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We investigate the nature of additional scalar degrees of freedom contained in extended hybrid metric-
Palatini gravity, outlining the emergence of two coupled dynamical scalar modes. In particular, we discuss
the weak field limit of the theory, both in the static case and from a gravitational waves perspective. In the
first case, performing an analysis at the lowest order of the postparametrized Newtonian structure of the
model, we stress the settling of Yukawa corrections to the Newtonian potential. In this respect, we show
that one scalar field can have long range interactions as used in the principle for mimicking dark matter
effects. Concerning the gravitational waves propagation, instead, we demonstrate that it is possible to have
well-defined physical degrees of freedom, provided by suitable constraints on model parameters.
Moreover, the study of the geodesic deviation points out the presence of breathing and longitudinal
polarizations due to these novel scalar waves, which on peculiar assumptions can give rise to beating
phenomena during their propagation.

DOI: 10.1103/PhysRevD.100.124036

I. INTRODUCTION

During past years, modified theories of gravity have been
intensively studied in order to address problems of modern
cosmology. Indeed, current evidence of a phase of accel-
erated expansion for the Universe [1–5], along with
structure dynamics in astrophysical scenarios, e.g., galaxy
rotation curves or clusters properties [6–8], represents
inescapable issues for any reliable attempt of providing a
unitary theoretical picture of gravitational interaction on
different scales. In fact, our present description of Universe
evolution, based on the so-called ΛCDM model, requires
the uncomfortable introduction of two unspecified dark
components into the matter-energy budget of the Universe.
Dark energy, responsible for a de Sitter phase of accelerated
expansion and comparable with a cosmological constant
term in Einstein equations (Λ), and cold dark matter
(CDM), thought as nonrelativistic particles interacting with
ordinary matter mostly gravitationally [9–11]. This model,
however, even though phenomenologically well grounded,
is not capable of a satisfactory theoretical justification for
its additional dark elements. Especially, it is still an object
of debate for the process originating the effective cosmo-
logical constant [12–15], whose observed value is in
contrast with predictions of quantum field theory, or the

proper nature of dark matter particles [16–19]. With this
regard, a different perspective is therefore offered by the
possibility of modifying the nature of the gravitational
interaction as predicted by general relativity, with the aim
of accounting for these exotic phenomena as purely
dynamical effects, e.g., introducing additional degrees of
freedom (d.o.f.) [20–22] or modified stress-energy cou-
plings to geometry [23–28]. Of course, a large number of
choices for an extended Einstein-Hilbert action is actually
feasible, involving different contributions in metric deriv-
atives [29–34], as well as gauge theory approaches for the
gravitational field [35–40]. Among these available models,
fðRÞ theories stand for their relevance and simplicity [41],
where a new d.o.f. is introduced by replacing the Ricci
scalar R of the standard general relativity action with a
generic function of it, leading to fourth order equations of
motion for the metric field. Cosmological scenarios stem-
ming from such a revisited theoretical framework have
been deeply investigated, with dark energylike solutions
widely discussed [42–45], and the dark matter issue
addressed by means of the additional scalar mode featuring
this reformulation [46,47], made manifest in its scalar
tensor restatement [48–51]. In this respect, however, the
requirement of preserving solar system local dynamics
[52–56], consisting in very short range scalar interaction,
turned out to be inconsistent with demands of late time
expansion, involving instead astrophysical range defor-
mations of gravitational force, and led to introduce
peculiar screening mechanisms [57–59].
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Another source of ambiguity for the gravitational field
dynamics is offered by the nature of the metric field and the
affine connection, which could be considered in principle
as independent variables. Such an approach, corresponding
to the so-called Palatini (or first order) formulation, appears
very promising especially for its implication in the quan-
tization of gravity as a gauge field theory [39,40]. However,
even if the Hilbert-Palatini action is in vacuum at all
equivalent to the metric Einsten-Hilbert analogous [60],
it outlines significant differences, for instance when fer-
mions are included in the dynamics [61]. In fact, spinor
fields couple to connection and induce a nonvanishing
torsion in spacetime structure, so that the equivalence with
the second order approach is intrinsically lost, forcing us to
deal instead with Einstein-Cartan geometry [62,63].
Similar issues arise when a Palatini scheme is applied to
fðRÞ models [64], and several discrepancies emerge with
respect to the corresponding metric (or second order)
analysis. Especially, the connection turns out to be an
auxiliary field devoid of proper dynamics, whose expres-
sion depends on the form of the function fð·Þ, and Palatini
fðRÞ gravity can be conveniently restated as a metric
theory endowed with torsion [64–66]. Therefore, the addi-
tional scalar degree is not dynamical, but it affects the way
matter sources and spacetime curvature interact, and also in
vacuum the two reformulations are not equivalent, as the
Palatini case featured by an effective cosmological con-
stant, inherently related to the form of the fð·Þ function.
As originally proposed in [67], an intriguing perspective

is constituted by the possibility of combining both the
approaches, considering actions which contain Palatini
fðRÞ modifications to ordinary Einstein-Hilbert metric
Lagrangian. Particularly, these theories successfully
accomplish the result of providing a long range scalar
mode, able to reproduce dark matter effects [68–70],
without violating solar system observational constraints
and invoking the so-called “chameleon mechanism” [57–
59]. Furthermore, cosmological solutions have been exten-
sively investigated, obtaining accelerated expansion sce-
narios [71,72], and studies about compact objects and
spherically symmetric static configuration have been per-
formed [73–75].
Here, we deal with a further generalization of these

mixed models and consider a scalar action as in [76–78],
where the function f is assumed to depend on both the
Ricci scalars, metric and Palatini ones. Especially, we
analyze in detail the features of the theory in the weak
field limit. It is easy to recognize that in such a type of
theory, the scalar-tensor representation is still possible, but
now two distinct scalar d.o.f. come out. These nonmini-
mally coupled scalar fields are dynamically characterized
by the form of the potential term they obey as a result of the
form of the original function fðR;RÞ. Critical points of the
potential (minima, maxima, and saddle points) are relevant
for the local gravitational field dynamics, as it is concerned

in the postparametrized Newtonian (PPN) limit or when the
propagation of gravitational waves is taken into account.
We analyze the situation in which the two emerging

massive scalar modes have, in the diagonal representation,
well-defined masses, ruling out of the theory the nonphysi-
cal situations in which tachyon modes are present (see [79]
for a comparison).
On the level of PPN analysis, we show how general

relativity can still be recovered with a high degree of
precision in the Solar System, as far as the theory
parameters are suitably constrained, also in the presence
of long range scalar interaction, which can be adopted in
principle to reproduce dark matter effects. Then, we
analyze the propagation of the gravitational waves in the
presence of the two additional massive scalar modes. The
deformation of the standard wave polarizations is inves-
tigated in some detail for a rather general spanning of the
parameter space. In particular, we discuss the intriguing
case of nearly degenerate massive modes, and we study the
very peculiar phenomenon of wave beating. Such a beating
mode is a very striking track of the considered modified
theory of gravity, and it suggests that upper limits on the
existence of a mixed fðR;RÞ model can be experimentally
put via present and incoming interferometer devices
[80–88].
The paper is organized as follows. In Sec. II extended

hybrid metric-Palatini models are briefly discussed and
their scalar tensor representation introduced; in Sec. III we
analyze the first PPN corrections in the static weak field
limit, pointing out the appearing of Yukawa corrections to a
gravitational potential given by both the additional scalar
degrees; in Sec. IV we address the propagation of gravi-
tational waves in vacuum, investigating to some extent the
theory structure in order to have well-defined physical
modes; in Sec. V we study the effects on a geodesic
deviation equation of scalar fields, tracing analogies with
metric fðRÞ theories and discussing the settling of beating
phenomena; in Sec. VI we refine the analysis of Secs. III
and IV, putting several constraints on the form of the
function fðR;RÞ; in Sec. VII conclusions are drawn.

II. EXTENDED HYBRID METRIC-PALATINI
THEORIES

Formerly introduced in [48,76], extended hybrid metric-
Palatini theories are described by the action1

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
fðR;RÞ þ SM; ð1Þ

where SM stands for the generic matter contribution and the
function fðR;RÞ is assumed to depend on both the metric
and Palatini Ricci scalars, denoted by R and R, respec-
tively. Accordingly, we deal with two different kinds of

1We set κ ¼ 8πG and c ¼ 1.
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affine connections, i.e., the standard Levi-Civita connection
related to the metric curvature scalar2 R,

R ¼ gμνRμνðΓðgÞÞ; ð2Þ

with

Γρ
μν ¼

gρτ

2
ð∂μgντ þ ∂νgμτ − ∂τgμνÞ; ð3Þ

and the independent connection Γ̃ρ
μν defining the Palatini

Ricci scalar

R ¼ gμνRμνðΓ̃Þ: ð4Þ

The form of Γ̃ρ
μν can be dynamically determined by

evaluating its equation of motion from (1). Indeed, under
the assumption that the matter fields only minimally couple
with the metric, it results in

∇̃ρð
ffiffiffiffiffiffi
−g

p
fRgμνÞ ¼ 0; ð5Þ

where fR ≡ ∂Rf (similarly for R and higher order deriv-
atives) and ∇̃ρ denotes the covariant derivative from Γ̃ρ

μν.
Especially, if we neglect the issue concerning the role of the
torsion in Palatini fðRÞ models (see [64] for a review and
[65,66] for specific applications), the solution of (5) is
given by

Γ̃ρ
μν ¼

g̃ρτ

2
ð∂μg̃ντ þ ∂νg̃μτ − ∂τg̃μνÞ; ð6Þ

which represents the Levi-Civita analogous to the con-
formal metric g̃μν ≡ fRgμν, and allows us to recast the
Palatini Ricci scalar as

R ¼ Rþ 3

2f2R
∂μfR∂μfR −

3□fR
fR

: ð7Þ

Of course, since the function fR can contain in principle
both the curvature scalars, in (7) is actually embedded a
differential equation relating R and R. Therefore, in order
to make definition (6) well grounded, we have to provide a
further relation between the metric Ricci scalar R and the
Palatini curvature R. That can be accomplished by tracing
the equation of motion for the metric field gμν, i.e.,

fRRμν þ fRRμν −
1

2
gμνf − ð∇μ∇ν − gμν□ÞfR ¼ κTμν;

ð8Þ

yielding to

fRRþ fRR − 2f þ 3□fR ¼ κT: ð9Þ
Then, since fR is a function of both the metric and the
Palatini scalars as well, relation (9) constitutes a second
differential equation for R and R, which along with (7)
forms a set of highly coupled differential equations for the
two different curvatures, here rewritten for the sake of
clarity:

�
3□fR − fRRþ fRR − 3

2fR
∂μfR∂μfR ¼ 0;

3□fR þ fRRþ fRR − 2f ¼ κT:
ð10Þ

This suggests that in extended hybrid models we actually
deal with two independent additional d.o.f., somehow
connected to the two types of scalar curvatures the theory
is equipped with. It is worth noting that this property
depends crucially on the form of (9), with a special focus on
fR contributions. Indeed, in hybrid models originally dis-
cussed in [67] we simply have fR ¼ 1, and (9) reduces to
an algebraic constraint relating the Palatini curvature to
both the metric Ricci scalar and the trace of the stress
energy tensor, i.e.,

fRR − 2f ¼ κT þ R; ð11Þ
which can be solved in principle for R ¼ RðR; TÞ. This
in turn implies that the first of (10) boils down to a
differential equation for the metric scalar R, in the presence
of nontrivial stress energy source terms, and we just retain
additional d.o.f. We point out that such an outcome is to
some extent preserved also in extended hybrid theories,
when metric and Palatini terms in the function f are
actually separable, i.e., fðR;RÞ ¼ f1ðRÞ þ f2ðRÞ. In this
case, in fact, constraint (11) generalizes to

f2RR − 2f2 ¼ κT þ 2f1 − 3□f1R − f1RR; ð12Þ
and the Palatini scalar R turns out to depend also on the
derivatives of R, i.e.,R ¼ RðR; ð∇RÞ2;□R; TÞ. Again, the
only additional dynamical degree is still R, even though its
evolution is now encoded by a higher order differential
equation.
In the following we will restrict our attention to the

general case fRR ≠ 0, where R and R represent truly
independent d.o.f., whose dynamics is described by fourth-
order differential equations as displayed in (10).

A. Scalar-tensor formulation

As discussed in [76], if the determinant of the Hessian
matrix for fðR;RÞ is not vanishing, i.e.,

fRRfRR − f2RR ≠ 0; ð13Þ
action (1) can be rearranged in the scalar-tensor form

2We adopted the mostly plus spacetime signature ð−1;þ1;
þ1;þ1Þ and the following convention for the Riemann tensor:
Rμ

νρσ ¼∂ρΓμ
νσ−∂σΓμ

νρþΓμ
τρΓτ

νσ−Γμ
τσΓτ

νρ, with Rμν¼Rρ
μρν.

SCALAR MODES IN EXTENDED HYBRID METRIC-PALATINI … PHYS. REV. D 100, 124036 (2019)

124036-3



S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ðψRþ ξR − Vðψ ; ξÞÞ þ SM; ð14Þ

where we introduced the scalar fields ψ ≡ fR; ξ≡ fR,
together with the potential term

Vðψ ; ξÞ≡ ψRðψ ; ξÞ þ ξRðψ ; ξÞ − fðRðψ ; ξÞ;Rðψ ; ξÞÞ:
ð15Þ

Hence, taking into account (7) and the definition of ξ,
Eq. (14) can be rearranged in its gravitational part as

Sg ¼
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p �
ðψ þ ξÞRþ 3

2ξ
∂μξ∂μξ − Vðψ ; ξÞ

�
:

ð16Þ
Then, defining a new scalar field ϕ ¼ ψ þ ξ, we can finally
rewrite (16) in the form

Sg ¼
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕRþ 3

2ξ
∂μξ∂μξ −Wðϕ; ξÞ

�
; ð17Þ

where Wðϕ; ξÞ≡ Vðϕ − ξ; ξÞ and only the scalar ϕ is
coupled to the metric Ricci scalar.
Then, varying (16) with respect to the metric field we get

Rμν −
1

2
gμνR −

1

ϕ
ð∇μ∇ν − gμν□Þϕþ 3

2ξϕ
∂μξ∂νξ

−
1

2ϕ
gμν

�
3

2ξ
∂ρξ∂ρξ −Wðϕ; ξÞ

�
¼ κ

ϕ
Tμν; ð18Þ

while equations for ϕ and ξ are given by, respectively,

R ¼ ∂Wðϕ; ξÞ
∂ϕ ; ð19Þ

3

2ξ2
∂μξ∂μξ −

3□ξ

ξ
−
∂Wðϕ; ξÞ

∂ξ ¼ 0: ð20Þ

Now, we can evaluate the trace of (18), resulting in

R ¼ 3□ϕ

ϕ
−
3∂μξ∂μξ

2ξϕ
þ 2W

ϕ
−
κT
ϕ

; ð21Þ

which plugged into (19) and (20) leads to the following set
of coupled differential equations:

□ϕ −
1

2ξ
∂μξ∂μξþ 2W − ϕWϕ

3
¼ κ

3
T; ð22Þ

□ξ −
1

2ξ
∂μξ∂μξþ ξWξ

3
¼ 0; ð23Þ

where Wϕ and Wξ are defined by analogy with fR;R. This
set of equations is the scalar-tensor equivalent of (10), with

the additional scalar d.o.f. now embodied in the indepen-
dent fields ϕ; ξ. With this respect, even if the transformation
ϕ ¼ ψ þ ξ seems to artificially relate the degrees ϕ and ξ, it
actually preserves the dynamical content of the theory, a
fact that can be further appreciated by evaluating the
equations of motion for the original fields ψ and ξ directly
from (14), i.e.,

□ψ þ 2V − ψVψ − ξVξ

3
¼ κ

3
T; ð24Þ

□ξ −
1

2ξ
∂μξ∂μξþ ξðVξ − Vψ Þ

3
¼ 0: ð25Þ

This in turn guarantees that when interested in perturbation
theory, the departure of ϕ and ξ from background values
could be considered truly independent, as long as they
represent proper dynamical variables, as previously dis-
cussed when we look at (10).

III. POSTPARAMETRIZED NEWTONIAN
CORRECTIONS

It is a well-established result (see [49,67]) that additional
scalar degrees can remarkably affect the dynamics of a
gravitating system in weak field and slow motion cases. In
particular, Yukawa corrections are usually obtained for the
Newtonian potential, and the requirement of reproducing
local experiment results allows one in general to put several
constraints on theory parameters [52,53,55]. In this regard,
the easiest way of determining the effects of the fields ϕ and
ξ in a slightly curved spacetime is to consider a quasi-
Minkowskian system of local coordinates where the metric
can be put into the form

gμν ≈ ημν þ hμν; ð26Þ
with jhμνj ≪ 1, and the scalar fields ϕ; ξ are given by

ϕ ¼ ϕ0 þ δϕ; ξ ¼ ξ0 þ δξ: ð27Þ

Here ϕ0 and ξ0 represent background values fixed by
cosmological boundary conditions, which evolve adiabati-
cally in time according to the cosmological background
curvature. Local fluctuations are denoted by δϕ; δξ ∼OðhÞ,
which we assume to vanish outside the region described by
(26). Now, by virtue of (27) we can expand the potential
Wðϕ; ξÞ as
Wðϕ; ξÞ ≃W0 þW0;ϕδϕþW0;ξδξ

þ 1

2
ðW0;ϕϕδϕ

2 þW0;ξξδξ
2 þ 2W0;ϕξδϕδξÞ;

ð28Þ

where the subscript 0 denotes evaluation at the point
ðϕ0; ξ0Þ, which we require to be located in the neighbor-
hood of a stable minimum for Wðϕ; ξÞ, so that the
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smallness of corrections δϕ and δξ are preserved by the
dynamics. We assume therefore that

det HðW0Þ≡W0;ϕϕW0;ξξ −W2
0;ϕξ > 0;

W0;ϕϕ; W0;ξξ > 0; ð29Þ

where we introduced HðW0Þ, the Hessian matrix for the
potentialWðϕ; ξÞ evaluated at the point ðϕ0; ξ0Þ. Moreover,
given that the value W0 is related to the background
curvature by

Rð0Þ ¼ 2W0

ϕ0

; ð30Þ

as it can be inferred by taking the lowest order in (21),
quasi-Minkowskian conditions imply that locally we can
set Rð0Þ ¼ ϵ, with ϵ a small parameter quantifying departure
from spacetime flatness. In particular, since it turns out to
be actually responsible for a divergent term in the PPN
corrections to the gravitational potential (see later), we
constrain it to be small enough so that its contribution is
negligible on the considered scales, i.e., wherever (26)
is valid.
Now, let us recast (18) into the form

Rμν ¼
κ

ϕ

�
Tμν −

1

2
gμνT

�
þ 1

2ϕ
gμνð□ϕþWÞ

þ 1

ϕ
∇μ∇νϕ −

3

2ϕξ
∂μξ∂νξ; ð31Þ

which, once we fixed the Nutku gauge [89]

hμν;μ −
1

2
hμμ;ν ¼

∂νδϕ

ϕ0

; ð32Þ

gives at the lowest order in perturbation the following
equations for the metric hμν components:

▵

�
hð2Þ00 −

δϕ

ϕ0

�
¼ −

κρ

ϕ0

þ ϵ

2
; ð33Þ

▵

�
hð2Þij þ δij

δϕ

ϕ0

�
¼ −δij

�
κρ

ϕ0

þ ϵ

2

�
; ð34Þ

where we neglected time derivatives, we set ▵ ¼ ∇2

for the Laplacian operator and T00 ¼ −T ≈ ρ, Tij ≈ 0.
Analogously, we can rearrange (22) and (23) as

ð▵ −m2
ϕÞδϕþ 2W0;ξ − ϕ0W0;ϕξ

3
δξ ¼ −

κ

3
ρ; ð35Þ

ð▵ −m2
ξÞδξþ

ξ0W0;ϕξ

3
δϕ ¼ 0; ð36Þ

with

m2
ϕ ≡

ϕ0W0;ϕϕ −W0;ϕ

3
; m2

ξ ≡ −
ξ0W0;ξξ þW0;ξ

3
;

ð37Þ

and zero order terms satisfying

W0;ϕ ¼ ϵ; ξ0W0;ξ ¼ 0: ð38Þ

Now, in order to solve (35) and (36) it is useful to find a
suitable change of variables with the aim of decoupling the
equations of motion for δϕ; δξ. That can be accomplished
by introducing the matrix

A≡
 

m2
ϕ

ϕ0W0;ϕξ−2W0;ξ

3

− ξ0W0;ϕξ

3
m2

ξ

!
ð39Þ

and the vectors

Φ≡
�
δϕ

δξ

�
; T≡ −

κ

3

�
ρ

0

�
; ð40Þ

which allow us to rewrite the set (35) and (36) as

ðI2×2▵ − AÞΦ ¼ T; ð41Þ

where I2×2 denotes the identity matrix of dimension 2.
Then, system (41) can be decoupled, that is, A turned

into diagonal form, by simply evaluating the matrix P of its
eigenvectors. Therefore, let us rearrange (41) as

ðI2×2▵ − ADÞΦD ¼ P−1T ð42Þ

with AD ≡ P−1AP diagonal and ΦD ≡ P−1Φ. We observe
that the stress energy contributions to (35) and (36) are
shuffled, so we expect that matter sources could now enter
both the equations for the decoupled scalar fields. Let us
denote the elements of P and P−1 with

P ¼
�
p11 p12

p21 p22

�
; P−1 ¼

�
p̄11 p̄12

p̄21 p̄22

�
; ð43Þ

and ΦD ¼ ðδϕD; δξDÞ. It is then possible to rewrite (42) as

ð▵ −M2
ϕÞδϕD ¼ −p̄11

κ

3
ρ; ð44Þ

ð▵ −M2
ξÞδξD ¼ −p̄21

κ

3
ρ; ð45Þ

where Mϕ;ξ are the masses of the decoupled scalar fields
that we require to be positive and that still have to be
determined explicitly. Solutions for (44) and (45) can easily
be obtained, i.e.,
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δϕDðxÞ ¼
2p̄11G

3

Z
d3x0

ρðx0Þ
jx − x0j e

−Mϕjx−x0j; ð46Þ

δξDðxÞ ¼
2p̄21G

3

Z
d3x0

ρðx0Þ
jx − x0j e

−Mξjx−x0j; ð47Þ

where the integration is performed over the matter source.
Hence, the solution for (33) and (34) can be written down,
noting that the field δϕ is actually a linear combination by
means of P of the decoupled modes δϕD; δξD, i.e.,

δϕðxÞ ¼ p11δϕDðxÞ þ p12δξDðxÞ; ð48Þ

which leads to

hð2Þ00 ðxÞ ¼
2G
ϕ0

Z
d3x0

ρðx0Þ
jx − x0j

�
1þ p11p̄11e−Mϕjx−x0j þ p12p̄21e−Mξjx−x0j

3

�
þ ϵ

12
jx − xSj2; ð49Þ

hð2Þij ðxÞ ¼ δij

�
2G
ϕ0

Z
d3x0

ρðx0Þ
jx − x0j

�
1 −

p11p̄11e−Mϕjx−x0j þ p12p̄21e−Mξjx−x0j

3

�
−

ϵ

12
jx − xSj2

�
; ð50Þ

where xS is an integration constant related to the source.
Now, in a spherically symmetric case and far away from the
source, δϕðxÞ and the metric perturbations take the simpler
forms

δϕðrÞ ≃ 2GM⊙

3r
ðp11p̄11e−Mϕr þ p12p̄21e−MξrÞ; ð51Þ

hð2Þ00 ðrÞ ≃
2GeffM⊙

r
þ ϵ

12
r2; ð52Þ

hð2Þij ðrÞ ≃ δij

�
2γGeffM⊙

r
−

ϵ

12
r2
�
; ð53Þ

with M⊙ the Newtonian mass of the central body and the
modified gravitational constant defined as

Geff ≡ G
ϕ0

�
1þ p11p̄11e−Mϕr þ p12p̄21e−Mξr

3

�
: ð54Þ

We also introduced the PPN γ, given by

γ ≡ 3 − p11p̄11e−Mϕr − p12p̄21e−Mξr

3þ p11p̄11e−Mϕr þ p12p̄21e−Mξr
: ð55Þ

It is now evident from (52) and (53) that the parameter ϵ
must satisfy

jϵj ≪ 24GM⊙

ϕ0r3
ð56Þ

as long as the point r lays in the region described by (26).
Analogously, Solar System measurements [56] constrain
γ ≃ 1 and in contrast with standard metric fðRÞ predictions
[49] but by close analogy with [67], we see that in principle
such a requirement can be fulfilled also in the presence of
long range scalar interactions. Indeed, Yukawa contribu-
tions to (55) are tuned by coefficients p11p̄11; p12p̄21,

related to the potential expansion (28), which can make
the corrections due to the scalar field negligible also for
very low masses. However, by virtue of PP−1 ¼ I, they are
not truly independent but are compelled to satisfy the
condition

p11p̄11 þ p12p̄21 ¼ 1; ð57Þ

so that we can a priori clearly distinguish two different
scenarios. In the first case, taking p11p̄11 and p12p̄21 of the
same magnitude we are forced to consider large masses for
both the scalar fields in order to recover γ ≃ 1. In the second
case, on the contrary, setting one of the coefficients nearly
vanishing, we can retain a low mass mode which can affect
astrophysical and cosmological scales. Last, we note that to
preserve the attractive behavior of gravity at the leading
order implies, by virtue of (54), that condition ϕ0 > 0 is
satisfied.

A. Case W0;ξ = 0

In order to see if a configuration characterized by a low
mass mode is actually attainable, we have to go back to
conditions (38), which besides fixing the value ofW0;ϕ ¼ ϵ
also implies either ξ0 ¼ 0 or W0;ξ ¼ 0.3 Especially, when
W0;ξ ¼ 0, the matrices P, P−1 turn out to be, respectively,

P ¼
 
−

3m2
ϕ−3m

2
ξþU

2ξ0W0;ϕξ
−

3m2
ϕ−3m

2
ξ−U

2ξ0W0;ϕξ

1 1

!
ð58Þ

and

3We do not take into account the very special case ξ0 ¼
W0;ξ ¼ 0, when the matrix A has a vanishing row and the scalar
fields are already decoupled, with δξ massless.
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P−1 ¼ 1

2U

 
−2ξ0W0;ϕξ U − 3m2

ϕ þ 3m2
ξ

2ξ0W0;ϕξ U þ 3m2
ϕ − 3m2

ξ

!
; ð59Þ

where U is defined as

U≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3m2

ϕ − 3m2
ξÞ2 − 4ϕ0ξ0W2

0;ϕξ

q
: ð60Þ

Then, combining (39), (58), and (59), the masses of the
decoupled scalar fields can be obtained, i.e.,

M2
ϕ ≡ 1

2

�
m2

ϕ þm2
ξ þ

Uðϕ0; ξ0Þ
3

�
;

M2
ξ ≡ 1

2

�
m2

ϕ þm2
ξ −

Uðϕ0; ξ0Þ
3

�
; ð61Þ

and the coefficients ruling the Yukawa corrections evalu-
ated as

p11p̄11 ¼
U þ 3ðm2

ϕ −m2
ξÞ

2U
; ð62Þ

p12p̄21 ¼
U − 3ðm2

ϕ −m2
ξÞ

2U
: ð63Þ

Now, in order to assure the existence of the function U
together with the positivity of (61),4 the following set of
inequalities must hold:

U2ðϕ0; ξ0Þ ≥ 0; ð64aÞ

M2
ϕ ≥ 0; ð64bÞ

M2
ξ ≥ 0; ð64cÞ

which combined yields

0 ≤ Uðϕ0; ξ0Þ ≤ 3ðm2
ϕ þm2

ξÞ: ð65Þ

In particular, the reality of U implies

ð3m2
ϕ − 3m2

ξÞ2 − 4ϕ0ξ0W2
0;ϕξ ≥ 0; ð66Þ

which is always satisfied for ξ0 < 0, while for a positive ξ0
it can be rewritten as

ϕ0W0;ϕϕ þ ξ0W0;ξξ ≥ ϵþ 2
ffiffiffiffiffiffiffiffiffi
ϕ0ξ0

p
jW0;ϕξj: ð67Þ

Instead, the inequality Uðϕ0; ξ0Þ ≤ 3ðm2
ϕ þm2

ξÞ states that

ξ0ðϕ0 det HðW0Þ − ϵW0;ξξÞ ≤ 0; ð68Þ

whereas the fact that the sum of the masses of the coupled
modes is compelled to be positive implies

ϕ0W0;ϕϕ − ξ0W0;ξξ ≥ ϵ: ð69Þ

In the case ξ0 > 0 condition (68) yields to

ϕ0 det HðW0Þ − ϵW0;ξξ ≤ 0; ð70Þ

which, combined with (69), implies the redundancy of (67);
hence the latter shall not be considered in the following.
Now, according to the value of U the mass spectrum can
exhibit quite different behavior. Indeed, when U ≠ 0, the
masses of the decoupled modes are distinct, i.e.,

M2
ϕ −M2

ξ ¼
Uðϕ0; ξ0Þ

3
ð71Þ

and the spectrum is not degenerate. Then, since we are
interested in peculiar scenarios where at least one scalar
field is long range, we can take U ≃Umax ≡ 3ðm2

ϕ þ 3m2
ξÞ,

for which the scalar field δξD is very tiny while the mode
δϕD is endowed with the mass M2

ϕ ≃m2
ϕ þm2

ξ . We also
note that for U ≃Umax, relation (68) implies

ϕ0 det HðW0Þ ≃ ϵW0;ξξ; ð72Þ

which taking into account (29) leads to W0 > 0.
Now, for this arrangement of the masses the coefficients

(63) boils down to

p11p̄11 ≃
m2

ϕ

m2
ϕ þm2

ξ

; p12p̄21 ≃
m2

ξ

m2
ϕ þm2

ξ

; ð73Þ

and choosing m2
ϕ ≫ m2

ξ , i.e.,

ϕ0W0;ϕϕ þ ξ0W0;ξξ ≫ ϵ; ð74Þ

we can reproduce the conditions p11p̄11 ≃ 1 and
p12p̄21 ≃ 0, which are compatible with the requirement
to preserve the observed dynamics at local scales, provided
we properly set m2

ϕ; m
2
ξ .

B. Case ξ0 = 0

If ξ0 ¼ 0, the function fðR;RÞ has no linear contribution
in the Palatini scalarR and the matrix A turns in triangular
form. In this special case, the matrices P, P−1 read as

P ¼
�
1 −p
0 1

�
; P−1 ¼

�
1 p

0 1

�
; ð75Þ

4We are disregarding configurations where M2
ϕ;M

2
ξ < 0,

which would lead to an oscillatory behavior for γ (see [49])
and to tachyonic instabilities in gravitational waves propagation
(see Sec. IV).

SCALAR MODES IN EXTENDED HYBRID METRIC-PALATINI … PHYS. REV. D 100, 124036 (2019)

124036-7



where p≡ 2W0;ξ−ϕ0W0;ϕξ

ϵ−W0;ξ−ϕ0W0;ϕϕ
. Since now p̄11 ¼ 1; p̄21 ¼ 0, the

matter source is not shuffled and (44) and (45) take the
simpler form

ð▵ −M2
ϕÞδϕD ¼ −

κ

3
ρ; ð76Þ

ð▵ −M2
ξÞδξD ¼ 0; ð77Þ

with

M2
ϕ ¼ m2

ϕ ¼ ϕ0W0;ϕϕ − ϵ

3
; M2

ξ ¼ m2
ξ ¼ −

W0;ξ

3
:

ð78Þ

The condition for the masses of the decoupled fields to be
real leads in this case to

ϕ0W0;ϕϕ − ϵ > 0; ð79aÞ

W0;ξ < 0: ð79bÞ

Solutions can be written as

δϕDðxÞ ¼
2G
3

Z
d3x0

ρðx0Þ
jx − x0j e

−Mϕjx−x0j; ð80Þ

δξDðrÞ ¼
2GM⊙

3r
e−Mξr; ð81Þ

where we normalized conveniently the expression for δξD.
Then, far away from the central source solutions are still
given by (52) and (53), where now

Geff ≡ G
ϕ0

�
1þ e−Mϕr − pe−Mξr

3

�
ð82Þ

and

γ ≡ 3 − e−Mϕr þ pe−Mξr

3þ e−Mϕr − pe−Mξr
: ð83Þ

In this situation, since the Yukawa correction due to the
scalar mode δϕD cannot be tuned, as the ordinary metric
fðRÞ case, we are compelled to consider configurations in
which it is very massive and its contribution is appreciable
only at short scales. Conversely, properly setting the
parameter p we can still have a light δξD mode, provided
2W0;ξ ≃ ϕ0W0;ϕξ, where p ≃ 0.

IV. GRAVITATIONAL WAVES PROPAGATION

Now, we consider (26) exact and we study the propa-
gation of gravitational d.o.f. on a globally flat spacetime. In
this case, the consistency at the lowest order for Eqs. (18),

(22), and (23) requires that the configuration ðϕ0; ξ0Þ also
be a zero, beside a stable minimum, for the potentialW, i.e.,

Wðϕ; ξÞ ≃ 1

2
ðW0;ϕϕδϕ

2 þW0;ξξδξ
2 þ 2W0;ϕξδϕδξÞ: ð84Þ

Hence, restricting our attention to the vacuum case
(Tμν ¼ 0), the equation of motion for the metric field is
given by

Rð1Þ
μν −

1

2
ημνRð1Þ ¼ 1

ϕ0

ð∂μ∂ν − ημν□Þδϕ; ð85Þ

where we did not fix a priori any gauge conditions and Rð1Þ
μν

and Rð1Þ are the Ricci tensor and the Ricci scalar expressed
at first order in hμν. The linearized equations for ϕ and ξ
instead turn out to be, respectively,

�
□ −

ϕ0

3
W0;ϕϕ

�
δϕ −

ϕ0

3
W0;ϕξδξ ¼ 0; ð86Þ

�
□þ ξ0

3
W0;ξξ

�
δξþ ξ0

3
W0;ϕξδϕ ¼ 0; ð87Þ

where □ is the D’Alambert operator □≡ ∂μ∂μ.
We point out that (85) features the same form of metric

fðRÞ theories [90], even if the dynamical degree ϕ actually
satisfies the remarkably different Eq. (86), which at the
linear order is still coupled with the corresponding equa-
tion (87) for ξ. They represent a pair of coupled wave
equations for massive fields, so that extended hybrid
metric-Palatini gravity seems to be characterized in vacuum
by two further propagating d.o.f. in addition to the ordinary
tensorial ones. Of course, the theory could in principle be
affected by instabilities concerning possible tachyonic
modes, and in this respect we will see that there exists a
suitable region in the parameter space of the theory, where
both the modes are allowed to propagate.

A. Decoupling of the wave equations

Following the analysis made in Sec. III, the set (86) and
(87) can be rearranged into the form

ðI2×2□ − BÞΦ ¼ 0; ð88Þ

where now B is given by

B≡ 1

3

�
ϕ0W0;ϕϕ ϕ0W0;ϕξ

ξ0W0;ϕξ −ξ0W0;ξξ

�
: ð89Þ

For W0;ϕξ ≠ 0 the set must be turned to diagonal form, and
that can be accomplished provided ϕ0; ξ0 ≠ 0. Again, it is
possible to rearrange (88) into the form

BOMBACIGNO, MORETTI, and MONTANI PHYS. REV. D 100, 124036 (2019)

124036-8



ðI2×2□ − BDÞΦD ¼ 0 ð90Þ

with BD ≡ P−1AP, where the matrix P is still given by (58),
provided we replace

m2
ϕ ≡ ϕ0

3
W0;ϕϕ; m2

ξ ≡ −
ξ0
3
W0;ξξ: ð91Þ

Then, the following set of decoupled equations for ΦD can
be written down:

ð□ −M2
ϕÞδϕD ¼ 0; ð92Þ

ð□ −M2
ξÞδξD ¼ 0; ð93Þ

with M2
ϕ;M

2
ξ as in (61), taking into account (91). Now, in

order to assure that (92) and (93) actually describe
propagating physical fields, the set of inequalities (66)
and (64c) can be restated, by writing explicitly U and
squaring (65), as

4ϕ0ξ0W2
0;ϕξ ≤ ðϕ0W0;ϕϕ þ ξ0W0;ξξÞ2; ð94aÞ

4ϕ0ξ0 det HðW0Þ ≤ 0: ð94bÞ

Since we are interested in stable minimum configurations
(29), from (94b) it follows that ϕ0 and ξ0 have to exhibit
opposite signs. Thus, considering (69) for W0;ϕ ¼ 0 (i.e.,
ϵ ¼ 0), this in turn implies that the only possible case
satisfying all the criteria is

ϕ0 > 0; ξ0 < 0: ð95Þ

In fact, when (95) holds, relations (69) and (94b) are strictly
satisfied and also the squared masses of the nondiagonal
modes (91) turn out to be positive. There exist, then,
suitable configurations of the theory, corresponding to
peculiar minima for the potential Wðϕ; ξÞ, characterized
by two additional scalar d.o.f. which propagate like linear
waves on a Minkowski background. Of course, since the
potentialW is ultimately related to the functional form fð·Þ
by means of (15), this selects specific classes of fðR;RÞ
models, and the existence of one or more propagating scalar
degrees could not in general be guaranteed (we refer the
reader to Sec. VI for details). Thus, if we restrict our
attention to f functions able to produce these scalar waves,
we see that for U ≠ 0 the masses corresponding to the
scalar modes are distinguished, with M2

ϕ > M2
ξ for every

value of U between 0 and Umax. The specific configuration
U ¼ Umax, where the mode ξD is predicted to become
massless, has to instead be disregarded. Indeed, in that
condition (94b) would imply det HðW0Þ ¼ 0, where as
discussed in Sec. VI the scalar-tensor representation is not
valid, being det HðfÞ ¼ ∞. We have to restrict therefore the
study to the case det HðW0Þ ¼ ΔU, with ΔU a positive

small parameter, where with a bit of manipulation it can be
shown that

U ≃Umax þ 2ϕ0ξ0ΔU; ð96Þ

and the decoupled scalar modes are endowed with the
squared masses

M2
ϕ ≃m2

ϕ þm2
ξ þ

ϕ0ξ0
3

ΔU;

M2
ξ ≃ −

ϕ0ξ0
3

ΔU: ð97Þ

When U ¼ 0, instead, by virtue of (60) and (95), the
following constraints have to be separately satisfied:

W0;ϕξ ¼ 0; ϕ0W0;ϕϕ þ ξ0W0;ξξ ¼ 0; ð98Þ

and it follows from (39) that we actually deal with a system
already decoupled. The procedure involving the definition
ofU, therefore, is not well grounded, and we cannot simply
perform the limit of U → 0 in (61) that would result in the
degenerate spectra

M2
ϕ ¼ M2

ξ ¼ m2 ≡ ϕ0W0;ϕϕ ¼ −ξ0W0;ξξ: ð99Þ

Rather, if W0;ϕξ ¼ 0, we just retain (91), where the masses
could in principle be different: The mass spectrum is
affected by a discontinuity for U ¼ 0, where the masses
of the actual physical modes do not coincide with the values
predicted by (61).

V. GEODESIC DEVIATION

In order to analyze the phenomenology of gravitational
waves in extended hybrid theories, we can evaluate, via the
geodesic deviation equation, the perturbations induced by
the scalar modes on a sphere of test masses. These are
displayed along with the tensorial degrees in

∂2Xi

∂t2 ¼ −Rð1Þ
i0j0X

j; ð100Þ

where we introduce the vector

X⃗ ¼ ðx0 þ δx; y0 þ δy; z0 þ δzÞ; ð101Þ

denoting the separation between two nearby geodesics,
with x0 and δx indicating the rest position and the dis-
placement of order OðhÞ induced by waves, respectively.5

Then, following [91], we introduce for the metric pertur-
bation hμν the generic decomposition for a symmetric
tensor of rank two, i.e.,

5Analogously for y, z.
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h00 ¼ 2α;

h0i ¼ βi þ ∂iχ;

hij ¼ hTTij þ 1

3
Hδij þ ∂ðiϵjÞ þ

�
∂i∂j −

1

3
δij▵

�
λ; ð102Þ

with δij the Kronecker delta, ▵ ¼ ∂i∂i the Laplacian opera-
tor, and symmetrization given by AðijÞ ≡ 1

2
ðAij þ AjiÞ. The

irreducible parts introduced in (102) are accompanied by
the conditions

∂iβi ¼ 0;

∂ihTTij ¼ 0;

ηijhTTij ¼ 0;

∂iϵi ¼ 0; ð103Þ

which, as stressed in [91] (see also [92] for the curved
background case), are required in order to preserve the
uniqueness and the consistency of the procedure. By means
of these quantities we can then introduce the set of variables

Π ¼ −αþ ∂tχ −
1

2
∂2
t λ;

Θ ¼ 1

3
ðH − ▵λÞ;

Ξi ¼ βi −
1

2
∂tϵi; ð104Þ

which turns out to be invariant, together with hTTij , under a
linear gauge transformation.
Now, as it was outlined in [90] for metric fðRÞ theories,

it is possible to rearrange the linearized equation for the
metric (85) into the form

▵Πϕ ¼ 0; ð105aÞ

▵Θϕ ¼ 0; ð105bÞ

▵Ξi ¼ 0; ð105cÞ

□hTTij ¼ 0; ð105dÞ

where we introduced the modified static degrees

Πϕ ≡ Πþ 1

2

δϕ

ϕ0

; Θϕ ≡ Θþ δϕ

ϕ0

: ð106Þ

From (106), it is evident that beyond the scalar degrees
discussed in Sec. IV, we retain the standard tensorial modes
for the metric hμν. Moreover, it is worth noting that with
respect to the discussion in [90], the scalar field involved in
the definition (106) does not represent a proper d.o.f.
Indeed, the quantity δϕ is actually related by means of (58)
to the diagonal scalar modes ðδϕD; δξDÞ, i.e.,

δϕ ¼ −
3m2

ϕ − 3m2
ξ þU

2ξ0W0;ϕξ
δϕD;

−
3m2

ϕ − 3m2
ξ −U

2ξ0W0;ϕξ
δξD: ð107Þ

Therefore, when we look at the components of the
linearized Riemann tensor entering (100), these can be
expressed in gauge invariant variables as

Rð1Þ
i0j0 ¼ −

1

2
∂2
t hTTij þ ∂ði∂tΞjÞ þ ∂i∂jΠ −

1

2
δij∂2

tΘ; ð108Þ

which can be rewritten, neglecting the static contributions
and taking into account (106) and (107), such as

Rð1Þ
i0j0 ¼ −

1

2
∂2
t hTTij þ UðþÞð∂i∂j − δij∂2

t ÞδϕD

þ Uð−Þð∂i∂j − δij∂2
t ÞδξD; ð109Þ

with UðþÞ;Uð−Þ given by, respectively,

Uð�Þ ≡ 3m2
ϕ − 3m2

ξ � U

4ϕ0ξ0W0;ϕξ
: ð110Þ

Now, leaving aside the tensorial degrees contained in hTTij
and choosing the z axis coincident with the direction of
propagation of the waves, the scalar degrees can be
described by

δϕD ¼ Aϕ sinðΩϕt − KϕzÞ;
δξD ¼ Aξ sinðΩξt − KξzÞ; ð111Þ

with frequencies

Ωϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

ϕ þM2
ϕ

q
; Ωξ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

ξ þM2
ξ

q
; ð112Þ

wave vectors fixed in

Kμ
ϕ;ξ ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

ϕ;ξ þM2
ϕ;ξ

q
; 0; 0; Kϕ;ξ

�
; ð113Þ

and Aϕ; Aξ the amplitudes of the waves. Thus, the geodesic
deviation equation takes the form

∂2
t δx ≃ −x0ðUðþÞðK2

ϕ þM2
ϕÞδϕD þ Uð−ÞðK2

ξ þM2
ξÞδξDÞ;

∂2
t δy ≃ −y0ðUðþÞðK2

ϕ þM2
ϕÞδϕD þ Uð−ÞðK2

ξ þM2
ξÞδξDÞ;

∂2
t δz ≃ −z0ðUðþÞM2

ϕδϕD þ Uð−ÞM2
ξδξDÞ; ð114Þ

where we disregarded terms of order Oðh2Þ.
By close analogy with the discussion in [90,93], we see

that both the scalar degrees are able to induce two types of
polarizations. In fact, they are separately responsible for a
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breathing mode on the transverse plane xy, as well as for a
longitudinal excitation along the direction of propagation
of the wave. Moreover, the corresponding polarizations
are modulated for U ≠ 0 by factors of distinct magnitude,
and δϕD; δξD propagate with different speeds. In particular,
whenU → Umax, by virtue of (96) and (97) the longitudinal
contribution of δξD turns out to be of order ε, i.e.,

UþM2
ϕ ≃ signðW0;ϕξÞ

m2
ϕ þm2

ξ

2ξ0

ffiffiffiffiffiffiffiffiffiffiffiffi
W0;ϕϕ

W0;ξξ

s
þOðΔUÞ;

U−M2
ξ ≃ −signðW0;ϕξÞ

ξ0
6

ffiffiffiffiffiffiffiffiffiffiffiffi
W0;ξξ

W0;ϕϕ

s
ΔU: ð115Þ

In this case, therefore, it mostly affects the geodesic
deviation as a breathing mode on the plane xy and the
longitudinal polarization is almost entirely due to the
massive mode δϕD.
Conversely, when U → 0 the angular frequencies of the

scalar modes are very close to each other, and we expect
that typical interference patterns between waves, i.e.,
beatings, could take place. That can be considered a very
distinctive marker of gravitational wave propagation in
generalized hybrid metric-Palatini theories, absent in ordi-
nary metric fðRÞ gravity, with specific phenomenological
implications.
Thus, let us write for U ≃ 0 the solution of (114) as

δxðtÞ ≃ AB
ϕ sinðΩϕtÞ þ AB

ξ sinðΩξtÞ;
δyðtÞ ≃ AB

ϕ sinðΩϕtÞ þ AB
ξ sinðΩξtÞ;

δzðtÞ ≃ AL
ϕ sinðΩϕtÞ þ AL

ξ sinðΩξtÞ; ð116Þ

where we set z ¼ 0 and effective amplitudes AB;L
ϕ;ξ given by

AB
ϕ ≡ UðþÞA; AL

ϕ ≡ UðþÞM2
ϕ

k2 þM2
ϕ

A;

AB
ξ ≡ Uð−ÞA; AL

ξ ≡ Uð−ÞM2
ξ

k2 þM2
ξ

A; ð117Þ

with Aϕ ∼ Aξ ¼ A and Kϕ ∼ Kξ ¼ k. After a bit of manipu-
lation, it is possible to recast6 (116) as

δx ≃ ðAB
ϕ þ AB

ξ Þ cosðΔΩtÞ sinðΩ̄tÞ
þ ðAB

ϕ − AB
ξ Þ sinðΔΩtÞ cosðΩ̄tÞ; ð118Þ

where we defined ΔΩ≡ Ωϕ−Ωξ

2
and Ω̄≡ ΩϕþΩξ

2
. Then, the

perturbation described by (118) represents a superposition
of two waves of frequencies Ω̄ with a phase shift of π=2,

both modulated by the beating frequency ΔΩ (Fig. 1), and
relative amplitude AB

ϕ − AB
ξ > AB

ϕ þ AB
ξ .

Finally, when W0;ϕξ ¼ 0, the set of Eqs. (86) and (87) is
naturally decoupled, and the transformation (107) is no
longer necessary. In this case the relevant components of
the Riemann are given by

Rð1Þ
i0j0 ¼ −

1

2
∂2
t hTTij −

1

2ϕ0

ð∂i∂j − δij∂2
t Þδϕ; ð119Þ

and we see that only δϕ enters the geodesic deviation.
Therefore, the phenomenology described is identical to that
descending from the scalar-tensor formulation of metric
fðRÞ theories, i.e.,

∂2
t δx ≃

x0
2ϕ0

ðk2ϕ þm2
ϕÞδϕ;

∂2
t δy ≃

y0
2ϕ0

ðk2ϕ þm2
ϕÞδϕ;

∂2
t δz ≃

z0
2ϕ0

m2
ϕδϕ: ð120Þ

Nevertheless, even if δξ does not appear explicitly in (120),
we cannot infer that the functional dependence of fð·Þ onR
have no phenomenological implications. Indeed, since ϕ is
actually the combination of ψ and ξ, we clearly see that
both contributions of f from R and R concur in determin-
ing the effects of (120).

VI. CONSTRAINTS ON THE FORM OF f(R;R)

In this section we analyze in detail the implications onto
the form of the function fðR;RÞ of conditions discussed
in Secs. IV and V. In particular, we are interested in
establishing clear relations between derivatives of the
potential W and corresponding derivatives of the function
f with respect to the curvatures R and R. Then, in order to
do that, it is useful to express the derivatives of Wðϕ; ξÞ in
terms of derivatives of Vðψ ; ξÞ, i.e.,

0 20 40 60 80 100
2

1

0

1

2

t

x
t

FIG. 1. The perturbation δx as a function of time t due to
superposition of the scalar breathing modes when U ≃ 0. The
carrying signals with beating frequency ΔΩ are also shown. We
set ΔΩ=Ω ≃ 0.03.

6We just report the result for δx. Similar considerations hold
for δy, δz.

SCALAR MODES IN EXTENDED HYBRID METRIC-PALATINI … PHYS. REV. D 100, 124036 (2019)

124036-11



Wϕ ¼ Vψ
∂ψ
∂ϕ ¼ Vψ ; ð121Þ

Wξ ¼ Vψ
∂ψ
∂ξ þ Vξ ¼ −Vψ þ Vξ; ð122Þ

when we considered Wðϕ; ξÞ ¼ Vðψðϕ; ξÞ; ξÞ. It follows
that second order derivatives are given by

Wϕϕ ¼ Vψψ ; ð123Þ

Wξξ ¼ Vψψ − 2Vψξ þ Vξξ; ð124Þ

Wϕξ ¼ Vψξ − Vψψ ; ð125Þ

which can be further rewritten, taking into account defi-
nitions of the potential V, as

Wϕϕ ¼ Rψ ;

Wξξ ¼ Rψ − 2Rξ þRξ;

Wϕξ ¼ Rξ − Rψ : ð126Þ

Now, since ψ and ξ are functions of R and R by means of
the first derivatives of f, in evaluating (126) we can apply
the inverse function theorem for the two-dimensional case,
leading to

Vψψ ¼ Rψ ¼ fRR

det HðfÞ ;

Vψξ ¼ Rξ ¼ Rψ ¼ −
fRR

det HðfÞ ;

Vξξ ¼ Rξ ¼
fRR

det HðfÞ ; ð127Þ

where we use the fact that the Jacobian matrix of the trans-
formation relating (ψ ; ξ) to (R;R) coincides with the
Hessian matrix for f. We can then express the determinant
of the Hessian matrix of W in terms of derivatives of f,
that is,

det HðWÞ ¼ det HðVÞ ¼ 1

det HðfÞ : ð128Þ

In the continuing sections we will evaluate these quantities
at background values ϕ0; ξ0, and we see that condition
det HðfÞ ≠ 0, required for scalar-tensor representation to
exist, guarantees that (R;R) could be solved for (ϕ; ξ) and
therefore computed in ðϕ0; ξ0Þ. Furthermore, from (128) it
is evident that we have to disregard from the analysis
configurations with det HðW0Þ ¼ 0, corresponding to
det HðfÞ ¼ ∞, where a propagating massless mode is
theoretically predicted for gravitational waves (see Sec. V).

A. Postparametrized Newtonian corrections

In studying the PPN corrections we made the following
general assumptions:8>>><

>>>:

det HðW0Þ > 0;

W0;ϕϕ > 0;

W0;ξξ > 0;

ϕ0 > 0;

ð129Þ

which can be translated by means of (126) and (127)
in conditions on the derivatives of the function f. This
results in 8>>><

>>>:

det Hðf0Þ > 0;

f0;RR > 0;

f0;RR þ f0;RR þ 2f0;RR > 0;

f0;R þ f0;R > 0;

ð130Þ

where we used the definitions of ϕ and introduced, by
analogy with W, the subscript 0 also for f. We see that
second order derivatives constitute an independent sub-
system of inequalities, whose solution is given by

f0;RR > 0; f0;RR > 0; jf0;RRj <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0;RRf0;RR

p
;

ð131Þ

while first order derivatives do not require further manip-
ulations. In the continuing sections, we will investigate in
detail other conditions required in each case discussed in
Sec. III.

1. Case W0;ξ = 0, ξ0 < 0

The condition of reality for the function U (66)
always holds, while inequalities (68) and (69) can be
reformulated as

f0;R − jf0;Rj
f0;RR þ f0;RR þ 2f0;RR

≥ ϵ; ð132aÞ

f0;Rf0;RR þ jf0;Rjðf0;RR þ 2f0;RRÞ
det Hðf0Þ

≥ ϵ; ð132bÞ

where we have outlined the negative sign of f0;R ¼ ξ0. The
requirement m2

ϕ ≫ m2
ξ that we impose in order to correctly

reproduce the Newtonian limit can be restated as

f0;Rf0;RR − jf0;Rjðf0;RR þ 2f0;RR þ 2f0;RRÞ
det Hðf0Þ

≫ ϵ: ð133Þ

2. Case W0;ξ = 0, ξ0 > 0

Conditions (69), (70), and (74) can be reformulated as
follows:
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8<
:

ϵW0;ϕϕ ≥ ξ0 det HðW0Þ;
ϵW0;ξξ ≥ ϕ0 det HðW0Þ;
ϕ0W0;ϕϕ þ ξ0W0;ξξ ≫ ϵ;

ð134Þ

where in the first inequality we have omitted ϵ2 terms. It is
immediate to translate this set of inequalities in terms of
constraints on the derivatives of the function f, yielding to

8>>><
>>>:

0 < f0;R
f0;RR

≤ ϵ;

0 < f0;Rþf0;R
f0;RRþf0;RRþ2f0;RR

≤ ϵ;

f0;Rf0;RRþf0;Rðf0;RRþ2f0;RRþ2f0;RRÞ
det Hðf0Þ ≫ ϵ:

ð135Þ

3. Case ξ0 = 0

Condition (80) reads, in the special setting p ≃ 0, as

(
f0;RRðf0;Rþf0;RÞ

det Hðf0Þ > ϵ;

f0;RR þ f0;RR > 0:
ð136Þ

In order to reproduce PPN corrections that are compatible
with local measurements, we have to impose Mϕr̄ ≫ 1,
with r̄ much smaller than the size of the source. By
combining this request with (56) we get

f0;RRðf0;R þ f0;RÞ
det Hðf0Þ

≫ ϵþ 3

�
ϕ0ϵ

24GM⊙

�2
3

: ð137Þ

B. Gravitational wave modes

As we saw in Sec. V, for stable minima of Wðϕ; ξÞ two
additional massive scalar modes are expected to propagate,
provided the set (129) of inequalities holds, along with the
additional condition ξ0 < 0. In terms of f this leads to

8>>>>>><
>>>>>>:

det Hðf0Þ > 0;

f0;RR > 0;

f0;RR þ f0;RR þ 2f0;RR > 0;

f0;R þ f0;R > 0;

f0;R < 0;

ð138Þ

and as in the PPN case the constraints on the second
derivatives are satisfied if

f0;RR > 0; f0;RR > 0; jf0;RRj<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0;RRf0;RR

p
: ð139Þ

Finally, for the special setting W0;ϕξ ¼ 0, where the scalar
modes are already decoupled and equipped with masses as
in (91), conditions (138) are endowed with the further
requirement f0;RR þ f0;RR ¼ 0. That, plugged back into
(138), leads then to f0;RR > f0;RR ¼ −f0;RR > 0.

VII. CONCLUDING REMARKS

Extended hybrid metric-Palatini theories are promising
generalizations of the two main approaches to the study of
fðRÞ gravity, and the most intriguing feature of these
models is certainly the presence of two dynamical scalar
fields nonminimally coupled to gravity. In fact, this enrich-
ment of the dynamical structure can be used, in principle, to
remove technical and conceptual problems, common to
both the metric and the Palatini approaches, that arise when
one tries to mimic dark matter or dark energy effects
without spoiling Solar System tests. In this work we
investigated the weak field limit of the theory in its
scalar-tensor formulation, by analyzing the first PPN order
and the gravitational wave propagation. In both cases we
found the two scalar fields solve coupled equations, and the
decoupled scalar fields are shown to be massive, with
masses that vary in a range determined by the potential W.
Particularly, the mass spectrum spans continuously the
interval that goes from two modes having nearly the same
mass to the case in which one field has the maximum mass
(again determined by W) while the other field is massless.
In this respect, we clarified how this peculiar setting
depends crucially on the parameter ϵ quantifying the
departure at the background level from Minkowski space-
time. We showed, in fact, that when the propagation of
gravitational scalar waves is addressed, corresponding to
ϵ ¼ 0, the configuration where δξD is massless is not
actually feasible, in that scalar tensor representation is not
attainable. With regard to the PPN expansion we found that
the presence of the massive fields implies that the param-
eters Geff and γ acquire Yukawa-like corrections. The
intensity of these modifications is governed by coefficients
that can be tuned through specific constraints on the
potential function W. We claim that it is possible to make
corrections in the expressions of the PPN parameters small
enough to stay within the constraints of current Solar
System tests, still having the presence of a scalar massive
field light enough to act as dark matter on galactic scales.
This can be accomplished by choosing W such that the
masses of the scalar fields are widely separated: with this
expedient the mass of the heavier can be set to a value that
implies the suppression of the relative exponential factor
over a convenient scale, while the lighter can be forced to
have a decay length comparable with galactic scales. The
correction relative to the light scalar in the expressions of
Geff and γ can be made small enough through a precise
choice on the corresponding coefficient. For what concerns
the gravitational wave study, we performed a linear metric
approximation around a Minkowski background; hence we
restricted the dynamics of the scalar fields to small
oscillations around a local minimum of W. We showed
that the decoupled fields solve two independent Klein-
Gordon equations with masses varying in the above
mentioned range. The analysis of the phenomenology
associated with the scalar fields, performed via the geodesic
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deviation equation for a sphere of test particles, demon-
strated that each field is detectable as the superposition of
two independent polarizations, namely a breathing plus a
longitudinal mode. It must be stressed that such a finding
cannot be claimed to be a real marker for this specific
model: indeed, in [90,93] it is shown that in the metric
formalism the only additional scalar field is responsible for
the same mixture of polarizations, whereas in [94] it is
demonstrated that in general relativity gravitational waves
traveling in molecular media, such as galaxies, are
expected to contain an additional mode characterized by
the same feature. The striking peculiarity of this model is
instead the fact that the two scalar fields can mutually
interact and produce beatings. We studied this phenomenon
in the special case of nearly degenerate masses, in which
the beating frequency is much smaller than the signal

frequency. However, the same feature should be detectable
for any value of the masses in the allowed range, at least
until the lighter scalar can be properly distinguished from
the massless tensorial degrees, in which case we expect
their mutual interaction as in [66]. Finally, we established
precise relations between the constraints on the potential
Wðϕ; ξÞ, obtained in analyzing PPN and gravitational wave
settings, and the form of the function fðR;RÞ. These
resulted in a set of inequalities connecting second and first
derivatives of f with respect to both the curvatures. In
particular, they could be used in principle for the con-
struction of a definite model meeting the requirements that
are necessary to mimic dark matter effects and pass the
Solar System tests, paying special attention to already
known potentials (as discussed in [77]) characterized by
accelerating cosmological solutions as well.
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