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Local topological rigidity of non-geometric 3-manifolds

FILIPPO CEROCCHI

ANDREA SAMBUSETTI

We study Riemannian metrics on compact, orientable, non-geometric 3-manifolds
(ie whose interior does not support any of the eight model geometries) with
torsionless fundamental group and (possibly empty) non-spherical boundary. We
prove a lower bound “à la Margulis” for the systole and a volume estimate
for these manifolds, only in terms of an upper bound of entropy and diameter.
We then deduce corresponding local topological rigidy results for manifolds in
this class whose entropy and diameter are bounded respectively by E,D . For
instance, this class locally contains only finitely many topological types; and closed,
irreducible manifolds in this class which are close enough (with respect to E,D)
are diffeomorphic. Several examples and counterexamples are produced to stress
the differences with the geometric case.
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1002 Filippo Cerocchi and Andrea Sambusetti

1 Introduction

Compact, orientable, differentiable 3-manifolds (with or without boundary) naturally
fall into two main mutually exclusive classes: geometric manifolds, a chosen few,
whose interior supports a complete metric locally isometric to one of the eight complete,
maximal, homogeneous 3-dimensional geometries 1, and non-geometric manifolds.
These latter, by the solution of the Geometrization Conjecture, are either punctured
3-spheres, or non-prime manifolds, or irreducible with non-trivial JSJ splitting; this has
interesting consequences on the structure of their fundamental group, as we shall see
later (notice that also closed Sol-manifolds have a non-trivial JSJ decomposition, but
this splitting does not have exactly the same properties as in the non-geometric case,
see discussion in Section §4).

In the last thirty years much effort has been made to understand the model geometries
supported by the pieces of the JSJ-decomposition of irreducible 3-manifolds (notably,
of atoroidal 3-manifolds) and special metrics on general 3-manifolds (mostly because
of the simplification of the curvature tensor in dimension 3); for instance, and by no
means claiming to be exhaustive, the works on asymptotically harmonic metrics by
Heber-Knieper-Shah [HKS] and by Schroeder-Shah [Sc-Sh], works on nonnegatively
Ricci curved metrics by Schoen-Yau [Sc-Ya] Anderson-Rodriguez [An-Ro] and Shi
[Shi] and, last but foremost, on the Ricci flow (see for instance Hamilton’s seminal paper
[Ham] and the monography by Bessières-Besson-Boileau-Maillot-Porti [BBBMP]).
This has led to amazing results, such as Hamilton’s elliptization of manifolds with
positive Ricci curvature, and culminated in Perelman’s solution of the Geometrization
and Poincaré conjectures.

The Riemannian geometry of non-geometric manifolds, or families of Riemannian
metrics on them, deserved considerably less attention, in spite of their topological
peculiarities and their genericity: non-geometric manifolds are very easy to produce,
starting form hyperbolic or Seifert-fibered pieces, and this class encompasses, for
instance, the class of all graph manifolds2. This can be explained by the lack of any
possible “best metric” on this class. Some remarkable exceptions are Leeb’s work
[Lee] on the existence of nonpositively curved metrics on aspherical 3-manifolds, with

1We use here the term “geometric” as in the original definition given by Thurston [Thu1]; in
the case of manifolds with boundary, variations on this definition are possible and suitable for
other purposes (ie uniqueness of the model geometries on each piece), see for instance Bonahon
[Bon].

2A graph manifold is an irreducible 3-manifold having a non-trivial JSJ-decomposition
whose JSJ-components are all Seifert fibered (see §4.1).
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Local topological rigidity of non-geometric 3-manifolds 1003

or without boundary; or Kapovich-Leeb’s [Ka-Le] and Behrstock-Neumann [Be-Ne2]
results on quasi-isometric rigidity and quasi-isometry classification of non-geometric
manifolds, and other works on the restricted class of Seifert and graph manifolds
(for instance Scott and Bonahon classic surveys [Sco], [Bon], Ohshika’s paper on
Teichmüller space of Seifert fibred manifolds [Ohs], and works by Behrstock-Neumann
[Be-Ne1], Neumann [Neu2] and Frigerio-Lafont-Sisto [FLS] for graph manifolds and
their higher-dimensional counterparts), which are however mostly topological in spirit.

This paper, and the forthcoming [Ce-Sa2], are devoted to the Riemannian geometry of
non-geometric 3-manifolds. We want to point out from the outset that all of our results
on non-geometric 3-manifolds do not extend to geometric manifolds, as we shall show
in each case, with possibly the exception of the class of 3-manifolds of hyperbolic type,
where the possibility of an extension is an interesting open question.

Our first result is an estimate à la Margulis for compact, orientable, non-geometric
3-manifolds with torsionless fundamental group. The original Margulis’ Lemma
(established for non-positively curved manifolds X with bounded sectional curvature,
and then generalized by the works of Fukaya-Tamaguchi [Fu-Ya] and Cheeger-Colding
[Ch-Co] and by Kapovich-Wilking [Ka-Wi] to manifolds with only a lower Ricci
curvature bound), concerns the virtual nilpotency of the subgroup of π1(X) generated by
sufficiently small loops at any point x ∈ X . For compact, negatively curved manifolds,
this yields an estimate of the systole, or of the injectivity radius, in terms of bounds of
the sectional curvature and of the diameter (see, for instance, Buser-Karcher [Bu-Ka,
Proposition 2. 3. 5]):

sysπ1(X) = 2 inf
x∈X

inj(x) ≥ ε0(n)
K · sinhn−1 KD

for any n-manifold X with −K2 ≤ KX < 0 and diameter bounded by D.
A similar result, based more on topological arguments than on the analysis of the
curvature tensor, is Zhu’s estimate of the contractibility radius for 3-manifolds under
controlled Ricci curvature, diameter and volume ([Zhu]).
The systolic estimate we give, for non-geometric 3-manifolds, ignores curvature, and
only uses a normalization by the entropy:

Theorem 1.1 Let X be any compact, orientable, non-geometric Riemannian 3-
manifold, with torsionless fundamental group and no spherical boundary components.
Assume that Ent(X) ≤ E and that diam(X) ≤ D: then,

(1) sysπ1(X) ≥ s0(E,D) :=
1
E
· log

(
1 +

4
e26 E D − 1

)

Geometry & Topology XX (20XX)



1004 Filippo Cerocchi and Andrea Sambusetti

Recall that the (volume-)entropy of a compact Riemannian manifold X is the exponential
growth rate of the volume of balls in the universal covering X̃ :

(2) Ent(X) = lim sup
R→∞

R−1 · log Vol BX̃(x̃,R)

for any choice of x̃ ∈ X̃ . Actually, the lift µ̃ of any finite Borel measure µ on X
can be used in the above formula, obtaining the same result, cp Sambusetti [Sam2].
In particular, using the measure µ =

∑
g∈G δgx̃ given by the sum of Dirac masses

of one orbit of G ∼= π1(X, x) on X̃ , one sees that the entropy gives the exponential
growth rate of pointed homotopy classes of loops in X (where the length of classes
is measured by the shortest loop in the class). Moreover, it is well known that this
also equals, in non-positive curvature, the topological entropy of the geodesic flow on
the unitary tangent bundle of X , cp Manning [Man]). For closed manifolds, a lower
bound of the Ricci curvature RicciX ≥ −(n − 1)K2 implies a corresponding upper
bound of the entropy Ent(X) ≤ (n− 1)K , by the classical volume-comparison theorems
of Riemannian geometry. However, entropy is a much weaker invariant than Ricci
curvature; actually, Ent(X) can be seen as an averaged version of the curvature (this can
be given a precise formulation in negative curvature by integrating the Ricci curvature
on the unitary tangent bundle of X with respect to a suitable measure, cp Knieper [Kni]),
and only depends on the large-scale geometry of X .

Theorem 1.1 stems from the interplay between the metric structure and the algebraic prop-
erties of π1(X), given by the Prime Decomposition Theorem and the JSJ-decomposition
Theorem for orientable, irreducible 3-manifolds. We shall see in Section §3 a more
general estimate for manifolds whose fundamental group acts acylindrically on a
simplicial tree (which generalizes some estimates given by Cerocchi [Cer1]).

Remark 1.2 The assumption “non-geometric” in Theorem 1.1 is necessary.
Besides the four geometries of sub-exponential growth S3 , S2 × R, E3 and Nil , where
it is evident that a simple bound on the diameter does not force any lower bound of
the systole, we shall see in section §5 that every closed 3-manifold modelled on Sol,
H2 × R or H2×̃R also admits a sequence of metrics gε such that Ent(X, gε) ≤ E ,
diam(X, gε) ≤ D and sysπ1(X, gε) → 0. In all the examples, with the exception of
H2×̃R, the metrics gε are even locally isometric to the respective model geometries.
In contrast, such a family of metrics cannot be found on a fixed, closed 3-manifold
X of hyperbolic type; actually, a hyperbolic metric g0 being fixed on X (recall that
by Mostow’s rigidity Theorem this metric is unique up to isometries), then the systole
of any other Riemannian metric g on X is bounded away from zero in terms of its
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Local topological rigidity of non-geometric 3-manifolds 1005

entropy and diameter, and of the injectivity radius of (X, g0), in view of the results in an
unpublished paper by Besson-Courtois-Gallot [BCG]. It is not known to the authors if
it is possible to find a universal lower bound as in (1), holding for Riemannian metrics
on all closed 3-manifolds of hyperbolic type.

Remark 1.3 Also, the torsionless assumption in Theorem 1.1 cannot be dropped.
For any closed 3-manifold X and any p ≥ 2, one can construct on the connected
sum Y = X#(S3/Zp) with a lens space a family of metrics gε , with ε→ 0, such that
diam(Y, gε) ≤ D, Ent(Y, gε) ≤ E and sys(Y, gε) = ε (see [Cer1, Example 5.4]).

The assumption on the boundary in Theorem 1.1 can be relaxed by asking that X
does not have the homotopy type of a punctured, geometric manifold; notice that one
can excise an arbitrarily small ball from a geometric manifold without modifying the
fundamental group and the systole, and this gives an easy counterexample to (1) for
punctured geometric manifolds.

As an immediate consequence of (1) and of Gromov’s systolic inequality for essential
manifolds ([Gro1, Theorem 0.1.A]) we deduce the following volume estimate:

Corollary 1.4 Let X be any closed, orientable, non-geometric Riemannian 3-manifold
with torsionless fundamental group, which is not homeomorphic to the connected sum
of a finite number of copies of S2×S1 . Assume that Ent(X) ≤ E and that diam(X) ≤ D:
then,

(3) Vol(X) ≥ C · s0(E,D)3

It is worth to stress that the volume estimate holds in particular for any non-geometric
closed graph manifold (ie any graph manifold which is not a Sol-manifold) and for
connected sums of such manifolds, with the remarkable exception of connected sums of
copies of S2 × S1 . The volume estimate above is particularly interesting in these cases
because, for graph manifolds (and connected sums of graph manifolds), the simplicial
volume vanishes (see Soma [Som, Corollary 1]) and it is thus impossible to obtain
estimates for the volume via the classical arguments of bounded cohomology.

Remark 1.5 The exception of a connected sum of copies of S2 × S1 in Corollary 1.4
cannot be avoided. In Section §5, Example. 5.2, we shall exhibit a family of metrics gε
on X = #k(S2 × S1), for any k ≥ 1, with limε→0 Vol(X, gε) = 0 while, for all ε > 0,

Ent(X, gε) ≤ E, diam(X, gε) ≤ D, sysπ1(X, gε) ≥ s
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1006 Filippo Cerocchi and Andrea Sambusetti

The systolic estimate 1.1 is the keystone of the local topological rigidity and finiteness
results that we shall prove in Section §4. Namely, consider the classes

Mngt(E,D) (respectively, M ∂
ngt(E,D) )

of closed (resp. compact, with possibly empty boundary and no spherical bound-
ary components) connected, orientable, non-geometric Riemannian 3-manifolds
X , with torsionless fundamental group, whose entropy and diameter are respec-
tively bounded by E and D, endowed with the Gromov-Hausdorff distance dGH .
Recall that, in restriction to oriented, irreducible 3-manifolds X , the following are
equivalent:

(i) X is a K(π, 1)-space;

(ii) X has torsionless fundamental group;

(iii) X has infinite fundamental group;

(iv) X is not a quotient of S3 .
(The implication (i)⇒ (ii) is standard, see for example Hatcher’s book [Hat, Proposition
2.45], while (ii) ⇒ (iii) ⇒ (iv) are trivial; on the other hand, (iv) ⇒ (iii) follows from
Perelman’s Elliptization Theorem, and (iii) ⇒ (i) is consequence of the JSJ-decomposi-
tion and of the classification of Seifert fibered manifolds.)

The topological type of geometric manifolds, possibly with the exception of man-
ifolds of hyperbolic type, enjoys a lot of freedom under Gromov-Hausdorff con-
vergence: one can easily produce geometric manifolds which are arbitrarily close
in the Gromov-Hausdorff distance, while being very different. For instance, the
quotient of the Heisenberg group or of the Sol-group by the respective integral
lattices H3

Z and SolZ admit metrics which make them arbitrarily close to a flat 3-
torus, since all of them can collapse with bounded curvature (and, a fortiori, with
bounded entropy) to a circle; similar examples can be produced by taking a surface
of hyperbolic type Σg , and considering its unit tangent bundle UΣg and the product
Σg × S1 , which both can collapse with bounded curvature to Σg (see Example 5.1).
Non-geometric manifolds (though often also collapsible, since graph manifolds admit
the so called F-structures of Cheeger-Gromov [Ch-Gr]) are more topologically rigid,
as their topological type is locally determined, provided that the entropy stays bounded
while approaching some fixed manifold:

Theorem 1.6 There exists δ0= δ0(E,D)>0 such that for any X,X′∈M ∂
ngt(E,D):

(i) if dGH(X,X′) < δ0 , then π1(X) ∼= π1(X′);
(ii) if X,X′ are irreducible and dGH(X,X′) < δ0 , then X and X′ are homotopically
equivalent. (One can take δ0 = 1

40 s0(E,D), for s0(E,D) as in Theorem 1.1).
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Local topological rigidity of non-geometric 3-manifolds 1007

This theorem might be reminiscent of Kapovich-Leeb quasi-isometric (virtual) rigidity
results for the fundamental group of non-geometric 3-manifolds [Ka-Le]. However,
besides the stronger conclusions (the fundamental group cannot be determined simply
from the quasi-isometry type), notice that, without any assumption on the entropy, one
can easily produce non-geometric manifolds X , X′ which are arbitrarily close in the
Gromov-Hausdorff distance and which do not have quasi-isometric fundamental groups.
Take, for instance, the connected sum of an irreducible manifold X with any, arbitrarily
small in size, non-simply connected 3-manifold M ; then, the fundamental group of the
resulting manifold X′ = X#M is not quasi-isometric to π1(X), by [Pa-Wh]. Also, it is
well-known that any two closed graphs manifolds have quasi-isometric fundamental
group (cp [Be-Ne1]), while being far from having isomorphic fundamental groups.

The fundamental group completely determines the integral homology groups of closed
(connected) orientable 3-manifolds, as H0(X,Z) = H3(X,Z) = Z, H1(X,Z) =

π1(X)/[π1(X, ), π1(X)] and H2(X,Z) = H1(X,Z = H1(X,Z)/tor ; thus, in restriction
to the subset Mngt(E,D), the local rigidity of the fundamental group implies the local
constancy of all homology groups. However, by Swarup’s finiteness theorem for
irreducible 3-manifolds with given fundamental group and by Kneser’s Conjecture,
Theorem 1.6 (i) has the following stronger consequence:

Corollary 1.7 The diffeomorphism type is locally finite on the space M ∂
ngt(E,D).

Recall that, if X and X′ are two closed 3-manifolds with torsionless fundamental group,
then they are homotopy equivalent if and only if they are homeomorphic3, if and only if
they are diffeomorphic. The first equivalence is a consequence of the solution of the
Borel Conjecture for closed 3-manifolds with torsionless fundamental group, which
follows from the work of Waldhausen ([Wal]) for Haken 3-manifolds, and from the
work of Turaev [Tur] and Perelman’s solution of the Geometrization Conjecture, for
non-Haken 3-manifolds. The second equivalence follows from the work of Moise,
Munkres and Whitehead ([Moi], [Mun1], [Mun2], [Whi]) and holds for any 3-manifold,
even without the orientability, torsionless and closedness assumption.

From Theorem 1.6 (ii) we also deduce the following, more explicit:

Corollary 1.8 For all X,X′ ∈Mngt(E,D) with X irreducible, if dGH(X,X′) ≤ δ0

then X′ is diffeomorphic to X (for δ0 = δ0(E,D) as in Theorem 1.6).

3This is no longer true if we assume the manifolds to have non-trivial boundary (even for
irreducible manifolds with incompressible boundary) see [Jo2] and [Swa].
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1008 Filippo Cerocchi and Andrea Sambusetti

Notice that Corollary 1.8 shows, in particular, that the Gromov-Hausdorff distance
defines a metric (quotient) structure on the diffeomorphisms classes of irreducible
manifolds in Mngt(E,D); this is false for reducible manifolds:

Remark 1.9 Irreducibility in Theorem 1.6 (ii) and Corollary 1.8 is necessary.
We shall see in the Example 5.4 a pair of closed, non-geometric, non-homotopically
equivalent 3-manifolds Y and Ȳ , which admit sequences of metrics (gn)n∈N , (ḡn)n∈N
with uniformly bounded entropy and diameter, such that the Gromov-Hausdorff distance
between (Y, gn) and (Ȳ, ḡn) goes to zero when n→∞.

These results should be compared to general finiteness and convergence theorems
in Riemannian geometry, under classical curvature, diameter, and volume (or injec-
tivity radius) bounds. In particular, Corollary 1.8 can be interpreted as a quanti-
tative version (in restriction to non-geometric 3-manifolds with infinite fundamen-
tal group) of Cheeger-Colding celebrated diffeomorphism theorem [Ch-Co], say-
ing that if a sequence of smooth n-manifolds Xk , with Ricci curvature uniformly
bounded from below, tends in the Gromov-Hausdorff convergence to a smooth
n-manifold X , then Xk is diffeomorphic to X for k � 0. Notice however that,
despite the restricted class of application, our results only need a control of a much
weaker invariant than Ricci curvature: it is easy to exhibit convergent families of
Riemannian manifolds with bounded entropy, where the Ricci curvature is not uniformly
bounded (see Reviron [Rev] for some enlightening examples). Also, Cheeger-Colding’s
diffeomorphism theorem does not apply without the strong assumption that the limit
space is a manifold, whereas Corollary 1.8 shows that the Xk ’s are always diffeomorphic
for k � 0. In this perspective, it is somewhat surprising that, for non-geometric
manifolds, a bound on the entropy suffices to capture the local topological type, and
actually does a better service than a Ricci curvature bound in the case of manifolds with
boundary (notice in fact that we do not need any supplementary curvature assumption
on the boundary).

Finally, let us state the following finiteness theorem under Ricci curvature bounds, as
an immediate corollary of Theorem 1.8 and Gromov’s precompactness theorem (or,
equivalently, of the volume estimate (1.4) and Zhu’s homotopy finiteness theorem, cp
[Zhu, Theorem 1]):

Corollary 1.10 Let Mngt(RicK ,D) be the family of closed, orientable, non-geometric,
Riemannian 3-manifolds with torsionless fundamental group, satisfying the bounds
Ricci ≥ −(n − 1) K2 and diam ≤ D. The number of diffeomorphism types in
Mngt(RicK ,D) is finite.
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Local topological rigidity of non-geometric 3-manifolds 1009

Comparing with Zhu’s theorem, we are dropping the lower bound assumption on
the volume; we pay this choice by restricting ourselves to the set of torsionless non-
geometric 3-manifolds. A similar finiteness result hold for non-geometric manifolds
satisfying only a bound on entropy instead of Ricci curvature; this point of view has
been developed elsewhere by the authors [Ce-Sa1].
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2 Nonabelian, rank 2 free subgroups

In this Section we recall some facts about k-acylindrical actions of groups on simplicial
trees. The aim is to give quantitative results on the existence of 2-generators free
subgroups starting from two prescribed elliptic or hyperbolic generators.

We recall that, given a group G acting by automorphisms on a tree T without edge
inversions ( ie no element swaps the vertices of some edge), the elements of G can be
divided into two classes: elliptic and hyperbolic elements. They can be distinguished
by their translation length, which is defined, for g ∈ G, as

τ (g) = inf
v∈T

dT (v, g · v)

where dT denotes the simplicial distance of T , ie with all edges of unit length.
If τ (g) = 0 the element g is called elliptic, otherwise it is called hyperbolic.
We shall denote by Fix(g) the set of fixed points of an elliptic element g, and by
T(g) =

⋃
n∈Z∗ Fix(gn) the set of points which are fixed by some non-trivial power of g;

these are (possibly empty) connected subtrees of T . If h is a hyperbolic element then
Fix(h) = ∅ and h has a unique axis on which it acts by translation, denoted Axis(h);
each element on the axis of h is translated at distance τ (h) along the axis, whereas
elements at distance ` from the axis are translated of τ (h) + 2`.

Let TG be the minimal subtree of T which is G-invariant: the action of G is said
elliptic it TG is a point, and linear if TG a line; in both cases we shall say that the action
of G is elementary. We also recall that an action without edge inversions is called
k-acylindrical if the set Fix(g) has diameter less than or equal to k , for any elliptic
g ∈ G. The notion of k-acylindrical action on a tree is due to Sela ([Sel]), and arises
naturally in the context of Bass-Serre theory, as we shall see later.
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1010 Filippo Cerocchi and Andrea Sambusetti

Groups acting k-acylindrically on trees are well-known to possess free subgroups. We
need a quantitative version of this, estimating, for every prescribed, non-commuting
pair of elements g1, g2 , the maximal length of a word in g1, g2 generating with g1 (or
with some bounded power of g1 ) a free sub(semi-)group:

Theorem 2.1 (Quantitative free product subgroup theorem)
Let G be a group acting k-acylindrically on a simplicial tree T :

(i) if g1, g2 ∈ G are elliptic and Fix(g1) ∩ Fix(g2) = ∅, then the group 〈g1, hp g1 h−p〉
is a rank 2 free product, for h = g1g2 and p ≥ (k + 1)/2;

(ii) if g ∈ G is elliptic and h ∈ G is hyperbolic, then the group 〈g, hpg h−p〉 is a rank 2
free product, for p ≥ k + 1;

(iii) if h1, h2 ∈ G are hyperbolic with Axis(h1) 6= Axis(h2), then:
– if diam (Axis(h1) ∩ Axis(h2)) ≤ 3k , then 〈hq

1, h
q
2〉 is rank 2 free subgroup,

for q ≥ 3k + 1;
– if diam (Axis(h1) ∩ Axis(h2)) > 3k , then either 〈h1, h

p
2h1h−p

2 〉 or 〈h2, h
p
1h2h−p

1 〉 is a
rank 2 free subgroup, for p ≥ 3;
– in any case (even without the assumption of k-acylindricity) either {h1, h2} or
{h−1

1 , h2} freely generate a rank 2 free semigroup.

In order to prove Theorem 2.1, we shall need the following basic facts (cp Bucher-
Talambutsa [Bu-Ta], Kapovich-Weidmann [Ka-We]):

Lemma 2.2 Let g1, g2 be elliptic elements of a group G acting without edge inversions
on a simplicial tree T :
(i) if Fix(g1) ∩ Fix(g2) = ∅, then g1g2 is hyperbolic with translation length

τ (g1g2) = 2dT (Fix(g1),Fix(g2)) ;

(ii) if T(g1) ∩ T(g2) = ∅, then the group 〈g1, g2〉 is a rank 2 free product.

Lemma 2.3 Let g1, g2 be hyperbolic elements of a group G acting without edge
inversions on a simplicial tree T , and let J = Axis(h1) ∩ Axis(h2): if

diam(J) < n min{τ (h1), τ (h2)}

then hn
1 and hn

2 generate a nonabelian, rank 2 free subgroup of G.
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Local topological rigidity of non-geometric 3-manifolds 1011

Proof of Theorem 2.1 To prove (ii) it is sufficient, by Lemma 2.2 (ii), to show that
T(g) ∩ T(g′) = ∅, for g′ = hpg h−p , and p ≥ k + 1. This is equivalent to show that
Fix(g`1) ∩ Fix(g′`2) = ∅ for all `1, `2 ∈ Z∗ . As Fix(g`) ⊇ Fix(g) for any ` ∈ Z∗ , this
last condition is equivalent to:

(4) Fix(g`) ∩ Fix(hpg`h−p) = ∅, ∀` ∈ Z∗

We consider the two cases: Fix(g`) ∩ Axis(h) = ∅ or Fix(g`) ∩ Axis(h) 6= ∅.
In the first case the projection of Fix(g`) onto Axis(h) is one point, denoted v∗ . Since
Fix(hpg`h−p) = hp · Fix(g`), then hp · v∗ is the projection of Fix(hpg`1`2h−p) onto
Axis(h). This implies that (4) holds for all p > 0 as in this case

dT
(
Fix(hpg`h−p),Fix(g`)

)
≥ dT (v∗, hpv∗) + 2 ≥ pτ (h) + 2

In the second case, let J = Fix(g`) ∩ Axis(h) and notice that diam(J) ≤ k by k-
acilindricity. So, let v∗ ∈ J such that dT (v∗, v) ≤ k

2 for any v ∈ J ; observe that hp · v∗
satisfies the same property with respect to the set hp(J) = Fix(hpg`h−p)∩Axis(h). Since
h acts by translation of τ (h) ≥ 1 on its axis, we have

dT
(
Fix(hpg`h−p),Fix(g`)

)
≥ dT

(
v∗, hp · v∗

)
− k

2
− k

2
≥ p τ (h)− k

Since the action is k-acylindrical we conclude that, in this case, condition (4) is satisfied
for all ` ∈ Z∗ if p ≥ k + 1 (as τ (h) ≥ 1), which proves part (ii).

Assertion (i) follows by applying the above argument to g = g1 and to h = g1g2 , which
is a hyperbolic element with τ (h) ≥ 2, by Lemma 2.2(i).

To prove (iii), we may assume that J = Axis(h1) ∩ Axis(h2) 6= ∅, otherwise h1 and h2

have an evident ping-pong dynamics for every choice of base point x0 ∈ T , and they
clearly generate a nonabelian, rank 2 free subgroup.
If d = diam(J) ≤ 3k , then the elements hq

1 , hq
2 , for any q ≥ 3k + 1, generate a

nonabelian, rank 2 free subgroup by Lemma 2.3. Assume now that d ≥ 3k + 1.
By the condition of k-acylindricity, we infer that max{τ (h1), τ (h2)} > d/3 ; otherwise,
there exists a connected subset J′ ⊂ J , with diam(J′) = d/3 > k , which is fixed by
h−1

1 h−1
2 h1h2 (actually, assume J oriented by the translation direction of h1 : then, it is

enough to take J′ equal to the first subsegment of length d/3 of J , if h1, h2 translate J
in the same direction; and J′ equal to the middle subsegment of J of length d/3, when
h1, h2 translate in opposite directions). So, we may assume that τ (h1) > d/3: in this
case, for p ≥ 3 we have

Axis(hp
1h2h−p

1 ) ∩ Axis(h2) = (hp
1.Axis(h2)) ∩ Axis(h2) = ∅

hence {h2, h
p
1h2h−p

1 } generate a nonabelian, rank 2 free subgroup by Lemma 2.2. The
case where τ (h2) > d/3 is analogous. The last assertion in (iii) is classical.
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3 Systolic estimates

Definition 3.1 Let (G, d) be a discrete, proper metric group, ie a discrete group G
endowed with a left-invariant distance such that the balls of finite radius are finite sets.
The entropy of (G, d) is:

Ent(G, d) = lim sup
R→∞

1
R

log #Bd(id,R)

where Bd(g,R) = {g′ | d(g, g′) < R} denotes the ball of radius R centered at g.

We shall be mainly interested in two different kinds of distances on G:

– word or word-weighted distances, associated to some finite generating set Σ and to
some weigth function ` : Σ→ R+ , denoted d` ; this is the unique left-invariant length
distance on the Cayley graph C(G,Σ) such that d`(id, s) = `(s) and is linear on each
edge (when ` = 1 this is the usual word metric dΣ associated with Σ);.

– geometric distances, associated to some discrete, free action of G on a pointed,
Riemannian manifold (Y, y0), denoted dy0 ; in this case dy0(g , g′ ) = d(g. y0, g′. y0) is
the distance between corresponding orbit points.

We shall denote the corresponding distances from the identity by |g|Σ , |g|` , |g|y0 .

The following properties of the entropy are well-known, and will be used later:

(E1) When Y = X̃ is the Riemannian universal covering of a Riemannian manifold X ,
with G ∼= π1(X) acting on Y by deck transformations, for any choice of x̃0 ∈ X̃ ,
the volume-entropy of X satisfies Ent(X) ≥ Ent(G, dx̃0), with equality when X
is compact, cp [Sam2].

(E2) Given distances d1 ≤ d2 on G, we have: Ent(G, d1) ≥ Ent(G, d2).

The announced volume estimates of Theorem 1.1 and Corollary 1.4 are a particular case
of the following result:

Theorem 3.2 Let X be any compact, connected Riemannian manifold with
torsionless fundamental group, acting non-elementarily and k-acylindrically on a
simplicial tree. If diam(X) ≤ D , Ent(X) ≤ E , then:

(5) sysπ1(X) ≥ s0(E · D)
E
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where s0(t) = log
(

1 +
4

e(4k+10) t − 1

)
. Moreover, if X is 1-essential then:

(6) Vol(X) ≥ Cn ·
(

s0(E · D)
E

)n

Recall that, following Gromov [Gro1], a 1-essential n-manifold X is a closed, connected
n-manifold which admits a continuous map into an aspherical space f : X → K , such
that the image of the fundamental class [X] ∈ Hn(X,Z) via the homomorphism induced
in homology by f does not vanish.

In the proof of Theorem 3.2, we shall need the following, elementary:

Lemma 3.3 Let G be any finitely generated group, acting without edge-inversions on
a simplicial tree T , and let Σ be any finite generating set for G:

(a) if the action is non-elliptic, then there exists a hyperbolic element h ∈ G such that
|h|Σ ≤ 2. Namely, either h ∈ Σ, or h is the product of two elliptic elements s1, s2 ∈ Σ

such that Fix(s1) ∩ Fix(s2) = ∅;

(b) if the action is non-elementary, then for any hyperbolic element h ∈ G there exists
s ∈ Σ which does not belong to the normalizer NG(h) of 〈h〉 in G.

(c) if the action is linear and acylindrical, then G is virtually cyclic.

Proof of Lemma 3.3 Let us show (a). If s ∈ Σ is a hyperbolic element, we choose
h = s. On the other hand, if Σ only contains elliptic elements, there exists a pair of
elements s1, s2 , from Σ, such that Fix(s1)∩ Fix(s2) = ∅, because G acts on T without
global fixed points. Then, h = s1s2 is a hyperbolic element with |h|Σ ≤ 2.
Let us now prove (b). Let h be a hyperbolic element of G; an element s ∈ Σ belongs
to NG(〈h〉) if and only if it globally preserves Axis(h). Therefore, if s ∈ NG(〈h〉) for
all s ∈ Σ, we would deduce that G = NG(〈h〉) preserves a line, and thus the action
is elementary, a contradiction. For (c), assume that G preserves a line of T ; this is
the axis of some hyperbolic element h with minimal displacement, by (a). Any other
element s ∈ Σ either is a hyperbolic element such that Axis(s) = Axis(h), or is elliptic
and globally preserves Axis(h), swapping the two ends. In the first case s is a power of
h, by acylindricity. In the second case, s acts on Axis(h) as a reflection with respect to
some vertex, and s2 fixes pointwise the axis; hence, again by acylindricity, s2 = 1 and
shs−1 = h−1 . Also, if s′ ∈ Σ is another elliptic element, ss′ fixes the ends of Axis(h),
hence it is again a power of h. It follows that G = 〈h〉 ∼= Z or G = 〈h, s〉 ∼= ZoZ2 .
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Proof of Theorem 3.2 The volume estimate (6) follows from (5) just by applying
Gromov’s Systolic inequality Vol(X) ≥ Cn · (sysπ1(X))n , which holds for any 1-
essential n-manifold, for a universal constant Cn only depending on the dimension n
(see [Gro1, Theorem 0.1.A]). To show (5), let γ1 be a shortest non-nullhomotopic
closed geodesic realizing the systole of X , let x0 ∈ γ1 and let g1 be the class of γ1 in
π1(X, x0). Consider the natural action by deck transformations of G = π1(X, x0) on the
Riemannian universal covering X̃ , and the displacement function of G on X̃

∆G(x̃) := inf
g∈G∗

d(x̃, g.x̃)

whose infimum over X̃ coincides with sys π1(X), and is realized by g1 at any preimage
x̃0 ∈ X̃ of x0 . Then, consider the finite generating set of G given by (cp [Gro2])

Σ = {g ∈ G | d(x̃0, g.x̃0) ≤ 2D}.

We shall consider separately the cases where g1 is elliptic or hyperbolic.
If g1 is elliptic, we know by Lemma 3.3 (a) that there exists a hyperbolic element h
with |h|Σ ≤ 2. Setting g2 = hpg1h−p , for the least integer p ≥ (k + 1)/2, the elements
{g1, g2} generate a nonabelian free subgroup, by Theorem 2.1 (ii).
We now use the following Lemma, which is folklore (see for instance [Cer1]):

Lemma Let F2 be a free nonabelian group, freely generated by Σ = {g1, g2}.
For any word-weighted distance d` on the Cayley graph C(F2,Σ), defined by the
conditions |g1|` = `1 and |g2|` = `2 , the entropy E = Ent(F2, d`) solves the equation:

(7) (eE·`1 − 1)(eE·`2 − 1) = 4

Applying this lemma to F2 ∼= 〈g1, g2〉, endowed with the word-weighted distance d`
defined by `1 := |g1|x̃0 = sys π1(X) and `2 := |g2|x̃0 ≤ (4k + 10)D, we derive from
equation (7) :

(8) `1 ≥
1
E
· log

(
1 +

4
e`2·DE − 1

)
≥ 1

E
· log

(
1 +

4
e(4k+10)·DE − 1

)

since dx̃0 ≤ d` and so, by (E1) and (E2),

E = Ent(〈g1, g2〉, d`) ≤ Ent(〈g1, g2〉, dx̃0) ≤ Ent(G, dx̃0) ≤ Ent(X) = E
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This concludes the proof in the case where g1 is elliptic.
Assume now that g1 is a hyperbolic element. By Lemma 3.3, we can pick an
element s ∈ Σ which is not in NG(g1). By the discussion in Lemma 3.3, either s is
hyperbolic with Axis(s) 6= Axis(g1), or s is elliptic and does not preserve Axis(g1).
In the first case, we deduce by Theorem 2.1 (iii) that {g1, g2} generate a free nonabelian
semigroup of rank 2, for some choice of g2 ∈ {s, s−1}. In the second case, g2 := sg1s−1

is a hyperbolic element with Axis(g2) 6= Axis(g1) and, by the same theorem, {g1, g2}
generate a free nonabelian semigroup.
We can now use the following (see [BCG, Lemme 2.4]):

Lemma 3.4 Let F+
2 be a nonabelian semigroup, freely generated by Σ = {g1, g2}.

For any left invariant distance d on F+
2 and any choice of of positive real numbers

(`1, `2) such that |g1|d ≤ `1 and |g2|d ≤ `2 , the entropy E = Ent(F+
2 , d) satisfies the

inequality:

E = Ent(F+
2 , d) ≥ sup

a∈(0+∞)

(
1

`1 + a`2

)
· ((1 + a) · log(1 + a)− a log(a))

We apply this lemma to F+
2
∼= 〈g1, g2〉, for `1 := |g1|x̃0 and `2 := |g2|x̃0 ≤ 6D, and we

derive, by choosing a = E · `1

(9) `1 ≥
1
E
· e−6DE

since log(1 + a) ≥ a
1+a and E ≤ E .

If k ≥ 1, this lower bound for the systole is greater than the one in (8) (actually,
the inequality e−6x < log

(
1 + 4

e(4k+10)x−1

)
implies that x ≤ 21

125 , and in this case

2x < e−6x ; but if x = ED ≤ 21
125 then `1 · E ≤ 2DE < e−6DE , contradicting (9)). On

the other hand, if k = 0 the stabilizers of the edges of T are trivial and thus G splits as
a free product of a finite number of finitely generated, torsionless groups. By [Cer1,
Theorem 1.3] the following estimate for the systole of finitely generated, torsionless
free products holds:

sysπ1(X) ≥ 1
E
· log

(
1 +

4
e2D E − 1

)
which is sharper than (8) and concludes the proof of Theorem 3.2.
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4 Applications to 3-manifolds

The Section is devoted to the proof of Theorems 1.1&1.6, and of their corollaries.
In §4.1, we recall some basic results of 3-dimensional topology (the Prime Decomposi-
tion and the JSJ-decomposition) and prove that given a compact, orientable, 3-manifold
X without spherical boundary components, either int(X) admits a geometric metric, or
π1(X) has a splitting as a free or amalgamated product which is 4-acylindrical.
In §4.2, as a consequence of this dicothomy and of Theorem 3.2, we shall obtain the
systolic and volume estimates (Theorem 1.1 and Corollary 1.4), and we shall prove the
rigidity results (Theorem 1.6 and Corollaries 1.7, 1.8 & 1.10).

4.1 Acylindrical splittings of non-geometric, 3-manifolds groups

For a comprehensive exposition of the topics that we recall here, we refer to the classical
books of Hempel and Thurston ([Hem], [Thu5]), to the survey papers of Scott and
Bonahon ([Sco], [Bon]) and to the recent monography of Aschenbrenner-Friedl-Wilton
([AFW]).

We recall that a compact 3-manifold X is said to be prime if it cannot be decomposed
non trivially as the connected sum of two manifolds, ie when X = X1#X2 then either
X1 or X2 is diffeomorphic to S3 . A compact 3-manifold X is called irreducible if
every embedded 2-sphere in X bounds a 3-ball in X (and reducible otherwise). Every
orientable, irreducible 3-manifold is prime; conversely, if X is an orientable, prime
3-manifold with no spherical boundary components, then either X is irreducible, or
X = S1 × S2 (see [Hem, Lemma 3.13]). Notice that an irreducible, orientable, compact
3-manifold does not have boundary components homeomorphic to the 2-sphere, unless
the manifold is the 3-ball.
As we deal also with compact 3-manifolds X with possibly non-empty boundary we
need a few more definitions: an embedded surface S ⊂ X is said to be incompressible
if for any embedded disk D ⊂ X with ∂D ⊂ S there exists a disk D′ ⊂ S such that
∂D′ = ∂D; when X is irreducible, this implies that the disk D is isotopic to D′ . In
particular, X has incompressible boundary if any connected component of ∂X is an
incompressible surface. Finally, a ∂ -parallel properly embedded surface of X is an
embedded surface S whose (possibly empty) boundary is contained in ∂X and such that
S is isotopic rel ∂X to a subsurface in ∂X . A cornerstone of 3-dimensional topology is
the
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Prime decomposition Theorem Let X be any compact, oriented 3-manifold. There
exist oriented, prime, compact 3-manifolds X0 , X1 ,..., Xm such that X0 is diffeomorphic
to a sphere minus a finite collection of disjoint 3-balls, Xi has no spherical boundary
components for i ≥ 1, and X = X0#X1# · · · #Xm .
Moreover, if X′i , for i = 0, ...,m′ , are manifolds with the same properties as the Xi ’s, and
X = X0#X1# · · · #Xm = X′0#X′1# · · · #X′m′ then m = m′ and (possibly after reordering
the indices) there exist orientation-preserving diffeomorphisms Xi

∼→X′i . The manifolds
Xi are the prime pieces of X .

The Prime decomposition Theorem has a partial converse, the Kneser’s conjecture.
In classical references, the conjecture is stated for closed 3-manifolds or compact 3-
manifolds with incompressible boundary; actually, the conjecture is false in presence of
compressible boundary, exceptly in case where the compressible boundary components
are tori:

Kneser’s Conjecture Let X be any compact 3-manifold whose compressible bound-
ary components (if any) are homeomorphic to tori. If π1(X) = G1 ∗ · · · ∗Gn ,
then there exist compact 3-manifolds X1 ,..., Xn , such that π1(Xi) = Gi and
X = X1# · · · #Xn .

For compact, orientable irreducible 3-manifolds there exists a second important
decomposition theorem, due to the independent work of Jaco-Shalen ([Ja-Sh]) and
Johannson ([Jo1], [Jo2]): this decomposition is obtained by cutting along embedded
incompressible tori, which split the manifold into elementary pieces which are of
two different (but not mutually exclusive) kinds: atoroidal pieces and Seifert fibered
pieces. We recall that a compact, irreducible 3-manifold X is said to be atoroidal if any
incompressible torus is ∂ -parallel. A compact, irreducible 3-manifold is said to be a
Seifert fibered manifold if it admits a decomposition into disjoint simple closed curves
(the fibers of the Seifert fibration) such that each fiber has a tubular neighborhood which
is isomorphic, as a circle bundle, to a standard fibered torus4.

JSJ-decomposition Theorem Let X be a compact, orientable, irreducible 3-manifold.
There exists a (possibly empty) collection of disjointly embedded incompressible tori

4A pair of integers (a, b) ∈ N∗ × Z being given, the associated standard fibered torus Ta,b

is the circle bundle over the disk D2 obtained from D2 × [0, 1] by identifying the boundaries
D2 × {0} with D2 × {1} via the automorphism ϕ : D2 → D2 given by the rotation by an angle
of 2π b

a ; this manifold comes naturally equipped with a fibering by circles, given by gluing the
“parallels” {p} × [0, 1] of Ta,b via ϕ .
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T1, . . . ,Tm such that each component of X \
⋃m

1 Ti is atoroidal or Seifert fibered. A
collection of tori with this property and having minimal cardinality is unique up to
isotopy.

We shall refer to the minimal collection of tori {T1, . . . ,Tm} as to the JSJ-tori of X ,
and to the connected components of X cut along

⋃m
i=1 Ti as to the JSJ-components of

X ; the JSJ -decomposition is said trivial when the collection of JSJ-tori is empty.
As we remarked, Seifert fibered 3-manifolds can be atoroidal: the list of atoroidal
Seifert fibered 3-manifolds can be found in Jaco-Shalen ([Ja-Sh, IV.2.5, IV.2.6]).
Following Thurston [Thu1] we say that an irreducible 3-manifold X is homotopically
atoroidal if every π1 -injective map from the torus to X is homotopic to a map into the
boundary; using Jaco-Shalen terminology this means that a manifold X does not admit a
non-degenerate map f : T2 → X . Being homotopically atoroidal is a stronger property
than just being atoroidal (as one allows continuous maps which are not embeddings);
however, the two notions coincide outside of Seifert fibered manifolds. The list of
compact, homotopically atoroidal, orientable, Seifert fibered manifolds is the following:
Seifert fibered manifolds with finite fundamental group, S2 × S1 , D2 × S1 , T2 × I and
the twisted, orientable interval bundle over the Klein bottle K×̃I ; we observe that only
the last three have non-empty boundary.

Following again [Thu1], we define:

Definition 4.1 Let X be a compact, orientable 3-manifold with (possibly empty)
boundary. We say that X is non-geometric if its interior cannot be endowed with a
complete metric which is locally isometric to one of the eight model geometries.

The geometrization of closed, orientable, Seifert fibered 3-manifolds S is explained in
[Sco]; on the other hand, the geometrization of Seifert fibered manifolds with boundary
can be found in [Bon] (where the geometrization is meant with totally geodesic bound-
ary; the geometrization in Thurston’s sense, ie with complete, geometric metrics, is
obtained from a Fuchsian representation of the orbifold fundamental group of the base
space with parabolic boundary generators, and then extending it to a representation
of π1(S) in Isom+(H2 × R), as explained in [Ohs]). For the remaining three Seifert
fibered manifold, the interior of K×̃I , D2× I and T2× I can be endowed with complete
euclidean metrics. For the remaining three Seifert fibered manifold, the interior of K×̃I ,
D2 × I and T2 × I can be endowed with complete euclidean metrics.
For what concerns the atoroidal pieces, Thurston’s Hyperbolization Theorem 5 asserts

5Thurston announced for the first time in 1977 his Hyperbolization Theorem, and in 1982
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that a closed, Haken 3-manifold admits a complete hyperbolic metric if and only if it is
homotopically atoroidal, and that the interior of a compact, irreducible 3-manifold with
non-empty boundary can be endowed with a complete hyperbolic metric if and only if
it is homotopically atoroidal and not homeomorphic to K×̃I .
On the other hand, the fact that closed, orientable, irreducible, homotopically atoroidal
non-Haken 3-manifold admit a geometric metric is the content of Thurston’s Ge-
ometrization Conjecture, proved by Perelman ([Per1], [Per2], [Per3]). In particular, the
Elliptization Theorem shows that closed 3-manifolds with finite fundamental group
are finite quotients of S3 (and thus Seifert fibered), and the Hyperbolization Theorem
for the non-Haken case shows that irreducible, homotopically atoroidal, non-Haken
3-manifolds carry complete hyperbolic metrics (for more references and further readings
see [AFW, Chapter 1, Section 7]).

In view of this discussion, and for future reference, we record the following, now
well-established

Fact A compact, orientable, irreducible 3-manifold with trivial JSJ-decomposition is
geometric.

Given a compact 3-manifold X , we shall call the splitting of the fundamental group
of X as a graph of groups induced by the prime decomposition of X , or by the JSJ-
decomposition (when X is irreducible) the canonical splitting of π1(X). We shall
say that X has a non-elementary, canonical, k-acylindrical splitting if the action of
π1(X) on the Bass-Serre tree associated to the canonical splitting is non-elementary and
k-acylindrical.

Dicothomy (Geometric vs acylindrical splitting)
Let X be a compact, orientable 3-manifold with no spherical boundary components.
Then, either X is geometric or π1(X) has a non-elementary, canonical 4-acylindrical
splitting. The two possibilities are mutually exclusive.

Remark 4.2 The dichotomy clearly does not hold in presence of spherical boundary
(as excising an arbitrary number of disjoint balls from a geometric manifold does not
change the fundamental group). Moreover, we stress the fact that the above dicothomy
does not assert that fundamental groups of geometric, compact 3-manifold do not admit
acylindrical splittings, different from the canonical one, as we shall see in the Example
5.5.

the Geometrization Conjecture [Thu1]; in the series of papers [Thu2], [Thu3], [Thu4] (the latter
two of which unpublished) Thurston filled some of the major gaps. Complete proofs can be
found in [Ota1], [Ota2], [Kap].
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Proof of the dicothomy Assume first that X is a compact, orientable 3-manifold,
whose prime decomposition is non-trivial. Then, X has at least two non-simply
connected prime pieces (because, since X has no spherical boundary components,
the first piece X0 given by the prime decomposition is empty). Then, either X is
homeomorphic to RP3#RP3 or the action of π1(X) on the Bass-Serre tree associated to
the prime splitting is non-elementary (since the action of any non-trivial free product
different from Z2 ∗ Z2 on its Bass-Serre tree does not have any globally invariant line).
In the first case observe that RP3#RP3 is the unique orientable non-prime, Seifert
fibered space (see [AFW, page 10] ) and, in particular, admits a geometry modelled on
S2×R (see [Sco]). Otherwise, since the edge stabilizers in the prime splitting are trivial
and at least one vertex group is different from Z2 , the prime splitting is 0-acylindrical.
Let us assume now that X is a prime, compact 3-manifold; we may actually assume that
X is irreducible, as S2×S1 is geometric. If the JSJ-decomposition of X is trivial, then X
is geometric, in view of Fact 4.1, and the canonical splitting of π1(X) is elementary. On
the other hand, in [Wi-Za] Wilton and Zalesskii prove that if X is a closed, orientable,
irreducible 3-manifold, then either X admits a finite sheeted covering space that is a
torus bundle over the circle, or the JSJ-splitting is 4-acylindrical. The same result holds
for compact, irreducible manifolds (see for details [Cer2], where the precise constants
of acylindricity of the splitting of π1(X) as an amalgamated or a HNN-extension over
the peripheral groups is computed, according to the different types of the adjacent
JSJ-components).
Now, compact, orientable, irreducible 3-manifolds with non-trivial JSJ-decomposition,
which are finitely covered by a torus bundle, are either equal to a twisted double
D(K×̃I,A) or to a mapping torus M(T2,A), for a gluing map A ∈ SL2(Z) such that,
respectively, JAJA−1 and A are Anosov (where J(x, y) = (−x, y), see Theorems 1.10.1,
1.11.1 in [AFW, Theorems 1.10.1 & 1.11.1]). In both cases the resulting manifolds
admit a Sol-metric ([AFW, Theorem 1.8.2]), hence they are geometric.
It remains to show that the 4-acylindrical splitting is non-elementary. Actually as X
has a non-trivial JSJ-decomposition, it is clear that the action of π1(X) is not elliptic;
moreover, if it was linear then π1(X) would be virtually cyclic, by Lemma 3.3, which
contradicts the fact that π1(X) contains a rank 2 free abelian subgroup.

4.2 Systolic and volume estimates, local rigidity and finiteness

Proof of Theorem 1.1 In view of the above Dicothomy, π1(X) admits a non-elemen-
tary, canonical, 4-acylindrical splitting. By assumption, π1(X) is torsionless, so we can
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apply Theorem 3.2 to deduce

sysπ1(X) ≥ 1
E

log
(

1 +
4

e26 E D − 1

)
= s0(E,D)

Proof of Corollary 1.4 Let X = X0# · · · #Xm be the prime decomposition of X .
Since X is closed and different from #k(S2× S1), the piece X0 is empty and there exists
at least a prime piece, say X1 , which is closed and irreducible. Moreover, since X
has torsionless fundamental group, X1 is aspherical, and the existence of a degree one
projection map X → X1 shows that X is 1-essential. Since we know that the systole of
X is bounded below by s0(E,D), we can apply Theorem 1.0.A. in [Gro1] to obtain the
estimate Vol(X) ≥ C · s0(E,D)3 .

Proof of Theorem 1.6 Consider X,X′ ∈M ∂
ngt(E,D). By Theorem 1.1 we know that

the systoles of X and X′ are bounded below by s0(E,D); then, also their semi-locally
simply connectivity radius r(Xi) 6 is bounded below by 1

2 s0(E,D). Now, two compact
Riemannian manifolds with dGH(X1,X2) < 1

20 min{r(X1), r(X2)} have isomorphic
fundamental group, as proved by Sormani-Wei [So-We] (as a consequence of a work by
Tuschmann [Tus, Theorem (b)]). This proves (i). To show (ii), assume that, moreover, X
and X′ are irreducible: since their fundamental group is torsionless, they are aspherical,
and then homotopy equivalent by Whitehead’s Theorem.

Proof of Corollary 1.7 By Theorem 1.6 (i) we know that given X ∈ M ∂
ngt(E,D),

there exists a δ0 = δ0(E,D) such that every other manifold X′ in M ∂
ngt(E,D)

which is δ0 -close to X has the same fundamental group as X . Now, recall that,
by results of Swarup [Swa], there is a finite number of irreducible, compact 3-
manifolds with a given fundamental group. By the Prime Decomposition Theorem
(as stated in Section §4.1), and by uniqueness of the decomposition of a group
as a free product, this is also true for (possibly reducible) compact 3-manifolds,
without spherical boundary components (recall that S2 × S1 is the only prime,
not irreducible, orientable manifold without spherical boundary components).
We then conclude that the ball at X of radius δ0 in M ∂

ngt(E,D) contains only a
finite number of homeomorphism (and then diffeomorphisms) types.

Corollary 1.8 is a particular case of the following:
6The semi-locally simply connectivity radius of a X is the supremum of r such that every

closed curve in a ball of radius r is homotopic to zero in X .
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Proposition 4.3 Let X,X′ ∈ M ∂
ngt(E,D) with X be irreducible. Assume that

dGH(X,X′) < δ0 , for δ0 = δ0(E,D) as in Theorem 1.6:
(i) if ∂X is incompressible, then X′ is homotopy equivalent to X ;
(ii) if ∂X = ∅, then X is diffeomorphic to X′ .

Proof Let us prove (i). By Theorem 1.6 (i) we deduce that π1(X) ∼= π1(X′), and this
group is indecomposable, by Kneser’s Conjecture. As X′ has no spherical boundary
components, it follows from the Prime decomposition Theorem that X′0 is empty and
X′ = X′1 ; better, since it is not geometric, it is different from S2 × S1 and so it is
irreducible too. We can then apply Theorem 1.6 (ii) to deduce that X′ is homotopically
equivalent to X .
For (ii), we deduce as in (i) that X′ is homotopy equivalent to X , an then closed. This
implies that X′ is homeomorphic (and actually diffeomorphic) to X , by the discussion
after Corollary 4.3 in Section §1.

Proof of Corollary 1.10 By Bishop’s comparison theorem it follows that the space
Mngt(RicK ,D) is included in Mngt(2K,D). Moreover, Gromov’s precompactness
theorem asserts that the family Mngt(RicK ,D) is precompact; therefore, for any
arbitrary δ > 0, this space can be covered by a finite number of balls of radius δ .
Taking δ = δ0(2K,D), where δ0 is the function in Theorem 1.6, and using Corollary
1.7 we infer the finiteness of the diffeomorphism types in Mngt(RicK ,D).

Remark 4.4 Is the peripheral structure preserved by Gromov-Hausdorff approxima-
tions? We recall that the peripheral structure of a 3-manifold X with incompressible
boundary is the data of the fundamental group π1(X) together with the collection
of the conjugacy classes of subgroups determined by the boundary components.
Let X1 and X2 be two compact, orientable, irreducible 3-manifolds with non-
spherical, incompressible boundary. Waldhausen ([Wal]) proved that any isomorphism
ϕ : π1(X1)→ π1(X2) sending the peripheral structure of X1 into the peripheral structure
of X2 is induced by a homeomorphism. It is not known to the authors if the isomorphism
between the fundamental groups induced from a Gromov-Hausdorff ε-approximation
f : X1 � X2 , with ε sufficiently small, preserves the peripheral structure. If this was
the case, then Corollary 1.8 would hold for all non-geometric, irreducible manifolds
with (possibly empty) incompressible boundary.
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5 Examples

We give here a collection of examples (which do not satisfy the assumptions of Theorems
1.1, 1.4), where the systole or the volume can be collapsed while keeping entropy and
diameter bounded.

Example 5.1 Collapsing the systole of geometric 3-manifolds.
For each model geometry different from H3 , we can exhibit a closed Riemannian
manifold X and a sequence of metrics hεG , for ε ∈ (0, 1], such that Ent(X, hεG) ≤ E ,
diam(X, hεG) ≤ D and sysπ1(X, hεG)→ 0.
This is trivial for G = S3,S2×R,E3 and Nil , which have sub-exponential growth: just
take the standard sphere, S2 × S1 , any flat torus T , and the quotient H3

Z\Nil of the
Heisenberg group by the standard integral lattice, and scale the model metric by ε. The
systole and diameter collapse, while the entropy is always zero.

For G = H2 × R, H2×̃R, we can just take the Riemannian product X = Sg × S1 of a
closed hyperbolic surface Sg of genus g ≥ 2 with the circle, and the unitary tangent
bundle X = USg of Sg with its Sasaki metric; then, we contract by ε the model metrics
hG along the fibers of the S1 -fibration X → Sg . In both cases, the sectional curvature
of the new metrics hεG stays bounded, as X admits a free, isometric action of S1 along
the fibers (a pure, polarized F -structure, cp [Ch-Gr]); thus, the entropy is bounded
uniformly, while the systole collapses ( and X tends to Sg in the Gromov-Hausdorff
distance).
Notice that, in the second case, the collapse is through non-model metrics.

In the last case consider the group G = Sol , defined, for any hyperbolic endomorphism
A ∈ SL(2,Z) with eigenvalues λ±1 , as the semidirect product R2 oA R, with R acting
on R2 as At , and endowed with the canonical left-invariant metric (in the diagonalizing
coordinates (x, y)):

hSol = λ2t dx2 ⊕ λ−2t dy2 ⊕ dt2

Consider the quotient Xε of Sol by the discrete subgroup of isometries Γε generated
by the lattice εZ2 (acting by translations on the xy-planes) and by the isometry
s(u, t) 7→ (Au, t + 1).

The manifolds Xε are diffeomorphic, with sys(Xε)→ 0 and bounded diameter; on the
other hand, they all have isometric universal covering, thus Ent(Xε, hSol) is equal to the
exponential growth rate of Ent(Sol, hSol) for all ε ∈ (0, 1].
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Example 5.2 Collapsing the volume of the connected sum #k(S2 × S1).

We shall construct, for ε ∈ (0, 1], a family of metrics gε on the connected sum kX =

X1# · · · #Xk of k copies Xi = S2×S1 , such that sysπ1(kX, gε) ∼ 2π , diam(kX, gε) ≤ D,
Ent(kX, gε) ≤ E for all ε, while the volume goes to 0 as ε→ 0.
Consider the canonical product metric h = hS2 ⊕ hS1 on S2 × S1 . We construct gε
by scaling hS2 by ε and gluing the k copies of S2 × S1 through a thin, flat cylinder.
Namely, two base points x±i on Xi being chosen (with x+

1 = x−1 and x+
k = x−k ), let

hε = ε2hS2 ⊕ hS1 and let rε = inj(S2 × S1, hε). We write the metric in each copy in
polar coordinates around x±i as

hε = ϕ2
ε(r, u)hS2 + dr2

and modify hε around the points x±i into a new metric h̃i
ε on Xi \ {x±i }, which

interpolates, on the annulus Bhε(x
±
i , εrε) \ Bhε(x

±
i , ε

2rε), between hε and the product
metric (ε2rε)2hS2 + dr2 of the cylinder (ε2rε)S2 × S1 ; finally, we glue the copies
(Xi \ {x±i }, h̃i

ε) and (Xi+1 \ {x±i+1}, h̃i+1
ε ) to obtain (kX, gε), by identifying the flat

ε2rε -annulus around x−i to the corresponding annulus around x+
i+1 via an isometry

interchanging the boundaries.
It is then easy to check that the manifolds (kX, gε) converge in the Gromov-Hausdorff
distance to the length space given by the wedge X0 = ∨xi,...,xkS1 of k copies of
the standard circle S1 with respect to appropriate points x1, ..., xk . Notice that by
construction we have diam(kX, gε) ≤ kπ + 1, that the systole of (kX, gε) is bounded
from below by 2π − 1 for all sufficiently small ε, and that clearly Vol(kX, gε) → 0.
Moreover, the entropy of all these manifolds is uniformly bounded from above by
Ent(X0) + 1, for ε→ 0; this follows for instance from [Rev, Proposition 38].

Finally, we give examples of 3-manifolds with different topology, which are arbitrarily
close in the Gromov-Hausdorff distance, while satisfying entropy and diameter uniform
bounds.

Example 5.3 Manifolds with spherical boundary components.
Take any closed, irreducible Riemannian 3-manifold X with sysπ1(X) ≥ 1, and remove
a disjoint collection of n balls B(xi, ε), for arbitrarily small ε. The resulting, reducible
manifold Xn,ε with spherical boundary has the same fundamental group as X , while
being not homotopically equivalent to X . Xn,ε clearly is (2nπε)-close to X , as the
metric on a sufficently small ball around xi can be approximated by the Euclidean one;
hence diam(Xn,ε) ≤ diam(X) + 2nπε too. It is easy to verify that, for small values
of ε, the orbits of G = π1(X) ∼= π1(Xn,ε), on the respective Riemannian universal
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converings, are
(

1 + 3nπ
sys(X)

)
-biLipschitz to each other; this implies the entropy bound

Ent(Xn,ε) ≤ (1 + 3nπ
sys(X) )Ent(X).

Example 5.4 Connected sums of hyperbolic manifolds.
Let (X, h) be a closed hyperbolic 3-manifold with no orientation reversing isometries
(see for instance Müllner [Mül]), and denote by X the same hyperbolic manifold
endowed with the opposite orientation. We know by standard differential topology
that X#X and X#X are not diffeomorphic; hence, by the discussion in Section §1, they
are not even homotopically equivalent. Now, remove from X and X small geodesic
balls Bh(x0, ε) of radius ε� inj(X). As in the Example 5.2, we modify the metric h
around x0 into a new metric hε which interpolates, on the annulus Bh(x0, ε) \ Bh(x0, ε

2),
between h and the product metric ε4hS2 + dr2 ; then, we glue together the two copies of
(X\{x±0 }, hε) by identifying the two cylinders S2 × (ε2, 0) via an orientation-reserving
(resp. orientation-preserving) isometry interchanging the boundaries, to obtain a
Riemannian connected sum Yε = (X#X, gε) (resp. Ȳε = (X#X̄, ḡε). Then, it is easy to
show that both manifolds tend in the Gromov-Hausdorff topology to the length space
given by the metric wedge X ∨x0 X ; hence they are arbitrarily close to each other for
ε→ 0, with diameters bounded by 2 diam(X) + 1. Moreover, the systoles is uniformly
bounded from below by sysπ1(X)/2, so by [Rev, Proposition 38], we deduce that their
entropies converge to Ent(X ∨x0 X) and are uniformly bounded.

Example 5.5 Hyperbolic manifolds with acylindrical splittings
A handlebody Hg of genus g > 0 is, topologically, the ε-neighbourhood in R3 of
a wedge sum of g circles; handlebodies are classified by their genus. The boundary
of Hg is an orientable, closed surface of genus g, and π1(Hg) ∼= Fg ; in particular,
the fundamental group of Hg , for g ≥ 2, is the non-trivial free product of g infinite
cyclic groups, hence it admits a 0-acylindrical splitting. It is not difficult to show that
the interior of the handlebodies admits complete hyperbolic metrics: for g ≥ 2, it is
sufficient to identify Hg with the quotient of H3 by a Schottky group of hyperbolic
isometries, generated by g hyperbolic translations, with disjoint axes and disjoint
attractive and repulsive domains.

Geometry & Topology XX (20XX)



1026 Filippo Cerocchi and Andrea Sambusetti

References

[AFW] M. Aschenbrenner, S. Friedl, H. Wilton, 3-manifolds groups, EMS Series of Lect. in
Math., EMS, 2015.

[An-Ro] M. Anderson, L. Rodriguez, Minimal surfaces and 3-manifolds of nonegative Ricci
curvature, Math. Ann. 284 (1989), no. 3, 461-475.

[BBBMP] L. Bessière, G. Besson, M. Boileau, S. Maillot, J. Porti, Geometrisation of 3-
manifolds, EMS Tracts in Mathematics 13, European Math. Soc., Zurich, 2010.

[BCG] G. Besson, G. Courtois, S. Gallot, Un Lemme de Margulis sans courbure et ses
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