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The defining feature of a classical black hole is being a perfect absorber. Any evidence showing
otherwise would indicate a departure from the standard black-hole picture. Energy and angular momentum
absorption by the horizon of a black hole is responsible for tidal heating in a binary. This effect is
particularly important in the latest stages of an extreme mass ratio inspiral around a spinning supermassive
object, one of the main targets of the future LISA mission. We study how this effect can be used to probe the
nature of supermassive objects in a model independent way. We compute the orbital dephasing and the
gravitational-wave signal emitted by a point particle in circular, equatorial motion around a spinning
supermassive object to the leading order in the mass ratio. Absence of absorption by the central object can
affect the gravitational-wave signal dramatically, especially at high spin. This effect will make it possible to
put an unparalleled upper bound on the reflectivity of exotic compact objects, at the level of Oð0.01Þ%.
This stringent bound would exclude the possibility of observing echoes in the ringdown of a supermassive
binary merger.
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I. INTRODUCTION

At the classical level, black holes (BHs) in general
relativity are perfect absorbers since their defining
characteristic—the event horizon—is a one-way, null hyper-
surface. Measuring some amount of reflectivity near a dark
compact object would be a smoking gun of departures from
the classical BH picture [1]. Although modeling the reflec-
tivity of exotic compact objects (ECOs) is challenging (see
Ref. [2] for recent progress in a specific model), the absence
of a horizon or the presence of some nearby structure would
necessarily imply imperfect absorption. Thus, searching
for this effect provides a model-independent test of ECOs
and could help quantify the “BH-ness” of a dark compact
object, e.g., by placing an upper bound on its reflectivity.
A spinning BH absorbs radiation of frequency ω > mΩH

(where m is the azimuthal number of the wave and ΩH is
the BH angular velocity) but amplifies radiation of smaller
frequency, due to superradiance (see [3] for a review). The
combination of these absorbing and amplifying behaviors
means that BHs are dissipative systems which behave like a
Newtonian viscous fluid [4–7]. Dissipation gives rise to
various interesting effects in a binary system—such as tidal
heating, tidal acceleration, and tidal locking, as in the
Earth-Moon system, where dissipation is provided by the
friction of the oceans with the crust.

The members of a binary feel each others’ tidal fields
particularly strongly late in the inspiral, as the bodies
approach their final plunge and merger. If the bodies are (at
least partially) absorbing, these tides backreact on the orbit,
transferring energy and angular momentum from their spin
into the orbit. This effect is called tidal heating [8–10].
Tidal fields on BHs satisfy a unique boundary condition
which picks out how a BH’s spin is transferred to the orbit.
Tidal heating can be responsible for thousands of radians of
accumulated orbital phase [9,11–14] for extreme-mass-
ratio inspirals (EMRIs) in the band of the future space-
based Laser Interferometer Space Antenna (LISA) [15] and
of evolved concepts thereof [16]. This large effect is due to
the dissipative nature of BH horizons, and allows for rather
exquisite tests of the nature of supermassive objects.
If at least one binarymember is an ECO instead of aBH, the

dissipation is likely to be much smaller, even negligible,
potentially changing the inspiral phase by a large amount,
especially if thebinary’smembers spin rapidly.Therefore, even
in those cases in which the external geometry of the ECO is
extremely close to that of aKerrBH, tidal heating canprovide a
powerful and model-independent discriminator for the exist-
ence of horizons and for the nature of supermassive objects
[14,17]. This adds to other EMRI-based tests, namely no-hair
theorem tests based on measurements of the quadrupole
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moment of the central object [14,18–20], and null-hypothesis
tests based on the absence of tidal Love numbers [21].
Altogether, these tests suggest that EMRIs will be unique
probes of the natureof supermassive objects (for recent reviews
on these and other tests, see Refs. [1,16]).
A detailed calculation is needed to determine how tidal

heating would work for an ECO [17], and the answer will
necessarily depend on the specific ECO model [2].
However, by losing the horizon boundary condition, it is
certain that the tidal coupling of the orbit to the object will
change. A high signal-to-noise ratio (SNR) measurement
should be able to determine the impact of this effect with
unparalleled precision, either for EMRIs around highly
spinning supermassive objects [9,14], or for highly spin-
ning, supermassive binaries [17].
The goal of this paper is to quantify this expectation. In

particular, we wish to estimate the projected constraints on
the reflectivity of a spinning supermassive object that
would arise from measuring the tidal heating in an EMRI.
Overall, even making the conservative assumption that

the geometry around the object can be approximated with
that of a Kerr BH (as suggested by various arguments
[22,23], see next section), the absence of a horizon would
produce three main effects in the inspiral:

(i) Boundary conditions for radiation near the surface of
the object would be different.

(ii) As a result of the above, the quasinormal modes of
the object would differ from those of Kerr. In
particular, low-frequency modes generically emerge
[24–26], which might be resonantly excited during
the inspiral [27–29].

(iii) Again as a result of different boundary conditions
near the surface, at least part of the radiation is
reflected back, providing at least some reflectivity.

Clearly, the boundary conditions are model dependent, and
so are the quasinormal-mode frequencies. Furthermore, the
effect of resonances has been recently investigated and was
shown to be negligible, at least for nonspinning ECOs [29].
On the other hand, partial reflectivity is a necessary and
generic prediction of the absence of a horizon and can be
constrained in a model-independent way. Understanding
the consequences of this fact will be our focus in this
analysis.

II. SETUP

Henceforth we use G ¼ c ¼ 1 units. We shall denote the
mass and angular momentum of the central object by M
and J ¼ aM ¼ χM2, respectively. The mass of the small
orbiting (nonspinning) body is μ and the mass ratio is
denoted by ν ¼ μ=M ≪ 1.

A. Background

We consider a spinning compact object whose exterior
geometry is described by the Kerr metric [25,26,30–32].

Unlike the case of spherically symmetric spacetimes, the
absence of Birkhoff’s theorem in axisymmetry does not
ensure that the vacuum region outside a spinning object is
described by the Kerr geometry. This implies that the
multipolar structure of a spinning ECO might be different
from that of a Kerr BH [22,23]. Nevertheless, for pertur-
bative solutions to the vacuum Einstein’s equation that
admit a smooth BH limit, all multipole moments of the
external spacetime approach those of a Kerr BH in the high-
compactness regime [22] (for specific examples, see
Refs. [33–38]). Therefore, we conservatively assume that
the small object follows the geodesics of a Kerr metric, with
orbital parameters that evolve secularly due to energy and
angular momentum fluxes. These fluxes might be different
if the central object is a BH or an ECO, as discussed below.
In Boyer-Lindquist coordinates, the line element outside

the object reads

ds2¼−
�
1−

2Mr
Σ

�
dt2þΣ

Δ
dr2−

4Mr
Σ

asin2θdϕdt

þΣdθ2þ
�
ðr2þa2Þsin2θþ2Mr

Σ
a2sin4θ

�
dϕ2: ð1Þ

In the above equation Σ ¼ r2 þ a2 cos2 θ and Δ ¼ r2þ
a2 − 2Mr ¼ ðr − rþÞðr − r−Þ, where r�¼M�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2−a2

p
.

The angular velocity at the event horizon isΩH ¼ χ=ð2rþÞ.
We shall assume that the object is as compact as1 a Kerr

BH, i.e., its radius is close to rþ. The properties of the
object’s interior and surface can be parametrized in terms of
the fraction of radiation that is absorbed compared to the
BH case, as discussed below.

B. Linear perturbations by a pointlike source:
The BH case

In order to elucidate the differences relative to the case in
which the central object is a Kerr-like ECO, we start by
reviewing the case of a pointlike source in circular,
equatorial orbit around a Kerr BH.
The emitted gravitational radiation can be studied by

solving the Teukolsky equation for spin s ¼ −2 perturba-
tions, which describes the curvature invariant ψ4. The latter
can be decomposed as

ψ4 ¼
1

ðr − iMχ cos θÞ4
Z

∞

−∞
dω

X
lm

RlmωðrÞSlmωðθ;ϕÞe−iωt;

ð2Þ
where the sum runs over l ≥ 2 and −l ≤ m ≤ l.
The function Slmωðθ;ϕÞ is a spheroidal harmonic of spin

1Our results are based only on the fact that the geometry
outside the innermost-stable circular orbit (ISCO) is described
sufficiently well by the Kerr metric. Indeed, after the small body
crosses the ISCO it plunges directly, and the signal emitted during
the plunge is negligible compared to the rest of the inspiral.
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weight −2. The radial function RlmωðrÞ satisfies the
following equation,

Δ2
d
dr

�
1

Δ
dRlmω

dr

�
− VðrÞRlmω ¼ −T lmωðrÞ; ð3Þ

where the potential VðrÞ can be found, e.g., in
Refs. [29,39,40]. The source T lmωðrÞ is constructed from
certain projections of the energy-momentum tensor of a
pointlike source:

Tαβ ¼
μuαuβ

Σ sin θðdt=dτÞ δ½r − roðtÞ�δ½θ − θoðtÞ�δ½ϕ − ϕoðtÞ�;

ð4Þ

where the subscript “o” is used to label the coordinates of
the orbiting body’s worldline. In the current work we focus
on circular equatorial orbits. Therefore, θoðtÞ ¼ π=2 and
roðtÞ ¼ rorbit ¼ constant. The orbital radius is related to the
orbital angular velocity Ω by Ω ¼ M1=2=ðr3=2o þ aM1=2Þ.
We solve Eq. (3) by first building a Green’s function

from solutions of the homogeneous equation, and then
integrating that function over the source [39,40] (see also
Appendix D of [41], which translates the notation in this
past work to the form that has recently been adopted by the
BH perturbation theory community). The resulting solution
has the following asymptotic behavior

RlmωðrÞ ¼
�
Z∞
lmωe

iωx r → ∞
ZH
lmωe

−ikx r → rþ;
ð5Þ

where k ¼ ω −mΩH, x is the tortoise coordinate defined
by

dx
dr

¼ r2 þ a2

Δ
; ð6Þ

and

Z∞
lmω ¼ D∞

Z
∞

rþ
dr0

Rin
lmωðr0ÞT lmωðr0Þ

Δðr0Þ2 ; ð7Þ

ZH
lmω ¼ DH

Z
∞

rþ
dr0

Rup
lmωðr0ÞT lmωðr0Þ

Δðr0Þ2 ; ð8Þ

where Rup;in
lmωðrÞ are the homogeneous solutions of Eq. (3)

with regular boundary conditions at infinity and at the
horizon, respectively. The quantity D∞;H is a shorthand
notation for a collection of constants that can be found in
Refs. [39,41]. If the orbits are periodic, then the spectrum of
the coefficients Z∞;H

lmω is discrete,

Z∞;H
lmω ¼ Z∞;H

lm δðω −mΩÞ: ð9Þ

In this case the energy fluxes at infinity and at the horizon
read

_E∞ ¼
X
lm

jZ∞
lmj2

4πm2Ω2
ð10Þ

_EH ¼
X
lm

αlmjZH
lmj2

4πm2Ω2
; ð11Þ

where αlm is provided in Ref. [12]. For circular and
equatorial orbits, angular momentum fluxes are related
to the energy fluxes by _E∞;H ¼ Ω _L∞;H.
In general _EH ≪ _E∞, although its relative importance

grows with the BH spin and with Ω. For example, for
χ ¼ 0.998, j _EH= _E∞j ≈ 0.108 at the ISCO.

C. Modeling fluxes for a reflective ECO

Let us now discuss how the above fluxes should be
modified in case the BH horizon is replaced by a (partially)
reflective ECO. We summarize here the main result; the
detailed computation is given in Appendix.

1. Flux near the object

The energy flux at the horizon can be expressed in terms
of the fraction of energy absorbed by the object relative to
the energy absorbed by the event horizon of a BH with the
same mass and spin. Specifically, the flux of radiation
across the ECO surface reads

_EECO ¼ ð1 − jRj2Þ _EH; ð12Þ

whereR is the reflectivity coefficient at the surface [25,42].
This quantity can in general be frequency- and spin-
dependent but for simplicity we will consider it to be
constant. For a BH,R ¼ 0 whereas jRj ¼ 1 for a perfectly
reflecting object. Our goal is to place an upper bound onR.
Regardless of the reflectivity, an ultracompact object can

efficiently trap radiation within its photon sphere [43–45],
which mimics the effect of a horizon. For example, suppose
that the effective surface of the object is located at
r ¼ rþð1þ ϵÞ, with ϵ ≪ 1. In the ϵ → 0 limit we expect
to recover the BH result, no matter the value of R.
As we now show, trapping at the photon sphere is never

effective in an EMRI system. If radiation is trapped within
the photon sphere for enough time, it is effectively lost from
the energy balance. This loss contributes to the orbital
evolution. Whether this effect is important can be quanti-
fied as follows [17]. When ϵ ≪ 1, the travel time for
radiation is dominated by the delay time near the surface of
the object. This travel time is (half of) the echo time scale
[30,44,45], and is given by

Tarr ∼Mð1þ ð1 − χ2Þ−1=2Þj log ϵj: ð13Þ
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Effective absorption occurs if the above time scale is much
longer than a typical radiation-reaction time scale,2 which
we estimate as

TRR ∼
E
_E∞

∼
5

64

�
ro
M

�
4M
ν
: ð14Þ

Note that this is a leading-order estimate: E ¼ νM2=ð2roÞ
is the binary’s binding energy in Newtonian gravity, and we
used the quadrupole formula, _E∞ ¼ ð32=5Þν2ðM=roÞ5 to
estimate the GW flux. Requiring Tarr ≫ TRR yields the
condition

j log ϵj ≫ 5

64ð1þ ð1 − χ2Þ−1=2Þ
�
ro
M

�
4 1

ν
; ð15Þ

Owing to the 1=ν and log ϵ dependence, this formula will
never be satisfied in the EMRI limit, except for unrealis-
tically small values of ϵ. In other words, for EMRI systems
the radiation-reaction time scale is always so long that
light-sphere trapping cannot provide effective absorption.
The only way for an ECO to absorb radiation is by
dissipating within the object, as parametrized by Eq. (12).

2. Flux at infinity

Another important point concerns the energy flux at
infinity. From Eqs. (7) and (10) we notice that _E∞ depends
on the homogeneous solutions of Teukolsky’s equation that
is regular at the horizon (cf. the dependence on the ingoing
solution Rin

lmω). Clearly that solution is different for an
ECO, owing to the different boundary conditions.
Nevertheless, in Appendix, we show that the energy flux
at infinity is, up to numerical accuracy, the same for a BH or
for an ECO, regardless of the reflectivity of the latter.3

To summarize, in order to study the adiabatic evolution
of the EMRI to leading order in the mass ratio it is sufficient
to compute the energy flux at infinity as in the BH case, and
to account for (total or partial) absorption within the object
using Eq. (12).

D. Circular equatorial orbits in Kerr
and radiation reaction

Circular equatorial orbits in Kerr can be uniquely para-
metrized in terms of the energy E and the angular
momentum Lz of the small orbiting body given by:

E
μ
¼ 1 − 2v2 þ χv3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3v2 þ 2χv3
p ; ð16Þ

Lz

μ
¼ �rov

1 − 2χv3 þ χ2v4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3v2 þ 2χv3

p ; ð17Þ

where v≡ ffiffiffiffiffiffiffiffiffiffiffi
M=ro

p
and the plus and minus sign correspond

to prograde and retrograde orbits, respectively.
Under the assumption that the evolution of the system

under radiation reaction is adiabatic, i.e., the radiation
reaction timescale is much longer than the orbital period,
we evolve the system using the balance equation:

_E≡ _ro
dE
dr

¼ − _EGW; ð18Þ

where _EGW is the total GW flux. The evolution of the
orbital phase ϕ can then be computed using

_ϕ ¼ ΩðtÞ≡� M1=2

roðtÞ3=2 þ aM1=2 : ð19Þ

An example of the evolution of the orbital radius under
radiation reaction when including the influence of tidal
heating (i.e., when R ¼ 0) is shown in Fig. 1 for
M ¼ 106 M⊙, μ ¼ 30 M⊙, and various spin values. The
evolution starts at ro ¼ 10M up to the ISCO, so that in the
highly-spinning case the evolution lasts longer.
In the following we will be interested in computing the

GW phase shift between an EMRI in a BH or ECO
background. To do so we take into account the fact that
the GW phase of the dominant mode is given by ϕGW ¼ 2ϕ
and define the instantaneous dephasing as

FIG. 1. Evolution of the orbital radius under radiation reaction
when including the influence of tidal heating (i.e., when the
central object is a perfect absorber, R ¼ 0) for M ¼ 106 M⊙,
μ ¼ 30 M⊙ and various spin values. The evolution starts at
ro ¼ 10M and ends at the ISCO.

2Note that this argument revises that presented in Ref. [17].
3In principle, there could be large effects very close to

extremely narrow resonances [27]. However, it has been shown
that the impact of these resonances is negligible [29], suggesting
that the analysis in Appendix (which ignores the resonances) is
reliable.
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δϕðtÞ ¼ ϕBH
GWðtÞ − ϕECO

GW ðtÞ; ð20Þ

where ϕBH
GWðtÞ and ϕECO

GW ðtÞ denote the instantaneous GW
phase in the BH and ECO case, respectively, and we have
chosen the initial conditions such that ϕBH

GWðt ¼ 0Þ ¼
ϕECO
GW ðt ¼ 0Þ at the initial orbital radius of the evolution.
In addition we also define the total dephasing accumu-

lated up to a radius rf as

Δϕ ¼ ϕBH
GWðro ¼ rfÞ − ϕECO

GW ðro ¼ rfÞ; ð21Þ

where ϕBH;ECO
GW ðro ¼ rfÞ is computed at the time where the

orbital radius reaches rf and where again we set the orbital
phase to be the same for both the BH and ECO case at the
initial orbital radius.

E. Description of the code

We integrate the perturbation equations and compute
fluxes and waveforms using the GREMLIN code available in
the Black Hole Perturbation Toolkit [46]. This code uses an
accurate continued-fraction representation of the solution to
Teukolsky equation [47,48]. More specifically, the solu-
tions Rup;in

lmω of the homogeneous Teukolsky equation are
expanded as a series of hypergeometric functions; the
coefficients of the series are determined by a three-term
recurrence relation [49].
We used GREMLIN to solve Teukolsky equation for all m

modes up to l ¼ lmax ¼ 20 over a range of orbital radii.
With the solutions for each ðl; mÞmode at hand, the energy
fluxes can be computed by summing over all modes using
Eq. (10) and (11), respectively. Thus, the fluxes are
computed as a function of the orbital radius; data are
evenly spaced in the range from r ¼ 20M to the ISCO, the

latter depending on the value of the spin of the central
object. At the ISCO, the fractional accuracy for the flux at
infinity is 10−4 and for the flux at the horizon it is 10−8 [12].
Finally, fluxes are used to evolve the orbital trajectory of the
small body adiabatically starting at ro ¼ 10M, together
with the corresponding GW signal.
The adiabatic inspiral is driven by the energy loss from

the orbit via GWs at infinity and tidal heating. To compute
the contribution of tidal heating we generated several sets
of waveforms for different spin values. One set of wave-
forms is constructed where the inspiral is driven by both
tidal heating and GWemission to infinity. The other family
of waveforms is constructed by considering different values
for jRj2. We use these waveforms to calculate the mismatch
as explained below.

III. RESULTS

In the left panel of Fig. 2 we show the phase difference as
a function of time for the case of a perfectly-reflective ECO
(jRj2 ¼ 1) and a BH with the same mass and spin. As a
representative example, we use the same configurations as
in Fig. 1. The orbit is again evolved from ro ¼ 10M up to
the ISCO, so that in the highly-spinning case the evolution
lasts longer and the total dephasing is larger.
The dashed horizontal line in the left panel of Fig. 2

marks the threshold δϕ ¼ 1 rad, which gives a very rough
indication of the importance of tidal heating. As a rough but
useful rule of thumb, if omission of tidal heating leads to
dephasing δϕ ≈ 1 rad or greater as compared to a model
that includes tidal heating, then its omission is likely to
substantially impact a matched-filter search, leading to a
significant loss of detected events [50]. We emphasize that
this rule of thumb must be validated with a more careful
analysis; for example, correlations may allow for detection

FIG. 2. Left panel: dephasing due to absence of tidal heating in a perfectly-reflective ECO (jRj2 ¼ 1) relative to the BH case (R ¼ 0).
We consider a prototypical EMRI system and the evolution starts at ro ¼ 10M up to the ISCO for various values of the spin of the central
object. Right panel: total dephasing accumulated from ro ¼ 10M up to the ISCO as a function of the reflectivity jRj2. Each line
represents an interpolation of 20 equally spaced data points ranging from jRj2 ¼ 0 up to jRj2 ¼ 1. The dependence is linear for any
value of the spin and of the other parameters.
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with incorrect models, albeit at the cost of systematic errors
in fitted parameters. As expected, both the total and the
instantaneous dephasing grow with the spin [9]. In the
example of Fig. 2, for χ ¼ 0.3, δϕ≳ 1 rad after slightly
more than two months, whereas the same dephasing occurs
after one month when χ ≈ 0.9. Overall, the total dephasing
accumulated up to the ISCO is large, ranging from 102 rad
to 104 rad, depending on the spin.
In the right panel of Fig. 2 we show the dependence of

the total dephasing with the reflectivity jRj2. The depend-
ence is linear, Δϕ ∝ jRj2, to an excellent accuracy. This is
true also up to jRj2 ∼ 1, whereas the instantaneous dephas-
ing δϕ ∝ jRj2 only in the small-jRj2 or in the small-spin
limit. The Δϕ ∝ jRj2 scaling allows us to compute the total
dephasing for a single value ofR and rescale the final result
for different values of the reflectivity a posteriori. For
example, the dephasing for jRj2 ¼ 1=2 would be approx-
imately half of what is shown in the left panel of Fig. 2.
Note that absorption—either total at the horizon or

partial due to a partially reflecting ECO—also changes
the mass and spin of the central object, in turn modifying
the quasigeodesic motion of the small orbiting body. This
effect is always much smaller than the dissipative effect due
to tidal heating. Even for a highly spinning central object,
this effect can account at most for a dephasing of 10−3 rad
[51], which is negligible compared to the effects shown
in Fig. 2.
In Fig. 3 we show two representative examples (for spin

χ ¼ 0.7 and χ ¼ 0.9 in the top and bottom panels,
respectively) of the GW waveform emitted during the
EMRI to leading order in the mass ratio. Also in this case
the effect of heating grows significantly with the spin and
becomes even appreciable by the naked eye when χ ≳ 0.9.
Although the dephasing of the waveform is a useful

measure to estimate the impact of tidal heating in the GW
waveform, a better measure to assess whether the effect is
sufficiently strong to be measurable in a GW detector with
noise power spectral density (PSD) SnðfÞ, is to compute the
overlap O between two waveforms h1ðtÞ and h2ðtÞ:

Oðh1jh2Þ ¼
hh1jh2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i

p ; ð22Þ

where the noise-weighted inner product hh1jh2i is
defined by

hh1jh2i ¼ 4ℜ
Z

∞

0

h̃1h̃
�
2

SnðfÞ
df: ð23Þ

Here the tilded quantities stand for the Fourier transform
and the star for complex conjugation. Since the waveforms
are defined up to an arbitrary time and phase shift, it is also
necessary to maximize the overlap (22) over these quan-
tities. In practice this can be done by computing [52]

Oðh1jh2Þ¼
4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihh1jh1ihh2jh2i

p max
t0

����F−1
�
h̃1h̃

�
2

SnðfÞ
�
ðt0Þ

����; ð24Þ

where F−1½gðfÞ�ðtÞ ¼ Rþ∞
−∞ gðfÞe−2πiftdf represents the

inverse Fourier transform. The overlap is defined such that
O ¼ 1 indicates a perfect agreement between the two wave-
forms. For thePSDweuse theLISAcurve ofRef. [53] adding
the contribution of the confusion noise from the unresolved
Galactic binaries for a one year mission lifetime.
In Fig. 4 we show the mismatchM≡ 1 −O for the plus

polarization of the waveforms with jRj2 ¼ 1 and jRj2 ¼ 0,
for the systems considered in Fig. 1. In the left plot of Fig. 4
we show of the mismatch as a function of observation time
for orbits starting at roð0Þ ¼ 10M. For all the cases
considered the mismatch M < 0.02 until the first month
of observation, however it quickly increases as the small
object approaches the ISCO, making the waveforms clearly
distinguishable from one another. In the right plot of Fig. 4
we instead divide the waveforms in chunks of one month
and compute the mismatch for that particular month of data.

FIG. 3. Comparison between waveforms computed with
jRj2 ¼ 0 (with absorption) and jRj2 ¼ 1 (without absorption).
We show the waveforms as function of time for M ¼ 106 M⊙,
μ ¼ 30 M⊙ and an orbit with initial radius roð0Þ ¼ 10M and an
initial phase ϕð0Þ ¼ 0. We show a number of cycles roughly
23 days after the beginning of the orbit, for χ ¼ 0.7 (top) and
χ ¼ 0.9 (bottom). For larger spins the effect of tidal heating (i.e.,
of nonzero reflectivity at the surface of the central object) is more
pronounced leading to larger dephasing between the waveforms.
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This allows us to assess how close are the waveforms at
different stages of the evolution. As expected, the closer the
object is from the ISCO the smaller the overlap. In
particular for small spins the mismatch is M < 0.1 for
most of the evolution. Finally, in Fig. 5 we show how the
mismatch depends on the reflectivity for small values of
jRj2 for the system with χ ¼ 0.8. As expected, the
mismatch decreases with jRj2. We find that for jRj2 ≲
10−4 the mismatch behaves roughly as M ∝ jRj4. Indeed,
in the small dephasing limit, O ∝ cos δϕ [50] and—owing
to the δϕ ∝ jRj2 dependence—the mismatch should scale
as M ∝ jRj4, in agreement with our results.4

IV. DISCUSSION

As a useful rule of thumb two waveforms are considered
indistinguishable for parameter estimation purposes ifM≲
1=ð2ρ2Þ [50,54], where ρ is the SNR of the true signal. For
an EMRI with an SNR ρ ≈ 20 (resp., ρ ≈ 100) one hasM≲
10−3 (resp., M≲ 5 × 10−5). As a reference, in Fig. 5 we
mark the threshold M ¼ 10−3 with a dashed horizontal
line. It is clear from Figs. 4 and 5 that this level of mismatch
is quickly exceeded in an EMRI due to absence/presence of
tidal heating for a perfecly-reflecting ECO (i.e., when
jRj ¼ 1), even for small spins. This implies that the
reflectivity jRj2 can be constrained down to very small
values. For example considering a supermassive object with
χ ≳ 0.8 and a signal with ρ ¼ 20, from the results in Fig. 5
we can estimate a very stringent bound on the reflectivity

jRj2 ≲ 5 × 10−5: ð25Þ
A more conservative bound would be obtained by requiring
that the dephasing be smaller than 1 rad. Owing to the

δϕ ∝ jRj2 dependence and considering also χ ≳ 0.8, we
find the slightly weaker constraint jRj2 ≲ 10−4. Thus, an
EMRI detection is sensitive to an effective reflectivity of the
central supermassive object as small as ∼Oð0.01%Þ (as a
reference, we remind that in the BH case the reflectivity is
zero and that for a neutron star it is practically unity, even
when accounting for dissipation [55]).
The above results confirm previous findings that advo-

cated for the importance of tidal heating in standard EMRI
waveforms [9,12]: heating needs to be modelled accurately
in order not to introduce a large dephasing and systematic
errors. In addition, we showed that the inclusion/absence of
tidal heating can be used as a strong, model independent,
discriminator for the presence of a horizon in the central
supermassive object.
Compared to other types of observations, this is a very

stringent bound. For instance, in order to achieve a bound
of the order of Eq. (25) at 2σ confidence level from a
negative echo search in the ringdown of a comparable-mass
binary merger, a SNR of Oð103Þ in the ringdown would be
needed [56]. Reaching 3σ confidence level for the same

FIG. 4. Left panel: mismatch M ¼ 1 −O as a function of observation time between the plus polarization for a waveform computed
with jRj2 ¼ 1 (ECO) and another computed with jRj2 ¼ 0 (BH), maximized over time and phase shift. We consider the same systems
as in Fig. 1. Right panel: mismatch over chunks of one month at different stages of the evolution.

FIG. 5. Same as left panel of Fig. 4 but also considering small
jRj2 and for a central BH spin χ ¼ 0.8. The dashed horizontal
line marks the threshold M ¼ 1=ð2ρ2Þ, with ρ ¼ 20 being the
fiducial SNR of the true signal.

4We note that, due to numerical errors in the waveforms, the
M ∝ jRj4 scaling breaks down for very small mismatches,
M≲ 10−10.
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bound would require a SNR of Oð104Þ in the ringdown,
which is well beyond what is expected with LISA, even for
the loudest mergers [15] (although such loud signals might
be possible with future extensions [16]).
Our analysis relies only on the modification of the fluxes

at the leading order in the mass ratio, i.e., we included only
the leading-order dissipative part of the self-force [57,58],
neglecting conservative contributions and higher-order
terms. While conservative contributions and high-order
terms are crucially important for parameter estimation, their
impact is not likely to be confused for that of tidal heating,
since tidal heating effects are typically much stronger, at
least for realistic values of the spin and when R is not
negligibly small. Thus, we expect that reliable constraints
can be obtained by modeling (partial) absence of tidal
heating in state-of-the-art waveform approximants to the
leading order, along with—and independently of—other
self-force corrections.
We considered here the simplest trajectory, namely a

circular equatorial orbit, but we expect that our results
would remain qualitatively the same for more generic
trajectories. Eccentric orbits can probe regions closer to
the central object than in the circular case, so the effect of
tidal heating may be expected to be even larger in that case.
On the other hand, the relative effect of tidal heating on the
orbit tends to be smaller for highly non-equatorial
orbits [9].
Another natural extension of our work concerns the role

of resonances due to the excitation of low-frequency
quasinormal modes which are ubiquitous for ECOs
[1,27,28]. These resonances are very narrow and have been
shown to produce a negligible effect in the nonspinning case
[29]. It would be interesting to include them in a spinning
model and to investigate the possible existence of floating
orbits, namely the possibility that for certain circular orbits
the (negative) flux emitted to infinity can be compensated by
a (positive, due to superradiance) flux at the horizon, in the
case the latter is resonantly enhanced [59]. If this condition
occurs the orbits can be metastable and introduce a large
dephasing. However, preliminary analysis shows that the
effect of tidal heating discussed here should nonetheless be
dominant.
Finally, we made the conservative assumption that the

external geometry of the central object can be described by
the Kerr metric. ECOs might display several multipolar
deviations from Kerr, whose amplitude—in the ultracom-
pact regime—is bounded by regularity arguments [22,23].
These deviations affect also the conservative part of the
EMRI dynamics to the leading order in the mass ratio and
would introduce a further diagnostic for the presence of
horizons, similarly to the case of “bumpy” BHs [60–62].
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APPENDIX: ENERGY FLUXES: ECOS VS BHS

In this appendix we study the differences in the energy
fluxes between a BH and an ECO.

1. Energy flux at infinity

Here we show that the energy flux at infinity due to a
point particle in circular motion around a Kerr-like object is
independent (within numerical accuracy) of the boundary
conditions at the surface of the object (modulo narrow
resonances). As a by-product, the flux is the same for a BH
and for an ECO. Our study extends that done in Ref. [29],
in which low-frequency perturbations of nonspinning
objects were considered. Instead, we consider the case in
which the spin of the object and the frequency of the
perturbations are arbitrary.
Our starting point is Teukolsky’s equation (3). It is

convenient to make a change of variables by introducing
the Detweiler’s function [26,63]

Ψ ¼ Δ−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p �
αRlmω þ βΔ−1 dRlmω

dr

�
; ðA1Þ

where α and β are certain radial functions [26,63]. By
introducing the tortoise coordinate x as in Eq. (6),
Teukolsky’s master equation becomes

d2Ψ
dx2

− Vðr;ωÞΨ ¼ S: ðA2Þ

where S is a source term and the final potential V is defined,
e.g., in Ref. [26]. The asymptotic behavior of the potential
is V → −ω2 as x → ∞ and V → −k2 as x → −∞. The
functions α and β can be chosen such that the resulting
potential V is purely real [26,63]. Although the choice of α
and β is not unique, Ψ evaluated at the asymptotic infinities
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(x → �∞) remains unchanged up to a phase. Therefore,
the energy and angular momentum fluxes are not
affected [64].
As discussed in the main text, the solution to Eq. (A2)

can be found in term of the Green’s function as

Ψ ¼ Ψþ
W

Z
x

−∞
dxΨ−Sþ Ψ−

W

Z þ∞

x
dxΨþS; ðA3Þ

where Ψ� are two solutions of the homogeneous equation
which satisfy the correct boundary conditions at infinity
(for the plus sign) and near the object (for the minus sign),
whereas W ¼ dΨþ

dx Ψ− −Ψþ
dΨ−
dx is their Wronskian.

Regardless of the nature of the central object, the boundary
condition at infinity reads

Ψ ∝ Ψþ ∼ eiωx: ðA4Þ
Given an object with reflectivity R, the boundary

condition near its surface (x ¼ x0 → −∞) is [42]

Ψ ∝ Ψ− ∼ e−ikðx−x0Þ þReikðx−x0Þ: ðA5Þ
As discussed in the main text the flux at infinity can be

computed as _E∞ ∝ jΨðx → ∞Þj2, where

Ψðx → ∞Þ ¼ eiωx

W

Z þ∞

−∞
dxΨ−S: ðA6Þ

For a point particle in circular equatorial motion, the
source term can be schematically written as

S ¼ AðωÞδðx − xoÞ þ BðωÞδ0ðx − xoÞ; ðA7Þ
where xo ¼ xðroÞ is the orbital radius in tortoise coordi-
nates. Then, standard treatment [65] leads to the following
solution

Ψðx → ∞Þ ¼ eiωx
ÂðωÞΨ−ðroÞ þ B̂ðωÞΨ0

−ðroÞ
W

����
ω¼mΩ

;

ðA8Þ

where Â and B̂ are two functions of the frequency related to
A and B in Eq. (A7).
Finally, one can solve numerically the homogeneous

equation with boundary conditions given by Eqs. (A4) and
(A5) in order to evaluate Ψ− and the Wronskian, and using
the explicit form of the source term for circular orbits. One
can verify numerically that Ψðx → ∞Þ appearing in
Eq. (A8) does not depend on the value of R in
Eq. (A5), at least within the numerical accuracy of our
code. In particular, the energy flux at infinity is the same
regardless the value of R, including the BH case (R ¼ 0).
This argument is valid far from possible resonances in
the flux. These resonances correspond to the poles of the
Wronskian W, which occur near the real axis in the
complex plane. Since the fundamental quasinormal modes

of an ECO have very small imaginary part [24–26], these
resonances are extremely narrow [27,28] and their con-
tribution to the dynamics is negligible [29].
An alternative way to understand this result is the

following. A point particle in circular motion emits mono-
chromatic radiation. Part of the latter goes directly to
infinity, contributing to _E∞ regardless of the boundary
conditions near the central object. Another fraction of the
radiation is either reflected by the potential barrier produced
by the gravitational field of the object (both in the BH and in
the ECO case) or partially reflected by the surface of the
object (only in the ECO case). In both cases this radiation is
reflected back at the same frequency and can therefore be
efficiently re-absorbed by the orbting particle,5 which
therefore does not lose the corresponding energy. This
occurs as long as Tarr ≲ TRR [cf. Eqs. (13) and (14)], which
is typically the case, as we showed in the main text.

2. Energy flux at the ECO surface

Here we show that the energy flux at the ECO surface
can be expressed as a fraction of the energy flux at the
horizon of a Kerr BH with the same mass and spin. In the
ECO case, the boundary condition in Eq. (A5) represents
the sum of an ingoing wave and of an outgoing wave with
relative amplitude R.
Assuming jx0j ≫ M, we can evaluate the flux as

x → −∞. For the ingoing wave, this flux will be propor-
tional to (the square of the absolute value of)

Ψabsorbedðx → −∞Þ ¼ 1

W

Z þ∞

−∞
dxΨþS; ðA9Þ

where Ψþ is the solution which is regular at infinity, and it
is the same for both the BH and the ECO cases. Notice that
_EH ∝ jΨabsorbedðx → −∞Þj2 is the energy flux at the hori-
zon in the BH case. In the ECO case, there is an extra
contribution due to the outgoing wave in Eq. (A5). The flux
in this case will be proportional to (the square of the
absolute value of)

Ψreflectedðx → −∞Þ ¼ R
W

Z þ∞

−∞
dxΨþS: ðA10Þ

Notice that this contribution has the opposite sign in the
flux, since it accounts for energy that crosses the object’s
surface in the opposite direction. Since Ψþ is independent
ofR, the integral in Eqs. (A9) and (A10) is the same, so the
ratio of the absorbed to reflected fluxes is

_Eabsorbed

_Ereflected

¼ jRj2: ðA11Þ

Finally, since the two contribution have opposite sign, we
obtain Eq. (12) in the main text.

5Unless the orbital frequency matches that of a resonance.
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