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ABSTRACT

This work presents a unified guidance and control architecture, termed VID-NOG & PD-RM,
and describes its application to low-thrust orbit transfer from a low Earth orbit to a
geostationary orbit. The variable time-domain neighboring optimal guidance (VTD-NOG) is
a feedback guidance technique based upon minimizing the second differential of the objective
function along the perturbed trajectory, and was proven to avoid the numerical difficulties
encountered with alternative neighboring optimal algorithms. VID-NOG identifies the
trajectory corrections assuming the thrust direction as the control input. A proportional-
derivative attitude control based on rotation matrices (PD-RM) is used to drive the actual
thrust direction toward the desired one, determined by VTD-NOG. Reaction wheels are
employed to perform the attitude control action. In the dynamical simulations, thrust
oscillations, errors on the initial conditions, and gravitational perturbations are considered.
Extensive Monte Carlo simulations point out that orbit injection occurs with very satisfactory
accuracy, even in the presence of nonnominal flight conditions.

Keywords: Low-thrust orbit transfers, neighboring optimal guidance, proportional-derivative
attitude control

1 INTRODUCTION

Low-thrust propulsion is gaining an increasing use in space missions, due to its efficiency,
related to high specific impulses. In fact, with regard to the overall propellant mass, low-thrust
systems are proven to outperform high-thrust engines, in a wide variety of mission scenarios.
However, deviations from the nominal trajectory related either to the imperfect modeling of
the space vehicle or to unpredictable environmental conditions affect the real dynamics.
Driving a spacecraft along a specified path thus requires defining the corrective actions aimed
at compensating the nonnominal behavior due to these deviations, while minimizing the
additional fuel required to perform the corrective maneuvers. Neighboring Optimal Guidance
(NOG) is an implicit guidance concept that relies on the analytical second order optimality
conditions, and assumes the minimum-time optimal transfer as the nominal trajectory. A
common difficulty encountered in implementing NOG consists in the fact that the gain
matrices become singular while approaching the final time. As a result, the real-time
correction of the time of flight can lead to numerical difficulties so relevant to cause the
failure of the guidance algorithm.
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This research is focused on the original combination of two techniques applied to low-thrust
orbit transfers, i.e. (i) the recently-introduced [1] variable-time-domain neighboring optimal
guidance (VTD-NOG), and (ii) a proportional-derivative approach based on rotation matrices
(PD-RM) as the attitude control algorithm. VTD-NOG belongs to the class of feedback
implicit guidance approaches. A fundamental original feature of VTD-NOG is the use of a
normalized time scale as the domain in which the nominal trajectory and the related vectors
and matrices are defined. VITD-NOG identifies the trajectory corrections by assuming the
thrust direction as the control input. Because the thrust direction is fixed with respect to the
spacecraft, VITD-NOG iteratively generates the desired attitude, which can be eventually
discontinuous across subsequent guidance intervals. This circumstance implies that the actual
orientation, which is subject to the spacecraft attitude dynamics, does not coincide with the
desired orientation. Hence, the attitude control system must be capable of maintaining the
actual spacecraft orientation sufficiently close to the desired one. Reaction wheels are
considered as the actuators that perform attitude control. The control law being adopted is
proportional-derivative-like and uses directly the rotation matrices (PD-RM).

This study describes the application of VTD-NOG & PD-RM to the low-thrust orbit transfer
that starts from a low Earth orbit (LEO) and ends at injection into a coplanar geostationary
orbit (GEO). Several deviations from nominal flight conditions are assumed, i.e. (i)
gravitational perturbations, (ii) errors on the initial conditions, and (iii) unpredictable
oscillations of the propulsive thrust. They are being modeled in the context of extensive
Monte Carlo simulations, with the final aim of proving that the unified architecture based on
the joint use of VID-NOG and PD-RM indeed represents an effective guidance and control
approach, capable of determining precise and fuel-efficient low-thrust orbit transfers, in the
presence of nonnominal flight conditions.

2 NOMINAL TRAJECTORY

This paper addresses the problem of driving a spacecraft from an equatorial circular low Earth
orbit (LEO) at altitude of 400 km to a final, coplanar geostationary orbit (GEO), in the
presence of nonnominal flight conditions. Both trajectory and attitude dynamics of the space
vehicle are modeled. This section is devoted to defining the nominal transfer path. In this
context, the space vehicle is modeled as a point mass. Subsequently, attitude dynamics is
considered, with the final intent of determining the appropriate attitude control action.

Continuous low thrust propulsion is employed to perform the transfer at hand. Let ¢ and n,
denote the effective exhaust velocity of the propulsive system and the initial thrust
acceleration. As the thrust magnitude is constant, the thrust acceleration is a, =n,c / (c—nyt),

where ¢ is the actual time. The following nominal values are assumed: n,=0.001g,
and ¢ =30 km/sec (go =9.8 m/secz).

2.1  Formulation of the problem

The spacecraft motion can be described in the Earth-centered inertial frame, where ¢, is the
vernal axis and ¢, points toward the Earth rotation axis. The two terminal orbits lic on the
(61,62)-p1ane, i.e. the equatorial plane (cf. Fig. 1(a)). The time-varying position can be
identified by the following three variables: radius r, absolute longitude &, and latitude ¢ .

The spacecraft velocity can be projected into the rotating frame (ﬁ, f,ﬁ) , Where 7 is aligned

with the position vector r and 7 is parallel to the (él,éz) -plane (and in the direction of the
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spacecraft motion, cf. Fig 1(a)). The related components are denoted with (vr,vt,vn) and

termed respectively radial, transverse, and normal velocity component. The state vector x of
the spacecraft includes the variables associated with the position and velocity vectors and is
given by x ::[r E o v v vn]T. The spacecraft is controlled through the thrust
direction, defined by the in-plane angle @ and the out-of-plane angle £, both illustrated in
Fig. 1(b) (in which 7 is aligned with the thrust direction). Thus, the control vector is

u= [u1 uz]T = [a ,B]T. The state equations govern the dynamics of the center of mass and

are written in compact form as dx/dt = f (x, u,t). The associated scalar equations [2], not

reported for the sake of conciseness, include only the main gravitational term and the thrust
acceleration as external actions, i.e. no perturbation is assumed. The boundary conditions
correspond to terminal circular orbits, and can be written in compact form as

y/(xo,xf,tf):(). The problem at hand is then reformulated by using the dimensionless
normalized time 7 := t/ t (:> 7,=0<7r<l1=7 f), and the state equations are rewritten as
5c=f(x,u,tf,t).

As the space vehicle uses continuous thrust, minimizing the propellant consumption is
equivalent to minimizing the time of flight (t / —to). Thus, as ¢, is set to 0, the objective

function is J:tf.

(a) é, (b)

Figure 1: Reference frames (a) and thrust angles (b)

2.2 Minimum-time transfer trajectory

In order to state the necessary conditions for optimality, a Hamiltonian A and a function of the
boundary conditions & are introduced as

H(x,u,tf,r)::}ff and Ci)(xo,xf,tf)::tf+vry/ (1)

where 4 and o represent respectively the adjoint variable conjugate to the dynamics
equations and to the boundary conditions. The set of the necessary conditions [3] include

e the adjoint equations for 4, in conjunction with the respective boundary conditions,

e the Pontryagin minimum principle, leading to finding u in terms of 4, and

o the transversality condition, which reduces to an inequality constraint.
In the formulation of the trajectory optimization problem the Earth gravitational field is
assumed spherical. As no further external force affects the spacecraft motion and the terminal
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orbits lie on the (51,52 ) -plane, the optimal transfer path can be assumed to lie on the (61,62) -

plane as well. This means that ¢ =0, v, =0, and =0 along the optimal path. The latter is

found through the indirect heuristic method [4], and the optimal time histories of the radius
and thrust pointing angle are portrayed in Fig. 2.
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Figure 2: Radius (a) and thrust pointing angle (b) for the optimal transfer

3 VARIABLE-TIME-DOMAIN NEIGHBORING OPTIMAL GUIDANCE

Neighboring optimal guidance (NOG) belongs to the class of implicit guidance approaches
and relies on the second-order sufficient conditions for optimality, in order to find the
corrective control actions in the neighborhood of the reference trajectory. This is an optimal
path that satisfies the second-order sufficient conditions for optimality.
This paper applies the variable-time-domain neighboring optimal guidance algorithm (VTD-
NOG), described in full detail in Refs. 1 and 2, to the low-thrust orbit transfer of interest.
VTD-NOG requires several offline steps, specifically

(a) determination of the optimal path, together with all the related quantities,

(b) numerical verification of the second-order sufficient conditions for optimality,

(c) integration of the modified sweep equations, to calculate the time-varying gain

matrices, and

(d) interpolation of all the nominal quantities associated with the nominal (optimal) path.
Iterative real-time computations start at prescribed sampling times and are aimed at finding
the control correction and the flight time update, such that the second differential of the
objective function is minimized, while satisfying the first-order expansions of (a) the state
equations, (b) the adjoint equations, (c) the parameter condition, and (d) the control condition.
Novel features of VID-NOG with respect to former NOG schemes are (i) the use of a
variable time domain, (ii) new updating law for the time of flight, (iii) new termination
criterion, and (iv) new sweep equations. These original features allow overcoming the main
difficulties related to the use of former NOG schemes, in particular the occurrence of
singularities in the gain matrices while approaching the final time and the lack of an efficient
law for the iterative real-time update of the time of flight. These desirable characteristics are
mainly related to the use of a normalized time domain 7, constrained to [0,1]. Figure 3
portrays a block diagram that illustrates the sample-data feedback structure of the VTD-NOG
algorithm, in which the control and flight time corrections definitely depend on the state
displacement ox (evaluated at specified discrete times) through the time-varying gain
matrices, which are computed offline and stored onboard. The attitude control loop (encircled
by the dotted line) is being outlined in the following.
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Figure 3: Block diagram of VTD-NOG & PD-RM

4 ATTITUDE CONTROL

With reference to Fig. 3, VID-NOG yields the corrected control u, i.e. the desired thrust
direction. However, the actual thrust direction is aligned with the longitudinal axis of the
spacecraft, and the spacecraft instantaneous orientation is associated with the body frame

(%,,7,,2,) where %, is aligned with the longitudinal axis. Thus, « identifies the commanded

direction of %,, denoted with £\). The remaining commanded unit vectors " and 2\ are

chosen so that in nominal flight conditions fl(f) lies in the equatorial plane and has positive

component along the local nadir direction during the entire time of flight. Based on the latter
choices, VID-NOG determines unequivocally the commanded rotation matrix R_, which

relates (¢,,¢,,¢;) to (AIEC)’j)lEC)’élEC))'

To enforce convergence of the actual attitude, represented by rotation matrix R, toward the
commanded attitude, represented by rotation matrix R_, the following PD-like attitude

control action is applied [5]:

M. = —Kpi(ei xR.R'e,)-K,o 2)

c
i=1

In the previous equation M. are the body coordinates of the control torque generated by the
k kpz} and K, :diag{kdx,kdy,kdz} are positive

reaction wheel assembly, K, =diag {k -

px?

control gains, {ei} form the 3 by 3 identity matrix [el e, e3], and @ are the body

i=1,2,3

coordinates of the spacecraft angular velocity with respect to (¢,,¢,,¢; ).

542



VID-NOG & PD-RM Attitude Control Applied to Low-Thrust Transfers Pontani, Celani

5 VTD-NOG & PD-RM APPLIED TO LEO-GEO TRANSFER

During the orbit transfer, the spacecraft is affected by the Earth gravitational field. However,
the Earth gravitational potential differs to some extent from that generated by a spherical mass
distribuition. As a result, some significant harmonics of the Earth gravitational potential [6]
are to be included in the dynamical model, in order to yield more realistic results from

simulations. Thus, all the harmonics with magnitude |J,,|>107 are included in the dynamical
simulations, i.e. J, J;, J,, J,,, and J;,. Moreover, also the gravitational perturbations due
to Moon and Sun as third bodies [6] must be taken into account.

The spacecraft has initial mass m, = 2400 kg and maximal torque generated by the reaction
wheels about each body axis J\Z =]\7y =ﬁz =0.5 Nm, whereas the time-varying inertia

moments [, /,,and I, are governed by
I=1g+1t, I =I1,+1t I =I,+It 3)

where  1,=1200kgm®, [ =-392:10" kg m*/sec, [ ,=1,=800kgm’, and
I = I.=-2.61-10" kg m*/sec). Moreover, the following values are selected for VTD-NOG
& PD-RM. The sampling interval Af; is set to 15 min, whereas the control gains are selected
using a trial and error approach, and set to the following values: k, =11.76, k, =151.2,
k, =k, =184, k, =k, =100.8.

Another reason for the existence of deviations from nominal flight conditions is related to the
fact that the commanded attitude does not coincide with the actual attitude. This circumstance
is pointed out also in Fig. 3, which illustrates clearly that the corrected control # does not
coincide with the actual control #,, which affects the real dynamics of the center of mass.

Moreover, for the initial conditions errors on the initial radius and latitude are assumed, with
Gaussian distribution, zero mean value and standard deviation ro(g) (for 7, ) and ¢(§6) (for ¢,)
equal to 10 km and 0.085 deg, respectively. The latter value correspond to an out-of-plane

displacement of 10 km. Moreover, displacements for the velocity components are simulated
as well. Specifically, a velocity magnitude displacement with zero mean value and standard

deviation voa) =30 m/sec is assumed, while the velocity direction has uniform distribution
over a unit sphere. A different approach is chosen for the perturbation of the thrust
acceleration. In fact, usually the thrust acceleration exhibits small fluctuations. If t; denotes

the optimal time of flight, this behavior is modeled through a trigonometric series,

5 5
" =n, {1 +3a, sin[zl;m J +3°G,,, cos (@JJ @)
k=1

S k=1 S

The coefficients {4, } (11, have a random Gaussian distribution centered around the zero and

a standard deviation equal to 0.01. At the end of VID-NOG & PD-RM, two statistical
quantities are evaluated, i.e. the mean value and the standard deviation for all of the outputs of
interest. In Table 1, which summarizes the statistics based on 100 Monte Carlo simulations,

the symbols Ay and ;((U) denote the mean error (with respect to the nominal value) and
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standard deviation of y henceforth. Figure 4 portrays the time histories of the state and
control torques obtained in the Monte Carlo campaign. The numerical results prove that VTD-
NOG & PD-RM vyields excellent results in terms of accuracy at orbit injection, with only
modest displacements of the perturbed times of flight with respect to the nominal value.

4 T : T T T T 0.5 T r T T T T
35t 1
sk o
gast 1 &
a A
I 12 1
<15t 1 3
1+ - !
T “‘,,‘mg‘.“
55l 1] W|H“\UU\""“ ILAR
0 1 1 1 1 1 1 5 1 3 1 A 1 A
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Time: hrs Time: hrs

o =]
= X
s

- w

e
i~
>

e

Radial velocity: km/sec
°
o
-

L
Transverse velocity: km/sec
o

1
w

)

&
o
(=)
S

40 60 80 100 120 140
Time: hrs

iy
"MU\MJ‘

Normal velocity: km/sec

L " 02 ) L L L . .
20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
Time: hrs Time: hrs

I
If
| ) L i
(] 20 40 60 80 100 1

Time: hrs Time: hrs

N L
20 140 0 20 40 60 80 100 120 140

Figure 4: State and attitude control along perturbed paths
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B, (km)  AF (w) &, (wss) B, () A, (mheo) 7, (seo)
-0.98 —6.6e-5 0.346 —1.410 —0.401 122.84
r) (km) ¢\ (deg) vs,’) (m/sec) v[(f”) (m/sec) v,(,;) (m/sec) th) (sec)
0.263 1.2e-4 0.716 1.156 0.618 0.53

Table 1: Statistics based on the outputs of the Monte Carlo campaign (A_;(f = mean value of the error
on the desired final value of y ; ;(_(/U)Z standard deviation of the final value of y; 7, = mean
value of the time of flight; /" = standard deviation of the time of flight)

6 CONCLUDING REMARKS

This work outlines and applies VITD-NOG & PD-RM, a new, general-purpose guidance and
control algorithm for space vehicles, The variable-time-domain neighboring optimal guidance
(VTD-NOG) is a feedback guidance technique based upon minimizing the second differential
of the objective function along the perturbed trajectory. Due to adoption of a normalized time
scale as the domain in which the nominal trajectory is defined, the gain matrices remain finite
for the entire time of flight, while the updating law for the time of flight and the termination
criterion find consistent definitions. A proportional-derivative approach using rotation
matrices (PD-RM) is employed in order to drive the actual spacecraft orientation toward the
desired one. The new guidance and control architecture based on the joint use of VITD-NOG
& PD-RM is applied to a LEO-to-GEO transfer, in the presence of oscillating perturbations of
the propulsive thrust, errors on the initial conditions, and gravitational perturbations.
Extensive Monte Carlo simulations point out that orbit injection at GEO occurs with very
satisfactory accuracy even in the presence of nonnominal flight conditions, at the price of
modest variations of the time of flight.
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