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A B S T R A C T

Two-person neuroscience (2 PN) is a recently introduced conceptual and methodological framework used to
investigate the neural basis of human social interaction from simultaneous neuroimaging of two or more subjects
(hyperscanning). In this study, we adopted a 2 PN approach and a multiple-brain connectivity model to inves-
tigate the neural basis of a form of cooperation called joint action. We hypothesized different intra-brain and
inter-brain connectivity patterns when comparing the interpersonal properties of joint action with non-
interpersonal conditions, with a focus on co-representation, a core ability at the basis of cooperation. 32 sub-
jects were enrolled in dual-EEG recordings during a computerized joint action task including three conditions: one
in which the dyad jointly acted to pursue a common goal (joint), one in which each subject interacted with the PC
(PC), and one in which each subject performed the task individually (Solo).

A combination of multiple-brain connectivity estimation and specific indices derived from graph theory
allowed to compare interpersonal with non-interpersonal conditions in four different frequency bands. Our results
indicate that all the indices were modulated by the interaction, and returned a significantly stronger integration of
multiple-subject networks in the joint vs. PC and Solo conditions. A subsequent classification analysis showed that
features based on multiple-brain indices led to a better discrimination between social and non-social conditions
with respect to single-subject indices. Taken together, our results suggest that multiple-brain connectivity can
provide a deeper insight into the understanding of the neural basis of cooperation in humans.
1. Introduction

Successful interactions depend upon our capacity to cooperate with
others, and are based on the human ability to give sense to another
person’s behavior, to adjust and to synchronize one’s actions with those
of others: cooperation involves mutual and reciprocal interaction be-
tween two minds. A particular form of cooperation, whereby at least two
agents coordinate their motor actions pursuing a common goal, is joint
action (Bratman, 1992; Clark, 1996; Engemann et al., 2012; Sebanz et al.,
2006). According to Bratman (1992), a shared cooperative activity (i.e.
joint action) includes three features: (i) mutual responsiveness, i.e. each
participating agent attempts to be responsive to the intentions and
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actions of the other; (ii) appropriate commitment to the joint activity (an
intention in favor to the joint activity, even if with different motivations);
(iii) commitment to mutual support, i.e. each agent is committed to
supporting the efforts of the other to play his/her role in the joint activity.
Successful joint actions depend on the ability to dynamically adjust the
individual action planning by simultaneously taking into account the
actions performed by one’s co-actor (Becchio et al., 2008; Vesper et al.,
2009). This ability, called co-representation or shared representation, is
based on the representation of the other’s relevant actions by simulating
and integrating own and other’s action in real time (Bekkering et al.,
2009; Sebanz et al., 2006).

From a neurophysiological perspective, joint actions have been
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related to two cognitive brain mechanisms: the mirror neuron system
(MNS), responsible for action simulation (Newman-Norlund et al., 2008;
Rizzolatti and Craighero, 2004), and the mentalizing system, supporting
the representation of other minds (Apperly and Butterfill, 2009; Frith,
2012; Gallagher and Frith, 2003). Enhanced activations of both systems
have been reported in studies in which individuals were engaged in
online interactions, including motor coordination (Chaminade et al.,
2012), joint attention (Schilbach et al., 2010), and the observation of a
joint action (Eskenazi et al., 2015). Literature also reports studies
investigating joint action by means of different motor and interpersonal
coordination paradigms (Bosga and Meulenbroek, 2007; Knoblich and
Jordan, 2003; Konvalinka et al., 2010; Miles et al., 2009; Ondobaka et al.,
2012; Richardson et al., 2007; Sacheli et al., 2018; Schmitz et al., 2017;
Sebanz et al., 2005), by themirror game paradigm (Hart et al., 2014), and
by communicative interaction via ambiguous stimuli (Manera et al.,
2011). However, these studies used the traditional single-person
approach investigating an “isolated mind” and did not exploit the
simultaneous measurement of both agents typically involved in joint
actions. Thus, the link between brain modulations in interacting agents is
still not explored.

It was demonstrated that if two agents behave cooperatively and in
a synchronized way in order to achieve a common goal, their brain
activities synchronize too (Hasson et al., 2012). Recently, a new
conceptual and methodological framework was proposed to investi-
gate the neural basis of human social interaction: the two-person
neuroscience (2 PN). 2 PN focuses on studying the dual exchange
rather than the individual behavior alone, by using simultaneous
neurophysiological recordings from two or more subjects, commonly
referred to as hyperscanning or dual scanning (Montague et al., 2002;
Babiloni and Astolfi, 2014; Hari et al., 2015). Despite this being a very
promising framework, hyperscanning studies show typical technical
and practical limitations, ranging from an artificial setting to impre-
cise spatial or temporal resolution. Disentangling different factors
producing a modulation of brain activity is currently a challenge for
both data analysis and experimental design (Burgess, 2013; Hari et al.,
2015). A viable way to untangle the social interaction from
two-persons data is the estimation of multiple-brain connectivity (also
referred to, in some studies, as hyperconnectivity). Thereby, temporal
correlations (or causality in the statistical sense (Wiener, 1956)) be-
tween brain signals of different subjects during their interaction are
studied to understand how each subject’s brain activity is correlated
with the other subject’s one. Inter-subject connectivity was described
by fMRI (Bilek et al., 2015; King-Casas et al., 2005), MEG (Campi
et al., 2013) and EEG studies, which allow for a more ecological
setting (Toppi et al., 2016a; Müller et al., 2013; Dumas et al., 2012b;
S€anger et al., 2012; Astolfi et al., 2011, 2010; De Vico Fallani et al.,
2010; Lindenberger et al., 2009; Babiloni et al., 2006). The use of
indices derived from graph theory has allowed characterizing the
multiple brain system by means of its properties (Ciaramidaro et al.,
2018; De Vico Fallani et al., 2010). Despite the advancements in the
field, the added value and potentiality of analyzing social and
non-social conditions provided by multiple-brain analysis with respect
to the single-brain analysis has not been yet clearly quantified. In fact,
although recent literature reports an increase in works about
inter-subject connectivity, no study, to our knowledge, focused on
demonstrating the advantages of analyzing the subjects’ data as a
unique system with respect to analyze them separately.

Just a few hyperscanning studies using EEG and fNIRS have tested
cooperative joint action. In particular, they focused on motor planning
tasks (Konvalinka et al., 2014; Kourtis et al., 2013; Dumas et al., 2010,
2012a, 2012b), guitarists playing (Vanzella et al., 2019; Müller et al.,
2018, 2013; S€anger et al., 2012), joint attention (Szymanski et al., 2017),
conversation (P�erez et al., 2017; Kawasaki et al., 2013) and cognitive
joint performance (Balconi et al., 2018a, 2018b; Cui et al., 2012).
However, none of these studies focused on the co-representation, an
ability that is at the basis of joint action. Here we aim to disentangle the
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ability to share representations during real-time interpersonal coordi-
nation: by using EEG-hyperscanning within a 2 PN framework, we intend
to test if the study of inter-brain connectivity in a multiple-subject
approach can provide an effective tool for discriminating the interper-
sonal properties of joint action tasks with respect to non-interpersonal
conditions.

In this study, in contrast to previous works, we focused on the co-
representation, and in particular on how the awareness of interacting
or not with a human agent will affect the motor synchronization task. For
this reason, we modified a motor interpersonal coordination task pro-
posed in previous studies (Newman-Norlund et al., 2008; Bosga and
Meulenbroek, 2007) by adding to the human joint condition an analo-
gous non-human condition, representing the joint coordination with a
computer, and a solo condition, in which each subject was asked to
perform the task individually (Fig. 1). In all conditions, neural activity
from both subjects was recorded simultaneously by means of 64-channel
EEG. In a preliminary study (Astolfi et al., 2014) we reported a first
analysis of the inter-subject connectivity in a dyad, exploring two graph
indices that varied in the interactive condition.

In summary, we based this study on the hypothesis that multiple-
brain analysis during a real-time joint action task will be able to
elicit EEG signatures of shared representation in both interacting
agents. In particular, we expected: i) different inter-brain connectivity
patterns in the human joint task with respect to the PC condition; ii)
different connectivity patterns in the joint task with respect to the Solo
condition; iii) that the indices derived from the multiple-brain net-
works can quantify such differences, accurately discriminate the joint
action from the other two conditions and correlate with performances
in the joint condition, as a possible way to explain a successful
cooperation; iv) that multiple-brain analysis can return a deeper
characterization of the role of agency and co-representation in social
tasks with respect to a classical single subject analysis, and thus that
indices derived from the multiple-brain networks can prove an effec-
tive tool to increase our ability to understand the neural basis of social
tasks.

2. Methods

2.1. Participants

Thirty-two male subjects aged between 18 and 30 (mean age 25.28;
SD ¼ 4.39) were enrolled in the study. Participants were recruited by
advertisements in local schools and at university. All participants were
right-handed with normal or corrected-to-normal vision. Psychiatric
disorders were excluded by the Young Adult Self-Report (YASR)
(Achenbach, 1997). All participants scored below the borderline range of
any first-order scale. In addition, a semi-structured medical interview
was done to exclude chronic somatic and neurological conditions. Par-
ticipants were arranged in 16 dyads, each composed of two male
strangers with an acceptable age gap.

All participants provided written informed consent according to the
convention of Helsinki. The study was approved by the ethical committee
of the Medical Faculty of the Goethe Universit€at Frankfurt/Main (Ger-
many). The subjects received a lump sum payment of 45 euros for taking
part in the experiment.

2.2. Experimental design

Each pair of subjects performed the Joint Action task, implemented
through a computer game. The task consisted of lifting a virtual ball
from the bottom of the screen up to a target region located at the top
of the screen (goal), by controlling both sides (left and right) of a
moving bar on which the ball was placed. The ball was free to roll
down the bar, if the correct balance was not kept (see Fig. 1). In order
to increase complexity, we introduced an obstacle in the middle of the
screen. We used a modified version of the paradigm (Bosga and



Fig. 1. a) Hyperscanning Experimental Setup.
Subjects were seated face to face, separated by a
barrier which did not allow them to look at each
other, and wore earplugs to avoid that the noise
of pressing buttons would facilitate their motor
synchrony. b) Graphical representation of the
three conditions included in the paradigm. The
goal of the game was to lift the virtual bar by
keeping it balanced, so to make the virtual ball on
its top reach the target area (in blue in the upper
part of the screen) without rolling away from the
bar or hitting the obstacle (the red line). In the
Joint Condition, the subjects jointly controlled
the bar, one side (and one response button) each.
In the PC Condition, each subject did the same
task but with the PC, controlling one side of the
bar and one response button. In the Solo Condi-
tion, the subjects were asked to solve the task
individually (though simultaneously), and each
of them controlled both sides of their bar and
both response buttons.

Table 1
Average performances in the three experimental conditions (Joint, PC, Solo)
captured by the behavioral variables i) trial length (trial duration in seconds), ii)
ball height (% of trial completion), and iii) goals (% of correct trials). Values are
represented as mean (�SD).

Trial Length (in sec) Ball Height (%) Goal (%)

Joint 7.32 (1.04) 87.31 (3.00) 66.35 (12.79)
PC 7.02 (0.76) 83.43 (4.60) 36.77 (15.12)
Solo 6.48 (0.67) 87.31 (3.45) 61.15 (17.75)
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Meulenbroek, 2007; Newman-Norlund et al., 2008) by adding to the
human joint condition an analogous non-human (PC) joint condition,
and by considering a solo condition. Consequently, our task included
three main conditions: Joint condition, Solo condition, and PC con-
dition. In the Joint condition, the dyad jointly worked at the same
task. Each subject controlled one side of the virtual bar by pressing a
button with his right index finger. The PC condition represents the
joint coordination with a non-human agent and like in the Joint
condition, each subject controlled a side of the virtual bar using the
right index finger while the other side was controlled by the PC. In the
Solo condition each subject was asked to perform the task individu-
ally, by controlling both sides of the virtual bar by using the right
index and middle fingers. In all the conditions, both subjects played
and were recorded simultaneously and weren’t allowed to communi-
cate. In addition, we included a baseline condition in which the sub-
jects were sitting in front of the screen, watched the same bar used
during the experiments moving through the screen and had to press
buttons with the same fingers and timing than during the experiment,
but with no relation to what was happening on the screen (low
baseline).

Each of the three experimental conditions consisted of 60 trials of
approximately 8 s (inter-trial interval ¼ 2 s). The conditions were pre-
sented block-wise, in random order. In the Solo and PC conditions, in
case one person finished a trial before the other did, the game of the
former would pause in order to assure that all trials started
simultaneously.

Stimuli presentationwas realized by usingMATLAB (TheMathWorks,
Version R2009b). Stimuli were displayed on two 1900 LCD monitors
3

(Fujitsu Siemens Scenicview L9ZA, resolution 1280 � 1024) at a refresh
rate of 150 Hz.
2.3. Analysis of behavioral data

For each trial of the task we saved the following parameters: i) trial
duration (trial length in seconds); ii) height reached by the ball at the end
of the trial, normalized according to the maximum (ball height); iii) the
score of correct trials (i.e. those in which the ball reached the goal zone).

Data were analyzed (using STATISTICA 12) by a repeated measures
one-way ANOVA considering as dependent variables the three parame-
ters (trial length, ball height and correct trials) and as within factor the
TASK type (Joint, PC and Solo). Means were subsequently compared
using Newmann-Keuls post hoc test.

We did not find any significant effect induced by the TASK for trial
length [F(2,30) ¼ 1.915; P ¼ 0.164] and ball height [F(2,30) ¼ 2.585; P
¼ 0.093]. The only significant effect was found for the number of goals
[F(2,30) ¼ 79.703; P ¼ 0.00001]. Post hoc comparisons revealed



Fig. 2. Conceptual scheme of a multiple brain connectivity model. Red and
purple arrows refer to the intra-subject connectivity for subject A and B,
respectively. Green arrows refer to connectivity directed from subject A to
subject B and blue arrows refer to the connectivity directed from subject B to
subject A. The entire connectivity network is derived, in a fully multivariate
way, on the basis of the whole dataset.
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significant differences for the Joint condition compared with the PC and
the Solo condition. Differences were also found for the Solo condition
compared with the PC condition (see Table 1).

2.4. Simultaneous multi-subject EEG recordings

The neuroelectrical hyperscanning recordings were performed with a
128-channel EEG acquisition system (Brain Product GmbH, Germany -
for each subject: 61 EEGþ 3EOG channels, reference on linked mastoids,
ground at Fpz). The EEG/EOG signals were collected with a sampling
frequency of 250 Hz. In order to delete the sources of variance between
the four amplifiers due to the electrical noise and the impedance of the
electrodes, the same calibration signal was delivered to all the devices to
adjust their sensitivities and to equalize their different gains.

2.5. Pre-processing of EEG signals

EEG signals were band-pass filtered in the range 1–45 Hz. Indepen-
dent Component Analysis (ICA) was used to remove ocular artifacts. We
discarded only one ICA component from the estimated set, the one in
which the blink artifact was identified. EEG traces were segmented in
relation to the specific timing of the paradigm: in the Joint Condition we
focused on the period in which the two subjects jointly controlled the bar;
in PC and Solo we considered only the period between the simultaneous
beginning of the trial for the subjects and the trial conclusion for the
fastest of the two. These intervals were further segmented in epochs of 1s
each. Then, a semi-automatic procedure, based on a threshold criterion
(�80 μV), was applied to remove the residual artifacts. On average, we
removed less than 10% of the total amount of trials collected per con-
dition per subject. Only the artifacts-free epochs common to both subjects
were considered in the further analyses. No statistical differences were
found in the number of epochs preserved for the three different experi-
mental conditions.

The pre-processing procedure was entirely performed by means of
Brain Vision Analyzer 1.0 (Brain Products GmbH).

2.6. Multiple-brain connectivity estimation

A subset of 15 channels (Fp1, Fp2, F5, Fz, F6, T7, C3, Cz, C4, T8, P3,
Pz, P4, O1 and O2) among the 61 recorded was selected for each subject,
in order to increase the accuracy of the connectivity estimates. Data
recorded simultaneously for both players was jointly subjected to con-
nectivity estimation (multiple-brain connectivity). In particular, we used
an extension of Partial Directed Coherence (PDC) to the multi-subject
case, optimized for hyperscanning purposes (Babiloni and Astolfi,
2014), whose accuracy was demonstrated in previous hyperscanning
studies (Ciaramidaro et al., 2018; Astolfi et al., 2011, 2010; De Vico
Fallani et al., 2010). Such estimator provides magnitude, direction and
spectral content of the functional connections exchanged between
different brain areas for each subject (intra-connections) and between the
two subjects (inter-connections) (see Fig. 2). For further information
about PDC and its extension to multiple-subject case, see the Supple-
mentary Data. The resulting PDC values were then averaged in four
bands of interest: theta, on average 3–7 Hz, alpha, on average 8–12 Hz,
beta, on average 13–29 Hz and gamma, on average 30–40 Hz.

In order to avoid the estimation of spurious links in the multiple-brain
connectivity (Burgess, 2013) due to differences in the amplitude of the
signals recorded from different individuals, we applied the following
mitigation actions: i) data coming from each subject in the couple were
normalized by means of a z-score before being included in the estimate,
ii) the significance of estimated networks was then assessed through an
asymptotic approach theorizing PDC null-case distribution (Toppi et al.,
2016b). The asymptotic statistic approach allowed to obtain threshold
values related to the null-case (significance level 0.05, corrected by
means of False Discovery Rate - FDR) which were used for the con-
struction of the connectivity matrices. Specific thresholds were computed
4

for each (directed) connection in the network and each frequency band.
2.7. Graph theory in multiple-brain networks

To quantify the main properties of the multiple-brain networks
(including intra- and inter-brain connectivity) at the level of the single
dyad, we computed a set of indices, some derived from the classical graph
theory (Rubinov and Sporns, 2010) and others defined ad hoc to capture
relevant properties of multiple-subject connectivity (Ciaramidaro et al.,
2018). In particular, we focused on specific indices measuring the inte-
gration of the two-subject network, some positively correlated (the
higher the integration, the higher the index value): Global Efficiency,
Local Efficiency, Clustering, Inter-Brain Density-IBD, Path Length and
Degree, and some negatively correlated (the lower the integration, the
higher the index value): Divisibility and Modularity. Further details
about the indices are reported in Tab.S1.

To evaluate the added value of considering the two subjects as a
unique system we extracted graph indices also from the single subject
connectivity matrices. To this purpose, we used a subset of indices
(Global Efficiency, Local Efficiency, Clustering, Path Length and Degree)
since IBD and inter-brain Divisibility and Modularity cannot be
computed for single-brain connectivity matrices.

For each dyad, experimental condition and frequency band we built a
binary directed adjacencymatrixG as a squaredmatrix of dimensionsN X
N (where N is the number of nodes of the graph). Each element Gij rep-
resents the connection directed from node i to node j. Gij is equal to 1 if
the connection directed from i to j in the task is significantly different (p
< 0.05) with respect to the baseline, and 0 if the statistical test does not
return any significant difference for that connection and direction. Our
adjacency matrices are non-symmetrical (Gij6¼Gji) and therefore keep the
information about directionality, which we subsequently used to
compute indices formulated for directed graphs.

The analysis pipeline, including multiple brain connectivity estima-
tion and graph theory computation, was performed in Matlab environ-
ment (MATLAB, R2018a).
2.8. Statistical analysis

2.8.1. Connectivity patterns group analysis
We computed PDC between the two subjects’ brain signals by means

of the same (previously described) procedure for all conditions (Joint, PC
and Solo). Successively, we statistically compared (dependent samples t-
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test, p < 0.05) the resulting connections with their homologous con-
nections across conditions (i.e. Joint vs Solo, Joint vs PC and PC vs Solo)
to reliably isolate the brain-to-brain causality specifically active during
the Joint condition, where the two subjects are interacting with each
other, in contrast to those active when both subjects are simultaneously
engaged in a joint coordination with a non-human agent (the PC), or in
an individual coordination (Solo), in order to disentangle the co-
representation ability. The statistical test was performed for each con-
nectivity link, each direction and each frequency band and was corrected
for multiple comparisons by means of False Discovery Rate (FDR) under
dependence assumptions (Benjamini and Yekutieli, 2001).

2.8.2. Single dyad analysis
To quantify the main properties of the multiple-subjects brain net-

works (including intra- and inter-brain connectivity) at the single dyad
level we performed a task-baseline comparison (independent samples t-
test, p< 0.05) to characterize each condition for each dyad.While PC and
Solo conditions were meant to disentangle co-representation, to char-
acterize each condition we used a low baseline, reproducing the common
aspects of the task (visual stimulation, motor planning and execution).
During the baseline, the subjects sat in front of the screen, watched the
same bar used during the experiment moving through the screen and the
instruction was to randomly press the buttons with the same fingers, but
with no relation to what was happening on the screen. By this procedure,
spurious connectivity that could result as a consequence of the fact that
the subjects are involved in a similar and temporally related task (they
are exposed to the same stimuli and environment), can be removed,
ensuring a correct estimation (Astolfi et al., 2011; Burgess, 2013).

2.8.3. Graph theory analysis of connectivity networks
To compute graph indices, the PDC matrices obtained for each dyad,

frequency band and condition were contrasted with their homologous
estimated during the low baseline, returning adjacency matrices. We
assigned 1 to the entries corresponding to connections resulting statis-
tically different from the low baseline and 0 to the entries for which the
test did not return any difference. A total of 12 (3 experimental condi-
tions X 4 frequency bands) binary and directed (non-symmetrical) ad-
jacency matrices were obtained for each dyad and used to extract the
graph theory indices listed in Tab.S1. The entire procedure was per-
formed for multiple- and single-subject networks.

2.8.4. ANOVA on graph indices
The indices computed for the multiple-subject networks as well as for

the single subject networks were subjected to one-way repeated mea-
sures ANOVA considering as main within factor the experimental con-
ditions (Joint, PC, Solo). Newman-Keuls’ post hoc tests were then applied
to further investigate the significant factors. ANOVA was computed
separately for each frequency band and for indices extracted from single-
brain and multiple-brain networks. Statistical analysis on graph indices
was computed by means of STATISTICA (StatSoft Inc., Version 8.0).

2.9. Classifying social behavior through multiple-subject connectivity
indices

To test if and how the information provided by multiple-subject
connectivity is suitable to characterize the joint task, we performed a
classification study, in which graph indices were used as features of a
Support Vector Machine classifier with linear kernel to discriminate three
different pairs of classes: Joint-Solo, Joint-PC, PC-Solo. We built a clas-
sifier for each classification and each frequency band and computed the
related accuracy. To explore to which extent such analysis can be
empowered by the multiple-subjects approach, we statistically compared
the accuracy obtained with single-subject indices (intra-brain connec-
tivity) with that obtained by multiple-brain indices (independent sample
t-test, significance level ¼ 0.05). The classification analysis was per-
formed in Matlab environment (MATLAB, R2018a).
5

2.10. Correlation of inter-brain indices with behavioral data

Correlation between inter-brain indices (obtained for each dyad and
each frequency band) and behavioral data (average values for each dyad)
was performed to test the hypothesis that the indices can not only
discriminate different tasks but also be modulated according to the de-
gree of cooperation in the Joint condition. As measures of successful
interaction we used the average time during which subjects were able to
keep the ball on the bar (trial length), the number of correct trials (goals
score) and the average maximum height achieved by the dyad (ball
height). The correlation was performed for the Joint condition and
repeated for the four frequency bands.

3. Results

3.1. Multiple-brain connectivity

The multi-subject statistical patterns obtained by the comparison of
each connection with its homologous across conditions (i.e. Joint vs Solo,
Joint vs PC and PC vs Solo) are reported in Fig. 3 for the alpha band.
Results in the other frequency bands are reported in the Supplementary
Data, Figs. S1–S3. For each comparison, the red connections represent
the inter-subject links that are significantly strengthened in the first
condition with respect to the second, while the blue ones report the result
of the opposite comparison. Fig. 3 shows how the inter-brain links
significantly strengthened in Joint vs. Solo and Joint vs. PC are denser
than those obtained in all the other comparisons. A similar behavior can
be described for the other frequency bands (see Figs. S1–S3).
3.2. Graph theory analysis of multiple-subject networks

The results of the ANOVAs performed for the multiple-brain indices
are reported in Table 2 and illustrated in Fig. 4 for the alpha band (the
complete results are reported in Fig. S4). The corresponding effect sizes
can be found in Table S4 of the Supplementary Data.

ANOVA results showed that all the indices were significantly modu-
lated by the type of interaction (Joint, PC and Solo) only for the multiple-
subject approach. In particular, we found significant differences between
the Joint condition and the two other conditions. In contrast, no signif-
icant differences were obtained between Solo and PC. Results of the
ANOVAs related to the single subject indices are reported in the Sup-
plementary Data (Tab.S2).
3.3. Classifying social behavior through multiple-subject connectivity
indices

Table S3 and Table 3 report the results of the classification study in
terms of accuracy achieved by the single subject and the dual subject
approach, respectively (see also Fig. 5 and Fig.S5 for the scatter plots of
global and local efficiencies). While the maximum classification accuracy
achieved by the classical single subject approach was of 75% for a single
index (Global Efficiency in the beta band, see Table S3), the results ob-
tained with multiple brain indices indicate multiple classification accu-
racies higher than 75% for Joint-PC and Joint-Solo classification
(Table 3; best results: 88% in theta and in alpha band). On the contrary,
the PC-Solo classification never returned results significantly different
from chance. Such results confirm that the differences found with the
ANOVA performed on the group are robust also at the single dyad level
and produce results that cannot be achieved by the single subject con-
nectivity analysis. Moreover, the statistical comparison between classi-
fication accuracies obtained by a single and dual approach highlighted
how the performances are significantly higher when the indices are
extracted from multiple-brain networks than from the single-brain net-
works (theta: p¼ 0,00057; alpha: p¼ 0,0001; beta: p¼ 0,036; gamma: p
¼ 0,0024).



Fig. 3. Statistical inter-brain causality patterns in alpha band. The networks were obtained by statistically comparing the three different levels of interaction: Joint vs
Solo, Joint vs PC and PC vs Solo (paired t-test, p < 0.05 FDR corrected). The heads are seen from above, the nose pointing to the bottom of the page. The arrows
indicate the existence of a statistical causality between the activity recorded on the scalp of the two subjects (15 electrodes each).
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3.4. Correlation of inter-brain indices with behavioral data

Results of the correlation study revealed a significant positive corre-
lation between the trial length and IBD, Global Efficiency, Local Effi-
ciency and Degree, while a negative correlation was found between the
same behavioral index and Divisibility and Modularity (Table 4). No
significant correlation was found for the other behavioral data.

4. Discussion

In this work we studied the contribution of a multiple-subject
approach to the investigation of shared actions in a dyadic interaction.
We pursued the main aim to prove if inter-brain connectivity can be a
valid instrument to investigate the co-representation ability during syn-
chronized interactive conditions with respect to non-interactive
conditions.
4.1. Interdependent synchronized interactions: shared representation
during joint actions

4.1.1. Co-representation
Our first aim was to describe EEG signatures of shared representation

in interacting agents, by means of indices derived from themultiple-brain
networks.

To this purpose, we used a modified version of a motor interpersonal
coordination task including three different conditions: the Joint action
condition, in which the dyad jointly performed the motor task, a non-
human interactive situation that we called PC condition and the Solo
condition, viz an individually performed motor action. The novelty of this
study consists of including two different factors that should be controlled
during a dual motor task: the number of (co)-represented agents (Solo vs
Joint) and the sense of agency in terms of human and non-human (PC vs
Joint). By using two different baseline conditions, we were able to show
6

that multiple-brain analysis allows characterizing the difference in terms
of shared representation in real-time interactive tasks. In fact, by means
of Solo condition we disentangled the individual from the dual contri-
bution, while by introducing the non-human agent we were able to
demonstrate that the differences found were not only related to the
number of agents involved, but also to the presence of two intentional
minds. During the joint action condition, our subjects had to continu-
ously and mutually adapt to each other, generating, on a moment-to
moment basis, a coupled behavior guided by a common goal. To in-
crease complexity and to assure co-representation we introduced an
obstacle in the middle of the screen (Sebanz et al., 2006) so that, in order
to be successful, our subjects needed to co-represent the relevant aspects
of the partner’s actions. In the PC condition, the subjects were continu-
ously engaged to adapt their behavior in accordance to the feedback
generated by the PC, but a co-representation was not possible, due to the
non-human nature of the cooperating agent. Similarly, no form of shared
representations was present during the Solo condition.

4.1.2. Multi-subject patterns
Results of our group analysis (Fig. 3 and Figs. S1–S3) showed that the

inter-brain links were significantly stronger in the Joint vs. PC and Solo
condition, indicating the existence of a statistical causality between the
activity recorded on the scalp of the two subjects in that condition. No
differences in terms of inter-brain links were observed between the PC
and the Solo conditions. We interpreted these links as a sign of interde-
pendent synchronization based on shared representations exclusively
present in the joint action condition.

4.1.3. Integration of multi-subject networks in the joint, PC and Solo
conditions

Such results were also confirmed by the values obtained for graph
theory indices across the different experimental conditions. In particular,
we selected the indices quantifying integration properties, since they
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Fig. 4. Results of the ANOVA performed on indices computed on the multiple-
brain networks, considering as within factor the type of interaction (Joint, PC,
Solo). Indices directly proportional to the network integration are reported in
blue, while those inversely proportional are depicted in red. Corresponding F
and p values are reported in Table 1. Asterisks indicate statistically significant
differences as returned by the Newman-Keuls post-hoc test. Note: GlobEff ¼
Global Efficiency; LocEff ¼ Local Efficiency; Clust ¼ Clustering; IBD¼ Inter-
Brain Density; Div ¼ Divisibility; Mod ¼ Modularity.
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have been demonstrated to be the most sensitive to variations in the
structure of multi-subject networks (Astolfi et al., 2011, 2010). In the
case of networks comprising two interdependent synchronized persons,
we expected a more efficient configuration, characterized e.g. by high
values of IBD and global efficiency and by low values of modularity and
divisibility (Ciaramidaro et al., 2018; De Vico Fallani et al., 2010). In
literature, there’s an agreement on the fact that the brain-to-brain net-
works become increasingly efficient and integrated as the level of
interaction between subjects intensifies (Falk and Bassett, 2017; Toppi
et al., 2015). In line with these expectations, we obtained significant
differences - in the direction of a higher integration – specifically be-
tween the Joint condition and the two control conditions (see Table 2,
Fig. 4 and Fig. S4).

During an individual action, the agent makes predictions about the
action course, that he compares with the ongoing feedback. During a
joint action the predictions concerns also the actions of the other agent
(Pacherie, 2011), as we automatically represent the partner’s action in
our motor planning and we are able to anticipate the goal of the motor
action of the partner, leading to successful interaction (Sahaï et al.,
2017). Consequently, in contrast to an individual action, the agent needs
additional planning to take into consideration the partner’s specific goal.
More importantly, these predictions are co-represented in both agents.
We might speculate how the high integration between the two subjects
(high IBD/global efficiency and low divisibility/modularity) could be a
direct measure of such simultaneous and reciprocal co-representation
during the joint action. Humans consider a joint action with a human
partner different than with computer agents (Limerick et al., 2014) as the
participants are aware that the PC is a non-intentional agent. A
co-representation is not possible and the “PC mind” is perceived as
opaque (Sahaï et al., 2017). This is in line with what we speculated, since
when no co-representation is made by the subjects (as in PC or Solo
conditions) the network efficiency drastically falls down. It was sug-
gested that when the partner of a joint action is a human agent, a kind of
“sense of agency” for the partner, called “we-agency” or “we-mode”
(Limerick et al., 2014), takes place. By acting with a PC this particular
sense of agency is inhibited.

We found no difference between PC and Solo conditions in multi-
subject network indices. This might be due to the fact that we selected



Table 3
Classification accuracy achieved using graph indices derived from multiple-subject connectivity networks as features. A binary linear Fisher classifier was built for each
pair of classes (Joint-PC, Joint-Solo, PC-Solo) and for each combination of graph indices (reported on x and y axis). The classification was repeated separately for the four
frequency bands. Classification accuracies above 70% were highlighted in bold. Note: GlobEff ¼ Global Efficiency; LocEff ¼ Local Efficiency; Clust ¼ Clustering; PL¼
Path Length; IBD¼ Inter-Brain Density; Div ¼ Divisibility; Mod ¼ Modularity.
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Theta GlobEff 78 81 53 81 72 38 81 75 47 81 75 25 75 75 41 75 78 38
LocEff 72 75 53 75 78 50 69 84 53 72 88 44 75 88 56
Clust 69 72 25 78 78 25 63 72 16 66 75 31
PL 72 75 28 69 66 31 66 69 34
IBD 78 66 22 81 78 41
Div 50 44 44
Mod

Alpha GlobEff 88 78 47 88 75 47 84 75 56 84 75 50 84 75 53 88 72 47
LocEff 75 81 34 78 75 56 75 75 50 72 75 44 69 69 47
Clust 78 66 53 75 75 41 69 75 41 72 66 41
PL 78 75 56 75 63 53 78 63 63
IBD 75 72 44 78 72 28
Div 56 63 53
Mod

Beta GlobEff 75 59 47 81 59 66 78 69 59 78 59 59 78 63 47 75 66 44
LocEff 72 63 66 75 59 28 66 63 50 72 63 28 75 69 34
Clust 75 47 66 78 63 59 81 59 66 66 56 63
PL 75 59 53 63 72 34 66 69 34
IBD 66 59 50 81 63 56
Div 59 56 41
Mod

Gamma GlobEff 72 66 66 78 72 59 78 72 50 78 66 59 81 69 56 75 72 59
LocEff 75 69 38 81 66 53 72 59 50 66 63 50 63 59 50
Clust 78 72 56 75 72 59 75 72 53 72 69 56
PL 81 72 56 78 69 66 78 69 69
IBD 69 59 56 78 63 56
Div 59 50 53
Mod

Fig. 5. Scatterplots reporting the values of Global Efficiency (on x-axis) and
Local Efficiency (on y-axis) computed on multiple-subject networks in Alpha
band. The scatterplots report the three different modalities of social interaction
(Joint: blue circles, PC: red diamonds, Solo: green triangles).
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indices characterizing the integration of the pair, while in both condi-
tions the two subjects played simultaneously without any reciprocal in-
fluence. Moreover, the estimated connectivity patterns are statistically
contrasted against a low-baseline condition, so that brain-to-brain con-
nections due to the simultaneous execution of a motor task are subtracted
to the networks, thus we do not expect further sources of integration of
8

the multi-subject network.

4.1.4. Network properties at different frequency bands
The higher network integration during Joint condition with respect to

the others was found in all the frequency bands (Fig. 3, Figs. S1–S3).
However (Fig. S4), the low frequency bands (theta and alpha) show
higher levels of integration between the two subjects (higher local effi-
ciency, higher global efficiency and lower modularity) with respect to the
high frequency bands (beta and gamma). This confirms what was already
described in previous works on guitarists (Müller et al., 2018) where the
multiple-brain networks show a more efficient organization (small-world
topology) at lower frequencies when compared with higher frequencies.

4.1.5. Directionality of the networks
All the indices here reported were computed on directed adjacency

matrices and take into account the direction of the interaction. However,
we didn’t report graph indices specifically measuring the symmetry in
the information flow exchanged between the two subjects, as the joint
action paradigm we used implies a symmetrical role of the participants
and we did not expect a predominant direction. To check this hypothesis,
we statistically compared the number of connections directed from
Player 1 to Player 2 with those directed to the opposite direction (from
Player 2 to Player 1). No statistical differences were found between the
two directions in any experimental condition or frequency band.

4.2. Multiple-subject connectivity as an effective tool to investigate joint
actions

With this study, we wanted to show that multiple-brain analysis can
return a deeper characterization of shared representation in social tasks
with respect to a classical single subject analysis. To this purpose, we
used indices derived from the multiple-brain networks to discriminate



Table 4
Results of the statistical correlation between behavioral data (trial length, ball height at the end of trial and percentage of correct trials) and graph theory indices
extracted from the inter-subjects network elicited during Joint condition. Significant correlations are highlighted in bold (p < 0.05, corrected by means of False
Discovery Rate). Note: GlobEff ¼ Global Efficiency; LocEff ¼ Local Efficiency; Clust ¼ Clustering; PL¼ Path Length; IBD¼ Inter-Brain Density; Div¼ Divisibility; Mod ¼
Modularity; Deg ¼ Degree.

GlobEff LocEff Clust PL IBD Div Mod Deg

Theta Trial Length 0,69 0,61 0,64 �0,24 0,86 ¡0,57 ¡0,62 0.85
Ball Height 0,25 �0,03 0,14 �0,21 0,18 0,20 0,13 0.15
Goal 0,08 �0,18 0,05 �0,22 0,08 0,20 0,12 0.04

Alpha Trial Length 0,69 0,67 0,64 0,11 0,88 �0,51 �0,55 0.88
Ball Height 0,14 0,19 0,26 0,15 0,30 0,09 0,00 0.27
Goal 0,05 0,17 0,28 0,13 0,22 0,11 0,04 0.19

Beta Trial Length 0,78 0,72 0,50 0,24 0,81 �0,32 �0,27 0.81
Ball Height 0,23 0,18 0,21 �0,15 0,25 0,02 0,04 0.25
Goal 0,08 0,01 0,09 �0,29 0,14 0,06 0,09 0.13

Gamma Trial Length 0,80 0,83 0,58 0,35 0,73 �0,32 �0,13 0.75
Ball Height 0,21 0,25 0,16 0,11 0,14 0,05 0,17 0.15
Goal 0,07 0,18 0,04 �0,05 0,04 0,09 0,24 0.05
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social and non-social tasks and compared the results with those obtained
with indices derived from single subject analysis.

The literature reports a few ecological studies using EEG-
hyperscanning for the investigation of joint actions (Balconi et al.,
2018a; Konvalinka et al., 2014; Müller et al., 2018, 2013; P�erez et al.,
2017; S€anger et al., 2012), most of which focused on the synchronization
ability or the interpersonal coordination during joint actions (for
example, guitarists playing in ensemble or spontaneous imitation, Dumas
et al., 2010, 2012a; 2012b). Such studies exploited dual scanning to
provide insights in the comprehension of the mechanisms at the basis of
joint action, but they did not focus on co-representation, or they did not
consider baseline conditions able to disentangle such aspect (probably
because of the task complexity). The introduction of appropriate (low
and high) baselines is fundamental for disentangling the true social
interaction between subjects (Hari et al., 2015). Accurate hyperscanning
needs an appropriate selection of reference conditions, since similar - or
even correlated - brain activities can result from the exposure of the
subjects to common stimuli, from a simultaneous execution of the same
task or from other confound elements (Babiloni and Astolfi, 2014).

In previous works (Toppi et al., 2016a; Astolfi et al., 2010) we showed
the importance of the analysis of simultaneously collected data to capture
the “here and now” of the interaction and the temporal relationship
between the two brains by means of a comparison with “shuffled” dyads
(pairing data from subjects recorded during different sessions or
belonging to different teams). Here, we had a further purpose: to inves-
tigate the co-representation ability during synchronized interactive
conditions, with a particular focus on the effects of agency. Thus, we
included two control conditions (Solo and PC) in which the two subjects
were still simultaneously recorded during a synchronization task, by
removing the synchronization with a human agent (PC condition) and
the synchronization with any external agent (Solo condition). A higher
inter-subject connectivity during the Joint condition (with respect to Solo
and PC) can thus be due only to the fact that both were performing a
social task (which is what our hypothesis implied).

4.2.1. Methodological considerations
In this work, we used a multivariate spectral measure, the PDC, in

combination with graph theory indices, in order to investigate the
directed links between any given pairs of EEG signals in terms of intra-
and inter-connections. PDC provides a spectral, multivariate and directed
analysis, three features that fit the aims of this study. In fact, EEG signals
have an oscillatory nature that makes it particularly important to use a
spectral estimator; that is why we preferred a partial coherence-based
measure over a correlation-based one. As for the directionality, as dis-
cussed in the previous paragraph we didn’t expect a prevalent direction
in the functional links between the subjects, due to the symmetrical na-
ture of the task. However, directionality still holds important information
about the network organization: graph indices have a different
9

formulation for directed graphs and are influenced by the direction of
single connections. So, while we checked for (and correctly found) a
balance in the interbrain connections, we still exploited the information
hold by the directionality provided by PDC in the indices we used in this
study.

PDC returned a model of the system formed by the two subjects
during the three conditions (Joint, PC and Solo). Such model includes an
intra-brain connectivity pattern (for each subject) as well as a pattern of
inter-brain causal links, that together form a complex multi-subject
network (Fig. 2). The use of a multivariate approach in such context
gives the advantage to construct a network including all the possible
information sources (i.e. the two subjects) instead of deriving it from the
computation of similarity measures between couples of electrodes.

As for the ocular artifacts’ rejection, we decided to use ICA as it is
currently the most conservative among correction approaches. In fact,
since EEG and ocular activity are bidirectionally mixed (Oster and Stern,
1980), the regression of eye artifacts can lead to remove neural activity,
especially from electrodes located over frontal and periocular sites
(Astolfi et al., 2006; Jung et al., 2000). Among decomposition ap-
proaches, PCA could be used to the purpose, but it has shown limitations
in the complete separation of eye artifacts from brain signals, especially
when they have comparable amplitudes (Jung et al., 2000). Moreover,
PCA aims at finding orthogonal directions of greatest variance in the
data, while there is no reason for neurobiologically distinct artifact and
EEG sources to be spatially orthogonal. ICA, on the contrary, can collect
concurrent activity arising from spatially overlapping artifact and EEG
source distributions (Jung et al., 2000). We also checked that ICA had
clearly separated eye artifacts into a single component with physiologi-
cally plausible scalp map and we removed just that single component
from the data (1 out of 61).

4.2.2. Multiple-vs single-subject analysis
In order to prove if multiple-brain connectivity can provide an

advancement in understanding the brain basis of joint actions with
respect to the traditional single subject analysis we compared the ability
of graph indices extracted from single-subject (Table S2; Table S3;
Fig. S5) or multiple-subject networks (Table 2, Table 3, Fig. 5) to
discriminate the different experimental conditions by means of classifi-
cation. ANOVA results indicate that both single-subject and multiple-
subject indices discriminated the Joint condition from the other two,
but the classification analysis showed that features based on multiple-
brain indices led to higher classification accuracies. In line with our
hypothesis, both analysis returned a discrimination between Joint-PC
and Joint-Solo classes, but the single subject classification reached
significantly weaker scores (the best score was 75% for a single index,
Global Efficiency in beta band). In contrast, the accuracy achieved by
multiple brain indices showed multiple scores over the 75%, with a
maximum of 88%, thus confirming the strength of the dual approach. The



L. Astolfi et al. NeuroImage 216 (2020) 116813
best accuracy percentages were obtained at lower frequencies (theta,
alpha) for indices derived from multiple-brain networks, and at higher
frequencies (beta and gamma) for indices computed considering only
intra-brain connections. This is in line with what has already been found
in previous works on guitarists, which highlighted how intra-brain con-
nections primarily involve higher frequencies (i.e., beta), whereas
interbrain connections primarily operate at lower frequencies (i.e., delta
and theta) (Müller et al., 2013).

4.2.3. Correlation with behavioral measures
Successful interaction was also analyzed in terms of behavioral

measures. Although our participants spent equal time to reach the same
ball height in all conditions, the number of successful trials (when the
ball reached the goal zone) differed between conditions. The highest
number of successful trials was achieved in the Joint condition, whereas
the lowest one in the PC condition. This may reflect an advantage pro-
vided by the interaction with a human agent, that can simultaneously co-
represent the ongoing action, and, in contrast, the difficulty to act with a
non-human agent. The stance towards a PC is confirmed to be different
with respect to a human agent, since the PC necessarily shows a different
attitude toward cooperation and responsiveness with respect to a human
being. So, it is not surprising that during this condition the participants
encountered more difficulties to reach the goal zone.

In Joint condition, we found a significant positive correlation be-
tween the trial length and the indices of IBD, Global Efficiency, Local
Efficiency, Degree, as well as a negative correlation with Divisibility and
Modularity. This suggests that our multiple-brain data are also modu-
lated in accordance with the degree of cooperation - or successful
interaction - between subjects.

5. Limitations and future advancements

This work has some inherent limitations that may be addressed in
future studies. First of all, the signals were acquired by scalp EEG. While
this choice fits the hypothesis of this study - which was to exploit
multiple-subject models to provide indices to quantify the cooperative
behavior in a cooperative joint action and to be related to the behavioral
and social content of the experiment - on the other hand the multiple-
brain connectivity networks we provided do not include any informa-
tion on the spatial localization of the brain sources that were involved in
cooperative joint action. Future studies could combine advanced source
localization methods and multiple-brain connectivity approaches to
provide a 2 PN neurofunctional model of the brain circuits that constitute
that basis of the joint action that is established between two subjects.

Secondly, the sample we analyzed is limited to 32 subjects.
Notwithstanding the sample dimension, however, there are two main
considerations that support our conclusions about the role of agentivity
in joint actions: (i) they are mainly based on the significant results ob-
tained by the ANOVA in terms of differences between Joint and PC/Solo
conditions, which are significant even with a small sample size; on the
other hand, the small group dimension could be responsible for the lack
of differences between PC and Solo, which was not, however, used to
draw any conclusion about our hypothesis; (ii) we performed the clas-
sification analysis with the purpose to infer if the conclusions obtained in
the group via the ANOVA could be replicated at the single dyad analysis.
The results of the classification confirmed our conclusion.

To our knowledge, this is the first study in which different motor
coordination acts have been classified on the basis of co-representation
by means of indices derived from multiple-subject EEG measures. We
show that the discrimination achieved by a multiple-brain methodology
can provide a qualitative and quantitative accuracy that was not achieved
by a traditional single person approach. Future studies on a larger sample
and including source localization will focus on the specific role of brain
circuits in the shared representation as depicted by the dual scanning, by
investigating the joint action data in the source domain. Nevertheless,
our results show how even at the sensor-level a multiple-brain
10
methodology can help to depict the complexity of the social phenomena
intrinsic during a joint action - i.e. the social exchange between two
minds - and can better characterize a dynamical mutual interacting sys-
tem like the one established during a joint action.
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