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We employ the chirally rotated Schrödinger functional (χSF) to study two-point fermion bilinear
correlation functions used in the determination of ZA,V,S,P,T on a series of well-tuned ensembles.
The gauge configurations, which span renormalisation scales from 4 to 70 GeV, are generated with
Nf = 3 massless flavors and Schrödinger Functional (SF) boundary conditions. Valence quarks
are computed with χSF boundary conditions. We show preliminary results on the tuning of the
χSF Symanzik coefficient z f and the scaling of the axial current normalization ZA. Moreover we
carry out a detailed comparison with the expectations from one-loop perturbation theory. Finally
we outline how automatically O(a)-improved BK matrix elements, including BSM contributions,
can be computed in a χSF renormalization scheme.
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χSF near the electroweak scale Andrew Lytle

The chirally rotated Schrödinger functional (χSF) with massless Wilson fermions is a lat-
tice regularization which endows the Schrödinger functional (SF) with the property of automatic
O(a)-improvement. The χSF framework is effective in reducing lattice artefacts in correlation
and step scaling functions, but especially it offers new strategies to study and simplify the pattern
of renormalization. The price to pay for the automatic O(a)-improvement is the nonperturbative
tuning of coefficients of new boundary counterterms. This tuning is the first phase of a long-term
project, aiming at the computation of BK low-energy contributions beyond the Standard Model
(BSM), with Wilson fermion Nf = 2+1 lattice QCD in a non-unitary (mixed-action) framework.

1. The χSF setup

Following ref. [1], the fermion flavour doublet ψ =

(
ψu

ψd

)
satisfies χSF boundary conditions

Q̃± ≡
1
2
(1± iγ0γ5τ

3)

{
Q̃+ψ(x)|x0=0 = 0 Q̃−ψ(x)|x0=T = 0

ψ̄(x)Q̃+|x0=0 = 0 ψ̄(x)Q̃−|x0=T = 0

in time and periodic ones in space. The massless fermion action is

S f = a4
T

∑
x0=0

∑
x

ψ̄(x)(DW +δDW )ψ(x) ,

with DW the standard Wilson fermion matrix and the boundary term

δDW ψ(x) = (δx0,0 +δx0,T )
[
(z f −1)+(ds−1)aDs

]
ψ(x) .

The χSF boundary conditions can be derived from the standard SF boundary conditions by apply-
ing a non-anomalous chiral flavour rotation on the fermion doublet as follows:

R = exp
(

i
α

2
γ5τ

3
)∣∣∣

α=π/2

{
ψ → ψ ′ = Rψ

ψ̄ → ψ̄ ′ = ψ̄R .

Consequently composite operators, which depend on fermion fields, are also rotated:

O[ψ, ψ̄]→ Q[ψ, ψ̄] = O[Rψ, ψ̄R ] .

SF and χSF correlation functions of composite operators O,Q defined in the bulk and O,Q defined
on a time boundary obey the following universality relation:

〈OO〉cont
(SF) = lim

a→0
[ZOZO 〈OO〉(SF)+O(a)]

= lim
a→0

[ZQZQ 〈QQ〉(χSF)+O(a2)] .

Note that χSF incorporates automatic O(a) improvement. The price to pay is the introduction of
boundary counterterms. We tune non-perturbatively the boundary counterterm coefficient z f , while
we fix the others at their tree-level value.
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1.1 Correlation functions

As in ref. [2], we consider the set of fermion bilinear operators; e.g.

V f1 f2
µ (x) = ψ f1

(x)γµψ f2(x), A f1 f2
µ (x) = ψ f1

(x)γµγ5ψ f2(x),

with flavours f1, f2 ∈ {u,d,u′,d′}, and determine the χSF bulk-to-boundary correlation functions

g f1 f2
X (x0) =−

1
2

〈
X f1 f2(x)Q f2 f1

5

〉
, X =V0,A0,S,P ,

l f1 f2
Y (x0) =−

1
6

3

∑
k=1

〈
Y f1 f2

k (x)Q f2 f1
k

〉
, Yk =Vk,Ak,Tk0, T̃k0 .

The complete list of boundary operators Q f2 f1
5 ,Q f2 f1

k can be found in [5].
Up to discretization effects and boundary fields renormalization they are related to the standard SF
correlation functions fX and kY by universality

f cont
A =ZAguu′

A =ZAgdd′
A =−iZVgud

V = iZVgdu
V , (1.1)

f cont
V =ZVguu′

V =ZVgdd′
V =−iZAgud

A = iZAgdu
A , (1.2)

kcont
V = ZVluu′

V = ZVldd′
V = −iZAlud

A = iZAldu
A , (1.3)

kcont
A = ZAluu′

A = ZAldd′
A = −iZVlud

V = iZVldu
V . (1.4)

The χSF correlation functions in eqs. (1.2), (1.4) are O(a), since they become f cont
V ,kcont

A in the
continuum, which are parity odd. The local vector current can be replaced by the exactly conserved
one Ṽµ(x) with normalization ZṼ = 1. Therefore ZA may be obtained from the ratios

Zg
A =
−igud

Ṽ
(x0)

guu′
A (x0)

∣∣∣∣
x0=L/2

or Zl
A =

iluu′

Ṽ
(x0)

lud
A (x0)

∣∣∣∣
x0=L/2

. (1.5)

2. Computational setup and results

We obtain results for Nf = 3 QCD in a non-unitary setup. Valence quark propagators are
inverted with χSF boundaries on the configuration ensembles of [3], generated on lattices with
standard SF boundary conditions. These configurations have been used for the RG-running of the
quark mass in a range of scales 2GeV . µ . 128GeV , in the standard framework of finite-size
scaling L→ 2L.

2.1 Tuning

We must ensure that massless QCD with χSF boundary conditions is correctly regularized.
This is achieved by tuning the bare mass parameter m0 to its critical value, mcr, where the axial
current is conserved, and by tuning the boundary counterterm coefficient z f so that physical parity
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is restored. At present we choose to set the PCAC mass to zero in terms of the SF correlation
functions, so taking the mcr value from [3], and to set the χSF correlation function gud

A to zero:

m =
∂̃0 f ud

A (x0)

2 f ud
P (x0)

∣∣∣∣
x0=L/2

= 0, mcr tuning ,

gud
A (x0)

∣∣∣∣
x0=L/2

= 0 , z f tuning . (2.1)

By requiring that eq. (2.1) be satisfied, z f is tuned for each ensemble as shown in Fig. 1.
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Figure 1: Results of nonperturbative tuning of z f , according to eq. (2.1).

2.2 O(a)-improvement

Using eqs. (1.5) we obtain two estimates for ZA

Zg
A(β ) = Zl

A(β )+O(a2)

which differ by discretization errors. In Fig. 2 we show the ratio of these two definitions and we
confirm that, after tuning z f , the ratio scales as a2 and goes to 1 in the continuum.

0.000 0.005 0.010 0.015 0.020 0.025 0.030

(a/L)2

0.99

1.00

1.01

1.02

1.03

Z
g A
/Z

l A

PR
EL
IM
IN
AR
Y

Figure 2: Ratio of two different definitions of ZA (see eq. (1.5)) calculated on our ensembles with 1/L = 4
GeV.
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Finally we study Zl
A(g

2
0) over the full range of ensembles. As seen in Fig. 3 a fit to the data

matches onto the asympotic perturbative result in the limit g2
0→ 0.
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Figure 3: Zl
A(g

2
0) calculated across the full range of ensembles available.

3. Outlook for 4 fermions

3.1 Renormalization

χSF framework is especially valuable in simplifying the renormalization of four fermion opera-
tors. They enter the most general expression of the effective Hamiltonian which describes flavour
physics processes at low energy in the Standard Model (SM) and its extensions (BSM). Here we
focus on ∆F = 2 transitions. The 4-quark operators with four distinct flavours

O±XY ≡
1
2
[(ψ1ΓX ψ2)(ψ3ΓY ψ4)± (2↔ 4)]

can be classified as parity even and parity odd:

Oe,±
k ∈

{
O±VV+AA,O

±
VV−AA,O

±
SS−PP,O

±
SS+PP,O

±
T T

}
,

Oo,±
k ∈

{
O±VA+AV ,O

±
VA−AV ,O

±
SP−PS,O

±
SP+PS,O

±
T T̃

}
.

Due to the explicit breaking of chiral symmetry of the Wilson regularisation, the operators in ge-
neral mix as follows:

Oe,±
i = ∑

jm
Ze,±

i j (δ jm +∆
e,±
jm )Oe,±

m ,

Oo,±
i = ∑

jm
Zo,±

i j (δ jm +
�
��∆

o,±
jm )Oo,±

m .

The parity-odd sector has a simpler, continuum-like mixing pattern (∆o,±
jm = 0) [6]. In previous

Wilson fermion computations [7, 8], standard SF renormalization conditions were imposed on
parity-odd operators by setting suitable renormalized correlation functions equal to their tree level
values at the scale µ = L−1:

Fi(x0) = 〈O ′45
5 Oo,1234

i (x0)O
21
5 O53

5 〉 . (3.1)
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Note that five distinct valence flavours are required; see the left diagram in Fig. 4. These four-point
correlation functions are parity even, but suffer from large statistical fluctuations. Moreover, they
have bulk O(a) discretization errors.

Alternatively we plan to employ a new renormalization scheme on χSF three-point correlation
functions

Gi(x0) = 〈Q′21
5 Qo,1234

i (x0)Q
43
5 〉 , (3.2)

which are statistically less noisy and automatically O(a) improved in the bulk. Performing suitable
chiral rotations, the χSF flavours are rotated into the physical flavours [4]. Thus we can map the
renormalized [Gi(x0)]R into the continuum correlation function

[Gi(x0)]R→ 〈O
′21
5 Oe,1234

i (x0)O
43
5 〉cont.

SF χSF

Figure 4: Correlation functions used in two renormalization schemes. Left: parity odd operators with
standard SF boundary conditions; right: parity odd operators with χSF boundary conditions. Different
colors stand for different valence flavors.

3.2 Physical determinations

The renormalization program will be employed in the lattice computation of the physical BK-
parameter which controls the K̄0−K0 meson oscillations, towards a better understanding of the
physics of CP violation in the SM and BSM. Whereas there is general agreement among various
collaborations on BK in the SM, the situation is somewhat unclear for the BSM contributions [11].

In the SF approach, BK has been computed by combining the renormalization parameters
based on eq. (3.1) with bare four-point correlation functions of the parity odd operators in a twisted
mass QCD setup [9, 10].

We plan to use the χSF renormalization conditions based on eq. (3.2). For the bare ma-
trix elements we will employ the CLS Nf = 2+1 ensembles, characterised by large physical vol-
umes with open boundary conditions and by non-zero quark masses [12, 13]. The sea quarks are
Wilson/Clover. Valence fermions are fully twisted [14], with three flavours tuned at twisted an-
gle α = π/2 and the fourth one at α = −π/2. Unitarity is lost at finite lattice spacing, but it
is recovered in the continuum limit. Performing distinct Osterwalder-Seiler chiral rotations for
each flavour, correlation functions with parity-odd operators (renormalized in the χSF scheme as
outlined above) are mapped onto the 3-point correlation functions of parity even operators with
pseudoscalar sources, from which the B-parameters are readily extracted:

BKi(µ) ∝ 〈K̄0| [Oe
i (µ)]R |K0〉 .
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