
ALS DATA FOR DETECTING HABITAT TREES IN A MULTI-LAYERED 
MEDITERRANEAN FOREST 

G. Santopuoli1,2,3*, M. Di Febbraro2, C. Alvites2, M. Balsi4, M. Marchetti2,3, B. Lasserre2

1Dipartimento di Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Via De Sanctis snc, 86100 Campobasso, Italy 
– giovanni.santopuoli@unimol.it 

2 Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Cda Fonte Lappone snc, 86090 Pesche (IS), Italy – 
(mirko.difebbraro, cesar.alvites, lasserre)@unimol.it 

3 Centro di ricerca per le Aree Interne e gli Appennini (ArIA), Università degli Studi del Molise, Via De Sanctis snc, 86100 
Campobasso, Italy – (giovanni.santopuoli, marchettimarco)@unimol.it 

4 Dipartimento di Ingegneria dell’Informazione, Elettronica e Telecomunicazioni, Università degli Studi di ROMA “La Sapienza”, 
Via Eudossiana 18, 00184 Roma – marco.balsi@gmail.com 

KEY WORDS: Habitat Trees; Forest Biodiversity, LiDAR, Tre-Related Microhabitat; Sustainable Forest Management 

ABSTRACT 
Among the wide pool of ecosystem services provided by forests to human wellbeing, biodiversity conservation represents one of the 
most important topics of Sustainable Forest Management. Monitoring forest biodiversity is a challenging task as it includes all the 
life forms that can be found in a forest. However, the availability of inventory data is often inadequate to assess the biodiversity value 
of forests, therefore requiring improvements in monitoring activities and methods. In the last decades, several improvements have 
been made to reduce costs for collecting data and supporting monitoring and management activities. Particularly, remote sensing 
techniques have provided a significant contribution to forest and natural resource management and planning. Nevertheless, most of 
the information concern to the forest canopy and photosynthesis responses quantified through vegetation indices. Few information 
are available about tree habitats and other important ecological features. This study aims to demonstrate how ALS data can contribute 
to assess forest biodiversity through the detection of Habitat Trees. We use the Tree-Related Microhabitats, such as cavities, dead 
branches, injuries and woods, as a proxy to identify Habitat Trees and correlate them to the ALS metrics. Four statistical models were 
implemented to assess and map the biodiversity value in a mixed and multi-layered forest in Central Apennine. 

1. INTRODUCTION*

Monitoring forest biodiversity is not only linked to the tree 
species diversity, but refers to all the life forms that can be found 
in the forests (Conference Of the Parties; COP 2 Decision II/9). 
Several authors focused on developing methods to assess and 
correlate forest structure and biodiversity. Nevertheless, the most 
common set of Indicators for Sustainable Forest Management, 
and in particular those related to criterion 4 “Maintenance, 
conservation and appropriate enhancement of biological 
diversity in forest ecosystems” (MCPFE 2002), are mostly 
concerned with the assessment of tree species diversity, 
regeneration, naturalness, introduced tree species, deadwood, 
genetic resources, forest fragmentation, threatened forest species 
and protected forests. These Indicators represent the most 
common tool to assess forest biodiversity across Pan-European 
countries, although information is rather limited to assess the 
habitat value of forests for several reasons. Firstly, field 
inventory activities are strongly expensive and time consuming. 
Moreover, there are no information about “all life forms”, as 
Indicators focused only on the trees species.  
As regards the first point, remote sensing techniques have been 
recognized as very valuable tool in supporting biodiversity 
monitoring. In fact, they provide significant contribution to 
monitor and assess forest biodiversity, especially for forest 
fragmentation (Chirici et al., 2012; Santi et al., 2017) and 
naturalness (McRoberts et al., 2012) with relative low costs. 
As concerns the amount of information provide by Indicators, 
many authors agreed on the fact that Tree-Related Microhabitats 
(TreMs) are strongly important to increase forest biodiversity as 
they represent ecological niches of several living organisms 
(Bütler et al., 2013; Kraus and Krumm, 2013; Larrieu et al., 
2018). Since 1993, different classification systems have been 
developed across Europe in order to assess their occurrence, 
frequency and habitat value (Winter and Möller, 2008; Kraus et 
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al., 2016; Larrieu et al., 2018). For these reasons, it is strongly 
important to develop automatic methods to recognize and assess 
the habitat values of both single trees and forests. For this 
purpose, monitoring activities should move from the forest 
structure to the tree structure target, as many living organisms 
live in the particular niches that are present on the tree’ trunks 
and crowns.  
Since monitoring single trees is a demanding challenge, we 
describe an experimental approach to detect the abundance of 
TreMs using LiDAR could points. The frequency and abundance 
of these particular niches allow to identify Habitat Trees, which 
play a significant role for the conservation of biodiversity. Thus, 
the aim of this study is to verify whether or not Airborne Laser 
Scanner (ALS) data can support the prediction of Habitat Trees 
within a mixed and multi-layered Mediterranean forest. Habitat 
Trees are trees hosting TreMs as cavities, injuries and wounds, 
bark structure, deadwood, growth form or epiphytes. 
Although Habitat Trees are not included in the indicators set for 
SFM developed by Forest Europe process, they could be 
considered as valid ecological indicators. In the last decade, the 
topic of TreMs has become common among forest researchers, 
with several studies evaluating the occurrence and abundance of 
TreMs, and correlating their frequency with different forest 
management systems or with the forest ownership regimes, 
developing practical classifications systems currently used at the 
European level. Importantly, TreMs are not only linked to the 
deadwood, which is the most common biodiversity indicator used 
at European scale, but also to the living trees. This is very 
important as Habitat Trees are among the largest trees occurring 
in a forest, also representing potentially conflictual trees because 
of their value for biodiversity and timber production. Data on the 
TreMs occurrence and frequency can support forest technicians 
to balance timber production and conservation of biodiversity 
and thus to address the selection of trees for harvesting activities. 
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2. MATERIALS ANS METHODS
2.1. Study area 
The study was carried out in Bosco Pennataro (Figure 1), a mixed 
and multilayer forest in Molise Region, Central Apennine, Italy. 
Bosco Pennataro is characterised by a high number of trees 
species (Figure 1), though Quercus cerris L. and Fagus sylvatica 
L. are the most frequent ones. At regional level, the forest plays
a significant ecological and cultural role as it is one of the five
regional forests, it is part of the Natura 2000 site (code
IT7212124), and it has been recognized as a core area of the
Collemeluccio  Montedimezzo Alto Molise Man and Biosphere
reserve. Currently, the forest management system is high forest
with continuous canopy cover and uneven aged trees.

Figure 1. Study area. Geographical location of Bosco Pennataro 
and the other sites of FRESh LIFE project. Distribution of 
sampling plots across Bosco Pennataro (red squares). Tree 

species composition of forest (top-left). 

2.2. Field data collection 
We collected field data of tree diameter at breast height, tree 
height, crown length, tree vitality and tree position using Field-
Map technology (http://www.fieldmap.cz). TreMs were 
observed using the classification system by Winter and Möller 
(2008), considering only the TreMs of standing trees and leaving 
out the TreMs on fallen deadwood (Figure 2). Data was collected 
during the demonstration FRESh Life project (LIFE14 
ENV/IT/000414). 

Figure 2. Tree-related Microhabitats (TreMs) classification used 
for the field survey. Further detail on the TreMs description can 

be found in Winter and Möller 2008. 

2.3. ALS data acquisition 
The ALS dataset was collected using YellowScan LiDAR, 
mounted on a light conventional helicopter. Data were taken in a 
single flight, on March 2016 and the LiDAR instrument was 
operated by Oben srl (www.oben.it). Dimensions, weight and 
autonomy of YellowScan LiDAR are 17 × 21 × 15 cm3, 2.1 kg, 
and 3 h, respectively. The system provides up to three echoes per 
shot, allowing to get topographic information under vegetation 
cover.  

The sensor was set with a maximum scan angle of +/-50°, and a 
pulse frequency of 20 KHz, resulting in an average density of 30 
pulses/m2. The raw ALS data were elaborated using LAStools 
software (https://rapidlasso.com).  
From the original points cloud, 38 canopy metrics were extracted 
using LAStools to be correlated with biodiversity variables such 
as Habitat Trees and TreMs. 

2.4. Modelling approach to estimate forest biodiversity 
variables 

From the initial set of 38 ALS metrics, we applied a 
multicollinearity filter by retaining only variables exhibiting a 
variance inflation factor ≤ 5 (Zuur, Ieno and Elphick, 2010), and 
obtained the following ten ALS metrics: min, std, kur, b10, b90, 
c00, c02, d00, dns_gap and max, which were scaled to unit 
variance. Since the selected forest attributes were calculated as 
count data, we tested their statistical relationship with the ALS 
metrics by using Generalized Linear Models (GLM). In 
particular, we fitted two GLMs (Figure 3) for each forest 
biodiversity attribute, i.e. one with a Poisson and another with a 
Negative Binomial distribution of errors, both including linear 
and quadratic terms. For each GLM, we run a stepwise variable 
selection procedure based on the Akaike Information Criterion 
(AIC; Akaike, 1974), as implemented in the R package “MASS” 
(Venables and Ripley, 2002). In addition, we evaluated the effect 
of potential outliers on the resulting GLMs by calculating the 
Cook’s distance D (Cook, 1977). Specifically, we dropped all the 
observations showing a Cook’s D greater than three times the 
average D value calculated among all the observations (Cook, 
1977), then refitting GLMs with the remaining data. For each 
GLM, we evaluated the goodness-of-fit by calculating the 
coefficient of determination (R2) and the Root Mean Square Error 
(RMSE). RMSE was also used in a leaveoneout procedure to 
quantify GLMs predictive performance. 

Figure 3. Modelling framework. 

Subsequently, for each forest biodiversity variable, a raster map 
was provided for displaying the biodiversity value of Bosco 
Pennataro. 

2.5. Results and discussion 
Tree species composition partly confirms Bosco Pennataro 
biodiversity value. In fact, forest biodiversity is also stressed by 
the high variability of tree density, mean tree height and mean 
tree diameters among plots as well as basal area (G) and tree 
volume (Table 1). The past forestry interventions favoured an 
increase of complexity in forest structure across the forest. 
Historically, Bosco Pennataro represented an important source of 
timber and Non-Timber Forest Products, even if over the years, 
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particularly after the shift of forest ownership from the State to 
regional administration, forestry interventions have decreased. 
Nowadays, harvesting activities regards only fire prevention, 
sanitation cutting to allow recreational activities and few forestry 
interventions for scientific purposes. The abandonment of 
forestry interventions has contributed to the aged of forest stands 
with consequent shifting of forest structure from even-aged to 
uneven-aged and a high variability of number of trees per hectare 
among forest stands.  
Nevertheless, beyond the forest structure, tree structure offers a 
deeper evaluation of forest biodiversity. Results show that there 
is also a high variability of Habitat Trees, ranging from 4 to 32 
per plot, abundance of TreMs ranging from 6 to 61 per plot, and 
TreMs types, which range from 2 to 8 per plot. 
The most frequent TreMs encountered in the forest are: cavities, 
broken stems and trees with <50% of the crown broken.  

Min 1st Qu Median Mean 3rd Qu Max 

Tree (N/plot) 24.00 43.25 57.00 68.94 93.25 196.00 

Tree (N/ha) 454.0 817.5 1077.5 1303.2 1762.8 3705.0 
Tree species 
(plot) 3.00 7.00 7.50 7.68 9.00 11.00 

Average DBH 
(cm) 10.00 13.00 16.00 16.42 19.00 27.00

H max (m) 17.60 24.80 28.40 28.10 31.07 39.60 

G (m2/ha) 19.90 33.17 37.60 37.62 42.20 53.10 

V (m3/ha) 142.0 311.2 372.5 387.2 447.8 647.0 

Habitat Trees 4.00 11.00 15.00 16.56 20.75 32.00 

TreMs 6.00 17.25 23.50 25.14 30.00 61.00 

TreMs Type 2.00 5.00 5.00 5.38 6.00 8.00 
Table 1. Ground data summary results. Descriptive statistics of 

the main forest structure and biodiversity variables from the 
ground. 

As regards the modelling approach, results show that outliers 
affect models implementation, providing better results when 
GLMs have been fitted without outliers (Table 2). Moreover, 
Negative Binomial is the best performing modelling approach in 
all the cases.  

Model df AIC R2 RMSE Pred. 
RMSE 

Habitat 
Trees 

M_pois 13 222.5 0.7 4.5 179.2 
M.NO_pois 15 201.8 0.8 3.4 333.8 

M_nb 14 223.8 0.6 4.5 14.8 
M.NO_nb 16 203.8 0.8 3.4 12.5 

TreMs 

M_pois 17 252.4 0.7 6.4 164.1 
M.NO_pois 15 226.2 0.8 5.9 25.1 

M_nb 14 248.9 0.6 6.9 16.0 
M.NO_nb 12 225.6 0.7 6.3 16.3 

TreMs 
Type 

M_pois 1 136.4 0.0 1.3 
M.NO_pois 1 123.7 0.0 1.2

M_nb 2 138.4 0.0 1.3 
M.NO_nb 2 125.7 0.0 1.2 

Table 2. Modelling approach summary results. Main statistical 
results of the model approaches implementation. M_pois 

“Poisson model”; M_nb is “Negative Binomial model”; NO is 
“no outliers”. Bold character indicates the best performant 

model. 

In detail, for detection of Habitat Trees, both Poisson and 
Negative Binomial GLMs show similar performances (Figure 4) 
in terms of RMSE and R2 (3.4 and 0.8 respectively). 
Nevertheless, the AIC values seem to tend towards the Poisson 
rather than the Negative Binomial approach (201.8 and 203.8 
respectively), while the difference is significantly relevant for 
prediction accuracy (333.8 and 12.5 respectively). Thus, the 
Negative Binomial is better than Poisson model at predicting 
Habitat Trees (Figure 5).  

Figure 4. Goodness-of-fit for Habitat Trees. Comparison of the 
observed vs. predicted values for the 4 modelling approaches 

for detection of Habitat Trees. 

Figure 5. Habitat Trees prediction. Prediction of the Habitat 
Trees according the Negative Binomial no outliers approach. 

As regards the detection of TreMs, the Poisson approach shows 
value of R2 and RMSE slightly better than Negative Binomial 
(Figure 6). Nevertheless, the Negative Binomial results are 
somewhat better performing to prediction of TreMs (Figure 7), 
since the RMSE is moderately lower.  
Finally, as regard the detection of TreMs Type, the study reveals 
that all the modelling approaches failed. We have two main 
reasons for this. Firstly, to image that ALS data can distinguish 
different type of cavities or different type of fruiting bodies on 
the trees is rather difficult. Second, the scarcely occurrence for 
some TreMs hinder their detection and of course their prediction. 

ALS data for detecting habitat trees in a multi-layered mediterranean forest
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By contrast, this non-result demonstrates that the approach is 
robust because it works only with a consistent quantity of data. 
This leave a light to think that a deeper investigation could 
provide more detailed data allowing a better detection of single 
TreMs. Maybe the integration of ground data, with ALS, 
Terrestrial laser scanning data and multispectral images could 
improve the detection and prediction of TreMs and thus support 
the SFM. 

Figure 6. Goodness of fit for TreMs. Comparison of the 
observed vs predicted values for the 4 modelling approaches for 

detection of TreMs. 

Figure 7. TreMs prediction. Prediction of the TreMs according 
the Negative bionomial no outliers approach. 

3. CONCLUSION
This study introduces an approach to assess forest biodiversity 
based on the occurrence and abundance of Tree-Related 
Microhabitats. 
Some weaknesses are still present and a deeper investigation is 
necessary. Maybe the integration of different source of remote 
sensing data could improve the detection approach. However the 
study shows a good results for Habitat Trees, and frequency of 
TreMs. Nevertheless, it was observed that the prediction of single 
microhabitats depends from their frequency, because without a 
significant number of occurrences the analysis failed. 
In conclusion, ALS data are useful to detect Habitat Trees, and 
thus to support forest decision makers and managers in the 
assessment of forest biodiversity.  
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