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When investigating gilded artifacts or works of art, the determination of the gilding

thickness plays a significant role in establishing restoration protocols or conservation

strategies. Unfortunately, this is done by cross-sectioning the object, a destructive

approach not always feasible. A non-destructive alternative, based on the differential

attenuation of fluorescence radiation from the sample, has been developed in the past

years, but due to the intrinsic random nature of X-rays, the study of single or few

spots of an objects surface may yield biased information. Furthermore, considering the

effects of both porosity and sample inhomogeneities is a practice commonly overlooked,

which may introduce systematic errors. In order to overcome these matters, here we

propose the extrapolation of the differential-attenuation method from single-spot X-ray

fluorescence (XRF) measurements to macro-XRF (MA-XRF) scanning. In this work, an

innovative algorithm was developed for evaluating the large amount of data coming

from MA-XRF datasets and evaluate the thickness of a given overlapping layer over

an area. This approach was adopted to study a gilded copper-based buckle from the

sixteenth to seventeenth century found in Rome. The gilded object under investigation

was also studied by other analytical techniques including scanning electron microscopy

coupled with energy dispersive spectroscopy (SEM-EDS). Previous results obtained from

SEM-EDS were used to confront the data obtained with the proposed methodology

and validate it. MA-XRF elemental distribution maps were fundamental in identifying and

choosing sampling areas to calculate the thickness of the gilding layer, avoiding lead

islands present in the sample that could negatively influence the results. Albeit the large

relative standard deviation, the mean thickness values fell within those found in literature

and those obtained from previous studies with SEM-EDS. Surface fissure has been found

to deeply affect the results obtained, an aspect that is often disregarded.
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INTRODUCTION

The practice of gilding dates back from antiquity and is still
performed until today by means of different techniques, as
electrochemical deposition instead of the toxic mercury fire-
gilding (Anheuser, 1997). With the course of time, a wide array of
gilding methods has been developed and those most widespread
in antiquity were the application of a gold foil (or leaf) to
a prepared substrate, mercury gilding, or depletion (Lechtman
et al., 1982; Ingo et al., 2013; Pessanha et al., 2019b). The method
chosen also depends on the type of substrate used, which varies
from leather, plaster and wood to metals (Cesareo, 2003; Eveno
et al., 2014; Tortora et al., 2014; Biocca et al., 2016; Shabunya-
Klyachkovskaya et al., 2017; Iorio et al., 2019). In the case of
fire-gilding, a mixture made of mercury and gold (amalgam) is
applied to a clean metallic substrate and fired in temperatures
around 300◦C to volatilize the mercury. The surface is then
finished with the use of burnishers and the resulted thickness can
range from 1µm to about 10µm or more (Anheuser, 1997; Ingo
et al., 2013).

Due to the variety of gilding methods used in the past and
their intrinsic variations (amalgam composition and thickness),
the investigation of archaeological gilded objects has raised
interest in the community, aiming to investigate themethodology
and materials used and the conservation state of these objects
(Abdelhamid et al., 2010; Ingo et al., 2016, 2018; Graziani et al.,
2020). The most straightforward way of studying a gilded objects’
characteristics and gilding method is by analyzing a cross-
section of the object. This approach yields direct information
of the thickness of the gold layer and the binding mechanism
between gold layer and substrate. Scanning electron microscopy
coupled with energy dispersive spectroscopy (SEM-EDS) goes
even further, giving a direct information on the chemical
composition of the substrate and the gilding layer (Ingo et al.,
2016). Nevertheless, the study of cross-sections requires sampling
and is a destructive method, being rarely feasible when it comes
to valuable artifacts (Nørgaard, 2017).

The focus on non-destructive techniques has always been
a priority in cultural heritage science, and X-rays fluorescence
(XRF) is commonly used as a standard approach (Guerra, 2000;
Bottaini et al., 2017). This technique can provide information
on the chemical composition of a sample surface and even the
thickness of an existing overlapping layer—giving the conditions
are optimal (van Espen, and Lemberge, 2000; Giurlani et al.,
2019). Nonetheless, archaeological artifacts are known to be
extremely inhomogeneous and the analysis of only few spots
of the sample’s surface may lead to misleading conclusions
(Cesareo et al., 2010; Brunetti et al., 2016). Extrapolating the
one-dimensionality of XRF technique to another dimension,
i.e., scanning [or capturing in full field (Romano et al.,
2014)] a surface instead of analyzing few spots, is a practice
that is now becoming widespread in cultural heritage science
and is generally known as macro-XRF scanning (MA-XRF)
(Dik et al., 2008). This approach increases significantly the
understanding of the sample, by generating bi-dimensional maps
of elemental distribution and providing a large XRF dataset to
work with.

Measuring the thickness of a given surface layer placed to
protect an artifact or, as in the case of gilding, to turn it
more attractive, can be performed by a method that uses the
differential attenuation of fluorescence radiation coming from
the internal matrix (substrate) (Cesareo et al., 2015). This method
is based on the concatenated effect of two distinct processes: (a)
the production of fluorescence photons in the internal matrix
and (b) the differential attenuation in the surface layer. The
latter can become quite complex when dealing with amalgam
gilded objects, since the chemical composition of the surface
layer is not constant throughout the sample and micro-fissures
can be present in amounts sufficient to introduce significant
errors. Moreover, the metallic substrate of archaeological artifacts
can present considerable inhomogeneities in their composition,
caused by either smelting, molding, or working. Inhomogeneities
in the sample hinders a precise estimation of the matrix un-
attenuated signal and therefore must be avoided. Furthermore,
the presence of protective layers, such as mica or paraloids, must
be cautiously accounted. The existence of an “extra” layer on
top of the gilding layer further attenuates the photons coming
from the substrate and therefore introduce systematic errors. If
the protective layer is known, as in the case of paraloids, the
further attenuation introduced can be calculated and Equation
(5) can be adjusted accordingly (Nardes et al., 2019). Past
interventions or cleaning routines applied to the objects surface
can be assessed by the complete absence of soil impurities in
the elemental distribution maps generated with the MA-XRF
data. Therefore, a proper interpretation of these maps and the
assessment of the presence or not of additional layers are crucial
for selecting suitable regions where to apply the differential
attenuation method.

In this context, the current research proposes the use of
MA-XRF scan datasets to investigate the gilding technique
employed in a Sixteenth to Seventeenth century AD buckle
found during the dredging of Tiber river (Rome, Italy), by
applying the differential attenuation method and calculating the
gilding thickness in a totally non-invasive manner. The use
of MA-XRF elemental distribution maps is crucial to select
suitable regions from the sample surface where to calculate
the thickness. Moreover, an algorithm capable of analyzing
thousands of spectra and simulating the chemical composition
of the overlapping layer, considering the presence of fissures or
pores, was developed to account for the variations present in this
layer. This allows a more precise calculation of the superficial
layer attenuation coefficients. The method dismisses any need
for cross-sectioning, sampling or even sample preparation, being
completely non-destructive. Nonetheless, the buckle investigated
has been previously studied by SEM-EDS (Ingo et al., 2018),
where a sectioning of a small part in the rightmost portion of the
object was made. Results from SEM-EDS analysis have been used
to validate the proposed methodology.

MATERIALS AND METHODS

A gilded Cu-based buckle dating from the Sixteenth to
Seventeenth century found during the dredging of the Tiber river
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in Rome was analyzed by scanning electron microscopy (SEM)
coupled with energy dispersive spectroscopy (EDS) and bymacro
X-ray fluorescence (MA-XRF) scanning. The object was cleaned
with distilled water followed by ethanol rinsing. No conservation
treatment was performed. SEM images were used to confront the
data obtained from the differential attenuation calculations and
assess the reliability and quality of the data.

To obtain the most representative data, the thickness
calculations were performed in specific regions of the sample
in a way to avoid great geometrical variations and matrix
composition inhomogeneities. The intensity ratio of Cu-Kα and
Cu-Kβ characteristic lines for an infinitely thick matrix were
experimentally measured in the central portion of the sample
(where no gold cover is visible), being the mean value obtained
with 6 different spots.

The Differential Attenuation Method
Considering one of the two monochromatic radiations used in
the differential attenuation method (for example the Kα line
of one of the elements present in the internal matrix) and a
generic tube-sample-detector geometry (Figure 1), the following
equation is valid for the photons detected in the spectral window
a (Ia):

Ia=I0 AK·ε (Ea) ·e
−(µL(E0) cos91+µL(Ea) cos92)d

∫ t

0
e−[µs(E0)] cos91+ µs(Ea)] cos92 ]x·dx (1)

By integrating the equation above one obtains:

Ia=I0 AK·ε (Ea) ·
1−e−[µs(E0) cos91+µs(Ea) cos92]t

µs (E0) cos91+µs (Ea) cos92

·e−(µL(E0) cos91+µL(Ea) cos92)]d (2)

where I0 is the exciting photons beam intensity at energy E0, A is
the overall term taking into account all the factors that determine
the production of photons detected in the spectral window a, K
is the geometrical factor, ε(Ea) is the detector efficiency, µL(E0)
and µL(Ea) are the superficial layer attenuation coefficients
at impinging and outgoing photon energies, respectively, d
represents its thickness, µs(E0) and µs(Ea) are the attenuation
coefficients of the internal matrix, 91 and 92 are the incident
beam and output angles with the sample surface, respectively and
t is the internal matrix thickness.

The ratio between two monochromatic radiations can then
be written, assuming that the detector efficiency and geometrical
factors are the same for both lines, as:

(

Ia

Ib

)

=

(

Ia

Ib

)

thin

·
µs (E0) cos91+µs (Eb) cos92

µs (E0) cos91+µs (Ea) cos92

·χ ·e[−µL(Ea) + [µL(Eb)] cos92d (3)

where χ= 1−e−[µs(E0)cos(91) +µs(Ea)cos(92) ]t

1−e−[µs(E0)cos(91) +µs(Eb)cos(92) ]t

The first term (referred to as thin) is the ratio when the
self-attenuation in the internal matrix is completely negligible,

the second and third terms consider the contribution of this
effect and the fourth term considers the differential attenuation
undergone in the surface layer. Only the fourth term depends
on the surface layer, while the remaining terms depend only on
the internal matrix. When the exponential contributions in the
third term (χ) are negligible (having t large enough that the
term can be approximated to 1), the sample can be assumed
infinitely thick.

When the two lines are relative to a single element, as in the
case of the lines Kα and Kβ of copper, their ratio is fixed and
well-known (Cesareo et al., 2009).

Neglecting the differential attenuation in the superficial layer
and considering an infinitely thick approximation, the matrix
ratio can be given by the following equation:

(

Ia

Ib

)

thick

=

(

Ia

Ib

)

thin

·
µs (E0) cos91+µs (Eb) cos92

µs (E0) cos91+µs (Ea) cos92
(4)

The values for infinitely thin samples can be calculated from the
fundamental parameters (Cesareo et al., 2010), and therefore—
if the sample composition is known—one can calculate the
intensity ratio for a thick sample. This value can also be
experimentally determined by directly measuring the sample
exposed substrate or by creating a calibration model via Monte
Carlo simulations (Pessanha et al., 2019a) when the former is
not feasible.

Therefore, assuming the attenuation coefficient of the
overlapping layer is known (its composition is known or
experimentally determined using the acquired XRF data) and
that the matrix can be considered infinitely thick, the superficial
layer thickness is finally given by Equation (5) below (Cesareo
et al., 2016; Nardes et al., 2019):

d=
sin92

−µL

(

EKα

)

+µL

(

EKβ

) ln









(

IKα

IKβ

)

(

IKα

IKβ

)

thick









(5)

MA-XRF Scanning
The system used to record and process the XRF data was a
custom-made portable scanner, made by the Istituto Nazionale
di Fisica Nucleare (INFN)—Roma Tre Division, and a private
company Ars Mensurae. This system has been employed in
previous studies (Iorio et al., 2019) and comprises a movable
stage—where the sample is positioned—and an exchangeable
head composed of a collimated Moxtek R© Ta-target X-ray tube
and an AMPTEK R© 123SDD detector. The spot size is of roughly
1 mm2 and the total scanned area was of 34 × 15 mm2, enough
to cover the entirety of the sample. The tube operated at 37 KV
and 17 µA. The dwell-time per pixel was of 7 s, resulting in
roughly 60min of acquisition time. The system was calibrated
using an SRM 1115 NIST Standard reference material with the
following composition expressed as mass fraction, in %: Copper
87.96, Zinc 11.73, Lead 0.013, Iron 0.13, Tin 0.10, Nickel 0.074,
and Phosphorus 0.05.
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FIGURE 1 | Representative scheme of impinging and outgoing radiations.

FIGURE 2 | Analyzed sample (top left) and MA-XRF elemental distribution maps of lead Lα, iron Kα, copper Kα, gold Lα, and mercury Lα.

SEM-EDS
Backscattered images and Field-emission (FE) SEM images were
acquired with a SEM Stereoscan 360 system from Cambridge,
UK, equipped with a LaB6 filament and a LEO Gemini 1530
microscope from Zeiss, Germany. The former coupled to an
INCA 250 and the latter to an INCA 450 energy-dispersive X-
ray spectrometers (EDS) both by Oxford Instruments Analytical,
UK. The images were collected with acceleration voltages up to
20 kV.

Prior to the analysis, the sample cross-section was coated
with either C or Cr. This procedure is required to avoid
charging effects. Carbon was deposited with an Emitech
sputter coater model K550, a K250 carbon coating attachment
and a carbon cord. The carbon film deposited was ∼3 nm
thick. As for the chromium film, the deposition procedure

was performed with a Bal-Tech SCD 500 at a 5 × 10−3

mbar pressure to ensure a constant thickness of about
0.5 nm.

RESULTS AND DISCUSSION

Figure 2 reports the elemental maps distribution acquired
by the MA-XRF scanning system. The elemental distribution
maps show mercury correlated to gold. The simultaneous and
correlated presence of both elements are an indicative that
mercury and gold are mixed in the uppermost, gilded layer.
Although MA-XRF information cannot be used to distinguish
fire-gilding from cold-gilding, it certainly can strongly suggest
the use of a mercury-gilding technique. This was also confirmed
by previous SEM analysis performed by Ingo et al. (2018),
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FIGURE 3 | Elemental distribution maps of iron Kα (left) and iron Kβ (right).

which demonstrated that this gilded object was produced by
fire-gilding technique.

The elemental maps also show a rather inhomogeneous
distribution of certain elements, with a higher concentration of
lead in the rightmost part of the sample and of iron in the
lower part.

The explanation for the latter may be three-fold: (a) the tube-

sample-detector geometry—being the detector on the left-hand
side of the tube—causing an overestimation of iron peaks or an

increase in Cu-escape peaks (Trojek, 2011), (b) the preferential

deposition of iron impurities during the burial period in the
lower-concave region, or (c) a deposition of iron in both concave

regions during the burial period combined with the geometrical
factor. Due to the central relief in the sample, the combined

effect described in (c) results in an increase in the signal from
the lower concave region and a lower signal from the upper

concave region. The elemental distribution map of iron is better
represented in Figure 3, where a comparison between iron-Kα

and iron-Kβ maps is shown. It can be observed that the signal
contribution is due mostly to the Kα-line (maximum net area
of 242 counts against 55 from Kβ), meaning that iron is not
present as an alloying element but as an impurity deposited in the
concave parts of the sample probably during the burial period.
Furthermore, the characteristic low signal of alloy impurities
detected by XRF would be suppressed by the gold layer deposited
on the surface. Moreover, concentrations of secondary metals,
such as iron and aluminum, appear frequently in corroded
bronzes that have been buried for prolonged periods of time
(Nørgaard, 2017).

For what concerns the lead presence, a lead segregation can
occur if its content within the copper alloy exceeds 10 wt.%
(Quaranta et al., 2014). On the other end, casting conditions,
can play a significant role in the lead segregation/precipitation.
In fact, lead and copper have significantly different melting
temperatures and if the cooling rate is fast enough, the phase-
diagram is disturbed and lead precipitates into a different phase
(Callister, 2007). Moreover, both lead-Lα and -Lβ elemental
distribution maps are identical and with reasonable maximum
net areas of 227 and 124, respectively, being indicative that the
lead signal comes indeed from underneath the gilding layer.

Since inhomogeneities and contaminations were detected in
the sample, some areas of interest (AoIs) shown in Figure 4 were
selected to well-define the areas where to apply the differential
attenuation method. This was done in order to avoid the
presence of lead islands and areas with higher iron signal for

FIGURE 4 | Selected areas for calculating the gilding layer thickness.

TABLE 1 | Variations in the linear attenuation coefficients with varying quantities of

mercury and gold.

Hg (%) µL(Cu-Ka) (cm
−1) µL(Cu-Kβ) (cm

−1) –µL(Cu-Ka) +

µL(Cu-Kβ) (cm
−1)

2 3,930 3,038 −892

4 3,909 3,021 −887

6 3,888 3,005 −882

8 3,867 2,989 −877

10 3,846 2,972 −873

12 3,824 2,956 −868

14 3,803 2,940 −863

16 3,782 2,923 −858

18 3,761 2,907 −853

20 3,739 2,890 −848

22 3,718 2,874 −844

the calculation of the gilding layer thickness. The dataset is then
restricted to 91 pixels out of the 310 pixels where gold was
detected (Figure 4).

Amalgam-gilded artifacts can undergo corrosion (Ingo et al.,
2016, 2018), as opposed to what is normally expected from golden
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FIGURE 5 | SEM-EDS images from sample’s cross section reporting different gilding thicknesses ranging from 3 µm (A) to 1.6 µm (B). A general overview of the

gilding layer on top of a corrosion substrate presenting a high porosity and variable thickness (C).

objects. Micro-pores and fissures that remain in the finished
gilded surface still allow the interaction between copper and
corroding species from the environment (Ingo et al., 2018). The
intermediate corrosion product layer created by this process
and between the gold surface and the bulk metal can vary in
thickness (Robbiola et al., 1998). In Equation (5) for the thickness
calculation, the thick sample ratio [(IKα/IKβ)thick] is used acting
as a calibration factor and it was determined by measuring six
spots in the central portion of the artifact, where no gold was
observed (Figure 2). This thick ratio supposedly represents the
substrate directly in contact with the overlapping gilded layer,
and the average measured value obtained was 6.206.

The amount of residual mercury present in the finished gilded
layer can vary from 25 wt.% (near the ζ-phase α′-phase border
in the Au-Hg phase-diagram) to 0.05 wt.% under a 600◦C
heating. However, a finished layer will usually retain about 8–
25% of mercury (Anheuser, 1997). This amount varies according
to the temperature used in the firing step, the initial mercury
concentration (about 80–90 wt.%) and the thickness of the layer

applied prior firing (Anheuser, 1997; Ingo et al., 2013). Gold and
mercury have very close atomic numbers (92 and 93, respectively)
but have a slight discrepancy in density (19.28 and 13.53 g/cm3,
respectively). Variations in the mercury content present in the
alloy (±10%) induce changes in the attenuation coefficients
difference (2–3%) that are much less than the observed statistical
uncertainty. Therefore, to estimate the attenuation coefficient for
the K-lines of copper [µL variables in Equation (5)] of the gold
layer, a chemical composition of 88 wt.% Au and 12 wt.% Hg was
simulated and attributed to the layer (Table 1).

As previously stated, fire-gilded objects are usually
characterized by the presence of several micro-pores and
fissures. In Figure 5, SEM-EDS analysis of the sample cross-
sections is reported. A highly fissured bright layer on top of
a darker region (corrosion product layer) can be observed
in Figure 5C. The presence of fissures drastically reduces the
density of the superimposing gold layer (Ager et al., 2017;
Giurlani et al., 2019) and if not taken into account may lead to
misleading conclusions in regard of thickness calculation. As the
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method used in the study proposes a non-invasive approach, the
fissure percentage estimated to account for the fissure influence
was calculated through a simple image analysis of top-view
(backscattered) SEM images, comparing the difference between
the bright (gold) and dark (copper) pixels.

The estimated fissure value was fed into the algorithm to
correct the attenuation coefficients and density of the gold
layer, simulating the gold stratum as a homogeneous mixture
of air and gold-mercury alloy. Figure 6 shows an exponential
increase in both standard deviations and mean values obtained
when fissure percentage increases. The joint effect of substrate
composition thickness variation (corrosion) and varying fissure
volumes greatly contribute to a high standard deviation. In this
way, as the mean thickness values may fall within a similar
region, the direct influence of fissures over the mean calculated
thickness cannot be directly measured. Nevertheless, a large
standard deviation is not unreasonable. The gilding layer presents
an inhomogeneous thickness distribution as demonstrated by the
SEM-EDS images (1.6 and 3µm) (Figures 5A,B).

The minimum detectable thickness can be calculated by the
following relation:

1d =

√

1+

(

IKα

IKβ

)

√

IKα

sin 92

−µL

(

EKα

)

+µL

(

EKβ

) (6)

The copper Kα/Kβ ratio statistical error is 2.5%, having a
corresponding minimum detectable thickness of 0.26 (Equation
6), which is almost constant. The observed standard deviation
in the AoI (0.43µm) can be interpreted, being statistical, as the
square root of the quadratic sum of the statistical contribution
and the remaining sample variation. The latter being 0.32µm
for the AoI, whereas the statistical uncertainty is 0.25, slightly
less. The measured error (surface roughness, solid angle, etc.) is
part of the sample contribution (σ2

sample
). This is true because

the measuring error comes mostly from the sample through
geometrical factors. When calculating the same parameters for
the entire region where gold is found (310 pixels), a larger
observed standard deviation is found (0.42µm), demonstrating
that the selected AoI is in fact more homogeneous in respect
to the whole sample.The histogram of the calculated thickness
distribution for the AoI (91 pixels) is shown in Figure 7 and, for
the selected fissure percentage (12%), the gilded layer thickness
mean value obtained was of 1.24 ± 0.43µm. There is no
significant variation between the individual thickness means
of the three sampled areas (1.26 ± 0.43, 1.20 ± 0.42, and
1.25 ± 0.39). In addition, it is observed that the histogram
shows a normal distribution that supports the statement that the
measured mean value looks unbiased.

In Figure 8 the 3D plot of thickness distributions for the
entirety of the gold layer is shown. When performing the
calculations over the entire range where gold is detected
(310 pixels), the results present systematic errors, where mean
thickness values of up to 6.24µmwere observed. The high values
are obtained exclusively in the regions where iron or lead are

FIGURE 6 | Mean thickness variation with increasing fissure volume.

FIGURE 7 | Grouped bins histogram of mean thickness values obtained with

all 91 sampled pixels from the limited region of interest.

present in higher quantities, demonstrating the strong influence
caused by great sample inhomogeneity.

CONCLUSIONS

In the overall framework of recent research developments in
MA-XRF analysis, which started in the last decade (Dik et al.,
2008), an attempt was made to evaluate the capacity of measuring
thin metallic layers deposited on a sample surface. For the
first time, a new algorithm applied to MA-XRF datasets was
developed to automatically extract net peak areas and, at the same
time, to non-invasively determine the average thickness of an
area of a given superimposing layer. The innovative algorithm
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FIGURE 8 | 3D plot of mean thickness values obtained for the entire sample

region.

was able to account different layer chemical compositions and
fissure volumes, recalculating the linear attenuation coefficient
according to the user input.

The results obtained with the proposed methodology were
confronted with SEM-EDS cross-section analysis to assess
its reliability. The non-invasive approach suggested a mean
thickness value of 1.24 ± 0.43µm, with a maximum of 2.20µm
for the amalgam-gilded layer, whereas the latter pointed to values
of 1.65 and 3.00µm in two different analyzed regions.

Some parameters needed to be considered and cautiously
studied to achieve the most accurate results possible. Small
variations in the gold and mercury concentration within the
binary (Au/Hg) gilding layer were found to not significantly
affect the mean thickness results. This is shown by the fact
that the changes in the value measured in different areas of
interest do not vary between them. Nonetheless, considering the
influence of fissures percentage in the superficial gilding layer
demonstrated to be of fundamental importance as it influences
exponentially the final results. Last, the substrate in direct contact
with the studied gilding layer had to be considered homogeneous
throughout the sample. Because of that, areas with observable
inhomogeneities or considerably different from the exposed
central relief had to be unconsidered by the algorithm to not bias
the final results.

The larger dataset naturally provided by MA-XRF scans
yielded greater statistics than traditional spot measurements and
in a faster fashion, thus making it possible to obtain a more
accurate mean value as shown by the histogram distribution.
Moreover, MA-XRF scans and the elemental distribution maps
provided crucial information for selecting suitable regions where
to perform the thickness calculations.

Finally, the indirect determination of a mean thickness value
for an ancient amalgam-gilding stratum in a total non-invasive
manner that is satisfactorily close to results obtained through
other destructive methods was demonstrated to be possible.
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