q;EIS) = EISq
p/2− β−1

TAP

2
log(1− q)− βTAP

2

(
f(1)− fp(q)− (1− q)f ′p(q)

)
(2.61)

where βTAP ≡ βTAP(qsp, EIS). And the relative energy of the state is†:

ETAP(q;EIS) = EISq
p/2 − βTAP(f(1)− fp(q)− (1− q)f ′p(q)) (2.62)

In figure 2.4 a parametric plot of the energy versus temperature of the followed state
(changing overlap q) is shown. At T = 0 the state is very narrow (one configuration)
and q = 1. Upon increasing temperature, each state opens up and q grows until the
spinodal qsp is reached. The deeper is the state, the later it melts in temperature,
therefore, the last typical states that melt are those with the lowest inherent structure
energy . As we will see in the next section, E0 is the energy above which the number
of minima of the energy landscape starts to be exponential in the size of the system
i.e. log(#E0)/N = 0. And the corresponding melting temperature TTAP (E0) is the
highest one at which followed states disappear.

2.2.2 Following Equilibrium States

Another way of following states in temperature is to start from the ones that are
typical at equilibrium i.e. for temperatures TK < T < TMCT (see fig. 2.4). To
do so, we introduce the Franz-Parisi potential [FP95]. The idea is to extract a
reference configuration σ0 at equilibrium at inverse temperature β′ and then evaluate
the free energy (FP-potential) of a second replica σ1 which is extracted at inverse
temperature β constrained to be at a fixed overlap q01 from σ0. Let’s suppose that
we have extracted σ0 at β′, the potential of the second reads:

− βVJ(q01, β
′;σ0) = log

(∫
SN

Dσ1δ
(
σ0·σ1

N
− q01

)
e−βHJ [σ1]

)
(2.63)

where J is a given sample of disorder. Now we suppose that the first replica is
extracted at equilibrium above that Kauzmann transition temperature TK , where
the annealed calculation is valid i.e. the average over the disorder commutes with

∗state, basin and free energy minimum are here used interchangeably
†E ≡ ∂β(βF )
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the logarithm:∫
dJP (J) log

( ∫
dσ
e−β

′HJ [σ]

Zβ′

)
= log

( ∫
dJP (J)

∫
dσ
e−β

′HJ [σ]

Zβ′

)
= log

( ∫
dσ

∫
dJPβ(J |σ)

) (2.64)

here
∫
dJP (J) ≡ is another way of writing the average over the disorder. Pβ(J |σ) =

P (J)e−β
′HJ [σ]/Zβ′ is the conditioned probability of having a quenched disorder J

given the configuration σ. This way of reversing the order of conditioning is re-
ferred to as planting [KZ09; ZK16] and can be very useful in simulations [Cha+14b]
(see section 3.3.2). In order to have a configuration that is at equilibrium, one first
extracts the configuration and later the couplings (disorder) that allow the configu-
ration to be at equilibrium. Coming back to the FP potential, we can consider the
σ0 to be a tilting field of the coupling measure P (J). The disorder remains Gaussian
but acquires a finite mean in the space of the Hamiltonians (compare with 2.3):

H[σa]
σ0

= Nβ′f(q0a)

H[σa]H[σb]
σ0

C = H[σa]H[σb]
σ0 −H[σa]

σ0
H[σb]

σ0
= Nf(qab)

(2.65)

the superscript σ0 at the side of the bar indicates the planted(tilting) configuration.
Thus, averaging the potential on the tilted quenched disorder and using the replica
trick:

−βVβ(q01, β
′) = −βVJ(q01, β′;σ0)

σ0
= lim

n→0
∂nZn

β (q01)
σ0

with

Zn
β (q01) =

∫
SN

Dnσa exp(−β
n∑
a=1

H[σa])δ
(
σ0·σ1

N
− q01

) (2.66)

where
∫
SN

Dnσa is the integral over all n replicas over the sphere. By construction

the measure on the σ0-tilted disorder is normalized to one i.e. 1
σ0 = 1. Using 2.65

we can develop the Gaussian disorder in terms of the first two cumulants:

−βVβ(q01, β
′) = lim

n→0
∂n

∫
SN

Dnσa exp
( n∑

a

ββ′f(σ0·σa
N

) +
1

2
β2

n∑
ab

f(σa·σb
N

)
)

(2.67)

we have omitted the δ
(
σ0·σ1

N
− q01

)
which constrains σ0 · σa = Nq01, that is our

constraining parameter. Here, as usual, we pass from the space of configurations σ
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to the space of overlaps q which brings the volume factor (det Q̃)1/2 (see 2.11):

−βVβ(q01, β
′) = lim

n→0
∂n

( n∑
a

ββ′f(q01) +
1

2
β2

n∑
ab

f(qab) +
1

2
log det Q̃+ n logS∞

)
(2.68)

To be compared with the unconstrained replicated free energy (2.13). Here Q̃ is the
(n+1)-overlap matrix that also contains the overlaps with the reference configuration
σ0 (first row and column). The determinant can be rewritten in the n-subspace as:

det Q̃ = det

(
1 qT

01

q01 qab

)
= det(Q− q2

01) (2.69)

In the limit q01 = 0 the unconstrained free energy is recovered (see 2.13). We are
ready to explore the following state procedure. As usual, we must set an ansatz
for the overlap matrix. We take the simplest one, the Replica Symmetric matrix
qab = δab + (1− δab)q, which in the n→ 0 limit gives the potential:

− βV RS

β (q01, β
′; q) = ββ′f(q01) +

1

2
β2
(
f(1)− f(q)

)
+

1

2

(
log(1− q) +

q − q2
01

1− q

)
+ logS∞ (2.70)

This RS solution is replica stable as long as:

q > qRS with qRS s.t. β2f ′′(qRS)(1− qRS)2 = 1 (2.71)

this stability condition is defined in section 2.1.5. We recall that V RS

β (q01, β
′; q) is

the free energy of a state of overlap q at inverse temperature β which is composed
of configurations that are extracted at a fixed distance (overlap q01) from a typical
reference configuration at β′.

To gain insight into the power of this potential, we start by looking at the simple
case in which the constrained configuration is taken at the same temperature as the
reference one i.e. β′ = β. Since the reference and the constrained configuration
(master and slave) are extracted at the same temperature, we expect them to have
a typical overlap between each other q01 which is equal to the overlap of a typical
equilibrium state at that temperature q (which we will check a posteriori to be true).
Putting q01 = q and β′ = β into (2.70) one gets the free energy:

− βV eq
β (q) =

1

2
β2
(
f(1) + f(q)

)
+

1

2

(
log(1− q) + q

)
+ logS∞ (2.72)
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Figure 2.5: Franz-Parisi potential at equilib-
rium for different temperatures. Between Tk
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which the height gives TΣ
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Figure 2.6: Complexity of typical equilibrium
states as a function of temperature. The plot
is for the 3-spin model, but mixed models have
the same behavior.

In fig.2.5 the potential is shown for different temperatures for the 3-spin model, but
its qualitative behavior is very robust upon changing model. Coming from high tem-
perature a metastable minimum first appears at TMCT (Mode Coupling Transition),
until at TK (Kauzmann Transition) the minimum becomes lower than the uncon-
strained one. At this point the RS ansatz is not valid anymore. In order to find the
typical overlap qeq at each temperature, we extremize this potential over q, obtaining
the equation:

∂qV
eq
β (q) = 0 =⇒ β2

eq =
qeq

f ′(qeq)(1− qeq)
(2.73)

This equation relates the overlap of a typical equilibrium state to temperature ∗.
This solution is valid as long as the minimum is locally stable, that is:

∂2
qV

eq
β (q) > 0 =⇒ β2 < β2

mg ≡
1

f ′′(qmg)(1− qmg)2
(2.74)

here the subscript mg stands for marginal, because states that respect this equality
are the ones that are “marginally stable”. This condition is the same that defines
the stability of the RS solution i.e. qmg = qRS (see 2.71). In view of this identity, in
the following, we will sometimes interchange nomenclature. TMCT is by definition the
temperature at which the first stable states appear at equilibrium, therefore, such
that:

βeq = βmg = βMCT =⇒ 1− qMCT =
f ′(qMCT)

qMCTf ′′(qMCT)
(2.75)

∗the same equations is retrieved by the Monasson method imposing x = 1 (see eq. 2.109)
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and then TMCT = (1 − qMCT)
√
f ′′(qMCT). Already at this point we can see that pure

models are easier, since the ratio on the right side of (2.75) simplifies to 1/(p − 1),
where p is the degree of the interaction and we can algebraically find qMCT = p−1

p−2
.

Let’s go back to the equilibrium potential. Subtracting the free energy of a single
state to the free energy of the system, one obtains the logarithm of the number
(complexity Σ) of states that compose the system, as a function of the equilibrium
overlap qeq:

Σeq(qeq) = −βeq
(
V eq
β (qeq)− F an

β

)
=

1

2
β2
eqf(qeq

)
+

1

2

(
log(1− qeq) + qeq

) (2.76)

where F an
β = logS∞+β2f(1) = V eq

β (0) is the free energy of the paramagnetic solution
defined in (2.15) and it is valid since we are considering the reference configuration
above TK. This complexity is plotted in fig.2.6 for the 3-spin model. The point at
which the complexity gets to zero defines TK:

Σeq(qeq) = 0 =⇒ qK
f ′(qK)(1− qK)

f(qK) + log(1− qK) + qK = 0 (2.77)

and TK =
√
f ′(qK)(1− qK)/qK. This concludes the equilibrium analysis.

We have defined a way of selecting equilibrium states. Now we want to follow
them in temperature i.e. keeping fixed β′, but changing β. The FP potential with
two temperatures can be thought as describing an adiabatic annealing protocol in
which the system is prepared at equilibrium and then the temperature of the bath
is slowly changed till β′. The process is adiabatic since the system has the time
to equilibrate in the new basin, but not enough time to cross barriers of order N .
This is a “following equilibrium states protocol”, which we wish to compare with the
“following energy minima protocol” defined in the previous section.

In order to find the dominant states of overlap q at given q01, β
′, β, the poten-

tial (2.70) must be extremized over q. And we must remember that in order to
have the reference configuration inside an equilibrium state βMCT < β′ < βK. This
extremization gives the equation:

∂qV
RS

β (q01, β
′; q) = 0 =⇒ β2f ′(q∗) =

q∗ − q2
01

(1− q∗)2
(2.78)

Moreover, in order to have a stable state we require:

∂2
qV

RS

β (q01, β
′; q∗) > 0 =⇒ β2f ′′(q∗) <

1

(1− q∗)2
+

2(q∗ − q2
01)

(1− q∗)3
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Figure 2.7: Overlap vs temperature of followed states in the 3-spin pure model (left) and 3+4-spin
model (right). States at equilibrium have overlap qMCT < qeq < qK (dashed violet). Four following
state protocols are presented starting from qeq = qMCT + 0.001, qMCT + 0.01, qMCT + 0.05, qK . When
heating them up, each state melts at a different temperature along qsp which in pure models is
qsp = (p − 2)/p. While in pure models all states can be cooled till T = 0, in mixed models the
solution is lost at qmg < 1.

since q∗ − q2
01 = β2(1 − q∗)2f ′(q∗) ≥ 0 this condition is less restrictive than the

condition of stability of the RS solution q∗ > qRS and we forget it. Plugging q∗(q01, β)
back into (2.70) one gets the typical free energy of a constrained state V RS

β (q01, β
′).

Fixing β′, this free energy has typically a double-well shape in q01. One minimum
is always in q01 = 0 and corresponds to the unconstrained system, thus, V RS

β (q01 =
0, β′) = F RS

β . The second minimum at q01 = q̆01 is the interesting one, it says that there
is some organization of configurations in states of overlap q̆01 around the reference
configuration which is thermodynamically favorable. The minimum q̆01 is found by
a further extremization of V RS

β (q01, β
′) with regard to q01

∗:

∂q01
V RS

β (q01, β
′) = 0 =⇒ ββ′f ′(q̆01) =

q̆01

(1− q∗)
(2.79)

And again we plug in q̆01(β, β
′) into (2.70) to obtain the free energy V RS

β (β′) of a
state that is typical at temperature β but near a configuration that is typical at β′.
To have a stable followed state, moreover, we require that the second derivative of
the potential with regard to q01 is stable:

∂2
q01
V RS

β (q̆01, β
′) > 0 =⇒ q < qsp s.t. q̆2

01 >
W (qsp)

2
(1− qsp)

(
q̆01f

′′(q̆01)

f ′(q̆01)
− 1

)
with W (qsp) = 1 + 2β2f ′(qsp)(1− qsp)− β2f ′′(qsp)(1− qsp)2

(2.80)

∗ d
dq01

V RS
β (q01, β

′; q∗(q01, β)) = ∂q01V
RS
β (q01, β

′; q∗) + ∂qV
RS
β (q01, β

′; q∗) dq
∗

dq01
and the second term

vanishes since ∂qV
RS
β (q01, β

′; q∗) = 0
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here q̆01 =
√
qsp − β2(1− qsp)2f ′(q) is the solution of equation (2.78). The subscript

sp stands for spinodal. Whenever this condition is not satisfied, the metastable
secondary minimum disappears and the only stable one remains the paramagnetic
q01 = 0. We say that the state melts. This is the last condition needed to follow states,
at least if we want them to be RS. Resuming, we have two equations (2.78,2.79) in
four variables and two stability conditions, one from the stability of the replica
solution and a second from the stability of the metastable minimum.

Starting from an equilibrium state with overlap qeq at βeq, we now have an implicit
map in temperature qβ(βeq) which is defined over the range:

qsp(βeq) < qβ(βeq) < qmg(βeq) (2.81)

In fig.2.7 the following state overlap q1/T (βeq) of pure and mixed models is compared.
In pure models (left plot) states can be followed up in temperature till qsp = (p−2)/p,
which is equivalent to the condition of stability of TAP states followed in temperature
(see 2.57) and it is independent from the starting temperature βeq. This is not true
in mixed models, where qsp has an explicit dependence on βeq. In both cases, deepest
states (qeq = qK) are the last to melt. Cooling down states, in pure models each
state can be followed till T = 0, where it becomes a single configuration (q = 1)
i.e. inherent structures of the energy landscape. We notice by the way, that states
followed from qeq = qMCT are always marginal, i.e. qβ(βMCT) = qmg(β). Vice versa in
mixed models, if the states are prepared too close to qMCT , the following state solution
is lost at some qmq < 1. This condition comes from the RS stability, therefore, one
can imagine to refine the calculation below this line with a 1RSB step or more (we
will consider it later on). This impossibility of following states is the most intriguing
difference between pure and mixed models and it has huge effects on the out-of-
equilibrium dynamics.

In fig.2.8 we show the phase diagram in T = 1/β and T ′ = 1/β′ for the “following
equilibrium states protocol”. Each protocol consists in starting from the equilibrium
state (blue line T = T ′) and going up or down to heat and cool the state at fixed T ′.
In mixed models the state cannot be followed up to zero temperature in the range
of temperature TSF < T < TMCT .

Now let’s go back to the following states equations (2.78,2.79) and recast them in
a more useful format for future analysis. Instead of writing observables as a function
of β and β′, we use q and β as independent variables. For that we assume that the
map (q, β)→ (β′, β) is bijective. Therefore, we define:

q̆FP(q, β) =
√
q − β2(1− q)2f ′(q)

β′FP(q, β) =
q̆FP

β(1− q)f ′(q̆FP)

(2.82)
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Figure 2.8: T vs T ′ phase diagram of the following state protocol in 3-spin pure model (left)
and 3+4-spin mixed model (right). In pure models the state prepared below TMCT can always be
followed till zero temperature, while in mixed models states prepared between TSF and TMCT get
lost by the RS Franz-Parisi potential

which satisfy (2.78,2.79). Now we can explicitly write the free energy and the energy
of a state as a function of q and β:

FFP(q, β) = −β
2

(
f(1)− f(q) + 2β−1β′

FP
f(q̆FP) + f ′(q)(1− q)

)
− β−1

2
log(1− q)

EFP(q, β) = −β
(
f(1)− f(q)

)
− β′FPf(q̆FP)

(2.83)
These are the (free)energies of states which are dominant between all the q-states
that were followed in temperature from equilibrium till temperature β, which in
general, are not the same q-states that are dominant at β. The equilibrium measure
is tilting the followed states.
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2.3 Counting States

The energy landscape of p-spin models is full of minima. There is a region of energies
for which these minima are exponential in the dimension N of the system. We will
count them as a function of the energy EIS of their bottom and the spectral gap
∆µ of their spectrum, using a revised version of the Bray and More calculation
[BM80]. Furthermore, in pure models, these energy minima can then be followed in
temperature with a bijective map (see section 2.2). This allows us to evaluate the
corresponding number of free energy minima N at any temperature until they melt.
We will show that the same complexity (log N ) can be obtained by directly probing
the free energy landscape at a fixed temperature through a Legendre transform within
the replica formalism, the so-called Monasson method [Mon95].

2.3.1 Counting Energy Minima

Let us consider the stationary points of the Hamiltonian H[σ] on the sphere
∑

i σ
2
i =

N :

H ′i + γσi = 0. (2.84)

where γ is the Lagrange multiplier needed to enforce the spherical constraint. We
wish to classify the stationary points of the Hamiltonian according to the energy of
the bottom:

EIS =
1

N
H[σ] (2.85)

and the value of the radial reaction:

µ = − 1

N

∑
i

σiH
′
i (2.86)

Contracting each side of 2.84 with σi we see that stationary points satisfy γ = µ.
Moreover, we will see that µ is related to the spectral gap of the stationary point.

In pure models µ = pEIS, while in mixed models the relation between EIS and
µ is not univocal and stationary points are found in a whole region of the (EIS, µ)
plane. Now let us consider the Hessian matrix of the stationary points:

Mij = H ′′ij + µδij (2.87)

Hij is a GOE random matrix with variance Var[H ′′ij] = 1
N
f ′′(1) [CGP98; AAC10]. M

has a semicircular spectral distribution with lower edge:

λmin = µ− 2
√
f ′′(1) = µ− µmg = ∆µ (2.88)
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where mg stands for marginal. Stationary points are there-
fore minima if ∆µ > 0 and saddles (or maxima) if ∆µ < 0.
In between, ∆µ = 0 defines the manifold of minima that
are marginal, which will play a crucial role in the out-of-
equilibrium dynamics. ∆µ

µm
g

0

µ

In order to characterize these minima, we count the number of stationary points
of the Hamiltonian H[σ] with fixed energy EIS and radial reaction µ. Because the
complexity, i.e. the logarithm of their number, is self-averaging ∗ we can write:

Σ0(EIS, µ) = log

(∫
SN

Dσδ(NEIS −H) δ(µσ +H ′) | det(µI +H ′′)|
)

(2.89)

The computation of Σ0 is standard, and can be performed in several steps. The
subscript stands for zero temperature. First of all, since the matrix H ′′ is a GOE
random matrix, the distribution of eigenvalues of µI +H ′′ is self-averaging and is a
shifted semicircular:

ρ(λ) =
2

πµ2
mg

√
µ2
mg − (λ− µ)2 (2.90)

The modulus of the determinant | det(µI + H ′′)| is self-averaging and its logarithm
reads:

D(µ) = Tr log(µI +H ′′) =

∫ ∆µ+2µmg

∆µ

dλ log(λ)ρ(λ)

= Re
[ µ

µ+
√
µ2 − µ2

mg

+ log
(
µ+

√
µ2 − µ2

mg

)
− 1

2
− log(2)

]
(2.91)

This is valid also to evaluate the determinant of stationary points with negative gap
∆µ < 0 i.e. saddle points. The imaginary part of this expression gives the proportion
of negative eigenvalues. At this point, we introduce another important observable
connected to the spectrum that will be later useful, the susceptibility of an inherent
structure†:

χ(µ) =
∑
i

χii =
∑
i

∂σi
∂hi

= Tr(µI +H ′′)−1

=

∫ ∆µ+2µmg

∆µ

dλρ(λ)λ−1 =
µ−

√
µ2 − µmg

2f ′′(1)

(2.92)

∗for a self-averaging observable we mean that the fluctuations induced by the quenched disorder

are not thermodynamically relevant i.e. limN→∞(O2 −O2
)/N = 0

†each Gaussian minimum has a cumulant generating function C[h] = 1
2h

T (µI +H ′′)−1h
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Going back to (2.89), in order to evaluate the remaining terms, we assume that the
number of minima N is self-averaging (further developments will be considered in
section 3.2). Opening the delta functions in the Fourier basis we have:

Σ0(EIS, µ) = logN = log

∫
Ds eN(iβ̂EIS−iσ̂·σµ)eiβ̂H+iσ̂·H′ +ND(µ) (2.93)

where
∫

Ds =
∫
SN

Dσ
∫

(2π)−1/2dβ̂
∫

(2π)−N/2D σ̂ and the overline highlights the part
of the integral that depends on the quenched disorder. Since the disorder is Gaussian
(see 2.3):

eiβ̂H+iσ̂·H′ = e
1
2

(iβ̂+iσ̂·∂σ)(iβ̂+iσ̂·∂σ̃)f
(
σ·σ̃
N

)∣∣
σ̃→σ

= exp−N
2

(
β̂2f(σ·σ

N
) + 2β̂σ̂ ·σf ′(σ·σ

N
) + (σ̂ ·σ)2f ′′(σ·σ

N
) + σ̂ ·σ̂f ′(σ·σ

N
)
)

(2.94)

As usual, at this point we do a change of variables from configurations σ and σ̃ to
overlaps q = σ ·σ/N , χ = σ ·σ̂/N and r = σ̂ ·σ̂/N . The choice of using χ as an overlap
variable is on order to recall the susceptibility χ(µ) introduced in (2.92), in fact, as
in Fourier transform the conjugate field σ̂ acts as a derivative i.e. σ̂ · σ =

∑
i ∂hiσi.

The introduced change of variables brings a volume factor 1
2

log(qr − χ2). Putting
all together we have:

Σ0(EIS, µ) = log

∫
DQ eNS(EIS ,µ,Q) +ND(µ) +

N

2
(logS∞ − log 2π)

with

S(EIS, µ,Q) = i(β̂EIS−µχ)−1

2

(
β̂2f(q) + 2β̂χf ′(q) + χ2f ′′(q) + rf ′(q)

)
+

1

2
log(qr−χ2)

(2.95)

where Q stands for all the variables that must be extremized. logS∞ = 1 + log(2π)
that comes from the volume of the sphere and − log 2π that comes from the Fourier
transform. Now taking S(EIS, µ,Q) and extremizing that over r, χ, β̂ in order and
putting q = 1 for the spherical constraint, one finally gets:

S(EIS, µ) = − 1

2f(1)

(
E2

IS
+

(EISf
′(1) + f(1)µ)2

f(1) (f ′′(1) + f ′(1))− f ′(1)2

)
− 1

2

(
1 + log f ′(1)

)
(2.96)

In the case of pure models EIS = −µp, the second term in the first parenthesis
vanishes, and S(EIS) = − 1

2f(1)
E2

IS
− 1

2

(
1 + log f ′(1)

)
. Finally, the general formula for
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Figure 2.9: Complexity of inherent structures as a function of their energy EIS in the (3 + 4)-
spin mixed model. (left): the function Σ0(EIS, µ) is plotted with isoclines every 0.005. (right):
complexity is restricted to dominant stationary points and to marginal minima.

the complexity as a function of the energy of the stationary point EIS and the radial
reaction µ reads:

Σ0(EIS, µ) = max

{
0,Re

[
− 1

2f(1)

(
E2

IS
+

(EISf
′(1) + f(1)µ)2

f(1) (f ′′(1) + f ′(1))− f ′(1)2

)
+

µ

µ+
√
µ2 − 4f ′′(1)

+ log
(
µ+

√
µ2 − 4f ′′(1)

)
− 1

2
log 4f ′(1)

]}
(2.97)

The same result can be found in [ASZ18]. If then, we optimize over µ to get the
dominant minima at fixed energy EIS, we can define the energy of the dominant
inherent structure as a function of their radial reaction:

Edm
IS

(µ) = χ(µ)
(
f(1)− f ′(1)

)
− χ(µ)−1 f(1)

f ′(1)
(2.98)

χ(µ) was defined in (2.92). At this point, we can define the threshold energy Eth
from the energy landscape perspective as:

Eth ≡ Edm
IS

(µmg) = χmg
(
f(1)− f ′(1)

)
− χ−1

mg

f(1)

f ′(1)

with χmg ≡ χ(µmg) = f ′′(1)−1/2

(2.99)

that is the energy of the dominant minima with zero gap (∆µ = 0). This will play
a major role in the out-of-equilibrium dynamics. From the definition of dominant
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minima, the dominant complexity follows:

Σdm
0 (µ) = Σ0(Edm

IS
(µ), µ)

1

2

(
χ(µ)2f ′(1)− f(1)

(
1

χ(µ)f ′(1)
− χ(µ)

)2

+ log

(
1

χ(µ)2f ′(1)

)
− 1

)
(2.100)

As we will see in the next section, this complexity is identical to that one obtained by
Monasson method in the limit of zero temperature. Another important observable
that will play a major role in the out-of-equilibrium dynamics is the derivative of the
complexity with regard to the energy, which can be thought as an effective inverse
temperature:

y =
Σdm

0 (EIS)

∂EIS

=
∂χΣdm

0

∂χEdm
IS

=
1

χf ′(1)
− χ (2.101)

which for threshold minima gives:

yth =
1

χmgf ′(1)
− χmg =

√
f ′′(1)

f ′(1)
− 1√

f ′′(1)
(2.102)

In fig. 2.9 the complexity Σ0 in the (E, µ)-plane is shown. The locus line of dominant
stationary points Edm

IS
and of marginal minima µ = µmg is marked and reported on

the right plot. We notice that, at variance to pure p-spin models, there exists a
whole interval for which Σ0(E, µmg) > 0. The threshold energy Eth corresponds to
the values of the energy that separates minima from saddles on the dominating line.
Notice that this value does not correspond to the most numerous marginal minima,
which occurs for µ = µmg and E > Eth. To conclude, we notice that the same
parabolic shape of complexity that we find here is quite a robust feature in finite size
systems and is the assumption used in the PEL gaussian approximation (see section
1.2).

2.3.2 Counting with a Legendre Transform

Let’s start by a brief introduction to the Monasson method (M). This method was
first envisaged in 1992 [FPV92], when the idea of real replicas was introduced and
applied to the SK model. One year later the method was explored in the p-spin case
and compared to the TAP free energy [KPV93]. Eventually, the idea of using this
replicated system as a general tool to study the complexity of the free energy land-
scape thorough a Legendre transform was established in [Mon95]. Then another
paper [Méz99] remarked the importance of cloning the system and re-explored the
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p-spin model. A pedagogical introduction to this calculation can be found in the
review [Zam10]. For the latest ideas about the subject, we refer the reader to [BV15]
in which the authors consider not only states, but a generic ultrametric tree and
generalize the concept of complexity to arbitrary clusters. Another possible special-
ization of the Monasson method is to use it in an arbitrary constrained situation,
and so, for example doing a Legendre transform of the Franz-Parisi potential. This
allows to evaluate the complexity of constrained states [Cas06; Mor16].

Let’s come back to the complexity. We wish to count the number of free energy
states N (F ) at given inverse temperature β and as a function of the bottom free
energy F of the state. We decompose the partition function as a sum over the states:

Zβ =
∑
σ∈C

e−βH[σ] =
∑
α∈S

∑
σ∈Cα

e−βH[σ]

=
∑
α∈S

e−βFα =

∫
dFP (F )e−βF =

∫
dFe−βF+Σ(F )

(2.103)

where C is the ensemble of all configurations, S the ensemble of states and C α of
configurations belonging to the state α. Here for state, we mean a free energy well,
that since we are in a mean-field model, has extensive barriers (∝ N → ∞). For
mean-field systems, the measure concentrates on the maximum of −βF + Σ(F ) that
gives the usual relation β = ∂FΣ, which is valid at equilibrium. However, at this
point we do not know either F or Σ(F ). In order to extract some information at
the level of states, we need to tilt the Boltzmann measure at the level of F . For
that, we introduce the conjugated variable x s.t. xβ = ∂FΣ as a minimization of
−xβF +Σ(F ). This will allow us to rebuild Σ(F ). Thus, we have the tilted partition
function:

Zβ(x) =
∑
α∈S

e−xβFα =
∑
α∈S

Zx
α (2.104)

Following the replica mindset we will consider x an integer variable, the number of
clones (copies of the system), do standard manipulation and analytically come back
to real x. The n-replicated partition function of the tilted system becomes:

Zn
β (x) =

(∑
α∈S

Zx
α

)n
=
(∑
α∈S

( ∑
σ∈Cα

e−βH[σα]
)x)n

(2.105)

the tilting field x induces a replica breaking step in the nx-
overlap matrix at the level of the overlap q. At this point
we come back to the p-spin model. We restrict the study to
the class of models f(q) whit at most a 1-RSB structure of
the solution (see section 2.1.7).

0q

q

q

nx

x



68 2. PROTOTYPICAL MODEL OF SUPERCOOLED LIQUID

By spherical symmetry, these models always have a zero overlap between configu-
rations belonging to different states i.e. σ∈Cα · σ∈Cβ = 0, which gives the condition
q0 = 0 (see equation 2.30). The overlap matrix has a 1-RSB structure (see 2.26) with
only q ≡ q1 to be minimized over:

logZβ(x) = inf
q

[−xβF 1RSB

β (x, q)]

=
1

2

(
xβ2
(
f(1)− (1− x)f(q∗)

)
+ log

1− (1− x)q∗

1− q∗
+ x log(1− q∗)

)
(2.106)

where q∗ = q∗(x) is the value of q which minimizes the x-tilted free energy:

∂q logZβ(x) = 0 ⇒ β2f ′(q∗) =
q∗

(1− q∗)(1− (1− x)q∗)
(2.107)

Since the states are orthogonal, the free energy 2.106 can also be thought as x times
the RS free energy plus an entropic correction:

logZβ(x) = inf
q

[xβF RS

β (q) + log
1− (1− x)q

1− q
] (2.108)

the entropic correction comes from the change in available volume, having fixed x
clones to be in the same state. For x > 1 a positive contribution, and negative
otherwise.
At this point we notice a peculiar fact (already mentioned in [Méz99]). In building
ultrametric matrices, the principle is to order the overlaps boxes. Thus nx < x < 1
if x < 1 and nx < 1 < x if x is greater than 1. This second order reverts the usual
structure of 1RSB for which the diagonal is built by ones. This to say that from
the mathematical point of view, when passing x = 1, one should be very careful.
We won’t spend more time on this, and we blindly accept that saddle points are
analytically continuous upon changing x around 1. For more details on the Monasson
analysis for x > 1 we refer to a manuscript in preparation [Fol+20].

Let’s come back to the main calculation. The solution ?? for the optimal overlap
is stable as long as:

∂2
q logZβ(x) < 0 ⇒ (1− x)x

( 1− q∗2(1− x)

(1− q∗)2(1− q∗(1− x))2
− β2f ′′(q∗)

)
< 0

This is the longitudinal stability condition (see section 2.1.5) that must be flanked
by the marginal stability of the states β2f ′′(q∗) − (1 − q∗)2 < 0 which is ensuring
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that additional steps of replica breaking are not needed (section 2.1.5 and 2.1.7). To
simplify calculations, we revert the relation and write:

xM(q, β) =
1

β2f ′(q)(1− q)
− (1− q)

q
(2.109)

where the superscript * is omitted and the subscript M stands for Monasson. At
each inverse temperature β and at each overlap q corresponds a typical state of
free energy F (q) with a tilting field x(q) = β−1∂FΣ(F )|q. At this point, we remark
that the xM = 1 is by construction selecting equilibrium states and gives the same
equation that was obtained for equilibrium states with the FP equilibrium potential
(see 2.73).

As the entropy S(E) is the Legendre transform of the free energyG(β) = −βF (β),
the complexity Σ(F ) is the Legendre transform of G(y) = logZβ(x) where the con-
jugated field is y = βx.

Σ(F ∗) = sup
y

[G(y) + yF ] = G(y∗)− y∗∂yG(y∗) = y2 ∂

∂y
(y−1G(y))

∣∣∣
y∗(F ∗)

(2.110)

with y∗ s.t. ∂yG(y∗) = −F ∗. Thus, the free energy of a state is:

FM(q, β) = −∂yG(y∗) = −β−1∂x logZβ(x)

= −β
2

(
f(1)− f(q) + 2xMf(q) + (1− q)f ′(q)

)
− β−1

2
log(1− q)

(2.111)

And its energy:
EM(q, β) = −β

(
f(1)− f(q)

)
− βxMf(q) (2.112)

where xM ≡ xM(q, β). In pure-models this (free)energy is the same obtained by fol-
lowing TAP states in temperature, starting from the minima of the energy landscape
(see section 2.2). For what concerns the complexity, using (2.110) we have:

ΣM(q, β) = x2 ∂

∂x
(x−1 logZβ(x))

∣∣∣
y∗

=
1

2

(
− β2x2

M
f(q)− qxM

1− (1− xM)q
+ log

1− (1− xM)q

1− q

) (2.113)

We notice, that for any temperature β > βK, taking states that have zero complexity
ΣM(q, β) = 0, corresponds to selecting the condensed 1RSB states that dominate
the partition function (found in 2.1.6). Thanks to the Monasson method, we have
evaluated xM , FM , EM ,ΣM as a function of q and β. We go back to the complexity
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of dominant minima of the energy landscape Σdm(µ) defined in the previous section
(2.100) and compare it with ΣM(q, β → ∞). Using the change of variables q →
1− χβ−1 and taking the limit β →∞ we obtain the complexity:

ΣM(χ) =
1

2

(
χ2f ′(1)− f(1)

(
1

χf ′(1)
− χ

)2

+ log

(
1

χ2f ′(1)

)
− 1

)
(2.114)

which is exactly the complexity of dominant inherent structure Σdm(µ) written in
terms of χ.

2.3.3 Universal Complexity

In this small section, we wish to introduce a way of writing the complexity that
directly matches the three complexities introduced so far: Franz-Parisi equilibrium
complexity Σeq

FP(qeq), Monasson complexity ΣM(q, β) and zero temperature dominant
complexity Σdm

0 (µ). Let’s introduce the Universal Complexity:

ΣUN(K, q) =
1

2

(
−(1−K)2

K

f(q)

qf ′(q)
+K − log(K)− 1

)
(2.115)

Though different choices of the variable K we recover the three different complexities.
The M complexity at general β:

KM =
β2f ′(q)(1− q)2

q
=⇒ ΣUN(KM , q) ≡ ΣM(q, β) (2.116)

The FP complexity at equilibrium:

Keq = 1− qeq =⇒ ΣUN(Keq, qeq) ≡ Σeq
FP

(qeq) (2.117)

The dominant complexity at T = 0:

K0 = χ2f ′(1) =⇒ ΣUN(K0, 1) ≡ Σdm
0 (χ) (2.118)
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2.4 Three ways of Selecting States

In this section, I will try to put forward the analogies and differences between three
methods of selecting states: the Thouless-Anderson-Palmer (TAP) approach from
zero temperature, the Monasson (M) approach from fixed temperature and the Franz-
Parisi (FP) approach from equilibrium. The three methods turn out to select the
same states in pure models, while in mixed models the situation is much more com-
plex. Temperature chaos does not allow to follow energy minima. Moreover the FP
and M methods select different states at a same condition. In particular FP selects
a sub-portion of all available states identified by M at low temperature.

2.4.1 Pure Models: Perfect Matching

As we have seen in section 2.2, in pure models, one can follow minima of the free
energy landscape from zero temperature until they melt; deeper minima do so at
higher temperatures. Each minimum is identified by its inherent structure energy
EIS and by the free energy of its basin FTAP(EIS, β). The EIS ranges between E0,
the energy of the lowest lying minima, which are extensive in number, and Eth,
the energy of the highest stable minima (see section 2.3), which are also the most
numerous. The peculiar fact about pure models is that the only marginal states of the
free energy landscape (with zero gap spectrum) are the threshold ones (the highest
and most numerous stable minima). The same map that allows to follow minima
by heating them up, can be also built from the equilibrium measure through the FP
construction. The so built potential can be considered as the analytical equivalent
of a slow annealing in temperature, which takes a state at equilibrium and brings it
to a second temperature. The third way of analyzing the free energy landscape is to
directly fix a temperature and select the states based on their energies. It turns out
that at each temperature, typical states of given energy are the same as those which
are typical at zero temperature or at equilibrium followed with their multiplicity.

A simple way of resuming this equivalence is to imagine each following minima
protocol as a rope in free energy, which can be indexed by the value of its zero
temperature inherent structure minima EIS (TAP), or by the temperature at which
the state is at equilibrium β′ (FP). The number of ropes can then be counted at each
temperature, giving the same result (M).

To further clarify the formal equivalence between the three methods, let’s consider
the energy of a state at inverse temperature β and with overlap q (see eqs. (2.62),
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(2.83) and (2.112)):

EM(q, β) = −β
(
f(1)− f(q)

)
− βxMf(q)

EFP(q, β) = −β
(
f(1)− f(q)

)
− β′FPf(q̊FP)

ETAP(q, EIS) = −β (f(1)− f(q)) + EIS qp/2 − βf ′(q)(1− q)
(2.119)

where ETAP(q, EIS) is by definition valid only for pure models i.e. f(q) = qp/2. Let’s
start by comparing EM(q, β) and EFP(q, β), which are equivalent if:

βxMf(q) = β′FPf(q̊FP) (2.120)

recalling the definitions eqs. (2.82) and (2.109) we obtain the condition:

f(q)

qf ′(q)
=

f(q̊FP)

q̊FPf ′(q̊FP)
(2.121)

which is identically satisfied only for pure models. This means that selecting states by
M or FP is equivalent in pure models, where also the TAP free energy protocol is well
defined. In order to find the connection between EFP and ETAP we look at equilibrium
states. These, in the M construction, are defined by the condition xM = 1 and in
FP by ∂qV

eq
β (q) = 0. The equation that relates their overlap and the temperature at

which they are at equilibrium is:

βeq(qeq) =

√
qeq

(1− qeq)f ′(qeq)
with qK < qeq < qMCT (2.122)

where qMCT is the overlap above which equilibrium states become unstable, and qK
is the overlap below which their number of them becomes sub-extensive. The corre-
sponding energy of equilibrium states is:

EM(qeq) = EFP(qeq) = −βeq(qeq)f(1) (2.123)

which is the paramagnetic energy in the region TK < T < TMCT where the paramag-
netic state is partitioned in an exponential (in N) number of states. In pure models,
for each β between βMCT and βK the equilibrium state can also be reached following
the TAP energy up to β. This maps inherent structures to equilibrium states. And in
particular, labeling equilibrium states by their equilibrium overlap qeq and inherent
structures by their energy EIS:

ETAP(qeq, EIS) = EFP(qeq, βeq)

⇒EIS(qeq) = −βeqf(qeq)− βeqf ′(qeq)(1− qeq)
q
p/2
eq

(2.124)



74 2. PROTOTYPICAL MODEL OF SUPERCOOLED LIQUID

0.4 0.5 0.6 0.7 0.8
T

-0.95

-0.90

-0.85

-0.80

-0.75

-0.70

Energy

q=
qsp

=1/3

q=qMCT=1/2

q=2/3

x=
1

x=2

x=
1/

2

TK TMCT

E pm

ETAP
(E th

)

ETAP
(E0

)

Figure 2.10: Following of states in energy in the 3-spin model. TAP states followed from T = 0,
FP states followed from T = Teq and M states sampled for each temperature. In pure models
the three methods coincides. Heating the systems threshold states Eth are the first to melt, while
deepest states E0 are the last. Isocline at constant x and constant q are shown.

where βeq ≡ βeq(qeq). If now one evaluates the complexity of equilibrium states as a
function of the overlap qeq (see 2.76) and compares it with the complexity of energy
minima in pure models through the map (2.124), the following identity is obtained:

ΣFP(qeq) = Σdm
0 (EIS(qeq)) (2.125)

One can further take any followed state by TAP or by FP at any temperature and
compare its complexity with that obtained by M, obtaining:

ΣFP(q, β) = ΣM(q, β) (2.126)

In 2.10 the energy of the states versus temperature is shown for the three different
methods. As we have shown, by fixing (q, β) we have unambiguously defined the
state, no matter what method is used to select it.

Finally, we notice that there is a region above TMCT within which, given the
temperature, there exists two different overlap qa and qb with the same x. This
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means that the configurational entropy is non concave with regard to the free energy
of the basin. This could be interesting if read in correspondence to finite dimensional
system, since it is signaling a phase transition in free energy of basins. It could be
that the mean-field counterpart of the developing of two different length scales in the
diffusion processes.

2.4.2 Mixed Models: which States are Selected?

The three methods of selecting states (TAP,FP and M) are not identical in mixed
ones. Here we remark, once again, that many properties of pure models are very
singular. It would suffice to slightly perturb their Hamiltonian with a small field to
lose all the correspondences we have described in the previous section. We have seen
(section 2.2) that in pure models, following TAP states in temperature is equivalent
to finding Hamiltonian minima on the N-dimensional sphere and follow them radially.
This is not valid in mixed models and, for which, until now, there is no analytical way
to follow their TAP states in temperature. And moreover, in some energy regions
this is a physical impossibility, since there is chaos in temperature.

It’s however still possible to follow an equilibrium state, using the FP potential.
Even though there are fundamental differences with pure models, many qualitative
features remain true. As we already noted, in mixed models, states prepared near
TMCT are very simple to lose, upon both heating them and cooling them (see bottom
inset fig. 2.11). In particular, at low temperature there is a range of followed states
which are lost and there has been, untill now, no analytical way to follow them
further. The interesting thing is that there are some regions in which following the
states would anyhow be impossible, due to the aforementioned chaos in temperature.

The last way to select states is by tilting the measure, which inflates the free
energy of some states more than others. This is the Monasson method. This method
cannot follow states. What it does is to scan the landscape of states at any given
temperature, counting and weighting them. In pure models, selecting dominant
states of given overlap q at temperature T is equivalent to looking at followed states
of overlap q at temperature T . It is not true in mixed models. This can be seen in
figure 2.11:TOP, where the region of possible energies of followed states (FP: purple)
is compared to the the region of possible energy of selected states (M: green). Only
on the equilibrium line x = 1 between TK and TMCT do the two methods agree, by
definition. The FP region is defined by the locus of energies compatible with states
followed from equilibrium. While the M region is defined by the condition of positive
complexity ΣM(q, β) > 0. Going down in temperature, the FP-region shrinks and the
number of states diminishes with regard to the M region. Going up in temperature,
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followed states are more numerous than typical ones, to the point that some followed
states exist where no states are typically selected by M method. This phenomenology
is highlighted in figure 2.11:BOTTOM, where complexity as a function of the energy
of the state Σ(E) is shown for both methods at different temperatures.
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2.5 Mean Field Dynamical Equations with Cavity

Method

The Langevin dynamics of a mean-field model can be translated into a single com-
ponent dynamics with colored noise and a memory kernel. This is a general result
obtained each time a Markovian dynamics is projected onto a subspace of the origi-
nal space (see chapter 8 [Zwa01]). Here, in order to derive this effective equation of
motion, we use the so-called cavity method [MPV87]. For another mean-field model,
the so obtained equation was shown to be equal with the one obtained through the
Martin-Siggia-Rose-Jensen-De Dominicis (MSRJD) path-integral method [Ago+17].
A similar derivation to the one here presented can be found in the appendix of
[FM94]. Given the system of N spins, the spin σ0 is added and its dynamics is
evaluated self-consistently. Two main contributions arise: a cavity field generated
by all the other N spins (colored noise Ξ(t)) and a self-reaction field induced by σ0

through all the other spins (memory kernel M(t, t′)):

σ̇0(t) = −µσ0(t) + Ξ(t) +

∫ t

dt′M(t, t′)σ0(t′) (2.127)

where µ enforces the spherical constraint. The goal is to evaluate Ξ(t) and M(t, t′)
for the mixed p-spin spherical model. Let’s start by recalling the Langevin equation
for the system:

σ̇i(t) = −µσi(t)−H ′i(t) + ξi(t) (2.128)

where i = 1...N , H ′i(t) stands for ∂σiH[σ(t)] and ξ is a white noise with variance 2T
i.e. 〈ξi(t)ξj(s)〉 = 2Tδijδ(t − t′) . Given an observable O, its linear response to a
small time dependent perturbation of the Hamiltonian δH(t) can be written as:

δO(t) =

∫ t

ds
δO(t)

δH ′j(s)
δH ′j(s)

We have decomposed the perturbation induced on O by δH in terms of the linear
response fields δH ′j(s), since these are the ones that directly influence the Langevin
dynamics of the spins σj.

At this point, we start the cavity calculation. We introduce a new spin σ0 with the
relative couplings, that induces a small perturbation of the Hamiltonian δH = H ′0σ0,
which linearly perturbs the dynamics of the other N spins σi(t)→ σi(t) + δσi(t):

δσi(t) =

∫ t

ds
δσi(t)

δH ′j(s)

δH ′j(s)

δσ0(s)
σ0(s) =

∫ t

dsRij(t, s)H
′′
j0(s)σ0(s) (2.129)
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where H ′′i0 ≡ ∂σ0H
′
i is a row of the Hessian and Rij(t, s) ≡ δσi(t)

δH′j(s)
is the response of

the system. Given the perturbed σi(t) + δσi(t), the equation of motion for σ0 reads:

σ̇0(t) = −µσ0(t)−H ′0[{σi(t) + δσi(t)}] + ξ0(t)

≈ −µσ0(t)−H ′0[{σi(t)}] +

∫ t

dsH ′′0i(t)Rij(t, s)H
′′
j0(s)σ0(s) + ξ0(t)

(2.130)

where H ′0[{σi(t)}] depends on the unperturbed spins σi(t) which are uncorrelated
and therefore, they all give independent contributions. Doing a direct comparison
with (2.127) we have the colored noise:

Ξ(t) = −H ′0[{σi(t)}] + ξ0(t) (2.131)

And the memory kernel:

M(t, s) = H ′′0i(t)Rij(t, s)H
′′
j0(s) (2.132)

Now let’s average (2.130) over the quenched disorder. We recall that at the leading
order in N , we have H ′i[σ]H ′j[τ ] = δijf

′(σ · τ/N) and H ′′ij[σ]H ′′kl[τ ] = N−1δ(ij)(kl)f
′′(σ ·

τ/N) (see appendix A.1). Therefore, the memory part of the colored noise gets:

〈H ′0[{σi(t)}]H ′0[{σi(s)}]〉 = 〈δ00f
′(
σ(t) · σ(s)

N
)〉 = f ′(C(t, s)) (2.133)

where we have defined the correlation function C(t, s) ≡ limN→∞〈σ(t)·σ(s)〉/N . The
equality must be read in the thermodynamic limit N → ∞. The second equality
comes from the concentration of the correlation in the thermodynamic limit, i.e.
〈f ′()〉 = f ′(〈〉). For the memory kernel we have:

M(t, s) = 〈H ′′0i(t)
δσi(t)

δH ′i(s)
H ′′i0(s)〉

= 〈f ′′(σ(t) · σ(s)

N
)〉〈

N∑
i

δσi(t)

δH ′i(s)
/N〉

= f ′′(C(t, s))R(t, s)

(2.134)

where R(t, s) ≡ 〈
∑N

i
δσi(t)
δH′i(s)

/N〉 is the local response function. The fact that we have

taken only the diagonal terms i = j in the response is because all non diagonal terms
are suppressed by N−1 in the thermodynamic limit. This can directly be seen in the
correlation of gradients H ′i[σ]H ′j[τ ] = δijf

′(σ · τ/N) +O(N−1) (appendix A.1).



80 2. PROTOTYPICAL MODEL OF SUPERCOOLED LIQUID

We remark that the parameter µ must enforce the spherical constraint at every
time, so in general it has a time dependency that can be fixed a posteriori such that
limt→t′ C(t, t′) = 1.

Rewriting all terms together, we get the stochastic equation with memory:

σ̇(t) = −µσ(t)−
∫ t

dsf ′′(C(t, s))R(t, s)σ(s) + Ξ(t)

〈Ξ(t)Ξ(s)〉 = 2Tδ(t− s) + f ′(C(t, s))

(2.135)

This equation describes the dynamics of a generic component i of the spin σ and will
be our point of departure for equilibrium and out-of-equilibrium computations.

2.5.1 Equilibrium Equations

At equilibrium the dynamics follows two general laws: time translation invariance
(TTI) of two-times observables and the fluctuation dissipation theorem (FDT). The
first gives that the correlation and the response depend on the time differences:

C(t, t′)
TTI
==⇒ C(t− t′)

R(t, t′)
TTI
==⇒ R(t− t′)

(2.136)

And FDT relates the correlation and the response of the system through the tem-
perature of the thermal bath β−1:

β∂t′C(t, t′)
FDT
= R(t, t′) (2.137)

We are ready to look at the equilibrium dynamics of the mixed p-spin spherical
model. Putting together 2.127,2.133,2.134 and using TTI and FDT we get:

σ̇(τ) = −µσ(τ) + Ξ(τ)− β
∫ τ

0

dsf ′(C(τ − s))σ̇(s)

〈Ξ(τ)Ξ(0)〉 = 2Tδ(τ) + f ′(C(τ))

(2.138)

where we have used integration by parts and have omitted the subscript 0, because
all the spins are equivalent after averaging over the quenched disorder. This is
the stochastic equation of motion that describes the dynamics of a typical spin in
equilibrium at β.
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2.5.2 Equations for Correlation and Response

Given the dynamical equations just defined in 2.135, we write the corresponding
equations for the correlation C(t, t′) and the response R(t, t′). This is possible since
the noise Ξ(t) is Gaussian, and therefore, all correlations can be decomposed in two-
points correlations, the so-called Wick theorem (see first chapter [Zin02]). To obtain
the equation for C(t, t′) ≡ 〈σ(t)σ(t′)〉, we multiply both sides of (2.135) by σ(t′) and
average over the colored noise Ξ.

(∂t + µ)〈σ(t)σ(t′)〉 = −
∫ t

dsf ′′(C(t, s))R(t, s)〈σ(s)σ(t′)〉+ 〈Ξ(t)σ(t′)〉 (2.139)

Using Wick theorem the last term becomes:

〈Ξ(t)σ(t′)〉 =

∫
ds〈Ξ(t)Ξ(s)〉〈δσ(t′)

δΞ(s)
〉 =

(
2Tδ(t− s) + f ′(C(t, s))

)
R(t′, s) (2.140)

where we used the fact that the noise Ξ acts as an external field h, and thus 〈 δσ(t′)
Ξ(s)
〉 =

〈 δσ(t′)
h(s)
〉 ≡ R(t′, s). This term gives non-null contributions only for s < t′, due to the

causality of the response. For the equation of motion of the response R(t, t′) we
differentiate both sides of (2.135) by h(t′), obtaining:

(∂t + µ)〈 δσ(t)

δh(t′)
〉 = −

∫ t

dsf ′′(C(t, s))R(t, s)〈 δσ(s)

δh(t′)
〉+ 〈 δΞ(t)

δh(t′)
〉 (2.141)

where 〈 δΞ(t′)
δh(t)
〉 = δ(t− t′).

For future reference we also give the formula for the energy:

E(t) ≡ 〈H[σ(t)]〉 = −
∫ t

f ′(C(t, s))R(t, s)ds (2.142)

To close the section, let’s discuss the starting condition, which we omitted so far.
Let’s suppose that the system is at equilibrium at inverse temperature β′ until time
t = 0. Then, both TTI and FDT are satisfied for t < 0, and the first part of the
integral in (2.139) reads:∫ 0

−∞
dsf ′′(C(t, s))R(t, s)C(s, t′) = β′

∫ 0

−∞
ds∂sf

′(C(t, s))C(s, t′)

= β′f ′(C(t, 0))C(0, t′)

(2.143)

which gives the contribution of the initial β′-equilibrium to the evolution of C(t, t′).



82 2. PROTOTYPICAL MODEL OF SUPERCOOLED LIQUID

2.5.3 Out-of-equilibrium: two Temperature Protocol

In this section we write down the mean-field dynamical equations (MFDE) for the
two-temperature protocol, i.e. the system is initially at equilibrium at T ′, and sud-
denly at time t = 0 a quench brings the thermal bath to the temperature T , at
which the system relaxes. We just report (2.139) and (2.141) together with the
initial condition (2.143)∗:

∂tCtt′ =− µtCtt′ +
∫ t

t′
f ′′(Cts)RtsCst′ds

+

∫ t′

0

(
f ′′(Cts)RtsCt′sds+ f ′(Cts)Rt′s

)
ds+ β′f ′(Ct0)Ct′0

∂tRtt′ =δtt′ − µtRtt′ +

∫ t

t′
f ′′(Cts)RtsRst′ds

(2.144)

where µt = T+
∫ t

0

(
f ′′(Cts)RtsCtsds+f ′(Cts)Rts

)
ds+β′f ′(Ct0)Ct0, in order to enforce

the spherical constraint. δtt′ is the Dirac delta. These equations have a hidden
arbitrary time scale, but for simplicity we have chosen to fix it with the normalization
limt→t′ ∂tCtt′ = −T .

These equations where first reported in [FP95] in the context of state following.
Initiating the system at infinite temperature (β′ = 0), one retrieves the MFDE from
random initial condition studied in [CHS93; CK93].

This closed set of integro-differential equations in C and R can be integrated
numerically and studied analytically in different asymptotic regimes.

∗here we change the notation from (s, t) to st for compactness
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2.6 Equilibrium Dynamics

In this section, we focus on the equilibrium dynamics of p-spin spherical models. In
equilibrium, pure and mixed models do not show any substantial difference. As it
has been already remarked in the first chapter, the p-spin spherical model was indeed
introduced in the attempt to build a static interpretation of the Mode-Coupling
theory [KT87a]. A comprehensive treatment of the equilibrium dynamics of the
pure p-spin model can be found in [CHS93]. The equation of motion for correlation
of spins has exactly the form of a schematic MCT:

Ċ(τ) = −TC(τ)− β
∫ τ

0

dsf ′(C(τ − s))Ċ(s) (2.145)

where Ċ(τ) ≡ ∂τC(τ). This is a 1-dimensional time equation with memory kernel.
The only difference with the schematic MCT is in the choice of an overdamped
dynamics instead of an inertial one, that is the free propagator, which influences
only the short time dynamics. In the following, we will illustrate the major features
derived in MCT, illustrating them through the p-spin model. The major aspect of
this 1-dimensional equation with memory kernel is the presence of a phase transition
by tuning the temperature T . This can be simply understood by taking the τ →∞
limit of 2.145 imposing a final overlap C(τ →∞) = q:

Ċ(τ →∞) =− Tq + βf(q)(1− q)

− β
∫ ∞

0

ds
(
f ′(C(∞− s))− f ′(q)

)
Ċ(s)

(2.146)

this is obtained by adding and subtracting the term
∫ τ

0
dsf ′(C(τ))Ċ(s). The lhs term

goes to zero, since the correlation is monotonously decreasing and low bounded. The
last term on the rhs goes to zero, since it is a convolution of two monotonously fast
decreasing functions with lower bound 0. Thus, we obtain Tq = βf(q)(1−q),which is
exactly the equation found from static calculation of the equilibrium overlap inside a
state, both with the Franz-Parisi method (2.73) and with the Monasson method for
x = 1 (2.109), with a coupling transition temperature TMCT above which the system is
ergodic, and below which it partitions in an exponential (in N) number of states (see
fig. 2.6). All curves shown are obtained by numerical integration of (2.145) using the
rescaling-time method presented in appendix A.6. The development of the plateau
corresponds to the slowing down dynamics of supercooled liquid, and it has some
very remarkable algebraic properties that can be obtained by Laplace transforming
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Figure 2.12: Slowing down of the dynamics near TMCT . Correlation C(τ) vs time, both in the
ergodic phase (red curves) and in the partitioned phase (green curves). Temperatures are taken as
(T − TMCT )/TMCT = ±1/2k

equation 2.145:

(zC̃(z)− C(0)) = −β−1C̃(z)− βf̃ ′(z)(zC̃(z)− C(0)) (2.147)

where C̃(z) =
∫∞

0
dtC(t)e−zt is the Laplace transform, of the correlation and f̃ ′(z) =∫∞

0
dtf ′(C(t))e−zt is the Laplace transform of the kernel function. And we have used

standard properties of Laplace transform. We then notice that upon defining a time
scale τ0, the previous equation shows an explicit dependence on it:

(zC̃(z)− 1)(1 + βf̃ ′(z)τ0) = −β−1C̃(z)τ0 (2.148)

we also used the identity C(0) = 1. In the limit of small times τ0 → 0 or equivalently
large temperature T (β → 0) the system shows an exponential relaxation:

C̃(z) =
1

(z + β−1τ0)
⇒ C(t) = exp(−z∗) z∗∗ = β−1τ0 (2.149)

which corresponds to a simple pole z∗ in the negative z-axis. Each pole in the Laplace
transformed functions corresponds to a specific time scale. And a pole that touches
z = 0 axis, defines a diverging time scale. How the poles approach z = 0 defines the
critical dynamics, a little bit in the same sense as in critical static transition. The
main goal is to find the dependence of each pole z∗ of C̃(z) on external parameters,
which in our case are the temperature and the same form of the kernel f ′ (polynomial
coefficients). Here, we concentrate on the critical dynamics of a single plateau (for
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multiple see [CLP11]) and expose the results that where originally obtained in two
capital papers of MCT [Leu84; BGS84], in which it was shown that this critical
dynamics exhibits a simple relation, connecting power law exponents, approaching
and leaving the plateau.
When one takes τ0 → ∞, it is as if observing the system at long time scales, and
equation 2.148 becomes:

β2f̃ ′(z) =
C̃(z)

(1− zC̃(z))

=
1

z

(
(1− zC̃(z))−1 − 1

) (2.150)

At this point we consider the correlation C(t) near criticality, when it has developed
a ‘well defined’ plateau of value q∗:

C(t) = q∗ + δC(t) =⇒ C̃(z) = q∗/z + δ̃C(z) (2.151)

where δC(t) are small deviations from the plateau and δ̃C(z) its transformed coun-
terpart. While for the kernel function:

f ′(C(t)) = f ′(q∗) + δf ′(t) =⇒ f̃ ′(z) =
f ′(q∗)/z

z
+ δ̃f ′(z)

=
f ′(q∗)/z+

z
+

1

z

∞∑
k=1

f (k+1)(q∗)

k!
zkδ̃Ck(z)

(2.152)

where δ̃Ck(z) =
∫∞

0
dsδC(t)ke−zt. This allows us to rewrite (2.150) as:

β2
(f ′(q∗)

z
+ δ̃f ′(z)

)
=

1

z

( 1

(1− q)(1− zδ̃C(z)
(1−q) )

− 1
)

β2
(f ′(q∗)

z
+
∞∑
k=1

f (k+1)(q∗)

k!
zkδ̃Ck(z)

)
=

1

z

(
(1− q)

( ∞∑
k=0

(
zδ̃C(z)

1− q
)k)− 1

) (2.153)

Both sides of this equation can be compared order by order in z. The order z−1

corresponds to poles and gives the usual equation for the equilibrium overlap already
found at (2.146):

β2f ′(q∗) = q∗/(1− q∗) (2.154)

The order z0 gives the equation:

β2f ′′(q∗)δ̃C(0+) = (1− q∗)−2δ̃C(0+) (2.155)
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which is the marginal condition. Thus, we see that small fluctuations around the
plateau are possible for arbitrary δ̃C, whenever the dynamics is marginal. Thus, the
two smallest orders in z have fixed the dynamics to have the mode-coupling overlap
qMCT (see section 2.2.2). Finally, if we look at the order z1 we obtain the equation:

β2f
′′′(qMCT)

2
δ̃C2(0+) = (1− qMCT)

−3δ̃C
2
(0+) (2.156)

This defines a relation between the Laplace transform of the first and second moment

of the correlation fluctuation δC(t). In the literature λ ≡ δ̃C
2
(0+)/δ̃C2(0+) is the

exponent parameter. The critical behavior (diverging plateau) suggests a power-law
ansatz for the relaxation to the plateau δC(t) ∝ t−a with a > 0, both above and
below TMCT and a second power law δC(t) ∝ −tb with b > 0, in the ergodic phase.
Doing the Legendre transform of these power laws, we find the exponent parameter:

λ =
δ̃C

2
(0+)

δ̃C2(0+)
=

Γ(1− a)2

Γ(1− 2a)
=

Γ(1 + b)2

Γ(1 + 2b)
(2.157)

On the other side, using the value of λ is defined by the model as (see 2.156):

λf =
1

2β

f ′′′(qMCT)

f ′′(qMCT)3/2
=
f ′′′(qMCT)f

′(qMCT)

2qMCTf ′′(qMCT)2
(2.158)

where the subscript f recalls the dependence on the model. In fig. 2.6 the implicit
evaluation of a, b for different models are shown. We notice, by the way, that the
initial declaration of this section, remarking that the equilibrium dynamics do not
show substantial difference between mixed and pure models, is not completely true.
In fact, for pure models qMCT = p−1

p−2
(see section 2.2.2) which plugged in (2.158) gives

λp = 1/2 for every number of p-body interactions. This gives two universal (in pure
models) exponents ap = 0.395(2) and bp = 1. Vice versa in mixed models, these
two coefficients depend explicitly on the chosen model and satisfy the bounds am <
0.395(2) and bm < 1. In fig. 2.6 we show a direct comparison of the analytic results
and the numeric integrations, both in pure 3-spin and in mixed 3+4-spin models.
Other two power laws directly connected with a, b come from the divergence, by
changing the temperature of the time scale to get to the plateau τa = (T −TMCT)

−γa ,
and to get out of it τb = (T − TMCT)

−γb . The first exponent is found by a simple
argument. Near the plateau we have that δC ∝ t−a, but from (2.154) one can
also see that a change in δβ around βMCT causes a change in the plateau’s height
δq ∝ δβ1/2. Comparing δC and δq we find the relation γa = 1

2a
. The second one
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can be found to be γb = 1
2a

+ 1
2b

(see [Leu84; BGS84] for a proof). To resume,
the equilibrium dynamics presents critical points that correspond to 0-poles of the
Laplace transformed correlation. In 1RSB models there is only one possible critical
point that is by definition at TMCT . Near criticality from the ergodic phase, the
correlation function presents four regimes. One initial exponential relaxation from
the initial configuration, which defines the microscopic scale of the dynamics. Then a
long power law approach to the overlap ≈ qMCT of a quasi-state with a power law t−a.
After that, it finds a small path to decorrelate and a second power law relaxation
−tb from the plateau begins. Finally, the system reaches a timescale for which the
dynamics is ergodic and the relaxation is again exponential. Let’s point out that
also for the plateau development, there is a correspondence between dynamics and
static. It was found in [Cal+12] that near TMCT and around states of overlap qMCT the
fluctuations in the replicon sector (see section 2.1.5) give the long time fluctuations
around the plateau and λ is statically defined in the replica space as the ratio between
third moments [Fer+12]:

λstatic =
(
∑

ab δ
Rqab)

3∑
ab δ

Rq3
ab

⇐⇒ λdynamics =
δ̃C

2
(0+)

δ̃C2(0+)
(2.159)
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This is another important step in the static-dynamics connection. To conclude a
final remark, all the dynamical analysis presented here, were already carried out in
the MCT papers [Leu84; BGS84] for an equation of motion that is exactly that of
the 3-spin spherical model, even though the p-spin spherical model had not yet been
introduced!
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2.7 Out of Equilibrium Dynamics

In this section, we consider the out-of-equilibrium dynamics, which is probably the
only convenient way to describe most amorphous materials. In the previous sections
we have seen how to write the mean-field dynamical equations (MFDE) for the cor-
relation and response and use them to study the equilibrium dynamics of the model.
Here instead, we consider one particular kind of out-of-equilibrium dynamics, the two
temperature protocol dynamics. The system is prepared at a parent temperature T ′,
and after a sudden change of temperature, it relaxes at the bath temperature T . We
focus on the overdamped Langevin dynamics, but similar results are expected to
hold for different short time dynamics. As we have seen in section 2.2, it is possible
to define a static free energy (Franz-Parisi potential) which, with a quasi equilibrium
approach, is capable of following states from equilibrium, to some other temperature.
The dynamics we are now considering reflects the same preparation protocol. Let’s
start by considering a system prepared in a state with TK < T < TMCT . Whenever
the temperature jump is small enough, the dynamics will quickly relax to a new equi-
librium inside the initial state, following exactly the previsions of the FP potential.
However, if the temperature jump is big enough, the initial state can be forgotten.
There are two main possibilities: increasing or decreasing temperature. In the first
case, the system melts into the paramagnetic state. This case is simple in the sense
that the paramagnetic state is one and the melting point is just a standard spinodal
point. In the latter case, the state can be lost in the sense that we do not have the
right tools to describe its asymptotic dynamics. If now we consider a system that
is initially equilibrated in the ergodic phase T ′ > TMCT , it will quickly relax if the
second temperature remains greater than TMCT , and if T < TMCT , it will have a very
slow dynamics, showing aging behavior.

2.7.1 Two Temperature Protocol: Following States

Our point of departure is the two temperature mean-field dynamical equation (MFDE)
(2.144). We wish to understand where the system goes, after a small temperature
jump. For that we have two paths, the analytic search for the asymptotic dynamics
as in the equilibrium case, and the direct integration of the MFDE. Let’s start by
the analytical search. The system is prepared in equilibrium inside a state between
TK and TMCT and relaxed at the second temperature T which is not ’too far’ from
the original one. Since the perturbation is ’small’ - later on we will see that this
works also for large perturbations in many cases - we assume that there will be a fast
transient dynamics to a new equilibrium inside the state. Acthung, the so reached
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state is not a typical equilibrium state at temperature T , but it is just a followed
state typical at T ′. In terms of dynamics, the system gets fast (time ≈ δt) to a new
stationary regime which respects the local equilibrium assumption of fluctuation dis-
sipation theorem (FDT), i.e. Rtt′ = β∂t′Ctt′ . Therefore, from (2.144) we obtain one
single equation of motion for the correlation:

∂tCtt′ =− µtCtt′ + β

∫ t

t′
f ′′(Cts)∂sCtsCst′ds

+ β

∫ t′

δt

(
f ′′(Cts)∂sCtsCt′sds+ f ′(Cts)∂sCt′s

)
ds+ β′f ′(Ct0)Ct′0

(2.160)

and µt = T + β
∫ t
δt

(
f ′′(Cts)∂sCtsCtsds + f ′(Cts)∂sCts

)
ds + β′f ′(Ct0)Ct0. We have

neglected any contribution to the integrals coming from transient dynamics, i.e.
from times smaller than δt, and we have used FDT from time δt. Going on with one
partial integration and recognizing some exact differentials:

∂tCtt′ =− µtCtt′ + βf ′(Cts)Ct′s|tt′ − β
∫ t

t′
f ′(Cts)∂sCst′ds

+ βf ′(Cts)Ct′s|t
′

δt + β′f ′(Ct0)Ct′0

(2.161)

with µt = T + βf ′(Cts)Cts|tδt + β′f ′(Ct0)Ct0. We finally define the asymptotic corre-
lation:

lim
t,t′→∞
t−t′=τ

Ctt′ = Cτ (2.162)

together with the limiting values limt→∞Ct0 = p, which defines the average overlap
between the asymptotic configuration and starting configuration which sampled at
temperature T ′ and limτ→∞Cτ = q which defines the equilibrium overlap inside the
followed state.

∂τCτ =− TCτ +
(
β′f ′(p)p− βf(q)q

)
(1− Cτ )− β

∫ τ

0

f ′(Cτ−s)∂sCsds (2.163)

where we have used limt→∞ µt = T + βf(1)1 − βf(q)q + β′f(p)p. We note the
resemblance with the equilibrium equation (2.145). There is one additional term(
β′f ′(p)p − βf(q)q

)
(1 − Cτ ) which couples the dynamics with the starting configu-

ration. With the same add-subtract trick used for the equilibrium dynamics, we can
evaluate the asymptotic limit:

lim
τ→∞

(2.163) =⇒ Tq =
(
β′f ′(p)p− βf(q)q

)
(1− q)− βf ′(q)(1− q)

T

1− q
= µag

(2.164)
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where we have introduced the aging parameter:

µag ≡ lim
t→∞

µt − βf ′(Cts)|tδt = T + βf(q)(1− q) + β′f ′(p)p (2.165)

which will have a clear interpretation in the aging dynamics (next section). Still,
we need to have another equation to find both p and q. This comes directly from
the definition of p = limt→∞Ct0. The equation (2.160) for the correlation with the
starting configuration reads:

∂tCt0 =− µtCt0 + β

∫ t

δt

f ′′(Cts)∂sCtsCs0ds+ β′f ′(Ct0)C00

=− µtCt0 + βf ′(Cts)|tδtCt0 + β′f ′(Ct0)

≈− µagCt0 + β′f ′(Ct0)

(2.166)

where the second line is obtained by using the add-subtract trick:∫ t

δt

f ′′(Cts)∂sCts
(
Cs0 − Ct0

)
ds+ βf ′(Cts)|tδtCt0

and considering again that both lims→t(Cs0−Ct0) and lims→0 f
′′(Cts)∂sCts go to zero

fast enough. Evaluating the asymptotic limit we get:

lim
τ→∞

(2.166) =⇒ µagp = β′f ′(p) (2.167)

We finally have two equations, (2.164) and (2.167). These two equations define
implicitly q and p for any given β and β′, but more incredibly they are equivalent
to the equations found by the static computation of the constrained FP free energy.
Thus, the FP construction is not only capable of selecting equilibrium states, but
also, to follow them in temperature.

To support this calculations, it is possible to directly integrate numerically the
equations (2.144). I have used two different algorithms, that can reach times of the
order of 103 (in normal time units) to be confronted with 1010 or more, reachable with
the equilibrium algorithm (for more details see appendix A.7). Both algorithms agree
on the results and the time scale reached is large enough to observe the fast relaxing
dynamics we are considered here. Since the equations that define followed states
have been already studied in section 2.2, let’s bring back the so obtained temperature
phase diagram for the 3+4 model, shown for convenience in fig. 2.14. And we focus
on following states initially thermalized at T = 0.802. In the figure, the integrated
energies and the correlations are shown for different final temperatures T . In the
following state region they perfectly match analytical asymptotic limits. Moreover,
the temperature at which the minima are lost (marginal condition), corresponds to
a critical dynamics (power-law) as shown in the log-log inset on the right. The same
integration check was firstly performed in [FP95], and confirmed in [BBM96].
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Figure 2.14: Following states in the mixed (3+4)-spin model. Comparison between asymptotic
calculation (or FP potential) and numerical integration. Different protocol with the same parental
temperature T ′ = 0.802 are considered. (left): phase diagram in the (T ′, T ) plane. (center):
time evolution of the energy for different bath temperatures T . The dashed lines corresponds to
analytical results. (right): correlation with the starting configuration versus time. The inset shows
the power law behavior near the marginal bound.

2.7.2 Two Temperature Protocol: Aging

In this section, we consider the asymptotic dynamics in the aging regime, i.e. for
parent temperature T ′ > TMCT and bath temperature T < TMCT . The particular case
of random initial condition (T ′ = ∞) in the pure p-spin model was successfully an-
alyzed by L.F.Cugliandolo and J.Kurchan in 1993 [CK93], fixing the first milestone
in the analytical treatment of out-of-equilibrium dynamics. Here, we revisit their
calculation by introducing the parent temperature T ′. Again, our starting points are
the equations for the correlation and the response (2.144). In order to understand
how these equations behave in the long-time limit, we re-parametrize this time in
terms of the correlation [CK94; CK95]. This method directly forecasts the asymp-
totic overlaps. To understand the idea, we start by a simple asymptotic calculation
for the energy (see 2.142):

lim
t→∞

Et = lim
t→∞
−
∫ t

0

f ′(Cts)Rtsds− β′f(Ct0)

= −β
∫ 1

p

dCX(C)∂C [f(C)]− β′f(p)

(2.168)

the first line is simply the definition of energy given in (2.142). The second line
shows the re-parametrization t → C. Behind it there is the generalization of the
fluctuation-dissipation theorem to different time sectors:
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χtt′ = βX(Ctt′)Ctt′ (2.169)

where χtt′ = −
∫ t
t′
dsRts is the integrated response and

X is the so called fluctuation dissipation ratio (FDR).
The fact that X depends on times t, t′ only through the
correlation C is true in the asymptotic limit t, t′ → ∞.
The way the two times are diverging, one regarding
the other, defines the time sector (TS) that we are
considering.

χ

C

β

βx
0

0 p q0 q1 1

χ1

χ0

mem
TS

ag
TS

st
TS

For example the stationary TS (stTS) for the correlation reads:

lim
t,t′→∞
t−t′=τ

Ctt′ = Cτ X(Cτ ) = 1 q1 < Cτ < 1 (2.170)

q1 ≡ limτ→∞Cτ defines the asymptotic limit within the stationary TS. This is the
FDT regime that we already considered in the previous section for the following state
construction, but now it is just one of the many possible TSs. Then we consider the
aging TS (agTS):

lim
t,t′→∞
t/t′=λ

Ctt′ = Cλ X(Cλ) = x < 1 q0 < Cλ < q1 (2.171)

where q1 = limt/t′→1Cλ and q0 = limt/t′→∞Cλ are the correlation bounds in this
TS. The fluctuation dissipation ratio x which gives an effective temperature Teff =
1/(βx) greater than the bath temperature. We finally introduce the memory TS
(memTS) which considers the asymptotic correlation with the initial configuration:

lim
t→∞

Ctt′ = C∞t′ X(C∞t′) = 0 p < C∞t′ < q0 (2.172)

with p = limt′→∞C∞t′ . In general, there can be many TSs and even an infinity
[CK94] , but our focus will only be on three, which is believed to be the right ansatz
for a RFOT model. Within these three TS construction we can finally rewrite the
energy (2.168) as:

lim
t→∞

Et = −β
(
f(1)− f(q1)

)
− βx

(
f(q1)− f(q0)

)
− β′f(p) (2.173)

The same asymptotic limit can be taken for the Lagrange multiplier:

µ∞ = lim
t→∞

(
T +

∫ t

0

f ′′(Cts)RtsCtsds+

∫ t

0

f ′(Cts)Rtsds+ β′f ′(Ct0)Ct0

)
= T + β

∫ 1

p

dCX(C)∂C [f ′(C)C] + β′f ′(p)p

= T + β
(
f ′(1)− f ′(q1)q1

)
+ βx

(
f ′(q1)q1 − f ′(q0)q0

)
+ β′f ′(p)p

(2.174)
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Now we consider to the asymptotic behavior of the correlation C. The idea is to
recast the equation from times (t, t′, s) to correlations (C,C ′, C ′′), and then to study
the different TSs. Each TS has its own equations of motion and its own lower and
upper bound. Each bound of each TS must match the bounds of the nearby TSs,
which defines a cascade of equations to fix all free parameters. To clarify, let’s focus
on the RFOT for which we assume a three TS ansatz. There will be four equations
which fix the four parameters q1, q0, p, x: One equation comes from the limτ→∞Cτ in
the stationary TS, one from limt/t′→∞Ct/t′ in the aging TS, one from the memory TS
limt′→0C∞t′ . The last equation will come from the equation for the response R. In
the following, we will write the equations of motions in these three TSs and retrieve
all the aforementioned asymptotic equations. We first recast the equation for the
correlation (2.144):

∂tCtt′ =− µtCtt′ + β′f ′(Ct0)Ct′0

+

∫ t′

0

(f ′′(Cts)RtsCt′sds+ f ′(Cts)Rt′s)ds

+

∫ t

t′
f ′′(Cts)RtsCst′ds

lim
t,t′→∞

dC =− µ∞C + β′f ′(p)p

+ β

∫ C

p

(f ′′(C ′)X(C ′)C ′′(C,C ′) + f ′(C ′)X(C ′′(C,C ′))
dC ′′

dC ′
)dC ′

+ β

∫ 1

C

f ′′(C ′)X(C ′)C ′′(C,C ′)dC ′

(2.175)

where we used the following substitutions:

Ctt′ → C Cts → C ′ Ct′s → C ′′

C ′′(C,C ′) = limt,t′,s→∞Ct′s(Ctt′ , Cts), is the asymptotic limit of a map that, given
the correlation Ctt′ and Cts, returns the correlation Ct′s. This is a formal way of
eliminating the time dependence. It can be shown that this limit is well defined and
it has an ultrametric structure in the correlation [CK94], which in formula:

C ′′(C,C ′) = min(C,C ′) ⇐⇒ C and C′
belongs to different TSs (2.176)

This is the decoupling of TSs and it physically means that faster degrees of freedom
see the slower ones as quenched (Heisenberg decoupling electron-nucleus dynamics).
Let’s analyze one by one the three TSs.
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Figure 2.15: Schematic representation of the decoupling approximations in the integration that
leads to specific asymptotic equations in each time sector (TS). On the axis the time t, on the y-axis
the waiting time t′. The dotted red lines mark the integration path. The right-most line is over
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.

A) Stationary Time Sector q1 < C̄ < 1, X(C̄) = 1

dC̄ =



−µ∞C̄
β′f ′(p)p

β
∫ q0
p

(f ′′(C ′)X(C ′)C ′′ + f ′(C ′)X(C ′′)dC
′′

dC′
)dC ′ ≈ 0

βx
∫ q1
q0
∂C′ [f

′(C ′)C ′]dC ′ = βx
(
f ′(q1)q1 − f ′(q0)q0

)
β
∫ 1

q1
∂C′ [f

′(C ′)C ′′]dC ′ = β
(
f ′(1)C̄ − f ′(q1)q1)

−β
∫ 1

C̄
f ′(C ′)dC

′′

dC′
dC ′

(2.177)

in the third line the assumption is that the memory TS have a FDR X = 0, which
means no long time response. In the fourth line we used the fact that C̄ and C ′

belong to two different TSs (2.176) and we considers integrating in the aging TS
X(C) = x. This part of the integration is underlined by a blue ellipse in fig. 2.15
plot A. The part of the integration in the fifth line has the three correlations C̄, C ′, C ′′

in the same stationary TS where FDT holds, thus x(C) = 1. And C ′′(C̄, 1) = C̄ and
C ′′(C̄, q1) = q1. We have that the evolution of the correlation in the stationary TS
reads:

dC̄ = −T + (µ∞ − βf ′(1))(1− C̄)− β
∫ 1

C̄

f ′(C ′)
dC ′′

dC ′
dC ′ (2.178)
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Now we look at the asymptotic limit C̄ → q1. Reusing the add-subtract trick (see
2.146) we obtain:

T = (µ∞ − βf ′(1) + βf(q1))(1− q1) (2.179)

which is the first equation of the four needed to fix q0, q1, p, x. We recall the definition
of µag = µ∞ − βf ′(q)|q0q1 (given in 2.165) and see that again the stationary regime
follows the same law µag = T/(1− q).

B) Aging Time Sector q0 < C̃ < q1, X(C̃) = x:

dC̃ =



−µ∞C̃
β′f ′(p)p

β
∫ q0
p

(f ′′(C ′)X(C ′)C ′′ + f ′(C ′)X(C ′′)dC
′′

dC′
)dC ′ ≈ 0

βx
∫ q1
q0
∂C′ [f

′(C ′)C ′′]dC ′ = βx
(
f ′(q1)C̃ − f ′(q0)q0

)
β
∫ 1

q1
f ′′(C ′)dC ′C ′′[C̃, C ′] ≈ β

(
f ′(1)− f ′(q1)

)
C̃

βf ′(C̃)
∫ C̃
C̃−δC̃FDT

C ′′[C̃, C ′]dC ′ ≈ βf ′(C̃)
(
1− q1

)
−βx

∫ q1
C̃
f ′(C ′)dC

′′

dC′
dC ′

(2.180)

in the third line we assume again FDR X = 0 in the memory TS. In the fourth line
we are considering the entire aging TS (blue ellipses in plot B of fig.2.15). This is an
exact differential. The fifth an sixth lines are approximations given by the decoupling
of TS. The slowest are fixed and the fastest one integrated. The equation of motion
for the correlation in the aging TS reads:

dC̃ =−
(
µag − βx

(
f ′(q1)− f ′(q0)

))
C̃ + βf ′(C̃)(1− q1)

+ βxf ′(q0)(q1 − q0) + β′pf ′(p)

− βx
∫ q1

C̃

(f ′(C ′)− f(q0))
dC ′′

dC ′
dC ′

(2.181)

where we used the definition of µag and the add-subtract trick. Evaluating the lowest
bound C̃ → q0:

µagq0 = βx
(
f ′(q1)−f ′(q0)

)
q0 +βf ′(q0)(1−q1)+βxf ′(q0)(q1−q0)+β′pf ′(p) (2.182)

On the other side, the limit C̃ → q1 gives the equation:

µagq1 = βf ′(q1)(1− q1) + βx
(
f ′(q1)q1 − f ′(q0)q0

)
+ β′pf ′(p) (2.183)

which is equivalent to equation (2.179). This is just a confirmation that the decou-
pling of TS is working as it should, i.e. different TSs match at the borders.
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C) Memory Time Sector p < C0 < q0, X(C0) = 0:

This time sector connect the asymptotic dynamics with the initial condition. Thus,
in a way it is the most important part in order to understand the long time behavior.
To simplify the treatment, we directly explore the bound C0 → p from the other side,
i.e. limt→∞Ct0 = p. We rewrite the equation for the correlation:

∂tCt0 = −µtCt0 + β′f ′(Ct0) +

∫ t

0

f ′′(Cts)RtsCs0ds (2.184)

The result in the asymptotic limit reads:

0 = −µ∞p+ β′f ′(p) + β

∫ 1

p

f ′′(C ′)X(C ′)C ′′(C0, C
′)dC ′ (2.185)

we obtain:

0 =



−µ∞p
β′f ′(p)

β
∫ q0
p
f ′′(C ′)X(C ′)C ′′dC ′ ≈ 0

βx
∫ q1
q0
∂C′ [f

′(C ′)C ′′]dC ′ = βx
(
f ′(q1)C ′′(p, q1)− f ′(q0)C ′′(p, q0)

)
β
∫ 1

q1
f ′′(C ′)dC ′C ′′[C̃, C ′] ≈ β

(
f ′(1)− f ′(q1)

)
C0

−βx
∫ q1
q0
f ′(C ′)dC

′′

dC′
dC ′

(2.186)

the third line comes from assumption X = 0 in the memory TS. The fourth line is a
exact differential that comes from a partial integration in the aging TS (blue ellipse
in fig. 2.15 plot C), and it comes together with line six. The sixth line is the coupling
with the stationary TS (violet ellipse). Putting all together we have:

µagp = βx
(
f ′(q1)p− f ′(q0)p0

)
− βxf ′(q0)(p− p0) + β′f ′(p) (2.187)

where we have defined p0 ≡ C ′′(p, q0). In all previous computations the p0 term has
been put to equal to p. In here, we want to precociously let it undefined, because
there is no clear argument for this equality. This is the third of four equations to
characterize the asymptotic dynamics (if p = p0). We will come back to a possible
ansatz for p0 in the gradient descent dynamics in section 3.1.4.



100 2. PROTOTYPICAL MODEL OF SUPERCOOLED LIQUID

D) Response in the Aging TS q0 < C̃ < q1, X(C̃) = x:

We take back the equation for the response (2.144) and rewrite it for the integrate
response χtt′ = −

∫ t
t′
dsRts.

∂tχtt′ =− µtχtt′ +
∫ t

t′
f ′′(Cts)∂sχtsχtsds

lim
t,t′→∞

βxdC̃R =− µ∞βxC̃R + β2

∫ 1

C̃R

f ′′(C ′)X(C ′)X(C ′′)C ′′(C,C ′)dC ′

(2.188)

where we have used the FDR in the integral form: χ = βX(C)C. Evaluating it in
the aging TS:

dC̃R =



−µ∞C̃R

βx
∫ q1
C̃R
∂C′ [f

′(C ′)C ′′]dC ′ = βx
(
f ′(q1)C̃R − f ′(C̃R)q1

)
β
∫ 1

q1
f ′′(C ′)dC ′C ′′[C̃R, C

′] ≈ β
(
f ′(1)− f ′(q1)

)
C̃R

βf ′′(C̃R)C̃R

∫ C̃R+δC̃RFDT
C̃R

dC ′∂C′C
′′[C̃R, C

′] ≈ βf ′′(C̃R)C̃R

(
1− q1

)
−βx

∫ q1
C̃R
f ′(C ′)dC

′′

dC′
dC ′

(2.189)

we have every term by βx. The second line is the exact differential and comes
together with the last line. The third and fourth lines come from decoupling of
stationary and aging TSs. We finally end with the equation:

dC̃R =− µagC̃R + βf ′′(C̃R)
(
1− q1

)
βx
(
f ′(q1)C̃R − f ′(C̃R)q1

)
− βx

∫ q1

C̃R

(f ′(C ′)− f(q0))
dC ′′

dC ′
dC ′

(2.190)

This equation in the limit C̃R → q1 gives the very “famous” marginal condition:

µag = βf ′′(q1)
(
1− q1

)
(2.191)

recalling that µag = T/(1 − q1). This is not a coincidence, and it comes from the
connection between the stationary and the aging TS for the response. Here, we recall
that statically, the marginal condition is the one that defines the rupture of a state,
which cannot be followed anymore. It comes out in replica calculations as the bound
for the stability of the replicon eigenvalue. While dynamically it connects the two
TSs. This is the last of the four equations (2.177,2.180,2.184,2.191) necessary to fix
all the free parameters p, q0, q1, x, which describe the asymptotic dynamics. In the
next section, we will describe how the solutions to this equations are found from a
static calculation.
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2.7.3 Two Temperature Protocol: Static V S Dynamics

From the calculation of the previous section, it follows that the asymptotic dynam-
ics of a general two temperature protocol T ′ → T can be described by the set of
equations:

1
β(1−q1) = T + β

(
f ′(1)− f ′(q1)q1

)
+ βx

(
f ′(q1)q1 − f ′(q0)q0

)
+ β′f ′(p)p− β

(
f ′(1)− f(q1)

)
q0

β(1−q1) = βx
(
f ′(q1)− f ′(q0)

)
q0 + βf ′(q0)(1− q1) + βxf ′(q0)(q1 − q0) + β′pf ′(p)

p
β(1−q1) = βx

(
f ′(q1)p− f ′(q0)p0

)
− βxf ′(q0)(p− p0) + β′f ′(p)

1
β(1−q1) = βf ′′(q1)

(
1− q1

)
(2.192)

Where the first line describes the lowest (in correlation) bound of the stationary
TS. The second line the lowest bound of the aging TS. The third line the asymptotic
memory of the initial condition. And the last is the marginal condition which comes
from the response in between stationary and aging TS. These equations (fixing p0 =
p) were first introduced by A.Barrat, S. Franz, G. Parisi [Bar97]∗ with the idea of
extending the parallelism between static and dynamics, already introduced with the
FP potential [FP95]. The idea was to extend the FP potential from RS to 1RSB to
take into account the rupture of the states when followed. The same set of equations
(2.192) is then retrieved by minimizing this 1RSB potential with regard to p, q0, q1

and to add the marginal condition in order to fix the last parameter x. The same
analysis was re-explored later in [Cap+06; Sun+12]. Here, we just want to say that
although this correspondence between static and dynamics through the FP potential
is rather appealing and it strengthens the approximations in the asymptotic analysis
the results only partially match numerical integrations. Thus, we prefer to focus
on the results that are “safe” and to postpone the discussion of open problems to
the next chapter in which we will focus on T = 0 protocols, i.e. gradient descent
dynamics.

2.7.4 Two Temperature Protocol: “Classical” Aging

To conclude this section, we focus on the “classical” aging solution, given by L.F.Cugliandolo
and J.Kurchan. They have considered random initial conditions that correspond to
put β′ = 0 in (2.192). Moreover, they assumed the loss of memory of the initial
condition p = 0 and what they have named weak ergodicity breaking, which stands
that for every fixed waiting time t′, the system ultimately decorrelates:

lim
t→∞

Ctt′ = 0 ∀t′ (2.193)

∗in this paper there is a mistake in the equation for q0
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Figure 2.16: (left): correlation Ctt′ plotted versus t − t′ for different waiting times t′. More
the time passes, more the system gets stuck, showing aging behavior. (right): violation of the
fluctuation dissipation theorem, with the presence of another effective inverse temperature βx which
characterize the long relaxation dynamics. The theoretical predictions agrees perfectly with the
integration.

that fixes q0 = 0. The system of equation then greatly simplifies:{
1

β(1−qCK)
= β−1 + βf ′(qCK)(1− qCK) + βxCKf

′(qCK)qCK
1

β(1−qCK)
= βf ′′(qCK)

(
1− qCK

) (2.194)

where we have renamed (q1, x) as (qCK, xCK) in reference to the authors. In figure 2.16
the integration of the MFDE (2.144) is shown for a thermal bath at T = 0.5, starting
from a random configuration. The overlap of the asymptotic stationary dynamics
qCK, i.e. the plateau that is diverging, is exactly that obtained by the asymptotic
calculation. On the right plot the FDR is shown for the same dynamics and the
expected xCK is confirmed (in the inset also for the 3+4 model). The two regimes
in the FDR plot appear well defined already for small waiting times, indicating that
the two TS decouple is rather quickly. Here we note that:

xCK(β) = xM(qmg, β) (2.195)

where xM is the Monasson parameter defined in (2.109). This is not a coincidence,
since we have seen that the asymptotic dynamics can be mapped in the 1RSB FP
potential. Which in the case of zero constraint with the reference configuration
(p = 0) is equivalent to the Monasson construction. Physically, it is saying that the
dynamics from random initial condition is going towards the most numerous stable
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state at temperature T . In pure models the scenario is further simplified, because the
most numerous stable states remain the same at every temperature and corresponds
to the inherent structure with energy EIS (see section 2.2). By contrast in mixed
models, quenching to different temperatures T selects different asymptotic states.
What is even more interesting is that βxM = dΣ(f)/df , i.e. it is the derivative of the
complexity by the free energy of the states. This confirms the role of 1/(βx) as an
effective temperature, both statically, as the derivative of an entropy (of states) and
dynamically as a fluctuation dissipation ratio:

χ̃

C̃
= βx =

dΣ

df
(2.196)
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3

Exploring the Landscape through
Gradient Descent

3.1 Numerical Integration

This chapter is the most crucial part of this thesis, in here we present the new facts
about the dynamics of mixed p-spin models. Throughout all the second chapter,
we have explored the major achievements in the analytic analysis of p-spin spherical
models, and we have strongly remarked that pure models due to their homogeneity
do no represent the general case, but a rather singular subclass of RFOT mean-
field models. In particular, the possibility of following states in temperature is not
guaranteed in mixed-models: states can be lost upon cooling them. Moreover, if the
system is prepared in the ergodic phase and relaxed at a low temperature, in pure
models the inherent structure energy does not depend on the initial temperature,
while in mixed ones it does. Therefore, mixed models can also describe what was
often been considered a feature of finite size systems, having memory of the ergodic
phase.

To gather insight in the importance of mixed models as a mean-field prototype of
super-cooled liquid, here we consider an extreme case dynamics, the GD dynamics
in the energy landscape. This dynamics is theoretically important, because it is
directly connected to the search of IS of the energy landscape. Thus, we do the
inverse of the usual reasoning. To gather information about the landscape, we explore
the dynamics. In the following, we fully characterize this gradient descent (GD)
dynamics, which is studied by integrating MFDE at zero temperature T of the bath
and then varying the parent temperature T ′. We obtain that, by contrast to pure
models, mixed models present the emergence of a new phase that presents memories
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of the initial condition together with aging effects.

3.1.1 Under-threshold Dynamics

Let’s start by what has been the initial ‘bizarre’ observation in this research project,
the fact that in the 3+4-model, equilibrating the system above TMCT and doing a
GD dynamics, i.e. MFDE integrated at T = 0, the energy relaxes below what was
considered - by us and in general by the community - the threshold energy Eth.
In section 2.3, we have seen how Eth is statically characterized as the energy at
which typical minima of the energy landscape become saddles. Since the work of
L.F.Cugliandolo and J.Kurchan [CK93] on the out of equilibrium dynamics of pure
p-spin models, the threshold energy has enforced its role as a theoretical lower bound
in every mean-field dynamics starting at high energies (section 2.3). Specializing
to GD dynamics, the picture is the following: starting from high temperature, the
system surfs between saddles until it meets the highest energy minima, which are also
the most numerous ones, and it asymptotically tends to them, aging on a marginal
manifold. This is valid for any starting temperature above TMCT . In terms of IS this
corresponds to saying that EIS = Eth for any T ′ > TMCT (see inset fig. 3.1 and top
right plot). In mixed models the situation is quite different. We again consider a
system prepared above TMCT and we observe two distinct behaviors. If the parent
temperature T ′ is high, the system asymptotically tends to the theoretical energy Eth,
while if T ′ is above but close to TMCT , the dynamics goes under-threshold, i.e. EIS <
Eth (see 3.1). This is an important observation, because it breaks a ‘strong’ prejudice
of the impossibility of describing the complex behavior of glassy dynamics with mean-
field models, opening a new revival in mean-field out of equilibrium analysis. Crossing
TMCT - at which the ergodicity is broken - and looking at the asymptotic energy (see
fig. 3.4 bottom right), there is not a clear signature of TMCT , which passes unnoticed
by the EIS. By contrast in pure models TMCT is not only an equilibrium temperature
but it also marks a change in the typical IS energy landscape. In the state following
computation (section 2.7.1), we have already seen that there is a range of parent
temperatures TSF < T ′ < TMCT for which the state could not be followed down to
zero temperature. Preparing a system below TSF , a fast relaxation occurs to the
bottom of the basin, as we have largely discussed in previous sections. In summary,
we have three GD phases or IS types of minima:

T ′ < TSF the dynamics is of fast relaxation to the bottom of the basin. State
following solution.

TSF < T ′ < Tonset the dynamics presents aging and memory of the initial condition.
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Figure 3.1: (left): under-threshold relaxation of the energy E(t) for the GD dynamics in the
(3+4)-spin, for parent temperatures both above and below TMCT . In the inset, the same dynamics
in the pure 3-spin model were the threshold is “well defined”. (right,bottom): two different
asymptotic extrapolations of the energy for different parent temperatures T ′, which correspond to
the EIS. (right,top): the EIS dependence on parental temperature in the pure 3-spin model.

No analytical treatment.

Tonset < T ′ the dynamics follows the ‘standard’ aging to the threshold manifold.
Full asymptotic solution.

Here Tonset is not necessarily a well defined temperature, it could be a transition
range. In the following sections, we will characterize the new phase that emerges
in mixed models between TSF and Tonset. Recall that, Ton was first described in a
famous paper of S. Sastry, P.G. Debenedetti, F.H. Stillinger [SDS98] in which the
correspondence between slowing down of the equilibrium dynamics and the depen-
dence of the EIS on the parent temperature was numerically found for Lennard-Jones
binary mixtures (see section 1.1.2).

3.1.2 Relaxing on a Marginal Manifold

Here, we concentrate on the new phase. As we have already remarked, the asymp-
totic limit of the GD dynamics corresponds to a search for the ISs in the energy
landscape. This one-to-one correspondence can be explored by looking at two dy-
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namical observables (see section 2.7.2), the energy:

ET ′(t) = −
∫ t

0

f ′(Cts)Rtsds− β′f(Ct0) (3.1)

and the spectral gap:

∆µT ′(t) =

∫ t

0

dsf ′′(Cts)RtsCts +

∫ t

0

dsf ′(Cts)Rts + β′f ′(Ct0)Ct0 − 2f ′′(1)−1/2 (3.2)

where T ′ denotes for the parent temperature dependence T ′ = 1/β′. In the asymptotic
limit t→∞:

EIS(T
′) ≡ lim

t→∞
ET ′(t) ∆µIS(T

′) ≡ lim
t→∞

∆µT ′(t) (3.3)

These are our definitions of energy and spectral gap of IS for a given parent temper-
ature T ′. Here we recall that, a positive ∆µIS signals that the IS is in a well-defined
minimum of the energy landscape, while ∆µIS = 0 defines the so-called marginal
manifold, i.e. the ensemble of minima that have almost flat directions. Remember
that in the p-spin model the typical spectrum is a Wigner semi-circle law [LNV18],
with possible isolated eigenvalues [Ros+19]. A direct look at the time evolution of
the spectral gap (fig. 3.2 left) shows that for parent temperature T ′ > TSF the system
tends towards the marginal manifold, while for T ′ < TSF the system is typically in
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a well-defined minimum and ∆µIS > 0. Now we look at the parametric plot E(t) vs
µ(t) presented on the right side of figure 3.2.

Here, the distinction between the three phases is noticeable. At high parent tem-
perature, the system tends towards the marginal manifold ∆µIS = 0 that lies at the
threshold energy EIS = Eth. Going below Tonset (temperature or range of tempera-
tures) the system dynamics remains asymptotically marginal ∆µIS = 0, but it starts
to surf under-threshold EIS < Eth, finally for parent temperature smaller than TSF
the system can be followed EIS ≤ ESF and minima are well defined ∆µIS > 0. Both
Eth and ESF are statically defined quantities, the first from energy landscape com-
putations (section 2.3) and the second from state following computations (section
2.2). In the inset, the same plot is shown for the 3-spin pure model and all lines
are superimposed. This comes directly from the homogeneity of the Hamiltonian∗,
which implies E(t) − Eth = −∆µ(t) (see 3.1 and 3.2). In terms of energy land-
scape, this is related to the fact that in pure models, given a stationary point of
definite spectral gap ∆µIS, its typical energy is univocal EIS(∆µIS) and in particular
Eth = EIS(∆µIS = 0), while in mixed models there is no bijective map, and, given
∆µIS, there is a whole region of possible EIS.

3.1.3 Aging in a Confined Space

Now we further explore the dynamics, looking at two times observables. The system
shows aging, whenever it tends towards the marginal manifold ∆µIS = 0, thus, for
every T ′ > TSF . If we assume a 1-RSB scheme for the aging solution of the asymp-
totic dynamics, the correlation C and the fluctuation-dissipation ratio X take the
form (section 2.7.2):


1− Tχ < C < 1 X = 1 st TS

q1 < C < 1− Tχ X = Ty ag TS

p < C < q1 X = 0 mem TS

(3.4)

χ

C

y
0

0 p q0 q1 ≡ 1

χ

χ0

mem
TS

ag
TS

stTS

where y ≡ limT→0 x/T . Here we are considering a small T expansion, which corre-
sponds to GD dynamics. Using this ansatz, we can write the asymptotic energy as
(2.173):

Eas(T ′) = [−f ′(1)χ− yf(1)] + yf(q0)− β′f(p) (3.5)

∗qf ′(q) = pf(q) in p-spin , analogously for further derivatives
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where we just expanded in small T using q1 = 1 − χT . The suffix as stands for
asymptotic approximation, to which we would like to match the true EIS(T

′). The
same can be done for the spectral gap:

∆µas(T ′) = [(f ′(1) + f ′′(1))χ+ yf ′(1)]− yf ′(q0)q0 + β′f ′(p)p− 2f ′′(1)−1/2 (3.6)

First of all let’s study the high T ′ regime, where the memory-less Cugliandolo-
Kurchan solution holds. This implies p = 0, q1 = 0, which give:

ECK(T ′) = −f ′(1)χCK − yCKf(1) = Eth

∆µCK(T ′) = (f ′(1) + f ′′(1))χCK + yCKf
′(1)− 2f ′′(1)−1/2 = 0

(3.7)

where we have used χCK = f ′′(1)−1/2 and yCK = 1/(χCKf
′(1)) − χCK = yth solution

of (2.194) at T = 0. Both Eth and yth = ∂EΣdm
0 where found in the analysis of the

energy landscape. Until here the matching between energy landscape and asymptotic
dynamics is clear. Aging occurs on a marginal manifold at the threshold energy, and
the effective temperature is exactly the derivative of the complexity of dominant
stationary point at the threshold.

Now let’s study the under-threshold regime, i.e. T < Ton. In this regime the
dynamics has memory of the initial condition. This is already clear from the fact
that the asymptotic energy remembers the initial temperature. It is confirmed by
the correlation with the initial condition C(t, 0), which in the under-threshold regime
does not tend to zero (see fig. 3.3). Unfortunately the largest integration time is
not large enough to have a ‘fair’ extrapolation of the asymptotic values. However, a
difference regarding the pure case is evident. We also look at the aging phenomenon
by looking at the correlation C(t, s) versus t−s for different t. This directly answers
the question, given a configuration at time t which is the typical with its passed
dynamics. It is found (fig. 3.3:right) that there is a strong memory until a time
s, which corresponds to a fast drop from q0(t) to C(t, 0). This is true in pure and
mixed models, with the difference that in pure models it drops asymptotically to zero
(limt→∞C(t, 0) = 0), while it does not in mixed models at temperature below Ton.
We say that the system at time t remembers the initial condition with overlap C(t, 0)
and remembers its ‘far-away’ past with overlap q0(t). These two overlap scales in the
asymptotic limit tend to:

lim
t→∞

C(t, 0) = p and lim
t→∞

q0(t) = q0 (3.8)

We now back to the asymptotic analysis. Because the dynamics goes under-
threshold, we need another solution compatible with this observation. If the 1-RSB
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Figure 3.3: (left): time evolution of the correlation with the initial configuration C(t, 0) in the GD
dynamics of the mixed (3+4)-spin model. The time is rescaled with a power-law t−1/3, which is the
one followed starting from infinite temperature T ′ =∞ (lower curve). For T ′ > Ton the correlation
seems to tend to a finite value C(t, 0) > 0, thus the system remembers its initial condition. In
the inset, the same plot for the pure 3-spin model, where no memory is present. (right): aging
in the (3 + 4) at T ′ = 1.01TMCT , the correlation C(t, s) with the past, having fixed the actual
time t (2400/2n). For every t two regimes are presented, the slow relaxation with aging features
till an overlap q0(t) and a quick drop between q0(t) and C(t, 0), which corresponds to the earliest
dynamics.

asymptotic equations (2.192) were ‘correct’, one could find χ, q0, p, y and deduce
Eas(T ′) and ∆µas(T ′). However, comparing with asymptotic values extrapolated
from numerical integration, we found that they do not give the ‘right’ answer. The
strange thing about this ‘new’ aging regime is that it seems to have a FDR y ≈ yth,
the one defined by the threshold energy. This is shown on (fig.3.4:left) by dashed lines
and seems not to depend on the temperature. The dynamics goes under-threshold,
but with an effective temperature, compatible with the threshold. While the solution
given by the 1-RSB ansatz (fig.3.4:right) gives an y too small. This highlights vividly,
the ‘non-correctness’ of the solution. Moreover, the 1-RSB solution disappears at a
temperature below T0 < TMCT and the extrapolated p does not match this solution
even below T0. The possibility that further RSB steps can give better results remains
open. My belief is that the incoherency in the asymptotic solution comes from short-
time contributions that are not properly considered.

In the actual impossibility of finding an exact solution, we propose a semi-
empirical ansatz which seems to fit ‘properly’ the long time dynamics, as it is shown
in fig.3.4:right for q, p, q0. In the next section, we present this approximation.
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Figure 3.4: (left): the generalized fluctuation dissipatio ratio is presented through a plot of
χ(t, s) vs C(t, s). For three different temperatures both the (3 + 4)-spin (bottom) and 3-spin are
presented (top). Each line corresponds to a fix t and a varying s, as in fig. 3.3:right. The fast
stationary TS corresponds to a vertical line till χ34(χ3) = χmg, the aging TS corresponds to the
y34(y3) = yth fluctuation dissipation ratio, which seems independent on the parental temperature
(right): comparison between parameters evaluated from the integration of the dynamics and from
the 1-RSB ansatz on the asymptotic analysis. The two clearly do not match.

3.1.4 Onset Temperature a Semi-empirical Law

The basic assumptions for the approximation that we will introduce in this section,
come directly from the observation of the FDR plot for different temperatures fig.
3.5. There exist two master curves, both in mixed and pure models, that envelop
the aging curves. These are shown by dashed lines in the plots. The upper one
corresponds to the CK solution of the asymptotic dynamics, while the lower one is
given by a non trivial use of state-following solution. These curves do not depend on
temperature. In pure models for long times the aging dynamics explore all the upper
curve. By contrast in mixed models, if the parent temperature T ′ < Ton, at a certain
point, the dynamics that was following the CK solution discovers the limitedness of
the basin and stops exploring further. This corresponds to a finite q0, p.

Let’s assume that the aging dynamics is exploring a marginal manifold. This
fixes two conditions:

χ = χmg and ∆µas(T ′) = 0 (3.9)

Moreover, we have seen that y ≈ yth. Using both yth and χmg corresponds to using
the CK solution, but without fixing q0 and p to 0. Therefore, we have the energy
and the spectral gap:

Eas(T ′) = Eth + ythf(q0)− β′f(p)

∆µas(T ′) = −ythf ′(q0)q0 + β′f ′(p)p = 0
(3.10)
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Figure 3.5: The semi-empirical approximation of the long time dynamics stems from the observa-
tion that there exist two master curves which are independent on the temperature and envelope the
aging curves. The upper one (dashed line) comes from the standard Cugliandolo-Kurchan solution,
while the lower one (dashed-dotted), which corresponds to the curve χ(t, 0) vs C(t, 0), is given by
a state following approximation of the short time dynamics. These two curves together with the
marginal condition ∆µ = 0, define the asymptotic behavior, and thus the presence of Ton.

We thus have two unknowns q0, p and one equation. We need another, for which
we will use the lower master curve, which approximates ‘properly’ the behavior of
χ(t, 0) vs C(t, 0). This master curve is defined by two parts: for χ(t, 0) ≥ χmg we
assume a linear behavior, which corresponds to the “aging C(t, 0)” part , while in the
regime χ(t, 0) < χmg we assume a “SF solution” (fig. 3.5:right). These two behaviors
correspond to two different time sectors. At the short times, the dynamics of C(t, 0)
and χ(t, 0) almost exactly follows the state following solution, which corresponds
to the relaxation inside a modified state. At the start, the dynamics sees only fast
relaxation modes, and relaxes as if the state were stable, until it finds out that
it is not and it starts surfing into other basins, through saddle points. This long
time behavior takes place on an almost marginal manifold (∆µas(T ′) = 0). We will
provide more details of these two relaxation regimes in the next section. For what
concern the SF solution, we just take the first equation of the FP solution (2.82).
The lower curve (dashed-dotted) is thus given by:{

χ(t, 0) = χmg + yth − C(t, 0) yth
pSF

C(t, 0) ∈ [0, pSF ] (χ(t, 0) ≥ χmg)

χ(t, 0) =
√

1−C(t,0)2

f ′(1)
C(t, 0) ∈ [pSF , 1] (χ(t, 0) < χmg)

(3.11)

where

pSF =
√

1− χ2
mgf

′(1) =

√
1− f ′(1)

f ′′(1)
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This is the value of the minimal overlap with the initial configuration within the
SF solution, and corresponds to the temperature TSF . We notice that this curve
has a continuous first derivative at the point (pSF , χmg), as it can be easily checked
by taking derivatives. Our asymptotic ansatz thus implies a very simple relation
between the overlaps, describing the asymptotic aging regime, namely:

p = pSFq0 (3.12)

Plugging this relation into the condition of gap-less spectrum (3.10), it is easy to
find that a solution with p > 0 can exist only if:

T < Ton ≡
pk
SF

y0

=
f ′(1)[f ′′(1)− f ′(1)]

k
2
−1

f ′′(1)
k−1

2

, (3.13)

where k is defined by f(q) ∝ qk for q → 0 (in the 3+4-model k = 3 and Ton =
0.91). This approximation seems to do a very good job in the vicinity of TMCT

(fig. 3.4). Despite not being an exact solution of the asymptotic equations, it is a
strong indication that there is a phase transition between a memoryless phase, where
dynamics decorrelate from the initial condition and falls over the ‘usual’ threshold
states with E = Eth and a phase in which aging takes place in a confined space, with
an asymptotic energy below threshold and depending on β.

3.1.5 Two Time Scales for Two Power Laws

In this section, we give a theoretical justification to two power laws that arise in GD
dynamics, both in pure and in mixed models. The relaxation of the energy to its
asymptotic values in the (3+4)-model is shown in fig. 3.1.5. If T ′ is high, the energy
goes as t−2/3, while if T ′ ≈ TSF it goes as t−3/2. For temperatures in between, there
is a mixing of the two trends, for small time t−3/2 and for large time t−2/3. The
same behavior holds also in the pure 3-spin model (inset), where now the energy is
always getting to Eth and TSF is substituted by TMCT . To justify these power-law
behaviors, we first observe that the typical spectrum of the Hessian during the GD
dynamics is a semi-circle law ∗ of radius µmg and spectral gap ∆µ(t) = µ(t) − µmg.
This spectrum is moving towards its asymptotic limit: limt→0 ∆µ(t) = 0 for the
aging dynamics (T ′ > TSF) and limt→0 ∆µ(t) > 0 for the relaxations inside a state
(T ′ < TSF). Now let’s approach TSF from below. The corresponding typical IS is a
minimum and, therefore, the long-time relaxation dynamics around it can simply be
written as:

∗here isolated eigenvalues are neglected
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Figure 3.6: Power law behavior of the energy relaxation in the GD dynamics in the (3 + 4)-spin
model. The asymptotic extrapolated energy E∞(T ′) is subtracted. Starting from high T ′ (upper
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t−3/2 to a long time t−2/3. Bot h power law are connected to the lower edge of the typical Hessian
spectrum. In the inset the same behavior is found in the 3-spin model, with TSF = TMCT

δσi(t) =
∑
λ

Pλδσi(0)e−λt =

∆µIS+2µmg∫
∆µIS

dλρ(λ) P0(λ)e−λt (3.14)

where Pλ is the projector on the λ eigenspace of the Hessian and δσi(0) is σi(0)−σIS

i .
ρ(λ) is the semi-circle spectrum defined in (2.90) and P0(λ) the projected initial
condition. We have just decomposed the evolution of δσi(0) into its normal modes,
each one with its typical time scale λ−1. For what concerns the energy:

E(t) = EIS +
1

2
H ′′ijδσj(t)δσi(t) = EIS +

∆µIS+2µmg∫
∆µIS

dλρ(λ) λP0(λ)2e−2λt (3.15)
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The lowest relaxation modes (∆µIS) dominate the long time dynamics independently
on the initial condition P0(λ) ∗. We then expect the energy to have a characteristic
time scale τ = −1/2∆µIS. If now T ′ → TSF , the gap goes towards zero and we
assume a power-law behavior which is strictly connected to the left shape ∝ λ1/2 of
the Hessian spectrum:

E(t)− EIS ∝
2µmg∫
0

dλ λ1/2P0(λ)2e−2λt ∝ t−3/2 (3.16)

Which is the observed power-law both in 3-spin at TMCT and (3+4)-spin at TSF . The
same power-law is observed also for the highest parent temperatures in the short-time
regime (short but macroscopic). This is given by the relaxation of slow modes of a
nearly marginal spectrum. And more generally, the slow modes of a quasi-equilibrium
structure reflects the FDT regime, with again the same t−3/2 power [KL95]. In the
following, we want to argue that the shape of the spectrum not only gives - by its
quasi-equilibrium relaxation - the short time power law t−3/2 relaxation, but - by
a stochastic mechanism - it also gives the long time aging power law t−2/3. Both
of these powers depend on the lower part of the spectrum. The aging relaxation is
governed by the random exploration of the gradient upon the Hessian eigenstates
at long times. The typical picture is the following. At the beginning, the gradient
has a direction that is completely independent from the Hessian eigenspaces so that
each eigenstate is equally populated. Then, in the short time dynamics there is an
exponential deflation of the positive part of the spectrum, which we have already
described. At the same time another process is going on, namely the discovery
of new saddles in the negative part of the spectrum. The process is essentially
different, since the negative part of the Hessian corresponds to unstable directions.
Each time the system gets in a negative direction it must find another saddle or a
final minimum. This jumping from saddle to saddle gives the shift of the spectrum
with time. The Hessian has been shown to behave very chaotically [KL95] in the
sense that its eigenstates turn very rapidly. Thus, the gradient that for long times
is almost all along flat directions λ ≈ 0, finds itself in a new direction regarding of
the Hessian eigenspaces every time. But the only contribution to the probability of
exploration of new saddles Psaddles, so to the long time relaxation, comes from the
proportion of times in which the new pointed eigenspace is negative. This is given

∗if non-null everywhere in the spectrum support
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by the integral of the spectrum on negative directions:

Psaddles(t) ∝
0∫

∆µ(t)

dλ ρ(λ) ≈ ∆µ(t)3/2 (3.17)

which is inversely proportional to the time to escape a saddle, thus:

∆µ(t) ∝ t−2/3 (3.18)

which gives long-time power-law behavior of the spectral gap. In the pure p-spin this
gives directly the power law for E(t)−Eth. In the mixed case the asymptotic power
law for the energy is not obvious , but from the paramagnetic plot in fig. 3.2 it seems
that there is a linear relation between E(t)− EIS(T ) and ∆µ(t), implying the same
power law for the energy.
This was not intended to be a proof, but a hint of what could be the mechanism
behind a law that seems quite robust. Other pure and mixed models show the same
short and long time behavior. And it is interesting to observe that both regimes are
defined by the lower bound of the moving spectrum.
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3.2 Constrained Complexity

In this section, we ask if we can understand the attractors of the dynamics in terms
of typical marginal saddles and minima that lie close to the initial configuration.
The idea is to count stationary points as we have done in section 2.3, but with an
additional constraint q01, which is the overlap to a reference σ0 configuration typical
at temperature T ′. This constrained calculation is directly inspired by the analogy
with the FP-potential. Let us consider the stationary points of the Hamiltonian H[σ]
on the sphere

∑
i σ

2
i = N :

H ′i + µσi = 0. (3.19)

We wish to classify the stationary points according to their energy EIS = 1
N
H[σ],

their spectral gap µ = − 1
N

∑
i σiH

′
i and the value of their overlap q01 = 1

N
σ0 · σ,

with the reference configuration σ0 sampled at T ′. We remind the reader that in
mixed models, the relation between EIS and µ is not univocal and stationary points
are found over a whole region of the (EIS, µ) plane. Since the complexity, i.e. the
logarithm of their number is self-averaging, we write:

Σ(EIS, µ, q01, β) =

∫
SN

Dσ0
e−βH[σ0]

Zβ

log
(∫

S

Dσδ(Nq01 − σ0 · σ) δ(NEIS −H) δ(µσ +H ′) | det(µI +H ′′)|
)

(3.20)
The computation of Σ is standard, and can be performed in several steps. Since
the matrix H ′′ is a GOE random matrix, the distribution of eigenvalues of µI +H ′′

is self-averaging and is a shifted semicircular. The logarithm of the modulus of its
determinant reads (eq. 2.91):

D(µ) = Re
[ µ

µ+
√
µ2 − µ2

mg

+ log
(
µ+

√
µ2 − µ2

mg

)
− 1

2
− log(2)

]
which only depends on µ and µmg = 2

√
f ′′(1). To evaluate the remaining terms, we

use replicas and write Σ ≡ log(N ) = limn→0
Nn−1
n

. We concentrate on the case of
temperatures greater than the static transition temperature (T > TK) of the model,
where the partition function appearing in the denominator of (2.89) is self-averaging

and takes its annealed value Zβ = e
N
2
β2f(1). One can then average over the disorder

and the configuration σ0 at the same time. Opening the delta function in the Fourier
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basis,

Σ(EIS, µ, p, β) = lim
n→0

1

n

(
e−

1
2
β2f(1)

∫
Ds e

∑n
a N(iβ̂aEIS−iσ̂a·σaµ)

δ(Nq01 − σa · σ0) e−βH0 e
∑n
a (iβ̂a+iσ̂a·∇)Ha

)
+ND(µ) (3.21)

where
∫

Ds =
∫
S

Dσ0

∏
a

(∫
S

Dσa
∫

D σ̂a
∫
β̂a

)
.

And because the disorder is Gaussian (see appendix A.1):

e−βH0 e
∑n
a (iβ̂a+iσ̂a·∇)Ha =

e
1
2

(
β2f
(
σ0·σ0

N

)
+2β

∑
a(iβ̂a+iσ̂a·∇a)f

(
σa·σ0

N

)
+
∑
ab(iβ̂a+iσ̂a·∇a)(iβ̂b+iσ̂b·∇̃b)f

(
σa·σ̃b
N

)∣∣
σ̃→σ

)

Now we define overlap variables NQab = σa ·σb, Nχab = iσa · σ̂b and NVab = −σ̂a · σ̂b,
and the overlaps with the reference configuration Nq01 = σa · σ0, Nχp = iσ̂a · σ0.
This change of variables defines a matrix:

Q ≡

 1 q01 −iχp
q01 Qab −iχab
−iχp −iχab −Vab


where Qaa = 1 by spherical constraint. From the equivalence between replicas, we
fix iβ̂a = y and χaa = χ ∀a. With this change of variables eq. (3.21) becomes:

Σ = (yEIS − µχ) + β (yf(q01) + χpf
′(q01)) + lim

n→0

1

n

(
1

2
log(det Q)

)
+D(µ)

+ lim
n→0

1

n

(
1

2

∑
ab

[y2f(Qab) + 2yf ′(Qab)χab + f ′(Qab)Vab + f ′′(Qab)(χab)
2]

)
(3.22)

where 1
2

log(det Q) is the volume factor that comes from the change of variables
from spins to overlaps. To get the leading N contribution we must extremize the
system regarding all the overlap parameters Q and y. We notice that a further
simplification of the expression (3.22) can be obtained by first extremizing with
regard to Vab. Assuming a replica symmetric ansatz for the overlap matrices Q and
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χ, i.e. Q = δab + (1− δab)q0 and χab = δabχ+ (1− δab)χ1 we get, in the limit n→ 0:

Σ(EIS,µ, q01, β; y, χ, χ1, χp, q0) =

+ yEIS − µχ+ β[yf(q01) + χpf
′(q01)]

+
1

2
[y2(f(1)− f(q0)) + 2y(f ′(1)χ+ f ′(q0)χ1) + R + (χ2f ′′(1)− χ2

1f
′′(q0))]

+
1

2
(log(1− q0) +

q0 − q2
01

1− q0

− log(f ′(1)− f ′(q0))− f ′(q0)

f ′(1)− f ′(q0)
+D(µ)

(3.23)
where

R ≡ 1 + f ′(1)
(
χ−χ1

1−q0 (χ− χ1)
)

+
(
f ′(1)− f ′(q0)

)(
χ2
p + χ−χ1

1−q0 (2(χ1 − pχp)− q0−q2
01

1−q0 )
)

This can be extremized explicitly with regard to y, χ, χ1, χp, while q0-extremization
has to be done numerically. For q01 = 0 the solution is q0 = 0 and we recover the
unconstrained complexity (2.97) as found in [ASZ18]. A similar 1-RSB calculation
of the complexity in p-spin models, with some external field breaking the spherical
symmetry, can be found in [CGG99; Ros+19].

As we have already seen in mixed models there is a full range of marginal minima,
here we are extending this concept to the constrained case q01 > 0. Fixing T ′ for each
q01 there is a range of marginal minima. Extremizing the constrained complexity over
the spectral gap, one obtains the dominant stationary points Σdm(EIS; q01, T

′). This
is shown in 3.7 for T ′ = TMCT . For each different q01 we can define the threshold
energy Eth(q01;T ′), as the energy at which dominant stationary points pass from
minima to saddle changes. This threshold energy shows a clear dependence on q01:

Eth(qa;T
′) < Eth(qb;T

′) ∀ qa > qb (3.24)

This result is in the correct direction regarding the dynamics, since it is saying
that the more the space around the reference configuration is confined, the more
the system finds deeper minima. And this is exactly what is observed in the aging
dynamics below Ton. The so found range of variation of Eth is compatible with
the dynamics, while the range of energies with a positive complexity is very large
in comparison. Unfortunately, however, we could not find an exact solution to the
asymptotic dynamics by looking at the constrained energy landscape. On the right
plot, green ellipses represent our best estimate for the large time limit of the actual
dynamics solved numerically. While the energy can be very well estimated, the limit
of C(t, 0) is plagued by a large uncertainty due to its slow convergence. From this
plot one is tempted to conjecture that the dynamics converges to marginal states
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Figure 3.7: (left): complexity constraining the system at a fixed overlap q01 from a reference
configuration sampled at temperature T = TMCT . Vertical lines mark energy values Eth and ETMCT

corresponding to extrapolated asymptotic energies reached by the dynamics starting respectively
from T = ∞ and T = TMCT . The dynamics starting from a random configuration goes to the
most numerous marginal minima (E∞ = Eth), while starting near TMCT the dynamics goes below
Eth. Constraining to an overlap q01 > 0 from the initial configuration provides a qualitatively
correct explanation: the energy of the most numerous marginal minima decreases. (right): the
same complexity shown on the 2-dimensional plane (E, q01). Vertical colored lines mark the same
curves of the left plot. The red curve marks the energy of marginal states varying overlap with
the reference configuration Emg(q01). The green ellipses is our best estimate for the the large time
limit of the gradient descent dynamics, obtained from the numerical integration.

with a threshold energy Eth(q01). However, we have not found any principle to fix
the value of q01 solely from the complexity curve, and further studies are needed to
better match the large-time limit of the dynamics to the energy landscape.

Assuming that at large times the relaxation dynamics converges to the manifold of
marginal states belonging to the curve Eth(q01) one could estimate the point reached
by the dynamics by extrapolating the asymptotic energy E∞(T ) and estimating q01

from the equality Eth(q01) = E∞. Having fixed the values of E and q01, one can
proceed by estimating the remaining parameters of the asymptotic aging dynamics,
q0 and y = ∂EΣ. The result of this computation is shown in fig.3.8 with full lines, and
compared to the (very uncertain) extrapolation of C(∞, 0), shown by red points with
errors. We clearly see that, while the estimate of q01 is compatible with the actual
dynamics, the other two parameters are far from the values measured in the numerical
solution of the dynamics. Indeed q0 becomes smaller than q01 while in the actual
dynamics the inequality q01 < q0 is always satisfied, and y becomes much smaller
than yth (dotted horizontal line), which is a good descriptor of the actual aging in
the whole temperature range studied. So, we believe the present computation of the
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Figure 3.8: Assuming the dynamics relaxes on the marginal manifold with energy Eth(q01) and
fixing the energy from the large time extrapolation of the numerical data, which in its turn fixes
the value for q01, we can compute analytical values for the remaining aging parameters, namely q0

and y = ∂EΣ. While the estimate of q01 is compatible with the large time extrapolation of C(t, 0)
(red points with error in the figure), the other aging parameters are far from those measured in the
actual dynamics.

constrained complexity of the energy function in mixed p-spin models is not the end
of the story. Much more work will be required to relate the large time aging dynamics
to the properties of the energy landscape. For instance basins of attractions are likely
to play an important role, but are absent until now in the computation.
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3.3 Numerical Simulation

In this section, I would like to support the analytical results of the gradient descent
dynamics in p-spin spherical models by numerical simulation of finite size systems.
By contrast to the enormous amount of analytical results, in the literature direct
numerical simulations of fully-connected disordered models are quite rare. In par-
ticular for the out-of-equilibrium p-spin dynamics, for what I am aware of, only one
paper briefly relates to it [KL95]. Here, I will try to introduce the numerical tricks
and details, in order to simulate a p-spin fully connected model up to 4-body interac-
tion and present the results that confirm and enlarge the out-of-equilibrium scenario,
presented in previous sections.

3.3.1 Dilution

The system that we wish to simulate is a p-spin spherical model (pure or mixed) up
to 4-body interaction. It is a fully connected model, thus, there are

(
N
4

)
couplings

which means that already with N = 400 we need to allocate 230(double) which cor-
responds to 8 Gb of memory. And from preliminary simulations of the dynamics
comes that for values smaller than N = 400 finite-size effects are too large to deduce
the thermodynamic behavior. Therefore, the need to find a modified system that
has the same thermodynamic properties, but fewer couplings at any given N . The so
diluted system will have different behaviors at any finite size, but it is build in such
a way that in the N → ∞ limit the expected analytical results are recovered. This
process is called dilution and its is based on the idea that the only thermodynam-
ically meaningful disorder quantity is the variance of the Hamiltonian fluctuations
H[σ]H[τ ] = Nf(q) (see 2.3). To maintain it fixed, while we take a fraction dp of
the original

(
N
p

)
couplings, we rescale the remaining ones by the inverse factor 1/dp.

In principle, this procedure can be used independently for each p-body interaction,
however, to simplify the analysis we will consider a global dilution parameter d. If
the parameter d gets larger than the condensation value dcp(N), which depends on
N and on the number of interactions p, the remaining couplings are too few and the
system condensates, i.e. the minima of the energy landscapes get concentrated on a
few spin components σi∈∂Jmax , which are those that interact through the strongest of
the remaining couplings Jmax. This dc(N) can be estimated by a naive extreme value
analysis (see [Bov05] for a pedagogical introduction). The energy of the condensed
p-tuple is given by:

NEc = −Jmax(σc)p with σc =
√
N/p (3.25)
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that comes directly from the fact that in a condensed state the total radius
√
N is

decomposed onto p components. Fg.3.9 shows, for different dilutions, the relative
distribution of condensed energies. Now let’s evaluate the average value of Jmax,
which is the maximal value over the extraction of NJ

p (d) =
(
N
p

)
d couplings from a

Gaussian distribution of variance J2
p (d) = 1

2
N/
(
N
p

)
/d, in our dilute system. Jmax

follows a Gumbel distribution with mode∗:

Ĵmax =

√
J2

p(d)2

√
2 log(NJ

p (d)) ≈
√
p!/d N1−p log(Np) (3.26)

The standard deviation std(Jmax) scales as the mode Ĵmax at the leading order in
N. The modal energy of the condensate, i.e. the energy of the pick of the distribution
is approximately:

Êc = − Ĵmax(σc)
p

N
≈ −

√
1

d

(p− 1)!

pp−2

log(N)

N
(3.27)

The system condensates whenever the energy of the condensate Ec gets lower than
the typical thermal energy 〈E〉. To have a crude estimate of the gain in dilut-
ing the system, we simply take for the thermal energy the MCT energy EMCT =
−
√

(p− 1)p−1/(p− 2)p−2/2p and for the energy of the condensate, that of the pick

Êc, obtaining the limiting dilution:

dcp(N) =
1

E2
MCT

(p− 1)!

pp−2

logN

N
= 2p

( p− 2

p(p− 1)

)p−2

(p− 2)!
logN

N
(3.28)

We see that the maximal possible dilution (minimal dcp(N)) increases with p so if we
want to take a global dilution in a mixed model, we need to optimize it for the lowest
p. Defining the maximum diluted system as the one for which we take dp ≡ dcpmin we
see that dilution allows to rescale the total number of couplings by a factor N logN
without condensation. So, for example, taking a 3 + 4, model we get a maximal
dilution with a total number of 4-body couplings NJ

4 (dc3) ≈ N3 logN/4!. Therefore,
it is now possible to simulate with the same 8 Gb the same system up to N = 1500
(to be compared with N = 400). On the right plot of figure 3.9 we can see that as
long as the dilution energy Ec is low enough with respect to the equilibrium energy
Eeq, the system has always the same distribution of energies, independently of the
dilution (inset). Thus, we will always consider the smallest dilution possible, which
is given by 3.28.

∗given n extraction from a Normal pdf, the maximum is distributed according to a Gumbel pdf

of mode µ = 4 log(n)−log(4π log(n))

2
√

2
√

log(n)
≈
√

2 log(n) and β =
√

2 log(n)
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Figure 3.9: (left): the distribution of condensed energies Ec in the 3-spin model with
N = 800 for different dilutions d of the system. The maximal possible dilution to
avoid condensation depends on the typical energy at which the system need to be
simulated. (right): the effect of condensed states on the equilibrium energy of the
system at β = 1.55. In the inset, the average energy as a function of the dilution.

3.3.2 Annealing V S Planting

Recall that our gradient descent protocol starts at equilibrium at temperature β′.
To equilibrate the system, we compare two different methods: the Monte Carlo
annealing in temperature and the more clever, but more dangerous, planting. The
equilibration through annealing is at a constant rate of inverse temperature change
v = ∆β/MCstep, where each Monte Carlo step (MCstep) is defined by N(N − 1)/2
Metropolis steps in configuration space, each one consisting of a random rotation α
between a couple of randomly chosen spin components (i, j), with probability:

P (∆Eij) = max{1, exp(−β∆E)} (3.29)

where ∆Eij = E[σf ] − E[σin] with σfi = σini cos(α) and σfj = σinj sin(α). This
allows a local Metropolis-move on the sphere. The system is initialized at a random
configuration, at initial inverse temperature βin < βMCT . Then the annealing proceeds
until the final equilibrium temperature β′. This procedure has the advantage of
reflecting a real cooling of the system, but it is numerically very expensive. In figure
3.10 for three different cooling rates, 20 different protocols for the pure 3-spin model
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Figure 3.10: The energy versus temperature in the annealing protocol for three
different cooling rates. Thick lines are average over 40 trajectories, while thin lines
are single cooling schedules, over different systems. These are compared with the
thermodynamic following states (section 2.2). Full points represent average energies
from the planting procedure. The inset shows fluctuations over a single trajectory
with v = 10−5.

with N = 800 are shown. Decreasing the cooling rate v, the protocol gets closer
to the thermodynamic curve of marginal states, but the two curves do not show
the same kind of states. In finite N simulations, the annealing protocol allows the
dynamics to jump from one state to another until temperatures lower than TMCT .
This is evident in the inset, where the energy of a single cooling is considered. The
so obtained final state has a gapped spectrum. While in the thermodynamic limit,
one expects the system to anneal on a marginal manifold below TMCT and thus, to
have a gapless spectrum.

Another way of preparing the system is to consider the planting procedure (see
section 2.2.2), which is valid above TK. One configuration σ∗ is randomly picked on
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Figure 3.11: (left): panel pdf of equilibrium energies Eeq and energies of inherent
structures EIS for three different temperatures, both with annealing preparation and
planting preparation. (right): a simple classification of equilibrium configurations
based on the time needed to search for the inherent structure, allowing to distinguish
between pure states (fast relaxation) and marginal states (slow relaxation).

the sphere and the couplings are generated according to the Gaussian distribution:

P (Jijk) ∝ exp(−1

2

J2
ijk

J2
3 (d)

+ β′σ∗i σ
∗
jσ
∗
k) (3.30)

for the 3-spin model, where J2
3 (d) = 1

2
N/
(
N
3

)
/d, and analogously for any p. Planting

allows to build a system for which the starting σ configuration is already inside an
equilibrium state. This is a very fast and precise procedure in order to initialize a
system at equilibrium between TK and TMCT . In figure 3.10 the average energy of a
planting preparation for different temperatures are shown (blue dots). There are,
however, two drawbacks. First, since the system is prepared around one specific
configuration, we cannot compare multiple equilibrium states, unless we prepare
them with another procedure. Second, the system is prepared within a non-smooth
protocol, in the sense that finite size fluctuations can induce a given system, prepared
at a temperature near TMCT , to be either in the paramagnetic state or inside a confined
state q 6= 0. Thus, giving very different prepared samples. This can be appreciated
in figure 3.11, where a direct comparison of annealing and planting is reported for



128 3. EXPLORING THE LANDSCAPE THROUGH GRADIENT DESCENT

0.9 0.8 0.7 0.6 0.5 0.4 0.3
Eeq

0

10

20

30

40

50

P(
E e

q)

EMCT Eeq

Finite Size Scaling in 3-spin = 1.1 N = 800
1

800
1

400
1

200
1

100

1/N

0.6

0.5

E e
q(

N
)

Figure 3.12: Distribution of equilibrium energies in 3-spin model at temperature
well above TMCT , both as obtained by the planting method (empty boxes) and by the
annealing procedure (filled boxes) for different sizes of the system. In the inset, the
average and the dispersion of the same distributions as a function of 1/N ; crosses for
planting and circles for annealing. We notice an 1/N bias in the planting averages.

a system of N = 800 (d = 0.01). In the left plot, for three different temperatures,
the pdf of the starting equilibrium energy Eeq is shown together with the pdf of
the energy of corresponding inherent structures EIS. This last quantity is evaluated
by a gradient descent dynamics in the energy landscape, that will be described in
details in the next section. From this plot it can be deduced that, planting near
TMCT is selecting states that give the same typical energy of equilibrium states Eeq,
while annealing selects only states that are near the marginal manifold i.e. which
have EIS ≈ Eth. Planting is thus selecting states arbitrary far from the marginal
manifold. The right panel focuses on planting for β = 1.63 and it is shown that
the so selected states can be (somehow arbitrary) divided in two classes: those for
which the search of the inherent structure minimum is fast (time > 250), which turn
out to have greater overlap with the reference configuration σ∗ and correspond to a
situation for which the system is prepared in a pure state. And those for which the
search for the inherent structure is slow and corresponds to states that have a lower
overlap with σ∗ and for which the inherent structure energy is almost Eth. Therefore,
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doing planting and annealing are sampling states that, while in the thermodynamic
limit are expected to have the same properties, in any finite size system can give
very different results, in particular near the mode coupling transition TMCT .

For what concerns finite size scaling (FSS) effects, the plating procedure gives
a broader distribution of energies and a 1/N systematic bias of the energies. This
can be clearly seen in figure 3.12. In order to get less biased results, while using
the planting procedure, we will first plant the configuration and then relax it with
a number of MC steps of the order of the relaxation time inside the basin. The
obtained result perfectly agree with the annealed ones, again, if we are not too close
to TMCT .

3.3.3 Simulation V S Integration

In this section, we will show how the simulations give results in agreement with
those obtained from numerical integration of MFDE. We will focus on the gradient
descent dynamics of the (3 + 4)-spin model for system sizes N = 1600, 800, 400 and
dilution parameters d = 0.0025, 0.005, 0.01 respectively . The system is initialized
with a planting procedure and a successive Monte Carlo relaxation dynamics inside
the basin. As we have seen, the planting procedure can be ‘dangerous’ near TMCT ,
since the system can find itself confined in a state, incapable to age outside. In
order to reduce possible fluctuations in the average dynamics, due to the width of
the initial energy distribution, we label each trajectory by its starting energy E ′,
instead of its parent temperature T ′ (microcanonical sampling). So, in a few words,
each configuration is planted at T ′, relaxed at T ′ and then labeled by its own energy
E ′. All averages are done by considering a small range ∆E ′/E ′ = 0.005 of the
trajectories’ energy around E ′.

Let’s look at the result from a parent temperature T ′ ≈ TMCT , that is E ′ ≈
−1/TMCT = −1.24. Let’s consider a single sample of quenched disorder. In fig.
3.13:left are shown the energy relaxations of one GD trajectory from E ′ = −1.24,
and four GD trajectories from E ′ = −1/T ′ = 0, i.e. from random configurations. As
a general behavior of the single trajectory, we notice that there seems to be a length
scale τ(N) depending on the size of the system. For times smaller than τFSS(N)
the single GD trajectory shows self-averaging behavior, while for times greater than
τFSS(N) there is a net separation of single trajectory behavior. It would be interesting
to explore this dynamical FSS in more details. Here, we just want to give support
to the picture built from the numerical integration. In the plot on center,top of
fig. 3.13 the same sample is shown in the usual plane ∆µ,E. also at the level of
the single sample the distinction of the aging dynamics between random and TMCT
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Figure 3.13: Simulation of the gradient descent dynamics in the mixed p-spin model with N=1600.
Blue dashed lines show the results from the numerical integration. (left): energy relaxation along
one GD trajectory from T ′ ≈ TMCT and four trajectories from T ′ = ∞ with the same quenched
disorder. (center): the three plots present the evolution of the energy E vs the spectral-gap ∆µ at
T ′ ≈ TMCT . On top, the same trajectory presented on the left plot. In the middle, many trajectories
with different disorder. In the bottom, averages over 100 samples of disorder, for different sizes of
the system. (right): relaxation energy averaged as a function of time over 100 sample of disorder.
The same data used in (center):bottom plot.

configurations in net. The dynamics goes on in parallel, in the landscape of saddles.
The figure below shows many trajectories from many different samples prepared at
TMCT . Below, the energies averaged over the 100 samples, as a function of ∆µ, for
three different sizes of the system are shown. Finally on the right, the averages are
evaluated as a function of the time. All plots also present the mean-field integrated
dynamics (blue-dashed line). These plots confirm that an almost marginal dynamics
over the single trajectory is taking place, and that this dynamics is going on under-
threshold for T ′ ≈ TMCT . It is important to remark the new important point given
by the simulation, the under-threshold aging, is observed over the single trajectory.

Now let’s look at the correlation with the initial configuration, averages over dif-
ferent 100 samples are shown in fig. 3.14. Again the mean-field behavior is confirmed,
but the time reached is too small to say anything more about the “confined” dynam-
ics. Finally, we look at the energy of the 3-spin part E3, and separately of the 4-spin
part E4. In figure 3.14 the single trajectories and their average are shown. Here, we
want to comment on the strange behavior that follows E3, which is not monotonously
decreasing. One possible explanation is the following. The 3-spin interactions are
less in number and easier to relax, thus, at the beginning of the GD dynamics they
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Figure 3.14: Simulation of the gradient descent dynamics in the mixed p-spin model with N=1600.
Blue dashed lines show the results from the numerical integration. (left): correlation with the
starting configuration averaged over 100 samples of disorder for different system sizes at T ′ ≈ TMCT .
(center): energy relaxation of the 3-spin E3 part and of the 4-spin E4 for many trajectories with
different disorder at T ′ ≈ TMCT . We observe that the 3-spin part is not monotonous in time.
(right): E3 and E4 averaged over 100 samples of disorder for different sizes of the system.

find optimal (in E3) configurations, on the other hand 4-spin interactions are slower
to relax in relative scale ∗, but since they are more and so have more ‘inertia’, in order
to further relax, they exchange energy to the E3 part, which goes up. The interesting
aspect is that this mechanism is connected to the under-threshold dynamics. Both
E3 and E4 have a CK threshold value E3,th = −16/21 E4,th = −13/14, which they
attain, starting from high parent temperature. It is around Ton that E3 start to
become non monotonously decreasing. And both E3 and E4 start to asymptotically
deviate from their threshold values E3,th, E4,th.This mechanism is general in mixed
models, where the part of the energy which corresponds to fewer spins, relaxes the
fastest. The greater is the gap in number of interactions, the greater is the effect of
this mechanism, and thus, the greater the under-threshold range. This gives a simple
predictive intuition about what happens if taking for example the 3 + 6 model, since
the difference in time scales of relaxation will be greater, the under-threshold range
will be greater than in the 3 + 4 model. To conclude, I restate the main conjecture.
In mixed models, the onset temperature Ton is connected to the non monotonous
behavior of the fastest relaxing modes.

∗for relative scale we mean that both E3 and E4 are considered to relax between 0 at time 0
and -1 at time ∞
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Figure 3.15: Sketch of the different out-of-equilibrium dynamical phases in the gradient descent
dynamics for pure and mixed models.

3.4 The Emergence of a New Phase

All the results exposed in this chapter invite to rethink the out-of-equilibrium dy-
namics of mean-field models. The main ideas were developed on the result obtained
looking at the pure p-spin spherical model, which has a rather trivial and pathologi-
cal energy landscape. Whenever looking at mixed models, the scenario complexifies
at the point that we are not anymore able to predict the asymptotic dynamics. This
is directly related to the existence of a full range of marginal manifolds, possible can-
didates for the aging dynamics. The main obtained result is that there exists a range
of parent temperature between TSF and Ton, between which the GD dynamics show
aging together with memories of the starting condition. In this picture TMCT does
not seem to have any interesting role. At equilibrium it is the temperature at which
ergodicity is broken, but out-of-equilibrium, it is just one of the many temperatures.
It is only in pure models where TSF = TMCT that there it acquires a double role.
The whole picture is summarized in figure 3.15 and firstly presented in “Memories
of the ergodic phase” written by me, and my two advisors Silvio Franz and Federico
Ricci-Tersenghi [FFR19].

The question that naturally follows, is how does the dynamics behave if instead
of considering GD dynamics, we consider a finite temperature bath at T? Let’s refer
to figure 3.16. As we have seen from the state following procedure, there is a line
at which states are lost Tlost(T

′) at which the dynamics become critical. This line
terminates down at Tlost(0) = TSF and up at Tlost(TMCT) = TMCT . This marks the
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Figure 3.16: The two-temperature protocol phase diagram for the (3+4)-model with the new
emerging phase: “Aging with Memory”. The thin pointed line is here conjectured and could also
corresponds to a crossover.

entrance into an out-of-equilibrium phase which, from preliminary studies and from
continuity with the T = 0 case, shows aging in a confined space, which we define
“aging with memory”. On the other side, there is the onset of this new phase, that
is not clear yet whether it is a sharp transition or a crossover, which is shown as a
temperature band.

The conjecture is that in the two temperature protocol of mixed p-spin models
a new phase emerges, between the state following phase at low temperature parent
temperature and the threshold aging for high-parent temperature, for any tempera-
ture of the thermal bath. This new “aging with memory” phase presents aging on
a marginal manifold below the threshold in a confined space (memory of the initial
condition). From the theoretical study of the energy landscape at T = 0, we have
shown that the confinement justifies the under-threshold behavior. We have seen that
there is some almost temperature independent (T ′) behavior in the aging dynamics,
also in the new “aging with memory” region. This behavior has allowed to define
theoretically an onset temperature Ton. This same analysis should be carried out at
different T . In any case, the question of how to solve analytically this enigma remains
open. One possible path that should be followed is the study of isolated eigenvalues
of the Hessian spectrum, both of the energy landscape and of the TAP free energy
landscape. Some isolated direction could allow this under-threshold dynamics. We
look forward to new developments.
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Perspectives

I titled this section ‘Perspectives’ rather than ‘conclusions’, since I believe that my
PhD research would be more effective in opening new ‘doors’ than closing opened
ones. Let’s start by giving an account of the principal elements discussed throughout
this thesis.

The p-spin spherical model, as it is already suggested by its name, has been
introduced as a model with p-body interactions. What I have tried to argue at
different levels, is that, having only one kind of interaction brutally trivializes the
structure of the model, in which each minimum of the energy landscape is completely
independent to all others and can be followed up in temperature until it melts. This
can be rephrased geometrically as, the TAP free energy minima are followed radially
on the sphere. And as a consequence, using different analysis such as Franz-Parisi
from equilibrium states, or selecting dominant states with Monasson method, give
the same conclusions on the structure of states. From the point of view of the
two temperature protocol out-of-equilibrium dynamics, if one starts inside a state
(below TMCT) state following holds. While, if one starts in the ergodic phase (above
TMCT), and quench below TMCT , the aging dynamics to the threshold energy manifold
holds. It goes to “the” threshold, since there exist only one threshold at which
dominant stationary points of the energy landscape pass from saddle to minima.
This whole behavior is very singular and connected to the simple geometry of the
energy landscape in pure models.

The entire scenario completely changes when considering mixed models, in which
different kinds of interactions compete. First of all, it is not possible anymore to
follow energy minima in temperature, at least in average; the so-called “chaos in
temperature”. Then comparing different methods of selecting states they give differ-
ent results. States followed from equilibrium to some temperature T (FP-potential)
are distributed differently than states directly sampled at T (M-method). This static
phenomenology reflects in the out of equilibrium dynamics. States can be followed
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from equilibrium in the glassy phase (below TMCT), but when cooled too much they
can be lost. Concentrating in the gradient descent dynamics, the system shows
different aging behaviors. From high temperature it shows aging to “the” thresh-
old, while equilibrating the system near TMCT a new out-of-equilibrium dynamical
regime emerges. The system ages in a marginal manifold and keeps memory of the
initial condition. This new phase is very difficult to characterize. From the numer-
ical integration it seems to have the same effective temperature, predicted by the
Cugliandolo-Kurchan solution (“the” threshold solution), but at the same time it
relaxes to energies under the threshold.

We have seen that an approximate asymptotic description of this dynamics can
be obtained by noting that there exist two master curves in the FDR analysis. This
approximation supports the presence of an onset temperature Ton, below which the
dynamics begins to deviate from the threshold manifold. Considering that the gradi-
ent descent dynamics corresponds to a search for the inherent structures, this same
phenomenon is observed in simulations of finite dimensional systems and is connected
to the onset of heterogeneous dynamics at equilibrium. The mixed p-spin spherical
model has the same phenomenology despite the lack of any spatial structure, which
is a very interesting fact, I believe. Another signature of the onset dynamics is given
by the non-monotonous behavior of the lightest p-energy part of the Hamiltonian.
We have also seen that the aging dynamics, both the threshold and under-threshold
ones, show two temperature independent power laws (2/3 and 3/2) which, as we
argued, are connected to the lower bound shape of the typical visited Hessian in the
energy landscape.

From this panorama multiple paths of investigation naturally arises. First a new
analytical ansatz for the asymptotic dynamics, which should take memory effects
and aging into account is needed. Many elements could play an essential role in
defining this asymptotic behavior. One hypothesis is that there are some isolated
eigenvalues of the Hamiltonian Hessian which open paths to the underthreshold
dynamics already at short times. Because the dynamics from temperatures near
TMCT already goes under-threshold at short times. Another hypothesis is that the
same constrained analysis must take into consideration the volume of the starting
basin of attraction, as in PEL mind-setting. Apart from many different theoretical
paths, one very fruitful way, in order to better understand all the out-of-equilibrium
scenarios, would be to succeed in writing a stable algorithm that can achieve ‘very
large’ times. Many have tried, but no one has succeeded. It is full of directions to
explore, which one to follow?

What I find most fascinating, is that how from a so simple Hamiltonian, a complex
universe has emerged. Over 30 years, the analysis of the properties of this model
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has been deepening and reinforcing. In all these pages, I tried to summarize what
in my belief are the main results, plus what has been my contribution. One should
notice that the main purpose of such a model is to guide the comprehension of more
complex models, not to give exact predictions. And in this sense, I think that the
model is mature enough to consider its employment as a pedagogical tool. It gives
a coherent apparatus of relations, conceptually organized in a very small core. All
these relations have some counterparts in real systems, and therefore can guide the
exploration. One could object that this apparatus can be misleading regarding the
real world, however, I think that this is always the case. The more the model is
essential, the more it misses the peculiar aspects of each reality but it is capable of
unifying a lot of coherent rules. And I very much enjoy the internal coherence of
abstract models.

What is sure, is that a new phase emerges, and this new phase is still far to be
understood theoretically. Many ropes have been thrown. We hope that some will
guide new comprehensions.
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Appendices

A.1 Gaussian Correlation of Disorder

From the definition of p-spin model the disorder is Gaussian s.t.:

H[σ] = 0

H[σ]H[τ ] = Nf(σ·τ
N

)

thus, the associated moment-generating function is:

e
∫
dσH[s]β[s] = e

1
2

∫
dsdtβ[s]H[s]H[t]β[t] = e

N
2

∫
dsdtf(

s·t
N

)β[s]β[t]

where β[σ] is the conjugated variable to H[σ]. Inserting β[s] = δ(s− σ) + δ(s− τ),
an important identity follows:

eH[σ]+H[τ ] = e
1
2

(H[σ]+H[σ])2
= e

N
2

(
2f(1)+2f(

σ·τ
N

)
)

this is for two replicas τ and σ, but can be easily extended to n-replicas. Moreover,
it can be extended to any linear operator Dσ acting on H[σ]:

eDσH[σ] = e
1
2

limτ→σ DσDτH[σ]H[τ ] = e
1
2
NDσDτf(

σ·τ
N

)|τ=σ

Given any observable which is writable as O[σ] = DσH[σ], its gaussian fluctuations
can be directly characterized by acting with Dσ on the correlation function f :

O[σ]O[τ ] = DσDτf(σ·τ
N

) (A.1)
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For example, given the gradient linear operator Dσ = ∂σi and D′σ = ∂σj :

∂iH[σ]∂jH[τ ] = ∂σi∂τjNf(σ·τ
N

)

= ∂σi(σjf
′(σ·τ
N

))

= δijf
′(σ·τ
N

) +N−1σiσjf
′′(σ·τ

N
)

For further derivatives the general algebra is:

∂f = σf ′

∂∂f = δf ′ +N−1σσf ′′

∂∂∂f = N−1δσf ′′ + 2 perm. +N−2σσσf ′′′

∂∂∂∂f = N−2δδf ′′ + 2 perm. +N−3δσf ′′′ + 2 perm. +N−4σσσσf ′′′′

...

each derivative of f brings out a term N−1. And in the thermodynamic limit only
the biggest power in N contributes. In particular in the main text we will refer to
these correlations:

lim
N→∞

H[σ]H[τ ] = Nf(σ·τ
N

)

lim
N→∞

H ′i[σ]H ′j[τ ] = δijf
′(σ·τ
N

)

lim
N→∞

H ′′ij[σ]H ′′kl[τ ] = N−1δ(ij)(kl)f
′′(σ·τ

N
)

(A.2)

the first one comes directly from the definition of the disorder in the model and cor-
responds to fluctuation of the Hamiltonian, the second gives the typical correlations
of the gradient, the third one the typical correlations of the element of the Hessian,
which in the particular case σ = τ gives the variance of the GOE Hessian on the
sphere, which we will explore in detail in the next section.

A.1.1 The typical Hessian belongs to the GOE

We want to show that the typical Hessian of the Hamiltonian of p-spin spherical
models belong to the Gaussian Orthogonal Ensemble (GOE). Given the Hessian
element of matrix:

Gij ≡ ∂i∂jH[s] + µδij ∝ N−1

The matrix G belongs to the GOE if:

GijGkl =
1

N
∆2
G(δ(ij)(kl) + δ(ij)(lk)) +

1

N2
B(ij)(kl) (A.3)
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and

G4
ij =

1

N2
3∆4

G (A.4)

the symmetric δikδjl+δilδjk comes from the fact that the Hessian is symmetric and so
GijGkl = GijGlk. We will put apart the µδij part of Gij that will give only a constant
drift of the spectrum, and consider only the part ∂i∂jH[s], and we will restrict the
space with the spherical constrain s·s = N . Let’s check the first condition:

∂i∂jH[s]∂k∂lH[s]
∣∣
s·s=N = lim

s′→s
N∂i∂j∂

′
k∂
′
lf(

s·s′

N
)
∣∣
s·s=N

= lim
s′→s

N∂i∂jsksl
1

N2
f ′′(

s·s′

N
)
∣∣
s·s=N

= N(δikδjl + δilδjk)
1

N2
f ′′(1)

+N(δiksjsl + δilsjsk + δjksisl + δjlsisk)
∣∣
s·s=N

1

N3
f ′′′(1)

+N(sisjsksl)
∣∣
s·s=N

1

N4
f ′′′′(1)

The strength of last two terms depends on the components of a typical vector s on
the sphere of radius N. But the product sisj will typically behave as O(1) and thus,
the two last terms give a sub-leading contribution. Therefore, we obtain the variance
of the GOE:

∆2
G = f ′′(1)

To check the second condition on fourth moment we must evaluate:

(∂i∂jH[s])4
∣∣
s·s=N = lim

s′′′→s′′→s′→s
N2∂i∂j∂

′
i∂
′
j∂
′′
i ∂
′′
j ∂
′′′
i ∂
′′′
j [f(

s·s′

N
)f(

s′′ ·s′′′

N
)+2perm.]

∣∣
s·s=N

now as in the previous calculation each derivative of f will give a weaker contribution
since it carries out an N−1 which cannot be compensated by the typical component
of a vector on the sphere of radius N. Thus, we will directly consider the terms with
less derivatives of f . But these are:

(∂i∂jH[s])4
∣∣
s·s=N = N2 1

N4
(3f ′′(1)2) =

1

N2
3∆4

G

which is the expected result.
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A.2 k-RSB q-extremization

Let’s look at the extremization of Fβ[λ̂(q)], given a k-RSB ansatz for λ̂(q) (see 2.41):

δFβ =

∫
δFβ
δλ

δλ̂

δλ̂ ≡
k+1∑
i=0

dqi

(
δ(qi − q)(qi − q)(xi − xi+1) + θ(qi − q)(xi − xi+1)

)
+ (dxi − dxi+1)θ(qi − q)(qi − q)

(A.5)

Therefore, the condition of stationarity with regard to the r-overlap qr reads:

0 = ∂qrFβ =

∫
δFβ
δλ

∂qrδλ̂ ⇒
∫ qr

0

dq
(
f ′′(q)− β−2λ̂(q)−2

)
= 0 (A.6)

It is not required that
δFβ
δλ

is identically zero, as it would be if λ(q) did not have to
be concave, but that for each r-step its integral is zero:

f ′(q0) = β−2q0λ
−2
0

f ′(qr)− f ′(qr−1) = β−2
(∫ qr

qr−1

dq λ̂(q)−2
)

∀r≥0
(A.7)

If we consider the first equation together with the stability condition λ(q0)−2 ≥
β2f ′′(q0)(eq. 2.46), we obtain the general inequality:

f ′(q0) ≥ q0f
′′(q0)

which is satisfied only by q0 = 0. This same condition was obtained in the 1-RSB
case. Therefore, the lowest value of QkRSB, i.e. the minimum possible overlap between
replicas, is always zero in absence of an external field.
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A.3 Algebra of Overlap Matrices

A.3.1 Derivatives

∂qab log detQ = ∂qab log(qabMab + ...) =
Mab

detQ
= [q−1]ba

∂qde
(
qab[q

−1]bc=δab
)
⇒ δ(ad)(be)[q

−1]bc+qab∂qde [q
−1]bc=0⇒ ∂qde [q

−1]bc = −[q−1]db[q
−1]ec

A.3.2 Algebra of RS Matrices

Given A,B ∈ QRS the product C = A ∗B ∈ QRS and is equal to:

C = A ∗B = lim
n→0

(αI + a)(βI + b) = lim
n→0

(
αβI + (αb+ aβ) +nab

)
= αβI + (αb+ aβ)

(A.8)
Therefore, B is the inverse of A if:

β = 1/α b = −a/α2 (A.9)

Let’s evaluate the product of matrices [q−1]ac[q
−1]bd in the RS case. We have that

the inverse of qab = δab(1 − q) + q is the matrix [q−1]ab = δab(1 − q)−1 − q(1 − q)−2.
Therefore:

[q−1]ac[q
−1]bd = (δac(1− q)−1 − q(1− q)−2)(δbd(1− q)−1 − q(1− q)−2)

= δacδbd(1− q)−2 − (δac + δbd)q(1− q)−3 + q2(1− q)−4
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A.4 TAP Free Energy

In mean-field models which present a first-order transition, in order to study metastable
states, one needs to consider free energies written in terms of extensive variables
(M,E, V, ...). Unfortunately the majority of calculations are doable only in the dual
space, the one of intensive variables (h, T, P, ...), and here all metastabilities are lost.
To overcome this issue, three main techniques have been developed. The Plefka’s
expansion (PE), which is based on a perturbative expansion around a known point
of the theory (e.g. infinite temperature) [Ple82; YG90]. Another way is the cavity
method (CM), which considers the linear response field of all neighbors on a par-
ticle and the auto-induced field of the particle through neighbors [MPV87; Bar97].
And finally the Bethe-Peierls approximation (also called Belief Propagation BP),
which approximates the local topology of the neighbors as tree-like and then writes
auto-consistent equations for local fields. All three methods agree on results (so far)
for mean-field models i.e. completely connected models. In what follows, I present
the PE up to second order in inverse-temperature β which gives an exact result for
mean-field disorder models in the thermodynamic limit.

Let’s write the PE for a generic model and then focus on the mixed p-spin case.
The goal of the game is to write a free energy G[m], which is a function of the average
magnetization mi = 〈si〉. The minima of this function locates (meta)stable states
of the system. As it is usual habits in perturbative expansions, we decompose the
cost function of our model in two parts, a zero-model H0[σ] for which the free energy
G0[m]∗ is known and a βH[σ] which we process perturbatively. Let’s now introduce
the functional:

Gβ[h;m] ≡ − log(Trσe
−βH[σ]−h·δσe−H0[σ]) = Fβ[h]− h ·m (A.10)

where δσi ≡ σi−mi and Fβ[h] ≡ log(Trσe
−βH[σ]−h·σe−H0[σ]) is the usual free energy†.

Gβ can also be seen as the cumulant generator around the zero-model and around
the magnetization mi. Taking derivatives with respect to β and hi we have first order
moments:

∂Gβ[h;m]

∂β

∣∣∣∣∣ β=0
hi=0

= 〈H〉0
∂Gβ[h;m]

∂hi

∣∣∣∣∣ β=0
hi=0

= 〈δσi〉0

where 〈〉0 stands for expectation value over the zero-model (β = 0). And similarly
for high orders. Extremizing the functional (A.10) with respect to hi is equivalent of

∗which is the entropy at infinite temperature
†a part from a β rescaling
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calculating the Legendre transform of F [h]:

Gβ[m] ≡ inf
h
Gβ[h;m] = inf

h
(Fβ[h]− h ·m) = Fβ[hβ[m]]− hβ[m] ·m (A.11)

This extremization defines the non-injective map hβ[m], which at every inverse-
temperature β returns the right field h that would allow an average magnetization
m. One could naively evaluate Fβ[h] for arbitrary β and then do a Legendre trans-
formation, however, in this way all non-convexities are lost (mβ[h] is a non-surjective
map). So the idea is to fix a certain magnetization mi in the zero-model and to
follow the evolution of its correspondent free energy by changing the parameter β.
At this point, it is possible to write the total derivative of an averaged observable
changing β as:

d〈O〉β
dβ

= 〈dO
dβ
〉β − 〈OH〉cβ − 〈Oδσj〉cβ ·

dhj
dβ

(A.12)

where 〈O〉β = TrσO[s]e−βH[σ]−hβ [m]·δσe−H0[σ]/Z i.e. the expectation over the β-model,
the superscript c stands for connected correlations and hj stands for the component
j of hβ[m]. At this point we notice that, since we defined hβ[m] such that 〈δσi〉β = 0,
evaluating derivatives we have a full set of equalities, the first of which reads (see
A.12):

d〈δσi〉β
dβ

= 0 =⇒ 0 = −〈δσiH〉cβ − 〈δσiδσj〉cβ
dhj
dβ

(A.13)

We are now ready to write the Taylor expansion of the free energyGβ[m] ≡ Gβ[hβ[m],m],
obtained by fixing m in the zero-model and following it with the field hβ[m]:

Gβ[m] = G0[m] + β
dGβ[m]

dβ

∣∣∣
β=0

+
β2

2

d2Gβ[m]

dβ2

∣∣∣
β=0

+O(
1

N
) (A.14)

At a coherent perturbative order we must expand the field:

hβ[m] = h0[m] + β
dhβ[m]

dβ

∣∣∣
β=0

+
β2

2

d2hβ[m]

dβ2

∣∣∣
β=0

+O(
1

N
)

The first order derivative reads (see A.12):

dGβ[m]

dβ

∣∣∣
β=0

= −〈H〉0 − 〈δσi〉0
dhi
dβ

∣∣∣
β=0

= −〈H〉0

since 〈δσi〉0 = 0. And from the Legendre duality hi = −∂miGβ we deduce the relative
field derivative:

dhi
dβ

∣∣∣
β=0

= ∂mi〈H〉0
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And for the second order derivative (using again A.12 and A.13):

d2Gβ[m]

dβ

∣∣∣
β=0

=
d

dβ
(−〈H〉β − 〈δσi〉β

dhi
dβ

)
∣∣∣
β=0

= (〈H2〉cβ + 〈Hδσi〉cβ
dhi
dβ

)
∣∣∣
β=0

= 〈H2〉c0 − 〈δσjδσi〉c0
dhj
dβ

dhi
dβ

∣∣∣
β=0

= 〈H2〉c0 − 〈δσ2
i 〉0(∂mi〈H〉0)2

where in the last line, we have used the first order expansion of the field and taken
the further assumption that the zero-model is factorized in the sites i.e. 〈δσjδσi〉0 =
〈δσj〉0〈δσj〉0. Putting first and second order together, we get the so-called TAP free
energy:

Gβ[m] = G0[m]− β〈H〉0 + β2(〈H2〉c0 − 〈δσ2
i 〉0(∂mi〈H〉0)2)/2 (A.15)

It can be shown that in completely connected models any further order derivatives
will give non-extensive contributions i.e. O(1/N).

Some interesting developments of the Plefka expansion can be found in the recent
literature [BSO16; KH18]

Now we can focus on the mixed p-spin spherical model and evaluate its TAP
free energy [Bir99; Zam10]. Our zero-model is the infinite temperature model i.e. a
random point σi on a N-dimensional sphere and G0[m] is the entropy of the points on
the sphere with given average magnetization m i.e. the volume of an N-dimensional
sphere of squared radius r2 = 1− q = 1−

∑
im

2
i
∗:

G0[m] = log(VNr
N) = log(VN) +

N

2
log(1− q)

where VN is the volume factor. Knowing the zero-model, we can perturb it with the
quenched disorder Hamiltonian H[σ] =

∑
k αkJkσ

⊗k with correspondent disorder co-

variances H[σ]H[τ ] = N
∑

k α
2
kq
k ≡ Nf(q) where () is the average over the quenched

∗Thus H0[σ] = − 1
2µ(σ · σ −N) with µ Lagrange multiplier. The related free energy is F0[h] =

N
2 log( 2π

µ ) + 1
2µh · h+ 1

2µN and mi = ∂hi
F0[h] = h∗i /µ, and we have:

G0[m] = F0[h∗]−m · h∗ =
N

2
log(

2π

µ
) +

N

2
µ(1− q) =

N

2
log(1− q) + const

where the Lagrange multiplier has the value µ = (1− q)−1 and q =
∑
im

2
i /N .
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disorder. To evaluate the TAP free energy we just use (A.15), obtaining:

Gβ[m] =
N

2
log(1− q)− β

∑
k

αkJkm
⊗k + β2N

2
(f(1)− f(q)− (1− q)f ′(q)) (A.16)

where we have used the equalities 〈H2〉0 ≈ 〈H2〉0 =
∑

k α
2
kJ

2
k (σ2)⊗k = f(1), 〈H〉20 ≈

〈H〉20 =
∑

k α
2
kJ

2
k (m2)⊗k = f(q) and (∂mi〈H〉0)2 ≈ (∂mi〈H〉0)2 = f ′(q).
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Figure A.1: (left,center): orbits of the bi-stable pendulum for high and small ener-
gies. The energy of the orbit is parameterized by the relative temperature T . (right):
dependence of the final average energy EIS after a quench from orbits at different
temperature T . We define TMCT , TSF , TK in analogy with the mixed p-spin model.

A.5 A Toy Model with Memory from the Ergodic

Phase

In this small section, I present a uni-dimensional model that despite its simplicity
illustrates the effect of memory from the ergodic phase. It’s a bi-stable pendulum
with Hamiltonian:

H(x, p) =
1

2
p2+V (x/L) with

{
limL→∞ V (x/L) = −x2 + x3

3
+ x4

4

limL→0 V (x/L) = 1
2b2
θ(x)x2

(A.17)

If L is taken very large, we see that V (x) is a standard asymmetric double-well
potential with two minima divided by a saddle at x = 0. We look at this model from
a microcanonical point of view. To each energy corresponds an orbit in the phase
space (x, p). The L→ 0 limit is build in such a way that iso-energetic curves describe
a half ellipse with an x-axis long b-times the p-axis. The relative entropic weight of
finding a configuration in a certain portion of the orbit is proportional to the length of
it, since the differential entropy is dS = dxdp. At high energies - which in our analogy
with the p-spin dynamics corresponds to high temperatures - orbits are ergodic, in the
sense that the dynamics explore both wells. Doing a quench, i.e. a gradient descent
dynamics (p → 0) from a point on a given orbit, the positive minimum is reached
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with a probability equal to (positive orbit length)/(total length). Going down with
the energy (temperature in our analogy), the probability of being in the basin of
attraction of the right basin decreases, until at the certain temperature the orbit
partitions into two disconnected parts at TMCT , and at an even lower temperature
the right minimum completely disappears (TSF ), leaving space only to the deeper
state which continues its existence till TK . This is a very simple model that already
presents memory from the ergodic phase, i.e. in which there is a dependency of the
average inherent structure energy onto the initial temperature for T > TMCT .
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A.6 Equilibrium Integration

The non-linear step

Let’s suppose that we know Ci ≡ C(ti) exactly on a finite set of N points {ti}i≤N
until a time tN ≡ τ and we want to evaluate it at tN+1 ≡ τ + ∆τ . The time ∆τ can
be very large, but the change ∆CN ≡ C(τ + ∆τ) − C(τ) should be small. In this
sense, we can capture very different time scales.
Therefore, we want to solve (see section 2.6):

Ċ(τ + ∆τ) = −TC(τ + ∆τ)− β
∫ τ+∆τ

0

dsf ′(C(τ + ∆τ − s))Ċ(s)

The question is: fixing ∆τ (a posteriori checked), which value of CN+1 is the ‘bets’
(A.6) knowing exactly all the past {Ci}i≤N?

exact: C(τ) for τ < tN
discretized: Ci for i<N

new step: CN+1

LHS - finite difference method

The LHS, i.e. Ċ(τ + ∆τ), can be approximated to the order O(∆τ k) by a linear
combination of {Ci}N−k<i≤N and CN+1. This is the so-called finite difference (FD)
method. Up to the second order the LHS becomes:

Ċ(τ + ∆τ) ≡ D({Ci}N−k<i≤N , CN+1; ∆τ)

=
1

∆τ
(aN−1CN−1 + aNCN + aN+1CN+1) +O(∆τ 2)

(A.18)

where, in general, the coefficients {ai}N−k<i≤N depend on the time-discretization
{ti}N−k<i≤N .
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RHS - integral evaluation

To evaluate the RHS of (A.6), we need to split the convolution integral into an
interior part, which only depends on the previous steps and a border part which
depends explicitly on CN+1:∫ τ+∆τ

0

dsf ′(C(τ + ∆τ − s))Ċ(s) = Iinter({Ci}i≤N ; ∆τ) + Ibord(CN+1; ∆τ);

where:

Iinter({Ci}i≤N ; ∆τ) ≡
∫ τ

∆τ

dsf ′(C(τ + ∆τ − s))Ċ(s)

Ibord(CN+1; ∆τ) ≡
∫ ∆τ

0

dsf ′(C(τ + ∆τ − s))Ċ(s)

+

∫ τ+∆τ

τ

dsf ′(C(τ + ∆τ − s))Ċ(s)

(A.19)

The first term has a precision that depends on the discretization choice {ti}i≤N . If
at every interval in which the integral is decomposed we make an error O(∆τ 2) the
total error will be of order N∆τ 2.
To evaluate Ibord(CN+1; ∆τ) we integrate the first term by parts:

Ibord(CN+1; ∆τ) =f ′(C(τ + ∆τ − s))C(s)
∣∣∆τ
0

−
∫ ∆τ

0

dsC(s)ḟ ′(C(τ + ∆τ − s))−
∫ ∆τ

0

dsf ′(C(s))Ċ(τ + ∆τ − s)

this cancels the dependence on the integral of f ′(C) on the border zone.
Going on, Ibord(CN+1; ∆τ) can be approximated as:

Ibord(CN+1; ∆τ) =(f ′(CN)C(∆τ)− f ′(CN+1)C0)

+ C0(∆τ)(f ′(CN+1)− f ′(CN))

+ f ′0(∆τ)(CN+1 − CN) +O(∆τ 2)

(A.20)

where gi(t) ≡
∫ t
ti
g(s)ds

t−ti . Which means that Ibord(CN+1; ∆τ) is a non-linear function of
CN+1.

Non-linear equation for CN+1

Putting all the approximations together, equation (A.6) becomes:

D({Ci}N−k<i≤N , CN+1; ∆τ) = −TCN+1 − β(Iinter({Ci}i≤N ; ∆τ) + Ibord(CN+1; ∆τ))
(A.21)
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This is a non-linear equation for CN+1. Putting all the CN+1-linear parts in the LHS
and the non-linear in the RHS, we finally obtain:

CN+1 = (a+ bf ′(CN+1))/d (A.22)

where
a ≡− aN−1

∆τ
CN−1 −

aN
∆τ

CN − β(Iinter({Ci}i≤N ; ∆τ)

+ f ′(CN)C(∆τ)− C0(∆τ)f ′(CN)− f ′0(∆τ)CN)

b ≡β(C0 − C0(∆τ))

d ≡aN+1

∆τ
+ T + βf ′0(∆τ)

To solve fix point equation (A.22), we just run self-consistence dynamics:

C
(l+1)
N+1 =

a+ bf ′(CN+1
(l))

d
with C

(0)
N+1 = CN

This algorithm was developed from the ideas firstly developed in [Fuc+91].
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A.7 Out of Equilibrium Integration

In this appendix, we would like to introduce the two numerical methods, currently
used to integrate mean-field dynamical equations of the p-spin spherical model (pure
and mixed). In particular we will concentrate on the equations that describe the
dynamics, following a sudden quench from T ′ to T . Thus, the correlation and the
response of the system evolves according to the two-dimensional non-linear integro-
differential equations:

∂tCtt′ =− µtCtt′ +
∫ t

t′
f ′′(Cts)RtsCst′ds

+

∫ t′

0

(
f ′′(Cts)RtsCt′sds+ f ′(Cts)Rt′s

)
ds+ β′f ′(Ct0)Ct′0

∂tRtt′ =δtt′ − µtRtt′ +

∫ t

t′
f ′′(Cts)RtsRst′ds

µt =T +

∫ t

0

(
f ′′(Cts)RtsCtsds+ f ′(Cts)Rts

)
ds+ β′f ′(Ct0)Ct0

(A.23)

where the Lagrange multiplier µt is such that limt→t′+ ∂tCtt′ = −T . T is the bath
temperature and β′ is the initial inverse-temperature. f ′(·) is a polynomial function
that depends on the specific p-spin model considered (simple or arbitrary mixed).

The first method is based on a simple discretization of the two time indexes. The
second, in the attempt to reach larger times, it uses a rescaling of times, in the same
fashion of the 1d integration presented in A.6.

A.7.1 Fixed-step Algorithm

In order to integrate the p-spin MFDE, we homogeneously discretize the equations
(A.23) with fixed time step ∆t and integrate them according to a simple Euler algo-
rithm. This fixed-step algorithm was firstly introduced in [FM94] to study a model
of Random Media. It was then specialized to the p-spin case in [FP95] and [BBM96].
Here we won’t describe the details, but just comment on the error analysis. The
integration error in the Euler algorithm is linear in the integration step ∆t. In order
to check that we are considering the regime of linear error, three ∆t are considered.
Both a linear and quadratic fit are performed and the discrepancy between the two
is evaluated. If the two fits ‘agree’, we can extrapolate ∆t → 0 since we are in the
linear regime.
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A.7.2 Rescaling Algorithm

An ad-hoc numerical method has been developed following the hint of [Fuc+91]. This
method is capable of taking care of relaxations that have very different time scales
(of many orders of magnitude). The algorithm as been specialized to p-spin models
in [KL01] and its structure has been reported with some details in the appendices of
[Ber+07].

The equations (A.23) are composed by five types of contributions (let’s consider
the correlation C):

1. Local part: ∂tCtt′
2. Rescaling (R): µtCtt′
3. Crossed Integral (CI):

∫ t
t′
dsf ′′(Cts)RtsCst′

4. Parallel Integral (PI):
∫ t′

0
ds(f ′(Cts)Rt′s

+f ′′(Cts)RtsCt′s)
5. Initial Configuration (ic): β′f ′(Ct0)Ct′0

t′

t

Ctt′

with any linear change of observables, the structure of the equations remain the
same. In the following, we will consider an algorithm to integrate these equations.

∂tCtt′ =− µ(t)Ctt′ + CIC [C,R]tt′ + PIC [C,R]tt′ + β′f ′(Ct0)Ct′0

∂tRtt′ =− µ(t)Rtt′ + CIR[C,R]tt′

µ(t) ≡T + PIµ[C,R](t) + β′f ′(Ct0)Ct0

(A.24)

A.7.3 Structure and Approximations

In this section, we introduce the structure of the algorithm to integrate A.23. We
will use the same ingredients at the basis of the one-time algorithm:

1. Discretization → Grid
2. Non-linear Propagation → Self-Consistence equations
3. Time rescaling → Contraction

Grid: storing data

To store Ctt′ until the time t (and all other two-time functions needed in the inte-
gration), we will make use of a half-grid of fixed side N.
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Each node of the grid corresponds to one correlation value:

Ci,j ≡ Ci∆tj∆t

and each segment between two nodes corresponds to an
average:

C̄h
i,j ≡

1

∆t

∫ t

t−∆t

dsCst′

for horizontal segments. And

C̄v
i,j ≡

1

∆t

∫ t′+∆t

t′
dsCts

for vertical segments.

Ci,j

C̄h
i,j C̄v

i,j

∆t

t′

t
N

The same grid is build for Rtt′ , f
′(Ctt′) and f ′′(Ctt′).

Self-Consistence Equations: non-linear step

Here, we briefly explain the core of the algorithm: the non-linear step. In analogy of
what we have seen for the 1d integration (appendix A.6), let’s admit that we know
exactly C(s, s′) and R(s, s′) for any s, s′ s.t. s′ ≤ s ≤ t − ∆t in a discrete set of
values (stored in the grid). What is the value of Ctt′ and Rtt′ for all t′ s.t. t′ < t?
To this end, we must expand lhs and rhs of A.24:

D[C,C]i,j = −µ[C,R]iCi,j

+ CIC [f ′′, C,R,C,R]i,j

+ PIC [f ′, f ′′, C,R,C,R]i,j

+ β′f ′(Ci,0)Cj,0

D[R,R]i,j = −µ[C,R]iRi,j

+ CIR[f ′′, C,R,C,R]i,j

(A.25)

where the indexes i and j correspond respectively to the times t and t′.
D[] is a linear operator that gives an approximation of the t-derivative of the function
at time i, j given the value of the function at that time and previous nearby times
({Ck,j}k.i). The operators CI[] and PI[] (see appendix give an approximation of the
integrals in A.24 given all the past points of C,R, f ′(C), f ′′(C).
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To evaluate Ci,j and Ri,j we put the equation A.25 in the form:

Ci,j =
aCi,j + fCi,j({Ci,k}0≤k≤i; {Ri,k}0≤k≤i)

bCi,j

Ri,j =
aRi,j + fRi,j({Ci,k}0≤k≤i; {Ri,k}0≤k≤i)

bRi,j

(A.26)

These equations define the self-consistence loop. A starting set of {Ci,k}0≤k≤i and
{Ri,k}0≤k≤i is given to the rhs (the same values of the previous time t −∆t) and a
new set is obtained in the lhs. These are then reinserted in the rhs and the procedure
is repeated until convergence. This fixed point method is very fast and stable.

Contraction: here comes the trouble

After having integrate until the end of the grid, the time step is rescaled ∆t→ 2∆t
and the grid is contracted, in the sense that all the information is compressed in the
first half of the grid.
We take one node each four:

Ci,j = C2i,2j

and one segment each four :

C̄h
i,j =

1

2
(C̄h

2i−1,2j + C̄h
2i,2j)

for horizontal segments. And

C̄v
i,j =

1

2
(C̄v

2i,2j + C̄v
2i,2j+1)

for vertical segments.

These contractions of the grid in half, is the major point of the algorithm and also
its weakness. Thanks to this procedure many orders of magnitude can be explored,
but this scaling of the past information is sometimes too brutal and the algorithm
crashes. Some examples of this problem will be shown in the next section.
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A.7.4 Simple Aging

Let’s first present one very interesting result, obtainable with this algorithm. The
numerical confirmation of the 1-RSB ansatz for the Fluctuation Dissipation Relation
used in the CK aging solution:

χtt′ = βCtt′ for q < Ctt′ < 1

χtt′ = βxCtt′ for 0 < Ctt′ < q
(A.27)

The results are presented in section 2.7.4. The value of q and x that come from the
asymptotic CK solution is perfectly retrieved in the numerical integration (see fig.
2.16). The algorithm is capable of reaching times of the order of 106 in standard
units. The integration is performed with a grid of side 212. The same integration
was firstly presented by B. Kim e A. Latz [KL01]. Here we wish to remark that the
chosen dynamics in that work was particularly favorable for this rescaling algorithm.
In many other cases the same algorithm is not capable of comparable performances,
in particular when the bath temperature T is low or when the parental temperature
T ′ is close to TMCT . In the next session, we will discuss what is believed to be the
main cause of the algorithm limits.

A.7.5 Limits and Errors

Now we will briefly explore one of the major limits of the Rescaling Algorithm and
how it can be corrected. Each time the algorithm performs a contraction of the gird,
there is a part of the information contained in the grid that gets lost. One way to
quantify it is to look at an observable, before and after the contraction. In particular,
we focus on the Lagrange multiplier µ(t). In fig. A.2 the integrated correlation C(t, 0)
is shown (full lines), and the relative error made in the contraction of µ (symbols).
The same computation for different sizes of the grid and for aging regime is shown,
on the left a quench from random condition to T ≈ 0 and on the right a quench from
random condition to T = 0.5, which corresponds to the conditions chosen by Kim e
Latz and shown in fig. 2.16). We see that there is a direct correspondence between
the time dependence of the relative error over µ, following each contraction, and
the stability of the correlation. Whenever the relative error reaches the threshold
of 10−1, the correlation starts to consistently deviate from the solution given by the
biggest grid N = 2048. In the case of T ≈ 0 this happens very soon and even the
biggest grid cannot reach integration times bigger than 102.

It follows that one of the most important limits of the algorithm comes in the
process of storing the information of the passed integration. The fixed size grid is



158 A. APPENDICES

Figure A.2: Correlation with the initial configuration C(t, 0) (full lines) and relative error in the
contraction of the grid. There is a net dependence of the performances of the algorithm and the
error in the contraction. (left): aging from random condition to T = 0.01. Here the error diverge
at small times. (right): aging from random condition to T = 0.5, which is the dynamics studied
by Kim e Latz [KL01]. Here the error diverge for later times and an integration till 106 is feasible.

a good structure in this regard. A possible alternative could come from a more
flexible grid that concentrates on the time regions which intrinsically detain more
information: a flexible grid. The question remains open. What is sure, is that a
‘good’ algorithm, capable to reach times of the order of 106, would be an important
tool in the investigation of aging dynamics in mixed p-spin and other models.
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A.8 Formulario p-spin

Condition for 1-RSB Transition

∂2
q [f
′′(q)−1/2] ≥ 0

Mode Coupling Transition

qMCT s.t. 1− qMCT =
f ′(qMCT)

qMCTf ′′(qMCT)

TMCT =

√
1− qMCT

qMCT

f ′(qMCT)

Kauzmann Transition

qK s.t. − (1− qK)

q2
K

(
qK − log(1− qK)

)
=

f(qK)

qKf ′(qK)

TK =

√
1− qK
qK

f ′(qK)

RS Stability

λL = −
(
β2f ′′(q)− 1

(1− q)2

)
+

2q

(1− q)3

λR = −
(
β2f ′′(q)− 1

(1− q)2

)
Marginality

Tmg = (1− qmg)−1f ′′(qmg)
−1/2

Kmg =
f ′(qmg)

qmgf ′′(qmg)

Equilibrium

Teq =

√
(1− qeq)f ′(qeq)

qeq

Keq = 1− qeq
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Equilibrium Plateau

λpl =
1

2βMCT

f ′′′(qMCT)

f ′′(qMCT)3/2

apl s.t.
Γ(1− apl)2

Γ(1− 2apl)
= λpl

bpl s.t.
Γ(1 + bpl)

2

Γ(1 + 2bpl)
= λpl

Threshold at T=0

µmg = 2f ′′(1)1/2

χmg = f ′′(1)−1/2

yth =
1

χmgf ′(1)
− χmg

Eth = −χmgf ′(1)− ythf(1)

1RSB solution

K(q, β) =
β2f ′(q)(1− q)2

q

s.t.
K(K − 1− 2S − logK)

(1−K)2
=

f(q)

qf ′(q)

which directly comes out from ΣM(q, β) = S. This allows to draw isocomplexity
lines.

Monasson Method

All the quantities are expressed as a function of the inverse-temperature β and the
in-state overlap q.

xM(q, β) =
1

β2f ′(q)(1− q)
− (1− q)

q
= (K−1 − 1)

(1− q)
q

FM(q, β) = −β
2

(
f(1)− f(q) + 2xMf(q) + f ′(q)(1− q)

)
− β−1

2
log(1− q)

EM(q, β) = −β
(
f(1)− f(q)

)
− βxMf(q)

ΣM(q, β) =
1

2

(
− β2x2

M
f(q)− qxM

1− (1− xM)q
+ log

1− (1− xM)q

1− q

)
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in all expressions is intended xM ≡ xM(q, β).

Cugliandolo-Kurchan solution

qCK = qmgxCK(β) = xM(qmg, β)

FCK(β) = FM(qmg, β)

ECK(β) = EM(qmg, β)

...

Franz-Parisi Method

All the quantities are expressed as a function of the inverse-temperature β and the
in-state overlap q.

q̆FP(q, β) =
√
q − β2(1− q)2f ′(q) = q

√
1−K

β′FP(q, β) =
q̆FP

β(1− q)f ′(q̆FP)

FFP(q, β) = −β
2

(
f(1)− f(q) + 2β−1β′

FP
f(q̆FP) + f ′(q)(1− q)

)
− β−1

2
log(1− q)

EFP(q, β) = −β
(
f(1)− f(q)

)
− β′FPf(q̆FP)

ΣFP(q, β) =
1

2

(
− β′2

FP
f(qeq(β

′
FP

))− qeq(β′FP)− log(1− qeq(β′FP))
)

Σeq
FP

(q) =
1

2

(
− q

(1− q)
f(q)

qf ′(q)
− q − log(1− q)

)
in all expressions is intended q̆FP ≡ q̆FP(q, β) and β′

FP
≡ β′

FP
(q, β). qeq(β) is the

overlap that dominates the partition function at inverse temperature β i.e. s.t.
qeq/(1− qeq) = β2f ′(qeq)

Stability condition:

− W

4β(1− q)2q̆2
FP

(
W (1− q)

(
q̆FPf

′′(q̆FP)

f ′(q̆FP)
− 1

)
− 2q̆2

FP

)
> 0

W = 1 + 2β2f ′(q)(1− q) + β2f ′′(q)(1− q)2 (A.28)

TAP Method

All the quantities are expressed as a function of the Energies Ep and the in-state
overlap q. Actung Ep are not the energies of the minima in mixed models, are just
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decomposition weights.

HTAP (q, {Ep}) =
∑
p

Epq
p/2

H ′TAP (q, {Ep}) =
∑
p

pEpq
p/2−1

βTAP (q, {Ep}) =
1

(1− q)
(√

H ′2TAP − f ′′(q)−H ′TAP
)

FTAP (q, {Ep}) = HTAP −
β

2

(
f(1)− f(q)− f ′(q)(1− q)

)
− β−1

2
log(1− q)

ETAP (q, {Ep}) = HTAP − β (f(1)− f(q)− f ′(q)(1− q))

ΣTAP (EIS) = −E2
IS + log

(√H ′2TAP − f ′′(q)−H ′TAP
f ′(q)

)
+

H ′TAP√
H ′2TAP − f ′′(q)−H ′TAP

∣∣∣∣∣
q=1

in all expressions is intended HTAP ≡ HTAP (q, {Ep}). ΣTAP (EIS) is valid only for
pure models.

Universal Complexity

ΣUN(K, q) =
1

2

(
K − 1−(1−K)2

K

f(q)

qf ′(q)
− log(K)

)
for general β KM =

β2f ′(q)(1− q)2

q
⇒ ΣUN(KM , q) ≡ ΣM(q, β)

at T = 0 K0 = χ2f ′(1)⇒ ΣUN(K0, 1) ≡ Σdm
0 (χ)

at equilibrium Keq = 1− qeq ⇒ ΣUN(Keq, qeq) ≡ Σeq
FP

(qeq)
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A.9 Nomenclature

FP Franz-Parisi potential
M Monasson method
qMCT value of the typical overlap at the Mode-Coupling transition
Eeq equilibrium energy
EIS inherent structure energy
τ = t− t′ stationary time
t′ waiting time
RFOT random first order transition
MFDE mean-field dynamical equations
IS inherent structure
TTI time translation invariance
FDT fluctuation dissipation theorem
GD gradient descent
TS time sector
FDR fluctuation dissipation ratio
SCL supercooled liquid
VFT Vogel-Fulcher-Tamman
CA calorimetric analysis
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