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Abstract
One of the main issues in digital forensics is the management of evidences. From the time of evidence
collection until the time of their exploitation in a legal court, evidences may be accessed by multiple
parties involved in the investigation that take temporary their ownership. This process, called Chain
of Custody (CoC), must ensure that evidences are not altered during the investigation, despite
multiple entities owned them, in order to be admissible in a legal court. Currently digital evidences
CoC is managed entirely manually with entities involved in the chain required to fill in documents
accompanying the evidence. In this paper, we propose a Blockchain-based Chain of Custody (B-CoC)
to dematerialize the CoC process guaranteeing auditable integrity of the collected evidences and
traceability of owners. We developed a prototype of B-CoC based on Ethereum and we evaluated its
performance.
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1 Introduction

One of the main issues in digital forensics is the management of evidences. From the time
of evidence collection until the time of their exploitation in a legal court, evidences may
be accessed by multiple parties involved in the investigation that take temporarily their
ownership. The Chain of Custody is the process of validating how any kind of evidence has
been gathered, tracked and protected on its way to a court of law. Chain of Custody (CoC)
is not a mandatory step in forensic analysis. However, it is extensively used as evidences,
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to be acceptable in a court or in legal procedures, must be proved to be not altered during
investigations. Thus, a good CoC process should use a standard for dealing and handling
evidences (digital or not), regardless of whether the evidence will be used in a trial or not.

The main requirements of a CoC process are:
Integrity: the evidence has not been altered or corrupted during the transferring.
Traceability: the evidence must be traced from the time of its collection until it is
destroyed.
Authentication: all the entities interacting with an evidence must provide an irrefutable
sign as a recognizable proof of their identity.
Verifiability: the whole process must be verifiable from every entity involved in the
process.
Security – Tampering proof : Changeovers of an evidence cannot be altered or
corrupted.

Currently, CoC process requirements are met by employing a physical handover of evidences
where, at each step, documents are filled in and signed in front of officers. In this paper, we
take a step toward the dematerialisation of this process by proposing a Blockchain-based
architecture for CoC of digital evidences called B-CoC. Leveraging on the features offered
by blockchain technologies, we defined an architecture able to support the CoC process. To
this aim, we proposed an architecture, namely B-CoC, that is able to realise an Evidence
log with integrity checks (i.e., every process is able to verify and detect if there has been
an integrity breach that would invalidate the digital evidence). B-CoC integrates together
an ordinary database with a permissioned blockchain: the first represents the Evidence DB
where digital evidences are stored, while the second represents the Evidence Log that allows
to track digital evidences during their lifecycle. This distinction is done to store each type
of information in the most suited kind of distributed storage: digital evidences are quite
static and large piece of information and do not need particular support for updates while
the evidence log is characterised by a reduced size of record to be stored and is subjected to
a high update frequency.

In particular, we set up a private permissioned blockchain and we implemented a smart
contract to keep track of the ownership changes during the evidence lifecycle. We implemented
our prototype on an Ethereum [9] private network and we evaluated the impact of the system
configuration parameters on performance.

2 Background

2.1 Blockchain technology
The blockchain technology implements a decentralized fully replicated append-only ledger in a
peer-to-peer network, originally employed for the Bitcoin cryptocurrency [7]. All participating
nodes maintain a full local copy of the blockchain. The blockchain consists of a sequence
of blocks containing the transactions of the ledger. Transactions inside blocks are sorted
chronologically and each block contains a cryptographic hash of the previous block in the
chain. Nodes create new blocks as they receives transactions, which are broadcast in the
network. Once a block is complete, they start the consensus process to convince other nodes
to include it in the blockchain. In the original blockchain technology employed in Bitcoin
the consensus process is based on Proof-of-Work (PoW) [7]. With PoW nodes compete with
each other in confirming transactions and creating new blocks by solving a mathematical
puzzle. While solving a block is a computational intensive task, verifying its validity is easy.
To incentivize such mechanism, solving a block also results in mining a certain amount of
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bitcoins, which is the reward for block creators (usually referred to as miners). Sometimes,
more than one miner may generate a valid block thus creating forks in the chain. Forks
are solved by accepting only the longest branch as the valid continuation of the chain (thus
eliminating forks eventually). The main advantage of PoW, over traditional consensus
algorithms, is that an attacker would have to control the majority of the computational power
of the network, rather than the majority of the nodes, which is considered more difficult and
virtually impossible in public large-scale networks.

The main criticism to PoW is its huge demand of energy, which also prevents its applic-
ability in certain contexts. This has led to the investigation of alternative forms of consensus
for the blockchain, such as Proof-of-Stake [5]. With PoS, a set of nodes, called validators,
take turns proposing new blocks and voting on them. Validators put a stake in the network
(e.g., a given amount of cryptocurrency) and are incentivized to act honestly so as not to
lose the stake. Indeed, the blockchain keeps track of the set of validators, which are ousted if
they behave maliciously (thus losing their stake).

A specific type of PoS is Proof-of-Authority (PoA) in which individual’s identity (rather
than cryptocurrency) is at stake. With PoA validators must have been preventively authorized
and their identities are known. Thus, acting maliciously results in losing personal reputation
and ultimately in being expelled from the validator set.

While PoW is particularly suited for public networks, both PoS and PoA may be suitable
for private networks (where PoW would probably fail short as it would be much easier to
control the majority of the computational power). Moreover, PoW and PoS can be used in
permissionless networks, that is, networks where nodes can freely join the network without
previous authorization (e.g., as in Bitcoin and Ethereum). PoA, on the other hand, is
typically employed in permissioned blockchain networks, that is, networks in which nodes
cannot freely join and become validators, but rather they have to be preventively authorized.

2.2 Ethereum and Smart Contracts
Etherium [9] can be seen as a decentralized virtual machine based on the blockchain technology.
The Ethereum Virtual Machine (EVM) runs programs, referred to as smart contracts, whose
state is stored in the Ethereum blockchain. Every node execute a local EVM. When an
account wants to execute a function of a smart contract, it issues a transaction which is
broadcast to the network. Each node executes the transaction on its local EVM and stores
it, along with the new computed state, in the blockchain.

In Ethereum each EVM instruction consumes a virtual resource referred to as gas.
Gas can be seen as the fuel of the EVM and is employed to incentivize miners to execute

transactions and include them in the blockchain. Indeed, for each transaction, miners are
rewarded by the issuer with the payment of fees proportional to the total amount of gas
“consumed” to execute that transaction.

To prevent mined blocks from becoming too large, which may severely impact block
propagation and processing latency, each block has a block gas limit, which is the maximum
amount of gas all transactions included in the block are allowed to consume. Thus, an issued
transaction may not be included in the current block by a miner because it would exceed
the block gas limit. In such case, the issued transaction would have to wait until the next
block creation.

The public Ethereum blockchain (often referred to simply as “Ethereum”) is a public
permissionless networks which adopts PoW as consensus algorithm (even though it is planned
to switch to PoS in the future). However, all major Ethereum implementations [1, 3] allow
to configure many aspects of the protocol, such as the actual consensus algorithms employed,
and allow to build custom public/private permissionless/permissioned blockchain networks.

Tokenomics 2019
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2.3 Istanbul BFT consensus protocol
Istanbul Byzantine Fault Tolerance (IBFT) [2] is an adaptation of the Practical Byzantine
Fault Tolerance (PBFT) [6] algorithm to serve as a PoA consensus algorithm for the Ethereum
protocol. IBFT can tolerate at most f faulty validators out of a total of n = 3f +1 validators.
The IBFT algorithm proceeds in rounds with a new block created every T seconds, where
the block period T is a constant configuration parameter. In each round one of the validators
is elected as the proposer. The proposer creates the new block and broadcasts it to all
validators with a pre-prepare message. Upon receiving pre-prepare messages, validators enter
the pre-prepared phase and broadcast prepare messages. This, ensures that validators are
aligned to the same round and block. Upon receiving 2f + 1 prepare messages, validators
enter the prepared phase and broadcast commit messages to inform other validators that
they accept the proposed block. Finally, upon receiving 2f + 1 commit messages, validators
enter the committed phase and insert the block in the blockchain.

3 System Model

CoC model. A digital evidence (or electronic evidence) is any probative information stored
or transmitted in digital form that a party may use in a trial to a court case. Digital evidences
are collected by authorised parties (usually police officers) that become their temporary
(first) owners.

For the sake of presentation and without loss of generality, in the following we will
consider a single digital evidence d_ev collected by an authorised entity e0 that holds its
ownership. During investigations, several authorised entities (e.g., police offices, lawyers,
judges, magistrates, etc.) may need to access, acquire and/or own temporarily d_ev. The set
of authorised entities that can interact with d_ev is denoted with Ad_ev. Each authorised
entity has a unique identifier known to all and he/she owns credentials that allows him/her
to be authenticated and take actions in the CoC process.

At each time t, d_ev can have just one owner and the owner must belong to Ad_ev. If
an authorised entity ei needs to acquire and own d_ev, the current owner needs to issue a
transfer request towards ei. The change of ownership happens if and only if ei ∈ Ad_ev and
the transfer record is written permanently in the evidence log.

Network Model. The system is composed by a set of processes p1, p2, . . . , pn, one for each
authorised entity in Ad_ev. Each process pi has a pair of private-public keys that it uses
to authenticate itself and to sign messages. Processes are connected trough a peer-to-peer
network (authenticated perfect links). We consider that authorised entities are trusted but
up to f of them (with n > 3f) can be compromised and controlled by an adversary i.e., they
may behave as a Byzantine process deviating arbitrarily from the protocol.

4 B-CoC Architecture

The Blockchain-based Chain of Custody (B-CoC) architecture proposed in this paper is based
on a private and permissioned blockchain. This choice has been driven by the authentication
requirement of the CoC process that does not allow unauthorised and untrusted parties to
manage digital evidences and thus to be in the network.

As shown in Figure 1, B-CoC is composed mainly of three components: (i) the Evidences
DB, (ii) the Evidence Log and the (iii) Frontend interface. The Evidence DB is an ordinary
database and/or file repository where we store the actual digital evidences, while CoC related
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Figure 1 B-CoC architecture.

data are stored in the Evidence Log, which is implemented through the blockchain technology.
The reason for this separation is twofold. First of all, evidences can be too large to be
efficiently stored in the blockchain (for example, an evidence may be a bit-by-bit copy of a
storage device of several TBs of capacity). Secondly, and most importantly, if evidences were
stored in the blockchain, every node in the blockchain network would have access to them,
while only authorized nodes should be allowed to acquire an evidence. Therefore, we store in
the blockchain only the information regarding the CoC process and an hash of the evidence
which allows to verify evidences integrity during acquisition.

Evidence DB. The Evidences DB is an ordinary distributed database and/or file repository
where the original digital evidence is stored along with an identifier ID, obtained as the hash
of the evidence and a nonce (to guarantee uniqueness of IDs). This database is distributed
and is managed by trusted entities (e.g., law court officers). Moreover, each access is executed
only if the requesting entity is authorized to perform such access according to its role.

Evidence Log. The Evidence Log is implemented trough the blockchain technology and
stores, for each evidence, its ID, a description, the identity of the submitter (which we call
creator) and the complete history of owners up to the current one, including the time at
which changes of ownership occurred. Note that while the evidence itself is not stored in the
blockchain, the ID allows to verify that the evidence has not been tampered with, provided
that a robust cryptographic hash function is used to generate it.

The evidence log is implemented on top of a peer-to-peer network composed by all
authorised entities. Such network can be decomposed in two sets of nodes:

Validator nodes: they have mainly the following functionalities: (i) storing a copy of the
blockchain, (ii) validating transactions and (iii) create, propose and add blocks to the
chain (i.e., participate to the consensus protocol). This is the set of nodes that must be
preventively authorized with the role of validators in the permissioned blockchain.

Tokenomics 2019
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Lightweight nodes: they can be seen as clients of the chain since they simply issue
transactions and need to rely on validators for adding and validating their transactions.

Taking Italy as a use case, each validator may correspond to the main coordinator of the
court of one of the 20 regional capitals. Lightweight nodes, instead, would represent all the
other involved parties such as police departments, forensic investigators, forensic consultants
and so on. The Evidence Log runs a smart contract which exposes four primitives (see
Figure 1):

CreateEvidence(ID, description): stores a new evidence entry in the blockchain with
the specified ID and description, setting the submitter identity as the creator and
current owner of the evidence.
Transfer(ID, newowner): transfers the ownership of an evidence (registering the han-
dover). It fails if the issuer is not the current owner.
RemoveEvidence(ID): removes an evidence entry. It fails if the issuer is not the creator.
GetEvidence(ID): returns the information in the evidence entry. Namely, the ID, de-
scription, creator and all owners with the time of each change of ownership.

Implementation details of the Evidence Log and the smart contract are discussed in Section 5.

Frontend Interface. The frontend represents the interface between B-CoC and its users. A
local instance runs on each node and interacts with the Evidences DB and the Evidence Log
(through a local blockchain node). When an authorized user submits a new digital evidence
d_ev to the system, he/she takes the role of creator of d_ev (see Figure 1). The frontend
generates the ID for d_ev using a nonce n, sends the command store(ID, n, d_ev) to
the Evidence DB and issues the CreateEvidence() transaction in the Evidence Log. As
already discussed the submitter is also registered as the first owner in the blockchain. When
the Check Authorization component of the Evidence DB receives the store(ID, n, d_ev)
command, it starts to monitor the Evidence Log for the corresponding CreateEvidence()
transaction. Only upon confirmation that this transaction has been inserted in the Evidence
Log, the Check Authorization component actually stores the pair (ID, n, d_ev) into the
Evidence DB.

The creator of an evidence d_ev can request to discard it from the system (e.g., because it
is no more legally valid). If he/she is authorized to do so, the corresponding entry is removed
from the Evidence Log by issuing the RemoveEvidence() transaction. If the transaction
succeeds, the corresponding evidence is deleted from the Evidence DB by issuing the delete
command. Upon receiving the delete command the Check Authorization component of the
Evidence DB checks if the corresponding RemoveEvidence() transaction has been inserted
in the Evidence Log. If the transaction is not present, the delete command fails and sends
an error response to the frontend.

When a user wants to acquire an evidence d_ev, the Frontend sends a request to the
Evidences DB which will serve the request only if the user is the current owner of d_ev.
This check is performed by the Check Authorization component by interacting with the
Evidence Log.

The change of ownership of an evidence d_ev is performed by issuing a Transfer()
transaction specifying the new owner. Note that this operation does not involve the Evidence
Log in any way.

Finally, every user in the B-CoC network can query the Evidence Log to get the entry
of an evidence (which contains all relevant information except the evidence itself). This is
performed by simply issuing the GetEvidence() transaction.
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5 Evidence Log Implementation

As described in Section 4, B-CoC Evidence Log is designed as a private and permissioned
blockchain. The blockchain infrastructure is implemented through Geth [1] a popular
implementation of a full Ethereum node. Geth allows to setup a private network and
configure all aspects of the blockchain and the consensus protocol employed. Given the
design of a private permissioned blockchain we adopt a PoA-based consensus. Namely, the
IBFT consensus protocol described in Section 2.3. Let us note that, at the time of our
development, IBFT was the only Byzantine tolerant consensus protocol available using Geth.
On top of this blockchain infrastructure, we run a smart contract implementing the CoC
process. The choice of implementing B-CoC using Geth has been driven by a cost-benefit
analysis. We considered several blockchain technologies, namely full Ethereum, Geth with
PoA consensus and Hyperledger Fabric, and we evaluated them against the requirement of
our application. None of them is currently matching perfectly our needs but we believe that
Geth with PoA consensus is the most appropriate given its ease of adaptation, deployment
and complexity. The implementation of B-CoC Evidence Log involves three steps: (i) the
initialization of the private blockchain, (ii) the creation of the private network and (iii) the
creation and deployment of the smart contract.

5.1 Private chain initialization
The setup of a new blockchain involves the creation of its genesis block. This is the first
block of a blockchain and contains the initial parameters. The only configuration parameters
that are of interest for the purposes of the following discussion are:

Block Period T : the block period of the IBFT consensus algorithm (see section 2.3);
Block Gas Limit G: Maximum amount of gas transactions in a block are allowed to
consume (see section 2.2);
Validators: The Ethereum addresses of the pre-authorized validators.

The genesis block is used to initialize each node of the network.

5.2 Private network setup
First of all, to build the private peer-to-peer network we need to setup the peer discovery
service to allow new nodes to enter the network and know other nodes. This is accomplished
with the bootnode tool (of the Geth tools suite). This tool allows to run special nodes (with
known IP addresses) that validators and lightweight nodes will contact when first started to
exchange peer information.

Validators and lightweight nodes are Geth nodes. First, we configure the set of validators
(which is fixed and known in advance) with the genesis block and we run them through the
geth command (of the Geth tools suite). Validators are created once at the beginning and
they never leave the network, unless they act maliciously and are expelled. Lightweight
nodes, instead, can be created and join/leave the network at any time. They are created
with the geth tool as well, but their addresses are not included in the genesis block.

5.3 Smart contract implementation
The smart contract has been implemented through the Solidity contract-oriented programming
language [4]. Due to space constraints, the code of the smart contract is reported in the
Appendix. The smart contract manages entries associated to digital evidences (i.e., the entries
of the Evidence Log). Each Evidence entry (lines 3-10) consists of the ID, the Ethereum

Tokenomics 2019
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Table 1 Size and gas used by each transaction.

T X size(T X) (bytes) gas(T X) (units)

CreateEvidence(0) 207 170207
· · · · · · · · ·
CreateEvidence(1024) 1233 897367
Transfer() 174 80502
RemoveEvidence() 142 236478

address of the creator, the address of the owner, a string field to store the description of the
evidence and two arrays taddr and ttime that store, respectively, the evidence handovers
and the times at which they occurred. These arrays are chronologically sorted from the
creator to the current owner. All evidence items are stored in a map indexed by evidence IDs
(line 11). The smart contract has a total of four functions implementing the primitives of
the Evidence Log described in Section 4. The CreateEvidence(ID, description) function
creates a new Evidence entry with the specified ID and description, and the address of the
related transaction sender as the creator and current owner of the evidence (line 26). The
Transfer(ID, newowner) function transfers the ownership of the evidence identified by ID
to the entity identified by the address newowner (line 35). Note that only the current owner
of an evidence can transfer ownership (OnlyOwner modifier). The RemoveEvidence(ID)
function removes an evidence from the map of evidences (line 41). No further operations can
be performed on a removed evidence. Note that only the creator of an evidence can remove
the evidence (OnlyCreator modifier). The GetEvidence(ID) function returns all fields of
an evidence entry (line 46).

Note that while calling the first three functions results in issuing transactions to the
blockchain that modify the state of the smart contract, the GetEvidence function only
returns an entry and does not modify the state. In the context of the Solidity language
these are called constant functions or views. Calling views does not result in the issuing of
transactions, but rather they are executed locally by the node’s local EVM.

6 Evaluation

In this section we evaluate how the parameters of B-CoC, namely the block period T and
the block gas limit G, affect its performance. This analysis allows to guide the choice of
the most appropriate configuration parameters in each scenario, as discussed in Section 7.
Section 6.1 reports an analysis of the transaction latency, Section 6.2 evaluates the space
overhead due to block headers and Section 6.3 discusses the growth rate of the blockchain.

Notation. In the following sections we will use the notation TX to refer to a transaction
type (i.e., a non-constant function of a smart contract) and tx to refer to an execution
of a transaction. For example, TX may refer to the transaction type Transfer(), while
tx may refer to an actual execution of a Transfer() of an evidence. We will use gas(tx)
and size(tx) to indicate, respectively, the gas consumed by the execution of a transaction
tx and the size (in bytes) of tx when included in a block. Note that, in general, both
gas(tx) and size(tx) depend on the particular execution of tx. In practice, for our smart
contract, transaction types Transfer() and RemoveEvidence() have constant size and gas
used, while for CreateEvidence() such parameters depend exclusively on the length ` of
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the description parameter. Thus, for ease of presentation we will consider a different
transaction type CreateEvidence(`) for each value of `. Since we limit the length of the
description parameter to 1024 characters, we consider 1025 different transaction types
(` = 0, . . . , 1025). Thus, each transaction type has constant size and constant consumed gas
and, therefore, we will consider size(TX) = size(tx) where tx is an execution of TX and
use the two members of the equation interchangeably, as well as gas(TX) = gas(tx). We
will refer to SC = {TX1, . . . , TXn} as the set of transaction types of the smart contract.
Table 1 reports the size and gas of the transaction types in our smart contract. Due to space
constraints Table 1 only shows CreateEvidence(`) for ` = 0 and ` = 1024, but the size and
gas used by such transaction types increase with `.

6.1 Transaction latency
The transaction latency L(tx) = LB(tx) + LC(b) is the time elapsed from the issue of the
transaction to its inclusion in the blockchain. It is the sum of the block inclusion latency
LB(tx), that is the time required by tx to be included in a block b of the current proposer,
and the consensus latency LC(b), which is the time required to reach consensus on block
b and include it in the blockchain: In the next two sections we will analyze these two
terms separately.

6.1.1 Block inclusion latency
The block inclusion latency LB(tx) is the time required for a transaction tx to be included
in a block. Indeed, whenever a new transaction is issued it may not fit in the block of the
current proposer due to the block gas limit G. In such case, the transaction is reissued in
the next block period.

More formally, let block(tx) be the block in which, eventually, transaction tx is included,
and time(tx), time(b) be, respectively, the time at which tx is issued and the time at which
a block b was created (i.e., the beginning of b’s block period), then:

LB(tx) = time(block(tx)) + T − time(tx) (1)

where T is the block period.
The block inclusion latency is affected by the block period parameter T , the gas limit

G and the workload, i.e., the rate of transactions issued to the system in the unit of time.
Suppose that we are able to precisely characterize the workload the system is subject to and
to set G such that every issued transaction is included in the block of the current proposer.
In such ideal conditions, LB(tx) ∈ [0, T ]. That is, the maximum block inclusion latency
is the block period T . Clearly, setting G = ∞ would meet the ideal conditions for every
possible workload volume, but on the other side would negatively impact consensus latency,
as blocks could increase indefinitely (see next section). Thus, we would like to set G as small
as possible (to reduce consensus latency), but large enough so that (at least on average)
every transaction is included in the block of the current proposer. Thus the ideal value of G

depends on the workload. However, rather than the number of transactions per seconds, it
depends on the gas rate, i.e., the amount of gas consumed by the transactions issued in a
given block period. Indeed, the minimum value of G that guarantees the ideal conditions for
the block inclusion latency is the maximum gas rate.

Figure 2 shows the results of three experiments that confirm the previous claim. In each
experiment we set a different value of the block gas limit (G1, G2 G3) and we progressively
increased the gas rate from the start to the end of the experiment. From the figure we

Tokenomics 2019
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Figure 2 Mean block inclusion latency varying the gas rate, i.e., the amount of gas consumed by
transactions in a block period.

can clearly see that, in each experiment, when the gas rate is less than or equal to the gas
limit the average block inclusion latency is approximately equal to the expected value of
T/2 (because transactions are issued uniformly distributed in each block period) while the
maximum latency is T (not shown in the figure). However, as soon as the gas rate exceeds the
block gas limit the average block inclusion latency starts increasing indefinitely as expected.

This analysis provides a lower bound for the value of the block gas limit (i.e., the maximum
gas rate), that allows to minimize the maximum block inclusion latency to T . However,
determining such value may be difficult. Section 7 reports a more general and detailed
discussion on setting the parameters of B-CoC.

6.1.2 Consensus latency

Given the consensus protocol described in section 2.3, the consensus latency, i.e., the
time required to propagate a block b between the validators and reach consensus, can be
approximated by the formula LC(b) ≈ sPP(b)+sP+sC

R , where sPP(b) is the size of the pre-
prepare message, sP is the size of the prepare message, sC is the size of the commit message
and R is the bandwidth of the slowest communication channel between two validators nodes
(bytes/sec). While sP and sC are constant, the pre-prepare message piggybacks the block
b and thus sPP(b) depends on size(b). Since R is typically a constant that depends on the
infrastructure connecting the validator nodes, the only factor that we can adjust to control
the latency is the size of a block.

The size of a block is the sum of the size of the transactions in it plus the size of the block
header sH (which is constant). In our prototype implementation of B-CoC, sH = 1909 bytes.
The actual number and type of transactions in a block depends on many factors, including the
block period T , the block gas limit G and ultimately the particular set of transactions sent
during a given time period. Thus, in general, different blocks have different sizes. However,
we can control the maximum block size Smax, and thus the maximum consensus latency
Lmax

C , by adjusting the block gas limit G.
For a given value of G, the maximum block size Smax can be computed by solving the

following optimization problem:
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I Problem 1 (UKP).

maximize
∑

T Xi∈SC
size(TXi) · xi

subject to
∑

T Xi∈SC
gas(TXi) · xi ≤ G

xi ∈ N, i = 1, . . . , n

where xi is the number of times a transaction of type TXi appears in the block of maximum
size. The optimal solution {x∗1, . . . , x∗n} leads to the maximum block size:

Smax = sH + OPTUKP(G) = sH +
∑

T Xi∈SC
size(TXi) · x∗i

Problem 1 is an instance of the well-known unbounded knapsack problem [8], where
transaction types correspond to the items to fit in the knapsack, while transactions’ size
and consumed gas correspond, respectively, to items’ value and weight. The block gas limit
parameter G corresponds to the knapsack maximum weight.

While the general unbounded knapsack problem is NP-hard (with time complexity
O(nG)), this particular instance turns out to be trivial. Indeed, it is easy to see that
Transfer() dominates all other transaction types [8]. That is, given any block containing
at least a transaction tx of type in SC \ {Transfer()}, we can always replace tx with
a sufficient number of Transfer() so as to obtain a better solution to Problem 1. For
example, we can always replace a transaction of type RemoveEvidence() with a single
Transfer() and obtain a solution that consumes less gas but have larger size. The same
occurs if we replace CreateEvidence(0) with 2 Transfer(), or CreateEvidence(1024)
with at least 8 Transfer(). This implies that the optimal solution of this instance of
the unbounded knapsack problem corresponds to a block consisting of only Transfer()
transactions. Therefore, let gT = gas(Transfer()), sT = size(Transfer()), the solution is
simply given by:

Smax = sH +
⌊

G

gT

⌋
· sT (2)

Note that Smax cannot be an arbitrary integer, but only one such that Smax = sH + k · sT,
k ∈ N.

Once chosen the appropriate value of Smax (one that allows to limit the maximum
consensus latency to an acceptable bound), G can be set to any value such that:

G = Smax − sH

sT
· gT + r = k · gT + r, r = 0, . . . , gT − 1 (3)

Equations 2 and 3 allows to determine an upper-bound for G so as to bound the maximum
consensus latency Lmax

C . A more general discussion on how to properly set B-CoC’s parameters
is reported in section 7.

6.2 Block headers overhead
As discussed in section 6.1.1, the block period T affects transactions block inclusion latency.
A longer block period implies higher latency. On the other hand, a shorter period results in
a higher number of blocks created per time interval (since a block for each block period is
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Figure 3 Total headers size per year for different block periods T .

created). Since each block has a fixed size header, the larger the number of blocks created,
the higher the space occupied by block headers compared to transactions in the blockchain,
that is, the higher the space overhead.

The headers size overhead, i.e., the total size of block headers, at any time t is:

OH(t) = sH ·
t

T
(4)

Note that this value only depends on the number of blocks in the chain at time t, and not
on the number of transactions. Figure 3 shows the space overhead per year (sH = 1909 bytes
in our prototype implementation), that is, how much blockchain’s space is taken up by block
headers every year. For example, for T = 5 minutes the space overhead is around 191 MB
per year. We find this value of T a good trade-off between transaction latency and block
headers overhead for this particular application of the blockchain.

6.3 Blockchain growth rate
The blockchain can be seen as an append-only database. That is, its size cannot shrink
over time. If ISC(t) is the set of transactions included in the blockchain at time t, then the
blockchain total size at time t is:

sizebc(t) = sg + overheadbc(t) +
∑

tx∈ISC(t)

size(tx)

where sg is the size of the genesis block. Therefore, the growth rate over a time interval
[t1, t2] is sizebc(t2)− sizebc(t1), that is:

GR(t1; t2) = sH ·
t2 − t1

T
+

∑
tx∈ISC(t1;t2)

size(tx) (5)

where ISC(t1; t2) = ISC(t2) \ ISC(t1).
Obviously, how fast a blockchain grows over time depends mainly on the transaction

rate. Another factor that affects the growth rate is the block period T . As already shown in
section 6.2, this parameter affects the headers overhead and thus the first term of equation 5.
The block gas limit parameter G may also affect the growth rate, as, if not properly
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Table 2 Growth rate for different classes of workloads (n CreateEvidence(1024), n

RemoveEvidence(), 10n Transfer() per year).

Workload GR−OH GR with T = 5′ OH / GR (%)

n = 10000 29.7 MB/year 221.08 MB/year 86.56%
n = 100000 297 MB/year 488.45 MB/year 39.18%
n = 1000000 2.9 GB/year 3.09 GB/year 6.05%

dimensioned, it may increase latency spreading the incoming transaction rate over a larger
time period, thus, decreasing the growth rate (i.e., G would affect the number and type of
transactions included in ISC(t1; t2) and thus the second term of equation 5). However, the
analysis detailed in section 6.1, should allow to set the value of G so as to bound transaction
latency. In practice, G should be set greater than the average gas rate to avoid an ever
increasing latency. In this conditions, if the growth rate is computed over a large enough
interval of time (to hide the effects of potential peak gas rate periods), the block gas limit
parameter should not affect the growth rate significantly (that is, if properly set, G should
not affect ISC(t1; t2)). Otherwise, G should be set to a larger value.

By using equation 5 we computed the annual growth rate for different classes of workloads.
Since we were not able to find any publicly available statistics about evidence collection
and transfer, we considered different classes of synthetic workloads with n new evidence
creations and removals and 10n transfers per year. The results of this analysis are reported
in Table 2. The second column of Table 2 reports the annual growth rate without considering
the headers size overhead, while the third one includes the overhead term computed for
T = 5′. Finally, the fourth column shows the overhead percentages. Even in presence of a
very large number of evidence collection (1 million per year) and transfers (10 millions per
year) the growth rate is around 3 GB per year, which seems acceptable given the capacities
of todays storage devices.

7 Discussion on the configuration of the parameters

Section 6 discusses how the parameters of B-CoC affect its performance with respect to
different aspects, namely the transaction latency, the block headers overhead and the
blockchain growth rate. Here we give a comprehensive discussion on how to set B-CoC
parameters appropriately.

7.1 Setting the block period T

The block period T affects transactions block inclusion latency (see section 6.1.1) and the
block headers overhead (section 6.2), that ultimately affects the blockchain growth rate. As
already discussed in section 6.2, a shorter block period results in a lower maximum block
inclusion latency, but also in a higher block header overhead. To find the best trade-off one
can use equation 4. For example, with our prototype implementation of B-CoC we consider
T = 5′ to be a good trade-off between latency and block header overhead. Indeed, any
further increase of T would result in a small improvement in terms of overhead reduction
compared to the increase of latency (as shown in Figure 3).

7.2 Setting the block gas limit G

The block gas limit affects both term of the transaction latency. In particular in section 6.1,
we describe an analysis that allows to derive a lower bound GL for G, to limit block inclusion
latency and an upper bound GU to limit consensus latency.
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When GL ≤ GU it is safe to set G equal to any value in [GL, GU] to obtain a maximum
block inclusion latency bound by T and the desired maximum consensus latency. On the
other hand, if GL > GU, it is not possible to have both terms of transaction latencies bounded
by the desired values. In such case, one should set G to the best trade-off between block
inclusion latency and consensus latency. A good strategy may be to discard the lower bound
GL in favor of a new lower bound Gavg

L which is set to the average gas rate rather than the
maximum gas rate. Setting G = Gavg

L would result in block inclusion latency bounded by T

on average, with possible periods of increasing latencies, e.g., during peak loads. In this case,
if Gavg

L ≤ GU one should set G = GU, otherwise G = Gavg
L . Indeed, setting a value of G less

than the average gas rate would result in ever increasing transaction latencies.

8 Conclusion

This paper presented B-CoC, a blockchain-based architecture to dematerialise the CoC
process in digital forensics. We also provided a prototype of the B-CoC architecture based
on the Geth implementation of Ethereum nodes. Based on the performance evaluation,
B-CoC showed to be an effective support for the CoC process as it is able to sustain realistic
workload with an acceptable overhead in terms of memory used to store the chain.

The current implementation assumes that the set of validators node is fixed and that
validators are available to sacrifice their privacy when participating in the consensus process.
As a future work, we are investigating how it is possible to manage a dynamic set of validators
and most important we are studying alternatives that allow to increase the level of privacy
for validators not altering other dependability and security attributes.
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A Smart Contract Code

1 pragma solidity ^0.4.22;
2 contract ChainOfCustody {
3 struct Evidence {
4 bytes32 ID;
5 address owner;
6 address creator ;
7 string description ;
8 address [] taddr;
9 uint [] ttime;
10 }
11 mapping ( bytes32 => Evidence ) private evidences ;
12
13 modifier OnlyOwner ( bytes32 ID) {
14 require (msg. sender == evidences [ID]. owner); _;}
15 modifier OnlyCreator ( bytes32 ID) {
16 require (msg. sender == evidences [ID]. creator ); _;}
17 modifier EvidenceExists ( bytes32 ID , bool mustExist ) {
18 bool exists = evidences [ID].ID != 0x0;
19 if ( mustExist )
20 require (ID != 0x0 && exists );
21 else
22 require (! exists );
23 _;}
24
25 function CreateEvidence ( bytes32 ID , string description )
26 public EvidenceExists (ID , false) {
27 evidences [ID].ID = ID;
28 evidences [ID]. owner = msg. sender ;
29 evidences [ID]. creator = msg. sender ;
30 evidences [ID]. description = description ;
31 evidences [ID]. taddr.push(msg. sender );
32 evidences [ID]. ttime.push(now);
33 }
34 function Transfer ( bytes32 ID , address newowner )
35 public OnlyOwner (ID) EvidenceExists (ID , true) {
36 evidences [ID]. owner = newowner ;
37 evidences [ID]. taddr.push( newowner );
38 evidences [ID]. ttime.push(now);
39 }
40 function RemoveEvidence ( bytes32 ID)
41 public OnlyCreator (ID) EvidenceExists (ID , true) {
42 delete evidences [ID];
43 }
44 function GetEvidence ( bytes32 ID)
45 view public returns (bytes32 , address , address ,
46 string , address [], uint []) {
47 return ( evidences [ID].ID , evidences [ID]. owner ,
48 evidences [ID]. creator , evidences [ID]. description ,
49 evidences [ID]. taddr , evidences [ID]. ttime);
50 }
51 }

Listing 1 Smart contract code.
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