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Abstract 

Following the promising results obtained in previous studies, 

in this paper we address the main limitations of a WiFi-based 

Passive Forward Scatter Radar in vehicles monitoring 

applications. Specifically, the possibility to operate in the 

absence of a reference signal is investigated in order to avoid 

the need for a dedicated receiving channel and to make the 

sensor independent of the exploited transmitter of opportunity. 

Moreover, aiming at the automatic classification of surface 

vehicles, an effective strategy is considered to estimate the 

target velocity in order to properly scale the corresponding 

signatures for direct comparison. The proposed approaches are 

extensively tested against experimental datasets in order to 

verify their practical feasibility. 

This paper is a companion to another paper submitted to this 

conference [1]. Specifically, with the proposed approaches we 

complement and extend the results in [1] by providing an 

effective solution for a realistic implementation of the 

conceived sensor. 

1 Introduction  

In a companion paper submitted to this conference [1], we have 

shown that a WiFi-based passive radar system can be 

successfully exploited for surface vehicles automatic 

classification by adopting a forward scatter radar geometry, i.e. 

an extreme bistatic configuration where the bistatic angle is 

close to 180°. In fact, thanks to the “forward scattering” 

mechanism that is invoked to model the transmitted energy 

scattered by the target [2],[8], quite stable profiles are observed 

in the received signals when a given vehicle repeatedly crosses 

the transmitter (Tx) - receiver (Rx) baseline. These profiles 

were shown to be characteristic signatures of the specific target 

so that they could be easily exploited by a proper automatic 

classification stage [1]. 

However, the procedure adopted in [1] to extract the vehicles 

signature from the received signals yields some intrinsic 

limitations. Basically, being that work mostly focused on the 

subsequent classification stage, the signature extraction was 

based on two restrictive assumptions:  

(i) the availability of a good copy of the transmitted signal, 

namely the reference signal, and  

(ii) the availability of an accurate estimate of the target cross-

baseline velocity component, that is critical to obtain the 

required resampling of the different signatures for a direct 

comparison [3]. 

The first assumption is a legacy from a conventional passive 

radar operation and potentially allows to preserve the target 

detection capability of the conceived sensor even outside the 

forward scatter region in the strictest sense. Obviously, this 

assumption yields the requirement for a dedicated receiving 

channel to collect the signal from the (possibly cooperative) 

transmitter [4].  

In this paper, aiming at reducing the system complexity and its 

dependency on third-parties, the possibility to operate in the 

absence of a reference signal is considered. Specifically, a 

forward scatter radar approach is exploited by extracting the 

target signature based on the square modulus of the 

surveillance signal [5]. An appropriate adaptation is presented 

to be able to operate with transmissions of opportunity of a 

pulsed type. 

The second assumption made in [1] was founded on the 

availability of ancillary information provided by external 

systems. This could be a reasonable assumption if the 

conceived sensor operates in conjunction with other 

surveillance systems. However, this represents a severe 

limitation if the WiFi-based PFSR has to be operated stand-

alone. Therefore, in this paper we investigate autonomous 

approaches to target motion estimation based on a time-

frequency analysis and on the exploitation of a couple of Rx 

antennas displaced along the cross-baseline direction. 

The resulting WiFi-based PFSR scheme is tested against 

experimental datasets collected by means of a dedicated 

acquisition campaign. In particular, the automatic vehicles 

classification capability is analysed and compared to that 

obtained with the processing scheme employed in [1]. The 

reported results show that the stand-alone sensor allows 

comparable classification performance with respect to the 

approach in [1] with the interesting advantages of reduced 

system complexity and autonomous operation.        

The paper is organized as follow. Section 2 illustrates the Wi-

Fi-based PFSR concept and the employed dataset. The 

conceived strategies to guarantee the stand-alone operation are 

addressed in Section 3. Section 4 reports the experimental 

results obtained at the classification stage when employing the 

autonomously extracted target signatures. Finally, our 

conclusions are drawn in Section 5. 
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2 WiFi-based Passive FSR sensor 

The considered FSR geometry and the processing scheme for 

vehicle classification adopted in [1] are depicted in the left-

hand side of Figure 1. Specifically, the main processing steps 

required to achieve the automatic target classification are 

reported in a shadowed box.  

A commercial WiFi access point (AP) is used as transmitter of 

opportunity (Tx) while a receiver Rx (known as surveillance 

channel) is adopted to collect returns from the observed scene. 

The considered target moves with velocity V on a trajectory 

orthogonal to the Tx-Rx baseline. The vehicle signature is 

extracted by means of the following steps [1],[6]: 

1) cross-correlation between the reference (sref) and the 

surveillance (ssurv) signals on a pulse-by-pulse basis, 

evaluated at delay bin equal to direct signal propagation 

delay; 

2) collection of the samples obtained across consecutive 

transmitted pulses to form the target time-domain profile; 

3) target profile resampling and scaling into a common axis, 

i.e. the spatial displacement along the cross-baseline 

direction, based on a proper estimate of the target velocity 

component along that direction; 

4) application of an appropriate classification approach 

against the obtained signatures. 

Notice that step 1) requires the availability of the reference 

signal, namely a good copy of the signal emitted by the AP. In 

the considered scenarios, as the employed sensor is installed 

very close to the WiFi AP exploited as illuminator of 

opportunity, the Tx can be assumed partially cooperative and 

the reference signal can be spilled directly from the Tx antenna 

using a directional coupler (see Figure 1). Nevertheless, the 

collection of this signal requires a dedicated Rx channel. 

Similarly, step 3) at least requires the knowledge of the target 

motion component along the cross-baseline direction. In [1] we 

assumed that this was provided by an external cooperative 

system and this makes the conceived sensor dependent on the 

availability of ancillary information. 
 

 
Figure 1. WiFi-based PFSR processing scheme for vehicle 

classification. 

In this paper we overcame the above limitations by adopting 

alternative approaches at the signatures extraction stage. The 

proposed processing scheme will be then tested against the 

same experimental dataset used in [1] in order to provide a fair 

comparison among different approaches. 

The considered dataset has been collected by means of the 

WiFi-based PR receiver developed at Sapienza University of 

Rome [7]. Different cars were employed as cooperative targets 

in the acquisition geometry sketched on the upper left corner 

of Figure 1. All the employed antennas were mounted at about 

1.25 m of height with respect to the ground. The Tx antenna is 

located in (𝑥𝑇𝑥,𝑦𝑇𝑥)=(0,0) and two Rx antennas (RxL and RxR) 

were employed in forward scatter configuration with respect to 

the Tx with baseline B=60 m. This allows to perform 

simultaneous collection of the forward scatter target signatures 

perceived under two slightly different geometries and to test 

the robustness of the system against small antenna 

displacement. In fact, the Rx antennas were displaced in the 

horizontal direction by d=75 cm and located in (𝑥𝑅𝑥𝐿
,𝑦𝑅𝑥𝐿

)=(-

d/2,B) and (𝑥𝑅𝑥𝑅
,𝑦𝑅𝑥𝑅

)= (d/2,B). The cars were moving 

orthogonally to the Tx-Rx baseline, from point A≈(-35 m, B/2) 

to point B≈(35 m, B/2) with velocity of about 4-6 m/s 

depending on the considered test. 

3 Modifications to the signature extraction stage 

The proposed modification to the signature extraction stage of 

the conceived WiFi-based PFSR sensor are depicted in the 

right-hand side of Figure 1 and illustrated in more detail in the 

following sub-sections.   

3.a Reference signal-free system 

Aiming at reducing the system complexity and its dependency 

on third-parties, the possibility to operate in the absence of a 

reference signal is considered. To this purpose, a forward 

scatter radar approach is exploited by extracting the target 

signature based on the square modulus of the surveillance 

signal. Specifically, the block performing the cross-correlation 

between the reference and surveillance signals is replaced by a 

processing block that simply evaluates the energy of the 

surveillance signal on a pulse-by-pulse basis: 

𝐸𝑚 = ∫|𝑠𝑠𝑢𝑟𝑣𝑚
(𝑡)|

2
· 𝑑𝑡 (1)  

Therefore, the target signature observed along the acquisition 

time can be formed as: 

𝐸 = [𝐸0 𝐸1  … 𝐸𝑀−1] (2)  

where M is the number of pulses included in the profile. 

Notice that the output of (1) can be interpreted as an 

approximation of the zero-lag cross-correlation between the 

reference and the surveillance signal obtained by exploiting the 

received signal as a reference. Therefore, it is expected that this 

approach provides comparable results with respect to the 

conventional cross-correlation when the direct signal is the 

dominant contribution in the received signals. As an example, 

Figure 2 shows the comparison of the target signatures 

obtained with conventional cross-correlation between the 
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reference and the surveillance signal and with the proposed 

reference signal free approach. The results are reported for the 

RxR, when a VW Polo is employed as cooperative target. As it 

is apparent, the two obtained profiles are quite comparable and 

only slightly differences are observed when the target crosses 

the baseline since it partially blocks the direct signal impinging 

on the Rx antenna. 

As an alternative to the interpretation above, the result in (1) 

can be regarded as a low-pass filtered version of the 

surveillance signal square modulus, with a filter bandwidth set 

by the inverse of the single pulse duration. Therefore, if the 

target FSR signature is slowly varying within single pulses, the 

proposed solution is equivalent to the approach commonly 

employed in active FSR systems exploiting a continuous wave 

transmission. 

3.b Autonomous estimation of cross-baseline target velocity 

In order to obtain a stand-alone capability of estimating the 

target velocity along its trajectory, we exploit the availability 

of a couple of Rx antennas displaced along the cross-baseline 

direction. 

Specifically, based on the considered geometry, we observe 

that the crossing target yields similar profiles at the two Rx 

channels with a temporal displacement ∆𝑡 depending on the 

target cross-baseline velocity 𝑉 and the crossing point within 

the baseline; we indicate the latter using the distance 𝑌 of the 

target from the Tx antennas at the crossing point. Specifically, 

we can write: 

∆𝑡 =
𝑑 ∙ 𝑌

𝐵
∙

1

𝑉
 (3)  

As an example, Figure 3(a) reports the signatures 

simultaneously extracted by the two available antennas during 

the same test considered in Figure 2. Their temporal 

displacement can be estimated by evaluating the cross-

correlation between the two obtained profiles and selecting the 

delay yielding the maximum output as depicted in Figure 3(b). 

The obtained delay can be then used to provide an estimate of 

the target velocity assuming the prior knowledge of the 

crossing point Y. In the experiment reported in Figure 3, we 

obtain ∆𝑡=0.0796 s and, by setting Y=B/2, the estimated 

velocity is 4.71 m/s which is well in line with the value 4.74 

m/s provided by the external cooperative sensor. 

Notice that the approach above could be reasonably adopted 

when monitoring the vehicular traffic along a street where cars 

must remain inside the roadway, hence the crossing point can 

be assumed a priori known. 

In other surveillance scenarios, the estimation of the crossing 

point is also required in order to solve the equation in (3). 

Therefore, another relation among the relevant parameters 

should be used to build up and solve a system of equations with 

two unknowns (i.e. V and Y).  

 

 
Figure 2. Comparison of the signatures obtained for a VW Polo 

with a conventional cross-correlation approach or by 

evaluating the surveillance signal energy. 

 

(a) 

 

(b) 

Figure 3. Results for the test with a VW Polo: (a) signatures 

extracted from the two Rx channels; (b) cross-correlation based 

time delay estimation. 

 

In order to jointly estimate both parameters V and Y, we 

simultaneously exploit the estimate of the temporal 

displacement ∆𝑡 in (3) and the estimate of the target response 

Doppler rate of change 𝛼 that is mapped into the received 

profile amplitude variation thanks to the FSR principle [2]. 

This parameter jointly depends on the crossing point Y and on 

the target velocity orthogonal to the baseline as follows:   

𝛼 =
1
𝜆

𝑉2

𝑌(𝐵 − 𝑌)
 (4)  

It can be estimated based on different methods. 

A first solution is provided by the time-frequency analysis of 

the obtained profiles based on the evaluation of the 

corresponding spectrogram. An example along this line is 
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reported in Figure 4 where the spectrogram of one of the 

signatures in Figure 2 is shown. As expected, after the removal 

of the DC component based on a moving average scheme, a 

typical ‘V’ shape is observed as the target approaches, crosses, 

and then moves away from the baseline. By estimating the 

slope of such shape around the crossing point, we could get a 

reasonable estimate of the Doppler rate of change 𝛼. The 

sought parameter can be extracted, for example, by Radon 

transforming the spectrogram and then selecting the line 

integral yielding the highest value [11]. As an example, using 

this approach in the test reported in Figure 4, we obtain 

Y=29.58 m and V=4.81 m/s. 

 

 
Figure 4. Spectrogram of the signature obtained for a VW Polo. 

 

An alternative method to estimate the Doppler rate of change 

𝛼 is based on the direct estimate of the target chirp signature 

by exploiting a single longer processing interval about the 

crossing point and applying a procedure similar to that adopted 

in [10]. To this purpose, we remove the DC component 

affecting the received signature and we model the residual 

target contribution as a sine with argument varying according 

to a second order polynomial law. In such conditions, a 

dechirping approach can be exploited by looking for the 

positive value of the second order coefficient than yields the 

best focused output according to a proper criterion (e.g., an 

entropy minimization criterion can be adopted at this stage). 

In Figure 5 we report the entropy cost function obtained for the 

test in Figure 2 as a function of the Doppler rate of change 𝛼. 

By using this approach we obtain V=4.77 m/s and Y=30.3 m. 

Based on the analysis performed on the whole dataset, this 

second method appears to be more robust than that based on 

the evaluation of the spectrogram. Therefore, in the following, 

we adopt this second approach (together with the estimate of 

the relative delay in (3)) when the joint estimation of V and Y 

is sought. 

We couldn’t perform a detailed analysis of the achievable 

estimation accuracy of the proposed methods since the 

available ground-truth was in turn based on an external 

cooperative sensor whose accuracy cannot be easily measured. 

However, since the estimated parameters are just used for 

target’s signature resampling, the impact of the proposed 

approaches is evaluated in Section 4 on the final classification 

stage exploiting the resampled profiles. 

 

 
Figure 5: Entropy cost function obtained for the test 

employing VW Polo. 

 

4 Automatic vehicles classification 

Aiming at understanding the classification capability achieved 

by the WiFi-based PFSR sensor after the proposed 

modifications to the signature extraction stage, we exploit the 

classification approach and the experimental dataset illustrated 

in [1]. Specifically, we considered the cascade of a Principal 

Component Analysis (PCA)-based sub-space selection and a 

k-Nearest Neighbour (k-NN) algorithm as a practical and 

effective solution. The car models employed in the 

experimental tests are summarized in Table 1 where also the 

number of tests repeated with each vehicle is reported. Overall, 

based on the two Rx channels, 196 signatures where extracted 

and subdivided into a training set (51 profiles) and a validation 

set 145 profiles). Further details are reported in [1]. 

 

Table 1. Car models employed in the acquisition campaign. 

Car model Dimensions (l, w, h) N. of tests Label 

VW Polo 3.97 x 1.65 x 1.45 m 19 1 

Ford Fiesta 3.93 x 1.76 x 1.49 m 19 2 

Nissan Micra 3.71 x 1.54 x 1.54 m 21 3 

Fiat Punto 4.04 x 1.69 x 1.49 m 20 4 

Opel Corsa 3.81 x 1.64 x 1.44 m 19 5 

 

The classification results obtained against the target signatures 

extracted with the approach in [1] are firstly reported in Table 

2 as a benchmark for the proposed modifications. Specifically, 

Table 2 reports the confusion matrix obtained at the output of 

the classification stage by evaluating, on a car model basis (see 

Table 1), the number of tests classified into each of the 5 

available classes. As is apparent, only few misclassified tests 

are observed. 

Table 3 reports the classification results obtained against the 

vehicles signatures resulting from the reference signal-free 

procedure described in Section 3. 

As is apparent, identical results are achieved as those reported 

in Table 2; this clearly shows that removing the assumption of 
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perfect knowledge of the transmitted signal does not affect the 

proposed system performance as meaningful target signatures 

can be built using the surveillance signal only. 

 

In Table 4 we show the results obtained when the target 

velocity is estimated using the approach proposed in section 

3.b when the baseline crossing point is assumed known. It is 

worth noticing that only a few additional errors appear when 

avoiding the exploitation of the reference signal and using the 

estimated target velocity. 

 

When the baseline crossing point and the target velocity are 

jointly estimated using the complete stand-alone method 

introduced in section 3.b, the results in Table 5 are obtained.  

Again, a remarkable classification capability is obtained 

(higher than 92%) against the available dataset despite the 

employed vehicles belong to the same cars category and 

possibly show a similar shape. 

 

Table 2. Classification performance obtained with the 

approach considered in [1]. 

 
 

Table 3. Classification performance obtained with the 

reference signal-free approach. 

 

Table 4. Classification performance obtained with the 

reference signal-free approach when the target velocity is 

estimated and the baseline crossing point is assumed known. 

 
Table 5. Classification performance obtained with the 

reference signal-free approach when target velocity and the 

baseline crossing point are jointly estimated as described in 

section 3.b. 

 
 

 

6 Conclusions  

In this paper proper strategies have been introduced to 

guarantee the stand-alone operation for a WiFi-based Passive 

Forward Scatter Radar to be employed for vehicles automatic 

classification. Specifically, aiming at reducing the system 

complexity and its dependency on third-parties, we considered 

the possibility to operate in the absence of a reference signal 

and without any ancillary information on the target motion. 

This allowed to extend the results reported in the companion 

paper [1] where simplifying assumptions were made about the 

availability of the information above. 

The resulting WiFi-based PFSR scheme has been tested against 

experimental datasets showing that the conceived stand-alone 

sensor provides a remarkable automatic vehicles classification 

capability, which is only slightly degraded with respect to that 

obtained in [1]. 

Future works will include new test campaigns aiming to 

investigate the impact of the observation geometry on the 

achievable classification results (e.g. target trajectories not 

necessarily orthogonal to the baseline, different crossing 

points, etc.) along the line suggested in [9]. 
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