
         Page 1 of 19 

 
 

NEIGHBORING OPTIMAL GUIDANCE AND CONSTRAINED ATTITUDE CONTROL APPLIED TO THREE-
DIMENSIONAL LUNAR ASCENT AND ORBIT INJECTION 

 
Mauro Pontani 

Department of Astronautical, Electrical, and Energy Engineering, Sapienza – University of Rome, Italy 
mauro.pontani@uniroma1.it 

 
Fabio Celani 

School of Aerospace Engineering, Sapienza – University of Rome, Italy  
fabio.celani@uniroma1.it 

 
Future human or robotic missions to the Moon will require efficient ascent path and accurate orbit injection 

maneuvers, because the dynamical conditions at injection affect the subsequent phases of spaceflight. This research 
is focused on the original combination of two techniques applied to lunar ascent modules, i.e. (i) the recently-
introduced variable-time-domain neighboring optimal guidance (VTD-NOG), and (ii) a constrained proportional-
derivative (CPD) attitude control algorithm. VTD-NOG belongs to the class of implicit guidance approaches, aimed 
at finding the corrective control actions capable of maintaining the spacecraft sufficiently close to the reference 
trajectory. CPD pursues the desired attitude using thrust vector control and side jet system, while constraining the 
rates of both the thrust deflection angle and the roll control torque. After determining the optimal two-dimensional 
ascent path, which represents the reference trajectory, VTD-NOG & CPD is applied in the presence of nonnominal 
flight conditions, namely those due to navigation and actuation errors, incorrect initial position, unpredictable 
oscillations of the propulsive thrust, and imperfect modeling of the spacecraft mass distribution and variation. These 
stochastic deviations are simulated in the context of extensive Monte Carlo campaigns, and yield three-dimensional 
perturbed trajectories. The numerical results obtained in this work unequivocally demonstrate that VTD-NOG & 
CPD represents an accurate and effective methodology for guidance and control of lunar ascent path and orbit 
injection. 

 
 

I. INTRODUCTION 
Recently, several countries have shown an 

increasing interest toward robotic or human missions to 
the Moon. Ascent path and orbit injection represent a 
crucial issue for a lunar module, because the dynamical 
conditions at injection affect the subsequent phases of 
spaceflight.  

In the scientific literature, only a limited number of 
works dealt with the joint application of guidance and 
control (G&C) algorithms to aerospace vehicles. In Ref. 
1 proportional-derivative (PD) control is employed for 
both guidance and control algorithms. Guidance and 
control based on Nonlinear Dynamic Inversion is 
studied by Marcos et al.2, and a comparison between 
Dynamic Inversion and State Dependent Riccati 
Equation approaches is presented in Ref. 3. An 
integrated G&C method is proposed by Tian et al.4, 
while the use of G&C based on sliding-mode is 
investigated in Ref. 5. 

This research is focused on the original combination 
of two techniques applied to lunar ascent modules, i.e. 
(i) the recently-introduced variable-time-domain 
neighboring optimal guidance (VTD-NOG), and (ii) a 
constrained proportional-derivative (CPD) attitude 
control algorithm. In particular, VTD-NOG is a special 
type of neighboring optimal guidance (NOG), and 

belongs to the class of feedback implicit guidance 
approaches6-8, aimed at finding the corrective control 
actions capable of maintaining the spacecraft 
sufficiently close to the reference trajectory. This is an 
optimal path that satisfies the second-order sufficient 
conditions for optimality, similar to what occurs for 
alternative NOG schemes. Only a limited number of 
works have been devoted to studying NOG9-14. A 
common difficulty encountered in implementing the 
NOG consists in the fact that the gain matrices become 
singular while approaching the final time. A 
fundamental original feature of VTD-NOG is the use of 
a normalized time scale as the domain in which the 
nominal trajectory and the related vectors and matrices 
are defined. As a favorable consequence, the gain 
matrices remain finite for the entire time of flight. This 
leads also to obtaining new equations for the sweep 
method, which provides all the time-varying gain 
matrices, computed offline and stored in the onboard 
computer. In this mathematical framework, the updating 
formula for the time of flight and the guidance 
termination criterion are derived in a logical, consistent 
fashion. VTD-NOG identifies the trajectory corrections 
by assuming a thrust direction always aligned with the 
longitudinal axis of the spacecraft. However, this 
assumption represents an approximation, and the 
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attitude control system must be capable of maintaining 
the actual spacecraft orientation sufficiently close to this 
thrust alignment condition. To do this, the attitude 
control system uses thrust vector control (TVC) and side 
jet system (SJS). These techniques are widely employed 
for rocket and spacecraft attitude control5,15. PD control 
represents a consolidated approach to designing a 
closed-loop attitude control system16. However, plain 
PD control can lead to excessive rates for the control 
inputs. In fact, high proportional and derivative gains 
are often needed to obtain a fast response of the attitude 
control loop. Thus, in this work, attitude control is 
performed using CPD, which introduces an appropriate 
saturation action, with the final aim of maintaining the 
rates of the control inputs within acceptable limits. In 
particular, this study describes the application of VTD-
NOG & CPD to lunar ascent. As a first step, the optimal 
two-dimensional trajectory is derived, and represents 
the nominal path. Then, the following perturbations are 
included in the dynamical modeling: (i) navigation 
errors, (ii) incorrect initial position, (iii) unpredictable 
oscillations of the propulsive thrust, (iv) actuation 
errors, and (v) imperfect modeling of the spacecraft 
mass distribution and variation. The resulting deviations 
from nominal flight conditions are evaluated, in the 
context of a Monte Carlo campaign. While the nominal 
path is two-dimensional, the perturbed trajectories are 
three-dimensional. 

In Ref. 17 a similar guidance and control problem 
was studied. However, only perturbations on the 
propulsive thrust were considered. As a result, in that 
work only two-dimensional perturbed trajectories were 
investigated. Consequently, the translational and 
attitude dynamics, as well as the attitude control system 
employed in that paper, were significantly simpler than 
those considered in the present work. This research has 
thus the ultimate purpose of demonstrating that the joint 
use of VTD-NOG & CPD indeed represents an effective 
and accurate methodology for spacecraft guidance and 
control, with special reference to three-dimensional 
lunar ascent perturbed paths ending with accurate orbit 
injection. A preliminary version of this study can be 
found in Ref. 18. 

 
II. LUNAR ASCENT PATH OPTIMIZATION 

This paper addresses the problem of driving a 
spacecraft from the Moon surface to a final elliptic 
orbit, with specified periselenium and aposelenium 
altitudes (denoted respectively with  and ; 

 and ), in the presence of 
nonnominal flight conditions. Both trajectory and 
attitude dynamics of the space vehicle are modeled. 
This section is specifically devoted to defining the 
nominal ascent path. In this context, the space vehicle is 
modeled as a point mass. Subsequently, attitude 

dynamics is considered, with the final intent of 
determining the appropriate attitude control action. 

The nominal vehicle ascent path is assumed to end at 
periselenium, and is investigated under the following 
three assumptions: (i) the Moon is spherical, as well as 
its mass distribution, (ii) the Moon does not rotate, and 
(iii) the spacecraft thrust is continuous and constant in 
magnitude. While (i) and (ii) are reasonable 
approximations, in consideration of the short time of 
flight, assumption (iii) leads to the following expression 
for the thrust acceleration :  

  [1] 

where c is the (constant) effective exhaust velocity of 
the propulsive system,  is the initial thrust 
acceleration (at , set to 0), and t is the actual time. The 
following nominal values are assumed: 

. 
 
II.I Formulation of the problem 

The spacecraft motion can be described in a 
convenient Moon-centered inertial reference frame, 
associated with the right-handed sequence of unit 
vectors , where  identifies the plane of 
the desired orbit and  is aligned with the related 
angular momentum. At the initial time the ascent 
vehicle is assumed to be placed at P, belonging to the 
plane of the desired orbit (cf. Fig. I(a)). The time-
varying spacecraft position can be identified by the 
following three variables: radius r, right ascension , 
and declination , portrayed in Fig. I(a). The spacecraft 
velocity can be projected into the rotating frame 

, where  is aligned with the position vector r 

and  is parallel to the -plane (and in the 
direction of the spacecraft motion, cf. Fig. I(a)). The 
related components are denoted with  and 
termed respectively radial, transverse, and normal 
velocity component. The state vector x (with 
components denoted with ) of the 
spacecraft includes the variables associated with the 
position and velocity vectors and is given by 

  [2] 

For lunar ascent paths, the use of in place of 
velocity magnitude, flight path angle, and heading 
angle, allows avoiding the singularity in the equations 
of motion at the initial time, when the spacecraft 
velocity is zero. The ascent vehicle is controlled through 
the thrust direction, defined by the in-plane angle  
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and the out-of-plane angle , both illustrated in Fig. 
I(b) (in which  is aligned with the thrust direction). 
Thus, the control vector u is     

  [3] 
The equations of motion, also termed state 

equations, govern the spacecraft dynamics, and involve 
the state vector x and the control vector u,  

  [4] 

  [5] 

  [6] 

  [7] 

  [8] 

  [9] 

where  is given by Eq. [1] and 

 is the Moon gravitational 
parameter. Equations [4]-[9] are derived in Appendix A, 
and can be written in the general compact form  

  [10] 
Due to the definition of the inertial frame in relation to 
the initial spacecraft position, the initial conditions 
(denoted with the subscript “0”) are 

  [11] 

where  is the Moon radius. The final 
conditions (denoted with the subscript “f ”) at orbit 
injection are  

  [12] 

where a and e represent respectively the semimajor axis 
and eccentricity of the desired orbit. Equations [11]-[12] 
can be written in compact form as  

  [13] 
The problem at hand can be reformulated by using 

the dimensionless normalized time , 
  [14] 

Let the dot denote the derivative with respect to . 
Equations [10] are rewritten as 

  [15] 
where a collects all the unknown parameters of the 
problem (  for the problem at hand). 

Due to assumption (iii), minimizing the propellant 
consumption is equivalent to minimizing the time of 
flight . Thus, as  is set to 0, the objective 
function is   

  [16] 
 

 

 
 

Fig. I: Reference frames (a) and thrust angles (b) 
 
 

II.II First-order necessary conditions for an extremal 
With the intent of obtaining the necessary conditions 

for a local extremal, the Hamiltonian H and the function 
of the boundary conditions  are introduced: 
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where  and  ;   

and  represent respectively the adjoint variable 
conjugate to the dynamics equations [15] and to the 
boundary conditions [13], with components   

and . The first-order necessary conditions for 

(local) optimality include the adjoint (or costate) 
equations13, in conjunction with the related boundary 
conditons: 

 [19] 

The optimal control  can be expressed as a function 
of the costates through the Pontryagin minimum 
principle, 

 [20] 

leading to 

  [21] 

    [22] 

where the superscript “*” denotes the optimal value of 
the respective variable. Equations [21]-[22] imply the 
fulfillment of the stationarity condition of H with 
respect to u. Lastly, the parameter condition13 must 
hold, and yields 

   [23] 

After introducing the additional variable , Eq. [23] is 
equivalent to  

 [24] 

However, the parameter condition can be 
transformed into an inequality constraint, as a 
consequence of homogeneity of the costate equations, in 
conjunction with Eqs. [21]-[22], in which the control 
angles are expressed as the ratios of adjoint variables. In 
fact, due to Eqs. [21]-[22], homogeneity implies that if 

 is proportional to  (  denotes a positive 
constant), then the final conditions are fulfilled at the 
minimum final time . In contrast, the parameter 
condition is violated, because the integral of Eq. [23] 
turns out to be 

  [25] 

Therefore, provided that the proportionality condition 
holds, the optimal control  can be determined without 

considering the parameter condition, which can be 
replaced by the inequality constraint 

  [26] 

In the formulation of the problem the Moon is 
assumed spherical, as is its gravitational field. As no 
further external force affects the spacecraft motion the 
optimal ascent path can be assumed to lie entirely on the 

-plane. The optimal planar trajectory can be 
reasonably conjectured to outperform any hypothetical 
alternative three-dimensional trajectory. In fact, due to 
symmetry of the gravitational field, any out-of-plane 
thrust maneuver has the effect of only rotating the 
instantaneous velocity and would imply a useless waste 
of propellant. In light of these considerations, the 
problem of determining the minimum-fuel path can be 
simplified by assuming that at any time the out-of-plane 
variables equal 0, i.e. 

  [27] 
  [28] 

Only the state equations [4], [5], [7], and [8], the 
respective adjoint equations, and Eq. [22]  are needed 
for the purpose of determining the optimal planar ascent 
path. The remaining adjoint equations, together with the 
related boundary conditions are identically satisfied if 
Eqs. [27]-[28] hold. In addition, Eq. [5] is ignorable, 
because no final condition is prescribed for the right 
ascension , and  does not appear in the right-hand-
side of any state equation. This circumstance implies 
also that . In the end, the optimal ascent path 
optimization problem can be formulated as a two-point 
boundary-value problem in which the unknowns are the 
initial values of the adjoint variables , , and , as 
well as the time of flight . The final conditions to 
satisfy are those regarding , ,  (cf. Eq. [12]), in 
conjunction with the inequality constraint [26]. 

 
II.III Second-order sufficient conditions for a minimum 

The derivation of the second-order optimality 
conditions involves the definition of an admissible 
comparison path, located in the neighborhood of the 
(local) optimal path, associated with the state , 
costate  , and control . By definition, an 
admissible comparison path is a feasible trajectory that 
satisfies the equations of motion and the boundary 
conditions. The nonexistence of alternative neighboring 
optimal solutions is to be proven in order to guarantee 
optimality of the solution of interest13. 

The first second-order condition is the Clebsch-
Legendre sufficient condition for a minimum13, i.e. 
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replaces the inequality sign (i.e. the Hessian must be 
positive semidefinite). 

In general, a comparison path fulfills the state 
equations and boundary conditions to first order. This 
means that the state and costate displacements 

 satisfy the linear equations deriving from Eqs. 
[15] and [19],  

  [29] 

  [30] 
Moreover, the fact that the Hamiltonian is stationary 
with respect to u, i.e. , yields 

  [31] 
The corresponding linear boundary conditions are 
derived from Eqs. [13] and [19]13. The parameter 
condition [23]  is replaced by Eq. [24], yielding the 
following relations: 

  [32] 
with 
    [33] 
where Eq. [33] is written under the assumption that 

, condition that is met for the problems at 
hand. Under the assumption that the Clebsch-Legendre 
condition is satisfied, Eq. [31] can be solved for :  

  [34] 
After inserting the latter expression in the linear 
differential equations (for the state and the costate) as 
well as in Eq. [32], one obtains13    

  [35] 
  [36] 
  [37] 

where  
  [38] 
  [39] 
  [40] 
  [41] 
  [42] 
  [43] 

Equations [29], [30], and [33] justify the introduction of 
the sweep variables, through the following relations: 

  [44] 
  [45] 
  [46] 

The sweep (differential) equations can be proven to 
hold13 for S, R, m, Q, n, and ,  

  [47] 
  [48] 

  [49] 
  [50] 

  [51] 

  [52] 
The respective boundary conditions are such that Eqs. 
[44]-[46] reduce to Eqs. [29], [30], and [33] at the final 
time, and this occurs if  

  [53] 
  [54] 

The differentials  and  can be found 
simultaneously at  (at which , cf. Eq. [33]), 
using Eqs. [45]-[46], leading to 

  [55] 

where 

  [56] 

If Eq. [55] is used at , then 

. Letting , it 
is relatively straightforward to demonstrate that the 
same sweep equation that holds for S must be satisfied 
also by  (with  in place of S), with boundary 
condition  as . From the previous 

relation on  and  one can conclude that 
 as , unless  tends to infinity at an 

internal time , which is referred to as 
conjugate point. If  and  then also 

. In the end, if  then no 
conjugate point exists and, as a result, no neighboring 
optimal path exists. This condition is also referred to as 
Jacobi condition. 

Finally, it is worth remarking that, with the 
exception of the displacements , all 
the vectors and matrices reported in this section are 
evaluated along the nominal, optimal trajectory. 
 
III.IV Optimal ascent trajectory 

This subsection addresses the numerical 
determination of the minimum-time ascent path leading 
to injection into the desired lunar orbit. To this end, the 
first-order conditions for optimality are used, in 
conjunction with a simple implementation of particle 
swarm algorithm19 (PSO). This is a heuristic 
optimization technique, based on the use of a population 
of individuals (or particles). Selection of the globally 
optimal parameters is the result of a number of 
iterations, in which the individuals share their 
information. This optimization approach is extremely 
intuitive and easy-to-implement. Nevertheless, in the 
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scientific literature19-23 several papers prove that the use 
of this method is effective for solving trajectory 
optimization problems. 

In this work the optimal control problem involves 
continuous time-dependent control variables and can be 
translated into a parameter optimization problem 
through the first-order necessary conditions for 
optimality, which allow expressing the control variables 
as functions of the adjoint variables conjugate to the 
dynamics equations. The parameter set includes 

. The boundary conditions are 
represented by the three equality constraints [12] for 

, , and , accompanied by the inequality 
constraint [26]. Once the optimal parameter set has been 
determined, the (planar) state and costate equations can 
be integrated, using Eq. [22] to express the control angle 

 as a function of the adjoint variables. 
For the problem at hand the PSO algorithm employs 

100 particles and is run for 500 iterations. The problem 
is solved by employing a set of canonical units: the 
Moon radius represents the distance unit 

, whereas the time unit is such that 
 (i.e. ). The search 

space is defined by the inequalities 
 and . It 

is worth remarking that the ignorability of the parameter 
condition allows defining arbitrarily the range in which 
the initial values of the adjoint variables are sought. The 
swarming algorithm is capable of obtaining the optimal 
(planar) ascent trajectory with great accuracy. In fact, 
the errors on the desired final conditions are 

,  

, and  , 

whereas the minimum time turns out to be 
. Figures II through V portray the state 

components associated with the optimal ascent 
trajectory and the related optimal control time history. 

The PSO algorithm uses the first-order necessary 
conditions to determine the optimal trajectory. 
However, the second-order conditions are also to be 
satisfied for applying the neighboring optimal guidance 
using  the optimal  ascent path as the reference, nominal 
trajectory. Evaluation of the matrices  and  along 
the optimal path allows verifying that the second-order 
sufficient conditions for a minimum are both satisfied, 
and this represents the theoretical premise for a 
successful application of VTD-NOG.  

 

 
 

Fig. II: Optimal ascent path: altitude time history 
 

 

 
 

Fig. III: Optimal ascent path: radial velocity time 
history 

 

 
 

Fig. IV: Optimal ascent path: transverse velocity time 
history 

 
 

Fig. V: Optimal ascent path: thrust angle time history 
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III. VARIABLE-TIME-DOMAIN NEIGHBORING 
OPTIMAL GUIDANCE  

The Variable-Time-Domain Neighboring Optimal 
Guidance (VTD-NOG) uses the optimal trajectory as 
the reference path, with the final intent of determining 
the control correction at each sampling time 

. These are the times at which the 

displacement between the actual trajectory, associated 
with , and the nominal trajectory, corresponding to 

, is evaluated, to yield 
  [57] 

where  denotes the overall time of flight calculated at 
time . The total number of sampling times, , is 
unspecified, whereas the actual time interval between 
two successive sampling times is given and denoted 
with ,  . It is 
apparent that a fundamental ingredient needed to 
implement VTD-NOG is the formula for determining 

 at . 
 
III.I Time-to-go updating law and termination criterion 

The fundamental principle that underlies the VTD-
NOG scheme consists in finding the control correction 

 in the generic interval  such that the 
second differential of J is minimized13, while holding 
the first-order expansions of the state equations, the 
related final conditions, and the parameter condition 
(i.e. the second of Eq. [33]). In contrast, the first of Eq. 
[33] cannot be used, because in general  at . 
Minimizing the second differential of J is equivalent to 
solving the accessory optimization problem, defined in 
the interval .  The solution of the same problem in 

the overall interval  leads to deriving all the 
relations reported in the previous section and in Ref. 13. 
This means that the latter relations need to be extended 
to the generic interval . Other than the linear 
expansion of the state and costate equations and the 
related boundary conditions, and the second of Eq. [33], 
also Eq. [31] remains unchanged. Equation [34] yields 
the control correction in the interval . 

Following the same steps described in Ref. 13, Eqs. 
[35] through [37] and can be derived again, but are not 
reported for the sake of conciseness. However, Eq. [55], 
which derives from Eqs. [45]-[46], is now to be 
evaluated at  and becomes 

   [58] 

because  (unlike ). The symbols  
and  denote respectively the null and the identity 
matrices, with dimensions indicated in the subscript. 
The latter relation supplies the corrections  and  at 

 as functions of the gain matrices U and V (defined 
in Eq. [56]),  (evaluated at , cf. Eq. [57]), and 

 (coming from the numerical integration of Eq. [37] 

in the preceding interval ). Actually, Eq. [58]
contains the updating law of the total flight time , 

which is included as a component of a. Hence, if  

denotes the correction on  evaluated at , then 

  [59] 
If the actual sampling interval  is specified, the 

general formula for  is 

  [60] 

The overall number of intervals  is found at the first 
occurrence of the following condition: 

  [61] 

It is worth stressing that the updating formula [59] 
derives directly from the natural extension of the 
accessory optimization problem to the time interval 

. In addition, the introduction of the normalized 
time  now reveals its great utility. In fact, all the gain 
matrices are defined in the normalized interval [0,1] and 
cannot become singular. Moreover, the limiting values 

 are dynamically calculated at each 

sampling time using Eq. [60], while the sampling 
instants in the actual time domain are specified and 
equally-spaced. Also the termination criterion has a 
logical, consistent definition, and corresponds to the 
upper bound of the interval [0,1[, to which  is 
constrained. 

 
III.II Modified sweep method 

The definition of a neighboring optimal path 
requires the numerical backward integration of the 
sweep equations. A suitable integration technique is 
based on using the classical sweep equations in the 
interval  (where  is sufficiently close to ) 
and then switching to . However, due to Eq. [58], new 
relations are to be derived for  and the related 
matrices. 

First, after inserting Eq. [58] (evaluated at the 
generic ) into Eq. [44] one obtains 
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     [62] 
Due to Eq. [46], the latter relation can be rewritten as 

  [63] 

This relation replaces Eq. [44].  
Considerable analytical developments24,25 (not 

reported for the sake of conciseness) lead to the 
following modified sweep equations: 

  [64] 

  [65] 
  [66] 

  [67] 

  [68] 

  [69] 
In the end, the gain matrices involved in the sweep 

method, i.e. S, , R, Q, n, m, and , can be backward  
integrated in two steps:  
(a) in the interval  the equations of the classical 

sweep method13, with the respective boundary 
conditions are used,  

(b) in the interval  Eqs. [64], [65]-[67], [68], 
and [69] are used. The matrices R, Q, n, m, and  
are continuous across the switching time , 

whereas  is given by ; in this work 
 is set to 0.99. 

 
III.III Preliminary offline computations 

The implementation of NOG requires several 
preliminary computations that can be completed offline 
and stored in the onboard computer.  

First of all, the optimal trajectory is to be 
determined, together with the related state, costate, and 
control variables, which are assumed as the nominal 
ones. In the time domain  these can be either available 
analytically or represented as sequences of equally-
spaced values, e.g. 

[70] 
However, in the presence of perturbations, NOG 

determines the control corrections  in each 

interval , where the values  never 

coincide with the equally-spaced values  of Eq. 
[70]. Hence, regardless of the number of points used to 
represent the control correction  in , it is 
apparent that a suitable interpolation is to be adopted for 

the control variable  (provided that no analytical 
expression is available). In this way, the value of  
can be evaluated at any arbitrary time in the interval 

. For the same reason also the nominal state 
 and costate  need to be interpolated. If a 

sufficiently large number of points is selected (e.g., 
), then piecewise linear interpolation is a 

suitable option. The successive step is the analytical 
derivation of the matrices 

  [71] 

Then, they are evaluated along the nominal 
trajectory, and used to define also the matrices A, B, C, 
D, E, and F. Each element of these matrices, together 
with those of the matrices of Eq. [71], are linearly 
interpolated. Subsequently, the two-step backward 
integration of the sweep equations described in Section 
III.II is performed and yields the gain matrices , R, m, 
Q, n, and , using also the analytic expressions of W, 
U, and V (written in terms of R, m, Q, n, and ). The 
linear interpolation of all the matrices not yet 
interpolated concludes the preliminary computations.  
 
III.IV VTD-NOG algorithm structure 

On the basis of the optimal reference path, using the 
nominal quantities (vectors and matrices) computed 
offline, at each time  the VTD-NOG algorithm 
determines the time of flight and the control correction. 
More specifically, the following steps implement the 
feedback guidance scheme: 

 
1. Set the actual sampling time interval . 

2. At each time  
a. Evaluate  through Eq. [57]; 
b. Assume the value of  calculated at the end of 

the previous interval  as  ; 

c. Calculate the correction  and the updated 

time of flight  by means of Eqs. [58]-[59]; 
d. Calculate the limiting value  using Eq. [60]; 
e. Evaluate  through Eq. [63]; 
f. Integrate numerically the linear differential 

system composed of Eqs. [35]-[37], in the interval 
; 

g. Determine the control correction  in 

 through Eq. [34]. 
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3. If Eq. [61] holds, then VTD-NOG terminates, 
otherwise point 2 is repeated after increasing k by 1. 

Figure VI portrays a block diagram that illustrates the 
sample-data feedback structure of the NOG algorithm, 
in which the control and flight time corrections 
definitely depend on the state displacement  
(evaluated at specified discrete times) through the time-
varying gain matrices, which are computed offline and 
stored onboard. The attitude control loop (encircled by 
the dotted line) is being described in detail in the 
following. 

 
 

 
 

Fig. VI: Block diagram of VTD-NOG & CPD 
 

IV. CONSTRAINED PROPORTIONAL-
DERIVATIVE ATTITUDE CONTROL  

The attitude control system is designed for the 
purpose of guaranteeing the correct spacecraft 
orientation, on the basis of the corrected control u 
yielded iteratively by VTD-NOG. The output of the 
attitude control system is represented by the actual 
control  (cf. Fig. VI). 
 
IV.I Commanded attitude 

With reference to Fig. VI, VTD-NOG yields the 
corrected control u, i.e. the thrust direction identified by 
the angles  and , under the approximating 
assumption that this direction is always aligned with the 
longitudinal axis of the spacecraft. This means that 
these two corrected angles represent the commanded 
values, denoted with  and , that the attitude 
control system must pursue through the use of thrust 
vectoring.  

Let  denote an auxiliary inertial frame 
defined as 

  [72] 
The rotation matrix  relates the two inertial frames, 

i.e. . The spacecraft 
instantaneous orientation is associated with the body 
frame , whose origin is in the instantaneous 
center of mass of the vehicle, its axes coincide with the 
principal axes of inertia, and  is aligned with the 
longitudinal axis. The body frame is obtained from the 
inertial frame  through a sequence of three 
elementary counterclockwise rotations, about axes 3, 2, 
and 1, 

 [73] 
The angles  are the yaw, pitch, and roll 
angle, respectively. The respective commanded values 
are denoted with and , and correspond to a 

thrust direction  that points toward . This 
alignment condition leads to 

  [74] 

On the other hand, the commanded thrust direction is 
identified through the two angles  and : 

 [75] 

where the components  are introduced, 
and are expressed in terms of  , , , and . 
Identification of Eqs. [74] and [75] leads to obtaining 

 as functions of , , , and : 
  [76] 

  [77] 

The commanded roll angle  is independent of , 
and can be selected on the basis of practical 
requirements, for instance in order to attain a convenient 
alignment for sensors, solar panels, or antennas.  

 
IV.II Attitude dynamics 

Thrust vector control (TVC) is used to control pitch 
and yaw motion of the lunar module, and side jet system 
(SJS) is used to control roll motion. The attitude of the 
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body frame with respect to the auxiliary inertial frame 
is here represented by quaternions 

 instead of the angles , 
since the spacecraft is subject to relatively large attitude 
maneuvers. The attitude kinematics equations are given 
by26 

  [78] 

where P, Q, R are the body coordinates of the angular 
velocity of the lunar module. The attitude dynamics 
equations are given by  

  [79] 

  [80] 

  [81] 

where  are the principal moments of 
inertia,  is the torque generated by the side jet 
system, T is the thrust amplitude, and l is the distance 
between the center of mass and the swivel point of the 
TVC, which lies on the longitudinal axis. Variables  
and  denote the thrust deflection angles portrayed in 
Fig. VII. The symbols , , and  represent 
the coordinates of the gravity gradient torque along the 
body axes.27 

The electro-hydraulic servoactuator that controls the 
engine deflection angles is here modeled by the 
following two first-order systems:16 

  [82] 

  [83] 

In Eq. [82]  is the commanded  and represents one 
of the three control inputs for the attitude control 
system, while the actual angle  (appearing in Eq. [80]

) is obtained by saturating  to its maximum value ,  

  [84] 

Similar considerations apply to Eq. [83], thus  
represents a control input, and  is the saturation value 

for . The actuator of the side jet system is model by 
the following first order system: 

  [85] 

for which similar considerations apply. In particular, 
 is the commanded , and represents the third 

control input for the attitude control system. Moreover, 
the saturation value for  is denoted with . 
 
 

 
 

Fig. VII: Thrust deflection angles 
 

The commanded quaternions, denoted with 
, are derived directly from the 

commanded angles , , and  provided by the 
VTD-NOG algorithm, as discussed in subsection IV.I. 
Commanded quaternions are then used to generate the 
attitude-error quaternions , as follows26  

  [86] 

 
IV.III Control algorithm 

A baseline attitude control action for such spacecraft 
is given by the following PD control: 

  [87] 
  [88] 
  [89] 

To analyze convergence properties achieved by the 
considered controller, first it is worth noticing that most 
of times the quaternions  can be 
modeled as constant since the guidance command 
usually changes slowly compared to attitude maneuvers. 
Next, it will be shown that if  is 
constant, then the proposed PD control guarantees local 
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convergence to the desired attitude. In fact, if 
 is constant, then the attitude-error 

quaternions satisfy the differential equation obtained by 
replacing in Eq. [78]  with ,  with , and so 
on28. Thus, linearizing the latter differential equation 
and Eqs. [79] through [81] about the identity attitude-
error quaternions  , zero 
angular velocity , and zero output for all 
actuators , the following relations 
are obtained: 

  [90] 

  [91] 

Moreover, linearization of the actuator’s equations in 
Eqs. [82] and [84] about  leads to 

  [92] 

By applying analogous linearization process to the other 
actuators’ equations one obtains 

[93] 

Note that equations relative to each single axis are 
decoupled from the others. Then, it is easy to obtain that 
the linearized closed-loop system given by Eqs. [87]-
[93] is asymptotically stable if , 

, and .  
The considered PD control can lead to excessive 

rates for the thrust deflection angles  and  and roll 
control torque . In fact, high values for the gains 

, , , , , and  might be required to 
obtain a fast response of the attitude control system in 
comparison with the guidance command. Then, high 
gains can in turn lead to high amplitudes for the rates of 

, , and . If the rates are too high, then clearly 
they become physically infeasible. The latter issue is 
here tackled by using Constrained Proportional and 
Derivative (CPD) control, which is described by the 
following equations: 

  [94] 

which replace Eqs. [87], [88], and [89], respectively. In 
Eq. [94] , , and  are additional 
design parameters. 

It will be shown next that employing CPD control in 
Eq. [94] ensures that  

  [95] 

assuming that . Thus, 

an appropriate choice of , , and  guarantees 

that , , and  do not exceed physical limits. To 
show that the second inequality in Eq. [95] holds, first 
note that Eqs. [82] and [94] imply 

  [96] 

 [97] 

Thus, considering that  and using the 
Comparison Lemma29, it is easy to obtain that 

  [98] 
Then, the second inequality of Eq. [95] follows directly 
from Eqs. [84], [96], and [98]. Parallel arguments can 
be used to show the validity of the other two inequalities 
in Eq. [95]. 

It is worth noticing that linearization of CPD control 
in Eq. [94] about , 
clearly reduces CPD to the standard PD control in Eqs. 
[87]-[89]. Thus, also CPD control achieves local 
convergence to the desired attitude. 

 
IV.IV Determination of control gains 

The goal of the current subsection is presenting a 
method for determining at least first guess values for the 
gains , , , , , and . The method is here 
illustrated only for gains  and , because it can be 
easily extended to the other gains. Neglect dynamics of 
the actuator in Eq. [82] and consider the linearized 
closed-loop system in Eqs. [88]  and  [90]-[91], 
obtaining 

  [99] 

Thus, the corresponding characteristic equation in the 
Laplace domain is given by 

  [100] 

where . Note that the value of  varies 
during the flight since so do the values of T, l, and . 

Let  and  be the minimum and maximum values 

of  along the considered flight.  Then, the gains  

and  are chosen so that for all  it 
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occurs that the solutions of Eq. [100] have damping 
ratio  and natural angular frequency . 

Magnitudes  and  are chosen based on 

experience and proceeding by trial-and-error. Since 
 and , then it is easy to 

verify that the specifications  and  are 

fulfilled for all  by setting 

  [101] 

 
IV.V Actual attitude and thrust angles 

The actual spacecraft orientation is defined by the 
instantaneous values of the quaternions , 
associated with the rotation matrix 27: 

 [102] 

Moreover, the actual thrust direction  depends on the 
two angles  and : 

  [103] 

Due to Eq. [102], the last relation can be rewritten as 

 [104] 

where the components  are introduced, 

and are expressed in terms of  , , , , 
and .  

However, in the -frame the actual thrust 
direction can be written also as a function of the two 
actual thrust angles  and : 

  [105] 

Identification of Eqs. [104] and [105] lead to 
obtaining  and  as functions of  , , 

, , and : 
  [106] 

  [107] 

 

V. VTD-NOG & CPD APPLIED TO LUNAR 
ASCENT 

The guidance and control methodology based on the 
joint use of VTD-NOG and CPD is applied to lunar 
ascent and orbit injection. The optimal ascent path is 
derived in a previous section and takes almost 10 
minutes. 

Further characteristics of the ascent vehicle are the 
initial mass , the maximal deflection 

angles  and  (both set to 10 deg), the maximal 
torque generated by the side jet system  (set to 
2000 N m), the time-varying distance , and inertia 
moments , , and , 

  [108] 

where 
  [109] 
  [110] 

  [111] 
  [112] 

These values are similar to those of the ascent module 
employed in the Apollo 11 mission30. The values 

 are picked for the time constants 
of the actuators. 

Moreover, the following values are selected for 
VTD-NOG & CPD. The sampling interval  is set to 
5 sec, and the CPD gains are determined as follows. 
First, note that the constant thrust equals , the 
minimum value for  is given by , and the maximum 
values for , , and  are respectively , , and 

. Then, the lower bounds are 

  [113] 

  [114] 

  [115] 
By inspection of the time behaviors of , , and   
in nominal conditions, it seems appropriate picking 

, so to obtain an attitude 

control loop fast enough with respect to the speed of 
variation of nominal , , and of , which is 
identically set to 0. Moreover, proceeding by trial and 
error , , and  are set to 0.9. Thus, by Eq. [101] 

and analogous equations for the other PD gains, one 
obtains , , , , 

, and . In addition, the value 10 
Nm is selected for , whereas the value 1.5 deg is 
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selected for  and , so that the inequalities 

, , and 

 are guaranteed (cf. Eq. [95]). Note 

that Eq. [98] implies that  is constrained to 1.5 deg. 

Thus, since , the same happens to the 
amplitude of  (cf. Eq. [84]). The same argument 
applies to  and , thus the inequalities 

 and  hold, too. Table I 
collects the values of all the relevant quantities that 
must be set in order to apply VTD-NOG & CPD. 

 

Quantity Value Unit 

 5 sec 
 1.04e-4     

 0.63     

 2.79     

 0.7     
 0.7     

 0.7     
 0.9   / 

 0.9   / 

 0.9   / 

 4700   / 

 6048   / 

 0.78   / 

 1.01   / 

 0.69   / 

 0.89   / 

 10 N 
 1.5 deg 
 1.5 deg 

 Table I: Parameter settings for VTD-NOG & 
CPD. 

 
The first reason for the existence of deviations from 

nominal flight conditions resides in the assumption that 
the thrust direction points toward the spacecraft 
longitudinal axis. This alignment condition was 
assumed for the derivation of the optimal ascent path. 

However, the actual spacecraft dynamics is driven by a 
thrust direction not exactly aligned with the longitudinal 
axis, due to the use of thrust vectoring for attitude 
control. This circumstance is apparent also by 
inspection of Fig. VI, which illustrates clearly that the 
corrected control u does not coincide with the actual 
control , which affects the real dynamics of the 
center of mass. As a first step, VTD-NOG & CPD has 
been tested in order to evaluate these deviations, 
exclusively related to the alignment assumption. The 
first column of Table I (denoted with NP, standing for 
“no perturbation”) reports the related results (obtained 
in a single simulation), i.e. the final displacements from 
the nominal final altitude, declination, and velocity 
components, and testifies to the excellent accuracy of 
VTD-NOG & CPD in this context. 

However, perturbations can exist that affect the 
overall spacecraft dynamics. These can be related to the 
dynamical system itself or to environmental conditions. 
Monte Carlo (MC) campaigns are usually run, with the 
intent of obtaining some useful statistical information 
on the accuracy of the guidance and control algorithm 
of interest, in the presence of the existing perturbations, 
which are simulated stochastically.  

More specifically, for the initial conditions an error 
on the initial declination is assumed, with Gaussian 
distribution, zero mean value and standard deviation 

 (for ) corresponding to 1 km on the Moon 

surface. This means that .  
A different approach was chosen for the perturbation 

of the thrust acceleration. In fact, usually the thrust 
magnitude (and the related acceleration, as a result) 
exhibits small fluctuations. This time-varying behavior 
has been modeled through a trigonometric series with 
random coefficients, 

 [116] 

where  denotes the perturbed value of  , whereas 

the coefficients  have a random Gaussian 
distribution centered around the zero and a standard 
deviation equal to 0.02.  

Moreover, also the mass distribution time history 
may exhibit some unpredictable oscillations, and this is 
modeled again by means of harmonic terms, for both the 
the length l ,and the inertia moments   

 [117] 
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  [118] 

 

  [119] 

  [120] 

In Eqs. [117] through [120] the third and fourth terms 
represent the displacement from the nominal linear time 
history. The coefficients  are 

random quantities with uniform distribution in proper 
intervals, such that the perturbed inertia 
moments are nonincreasing in time, while the 
length l is nondecreasing. It is straightforward to 
recognize that sufficient conditions for monotonicity are 

  [121] 

  [122] 

where the subscripts 0 and f denote the initial and final 
value of the respective variable.  

Furthermore, actuation errors may affect the 
spacecraft performance. They are modeled through 
Gaussian noise terms, with zero mean and standard 
deviation of 0.1 deg; these terms are added to the thrust 
angles  and  in Eqs. [82] and [83]. 

Finally, navigation errors exist. They are represented 
by the displacements between the measured trajectory 
variables  and the actual ones. At each 
sampling time, these errors are modeled by adding the 
displacements . These 
perturbing terms are modeled as random Gaussian 
variables, with zero mean value and time-varying 
standard deviation given by 

  [123] 

  [124] 

where , , and 
. These standard 

deviations increase in time and have final values 
, ,  and 

. 
At the end of VTD-NOG & CPD, two statistical 

quantities are evaluated, i.e. the mean value and the 
standard deviation for all of the outputs of interest. The 
symbols  and  will denote the mean error (with 
respect to the nominal value) and standard deviation of 

 henceforth.  
Two MC campaigns are performed, each including 

100 numerical simulations: (i) MC1 assumes all the 
previously described perturbations, with the exception 
of navigation errors, whereas (ii) MC2 includes also 
these. Figs. VIII through XXI refer to MC1 and portray 
the time histories of the relevant trajectory variables, 

 and its rate, the engine deflection angles and their 
rates, as well as the commanded and actual attitude 
angles. 

 
 

   
 

Fig. VIII: Altitude   time   histories  obtained in  the 
                MC1 campaign 
 

 
 

Fig. IX: Declination time histories obtained in the MC1 
campaign 
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Fig. X: Radial velocity time histories obtained in the 
MC1 campaign 

    
 

Fig. XI: Transverse velocity time histories obtained in 
the MC1 campaign 

 

 
 

Fig.XII: Normal velocity time histories obtained in the 
MC1 campaign 

 

 
 

Fig. XIII: Time histories of the torque   obtained in 
the MC1 campaign 

 
 

 
 

Fig. XIV: Time histories of the engine deflection angle 
  obtained in the MC1 campaign 

 
 

Fig. XV: Time histories of the engine deflection angle 
  obtained in the MC1 campaign 

 

 
 

Fig. XVI: Time histories of the torque rate  
obtained in the MC1 campaign 

 

 
 

Fig. XVII: Time histories of the engine deflection rate 
 obtained in the MC1 campaign 
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Fig. XVIII: Time histories of the engine deflection rate 
 obtained in the MC1 campaign 

 
 

Fig. XIX: Commanded and actual pitch angle obtained 
in a single MC1 simulation 

 
 

 
 

Fig. XX: Commanded and actual roll angle obtained in 
                a single MC1 simulation 

 

 
 

Fig. XXI: Commanded and actual yaw angle obtained in 
                 a single MC1 simulation 

 
Moreover, Table II reports the statistics on the errors at 
injection and the time of flight. Inspection of this table 
reveals that VTD-NOG & CPD guarantees orbit 
injection with excellent accuracy, despite the relatively 
relaxed sampling time. However, comparison of the 
results obtained in MC1 and MC2 points out that 
navigations errors are responsible of a noticeable 
increase on the standard deviations of some errors (e.g., 
that on the final radius), while the average final values 
are very satisfactory both for MC1 and for MC2. 
Furthermore, the average time of flight is very close to 
the nominal value, and the corresponding standard 
deviation is modest. 

As a final remark, the runtime of VTD-NOG & CPD 
on an Intel i5-3570K @ 3.40 GHz takes 6.04 min (while 
the nominal time of flight exceeds 9 min), and this 
guarantees that the guidance and control algorithm at 
hand can be implemented in real time. 

 

Statistics NP MC1 MC2 

 8.8e-3 0.33 1.96 

 0 -3.1e-7 6.2e-5 

 -0.20 -0.14 0.64 

 -2.64 -2.67 -7.03 

 0 0.01 -0.26 
 9.58 9.57 9.58 

 / 0.80 36.0 

 / 8.7e-6 1.2e-3 

 / 0.36 7.34 

 / 5.46 6.87 

 / 0.14 7.37 

 / 0.03 0.03 

 Table II: Statistics on the errors on the final state and 
on the time of flight  

 
VI. CONCLUDING REMARKS 

This work proposes VTD-NOG & CPD, a new, 
general-purpose guidance and control algorithm for 
space vehicles, and describes its application to three-
dimensional lunar ascent and orbit injection. VTD-NOG 
is a feedback guidance technique based upon 
minimizing the second differential of the objective 
function along the perturbed trajectory. This 
minimization principle leads to deriving all the 
corrective maneuvers. Due to adoption of a normalized 
time scale as the domain in which the nominal trajectory 
is defined, the gain matrices remain finite for the entire 
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time of flight, while the updating law for the time of 
flight and the termination criterion find consistent 
definitions. VTD-NOG identifies the trajectory 
corrections by assuming a thrust direction always 
aligned with the longitudinal axis of the spacecraft. 
CPD is employed for attitude control through TVC and 
SJS, and pursues this alignment condition. Unlike 
standard PD schemes, CPD introduces an appropriate 
saturation action, with the aim of maintaining the rate of 
the engine deflection angles within acceptable limits. 
This new guidance and control concept is applied to 
lunar ascent and orbit injection, with the intent of testing 
its capabilities. Oscillating perturbations of the 
propulsive thrust, incorrect initial position, actuation 
and navigation errors, and imperfect modeling of the 
mass distribution and variation have been considered. 
They yield perturbed three-dimensional ascent paths. 
This implies that the attitude motion is triaxial, because 
yaw, roll, and pitch dynamics are involved while 
pursuing the thrust direction corrections. In order to 
address this issue, the attitude control algorithm is 
designed in a general and effective way, with the final 
aim of determining the actual thrust vector direction. 
Extensive Monte Carlo simulations point out that orbit 
injection occurs with excellent accuracy, thus 
demonstrating that VTD-NOG & CPD indeed 
represents an effective methodology for the application 
at hand. Due to its generality, VTD-NOG & CPD may 
be regarded as a promising approach for guidance and 
control of space vehicles employed in a wide variety of 
mission scenarios. 
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APPENDIX A. EQUATIONS OF MOTION 

The three-dimensional equations of motion that 
govern the dynamics of the spacecraft center of mass 
regard its position and velocity. 

With reference to Fig. I(a), in the inertial frame 
 the position vector r can be expressed as a 

function of radius r, right ascension , and declination 
, 

 [125] 
whereas the velocity vector v can be written in terms of 
its components  along the local horizontal 

(rotating) frame  (termed LH-frame, cf. Fig. 
I(a)): 

  [126] 
 

Let , , and T denote respectively the 
gravitational parameter of the attracting body, the 
spacecraft mass, and its propulsive thrust. Under the 
assumption of considering only the dominating term of 
the gravitational force, the kinematics and dynamics 
(vector) equations involve respectively the time 
derivative of r and v, and are  

  [127] 

  [128] 

These equations yield the scalar differential equations 
for the state variables , through the 
developments that follow. 

As a first step, the LH-frame is obtained through a 
sequence of two elementary rotations: first 
counterclockwise rotation about axis 3 by angle , and 
second clockwise rotation about axis 2 by angle : 

  [129] 

The angular rate of the LH-frame with respect to the 
inertial frame is 

  [130] 
Combination of Eqs. [129] and [130] leads to  

  [131] 
Then, using the Poisson’s formula, the left-hand side of 
Eq. [127] may be written as 

    [132] 

whereas the right-hand side is given by Eq. [126]. 
Combining Eqs. [126] and [132] leads to Eqs. [4]-[6]. 
Moreover, using the Poisson’s formula again, the left-
hand side of Eq. [128] is 

  [133] 

Using also Eqs. [4]-[6], the previous relation yields 

  [134] 

Due to the geometric definition of and  (cf. Fig. 
I(b)), the right-hand side of Eq. [128] is 
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  [135] 

Combining Eqs. [134] and [135] finally leads to Eqs. [7]
-[9]. 
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