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Abstract: - In this paper, the relation between the Noll formulation of the principle of material frame 
indifference and the principle of turbulent frame indifference in large eddy simulation, is revised. The principle 
of material frame indifference and the principle of turbulent frame indifference proposed by Hutter and Joenk 
imposes that both constitutive equations and turbulent closure relations must respect both the requirement of 
form invariance, and the requirement of frame independence. In this paper, a new rule for the formalization of 
turbulent closure relations, is proposed. The generalized SGS turbulent stress tensor is related exclusively to the 
generalized SGS turbulent kinetic energy, which is calculated by means of its balance equation, and the 
modified Leonard tensor. 
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1 The formulation of the Principle of 
Material Frame Indifference and the 
Principle of Turbulent Frame 
Indifference 
In the framework of ordinary fluid dynamics, the 
turbulence models could be interpreted as 
constitutive equations, which are necessary to close 
the equations of motion. The constitutive equations 
represent, in an idealized form, the behaviour of the 
materials and, consequently, they must fulfil the 
principle of material frame indifference [1]. 
     In order to make explicit the relation between the 
Noll formulation of the principle of material frame 
indifference and the formulation of the turbulent 
closure relations, in this section: the Noll 
formulation of the principle of material frame 
indifference is shown; the confusion, produced by 
this formulation, is underlined (it does not 
emphasize the difference between Euclidean form 
invariance and frame independence of an equation); 
the distinction between Euclidean form invariance 
and frame independence of a constitutive equation 
or physical law is explained; the Hutter and Joenk 
[2] formulation of the principle of turbulent frame 
indifference, that is the equivalent in turbulence of 
the principle of material frame indifference, is 
expressed. 
     Considering an inertial frame, in which a 
material point has coordinate  at time , and a non-
inertial frame, in which the same point has 

coordinate ∗ at time ∗, the most general law which 
governs the transformations of the coordinates and 
the time expressed in the two frames is that given by 
the Euclidean transformations 

∗ 	 	 ∗  (1) 

where  are the components of a time-
dependent proper orthogonal tensor,  is the 
time-dependent distance between the origins of the 
two frames and  is any constant. 
     It is common knowledge that tensors of rank  

0,1,2  are said to be objective, if the 
components transform according to: 
 

∗ objective	scalar 
∗ objective	vector 
∗ 		objective	tensor 

(2) 

 
A constitutive relation can be expressed in the form 

, ,  
   

(3) 

where 	  is the history of the motion of the body  
up to the time  and ,  is the stress tensor. The 
principle of material frame indifference is based on 
the consideration that the material properties must 
be independent of the choice of frame. In other 
words, this basic working principle of continuum 
mechanics requires the constitutive equations to be 
the same for observers in inertial systems and in 
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non-inertial ones. Since constitutive equations are 
designed to express idealized material properties, 
the Noll formulation of the principle of material 
frame indifference requires they shall be frame 
independent. That is, if the constitutive relation (2) 
is satisfied by the dynamic process , , it is 
satisfied by every equivalent process ( ∗, ∗) that is 
represented in a non-inertial frame of reference. 
Formally, the constitutive mapping  in (2) must 
satisfy the identity 

∗, ∗ ∗ 	 ∗ , ∗    (4)

For all ∗, 	 ∗ and ∗ that may be obtained from , 
 and  by Euclidean transformations of the frame 

expressed by relations (1) and (2) [1]. The 
abovementioned Noll formulation of the principle of 
material frame indifference produces a confusion 
because it does not emphasize the difference 
between two distinct requirements on the 
constitutive equations: form invariance under 
Euclidean transformations of the frame; frame 
independence. 
 1) The requirement of Euclidean form 
invariance implies the formal expression of the 
constitutive equations in a non-inertial frame of 
reference be equal to the formal expression of the 
constitutive equation in an inertial frame of 
reference: that is, a constitutive equation is 
Euclidean form invariant if it does not modify its 
formal expression under Euclidean transformation 
of the frame and, consequently, it is constructed 
only with objective tensors. In other words, each 
observer uses the constitutive equations in the same 
functional form, but the quantities appearing in them 
may have different values due to the used frame, 
i.e., the values of the quantities appearing in them 
may be frame dependent.  
 2) The requirement of frame independence of 
a constitutive equation implies the values of the 
quantities, appearing in it, be independent of 
translational and angular velocity of the frame. It is 
possible to emphasize the difference between the 
Euclidean form invariance and the frame 
independence by underlining the existence of 
tensors that are objective but dependent on the 
translational and angular velocity of the frame. 
     For example, let  and ∗  be, respectively, 
the representations, in an inertial and non-inertial 
frame, of the antisymmetric part of the velocity 
gradient. Let ∗ be the representation, in a non-
inertial frame, of the absolute vorticity tensor, given 
by the following expression: 

∗ ∗  (5)

The law of transformation between the 
representations of this tensor in the different frames 
of reference is given by: 

∗ ∗ (6)

The absolute vorticity tensor  is an objective 
tensor, since its representations in the different 
frames transform according to equation (2), but is 
frame dependent since its representations depend on 
the frame by means of the term , associated 
with the angular velocity of the non-inertial frame 
[2-3]. 
     A constitutive equation, or a physical law, in 
order to be form invariant under the most general 
class of transformations of the frame (Euclidean 
transformations), must be expressed in terms of 
objective tensors. A constitutive equation, or a 
physical law, is able to fulfil the principle of 
material frame indifference if: it is form invariant 
(under Euclidean transformation of the frame); it is 
frame independent, i.e. it is expressed exclusively in 
terms of objective tensors that are independent of 
the translational and angular velocity of the frame. 
     The principle of turbulent frame indifference [2] 
is the equivalent in turbulence of the principle of 
material frame indifference. The principle of 
turbulent frame indifference imposes that turbulent 
closure relation: must be form invariant (or rather, 
must be expressed in terms of objective tensors); 
must be frame independent (or rather, must be 
expressed in terms of objective tensors that are 
independent of the angular and translational velocity 
of the frame). 

 

2 Turbulent Balance Equations in 
Large Eddy Simulation 
It must be emphasized that Euclidean form 
invariance and frame independence are two distinct 
matters.  
     The generalised SGS turbulent stress tensor is 
expressed by the equation 

 (7)

where  is the  component of the 
instantaneous velocity and the overbar represents 
the application of spatial filter.  
     Following the procedure shown in [4], in order to 
show the characteristic of the generalised SGS 
turbulent stress tensor and in order to define the 
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modalities of formulation of the turbulent closure 
relations, later on we present: 

 the objectivity and the frame independence of 
the abovementioned tensor; 

 the Euclidean form invariance and frame 
dependence of the generalised SGS turbulent 
stress tensor transport equation; 

 the Euclidean form invariance and frame 
independence of the generalised SGS 
turbulent kinetic energy transport equation. 

 
2.1 The generalized SGS turbulent stress 
tensor 
The time derivative of (1) gives 

	 ∗ 	 ∗  (8)

Applying a spatial filter to (8) gives 

	 ∗ 	 ∗  (9)

By introducing (8) and (9) into (7), the relation 
between the expressions of the generalised SGS 
turbulent stress tensor in two Euclidean frames is 
obtained, 

∗ ∗ ∗ ∗ ∗  (10)

     Equation (10) shows that the generalised SGS 
turbulent stress tensor is objective and frame 
independent. Consequently, all of the turbulent 
closure relations for the generalised SGS turbulent 
stress tensor must be: form invariant under 
Euclidean transformations of the frame; independent 
of the translational and angular velocity of the 
frame. 

 
2.2 Transport equation of the generalised 
SGS turbulent stress tensor 
The transport equation of the generalized SGS 
turbulent stress tensor is: 
 

, , ,
,

, , ,

, 	 ,     

(11)

 
The symbols ; 	  and ; 	 ; 	  represent the 
generalized second and third-order central moments 
[5] related to the generic quantities ,  and . 
     By following the procedure shown in [4], by 
introducing (1), (8), (9) and (10) in (11), the 
representation in a non-inertial frame of the 

generalized SGS turbulent stress tensor transport 
equation is: 

∗ , ∗

∗
∗ , ∗

∗ , ∗

∗ , ∗ , ∗

∗
∗ , 	

∗
∗

∗

∗ , ∗ ∗ , 	
∗

∗

∗

∗ , ∗ ∗ ,
∗

∗ ,
∗

∗ ∗ ,
∗

∗ ∗

∗ ∗ ,
∗

∗ ∗     

(12)

      
 By using the expression ∗ of the absolute 
vorticity tensor defined in (6) and the objective time 
derivative introduced by Weis and Hutter [3], 
equation (12) reads 
 

∗ , ∗

∗

∗ , ∗ , ∗

∗

∗ , ∗ ̅∗ ∗ ∗ , ∗ ̅∗

∗ ∗ ,
∗

∗ ,
∗

∗ ∗ ,
∗

∗ ∗
∗ ∗ ,

∗

∗ ∗     

(13)

 
 Since the absolute vorticity tensor ∗ and 

the time derivative 	 ∗ , ∗ / ∗ are both 
objective tensors, equation (13) is expressed 
exclusively in terms of objective tensors. 
     From this consideration and for the assumption 
that an equation is form invariant if it is expressed 
only in terms of objective tensors, it results that the 
transport equation of the generalised SGS turbulent 
stress tensor is form invariant under a Euclidean 
transformation of the frame but remains frame 
dependent through the apparition of ∗. 
     From the previous considerations, it can be 
deduced that the principle of turbulent frame 
indifference proposed by Hutter and Joenk [2] 
couldn’t be applied to the transport equation of the 
generalized SGS turbulent stress tensor. 
 
2.3 Transport equation of the generalised 
SGS turbulent kinetic energy 
The generalized SGS turbulent kinetic energy  is 
defined as half the trace of the SGS turbulent stress 
tensor and is, as can be easily demonstrated, an 
objective scalar. The generalized SGS turbulent 
kinetic energy transport equation is [4]: 
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, , ,

, ,

,   

(14)

which is equal to 
 

, ,
,

,
,   

(15)

 
By introducing (1), (8), (9) and (10) in (15), the 
representation in a non-inertial frame of the 
generalized SGS turbulent kinetic energy transport 
equation is: 
 

∗

∗

∗ , ∗ , ∗

∗
∗ , 	

∗
∗
	
∗

∗, ∗

∗
∗

∗

∗ ∗
∗

∗

∗ ,
∗

∗   
(16)

      
From the comparison between equations (15) and 
(16), it can be deduced that the transport equation of 
the generalized SGS turbulent kinetic energy is form 
invariant and frame independent, in so much that 
each of the terms that appear in it are 
representations, in inertial and non-inertial frames, 
of objective tensors that are independent of the 
angular and translational velocity of the frame. 

 
3 A New Rule of Turbulent Closure 
Relations  
In the previous section, the Euclidean form 
invariance and the frame dependence of the 
generalised SGS turbulent stress tensor transport 
equation, has been demonstrated. Many authors 
repute that all of the turbulent closure relations must 
fulfil the principle of turbulent frame indifference in 
the formulation proposed by Hutter and Joenk [2]. A 
contradiction arises from the abovementioned 
imposition: the generalised SGS turbulent stress 
tensor transport equation could not be used in the 
turbulent closure relations, since it doesn't fulfil the 
principle of turbulent frame indifference. Must all of 
the turbulent closure relations fulfil the principle of 
turbulent frame indifference? In other words, if 	
	  is a turbulent closure relation, does this 
relation have to be frame independent? No, it does 
not need to. 
     It is usually assumed that material laws do not 
depend on the rotation of the system. This means 
that in every system the material should show the 
same behaviour. This is quite a good assumption as 

long as the relaxation time of the material is large 
compared with the typical time scale of the flow. 
     The turbulent phenomena are not associated to 
the properties of the materials: consequently, 
turbulent closure relations do not represent the 
material behaviour. In such flows the characteristic 
turbulent time scale can be comparable with the 
typical time scale of the flow, implying that the 
rotation of the system can influence the turbulent 
closure functionals. This means that objective 
tensors, which depend on the rotation of the 
reference frame, may enter such functional relations. 
Constitutive relations of any turbulence theory need 
not satisfy the principle of turbulent frame 
indifference.  
     Turbulent closure relations must always be form 
invariant but must not necessarily be frame 
independent. In other words, not all the turbulent 
closure relations must fulfil the principle of 
turbulent frame indifference. A new rule of 
turbulent closure relations can be formulated:  
      “In a turbulent closure relation, the modelled 
expressions of an unknown objective tensor must be 
formulated in terms of objective tensors, allowing 
the closure relations to fulfil the requirement of 
Euclidean form invariance, and must retain the same 
dependence on the angular velocity of the frame of 
the unknown tensor”. 

 
4 Closure Relations 
In depth-averaged motion equations models [6-7] 
and in models based on 3D Navier-Stokes equations 
[8-10], the turbulent stress tensor is related to the 
strain rate tensor, which is Reynolds-averaged. In 
the context of LES models, the generalized SGS 
turbulent stress tensor, , is related to the resolved 
tensors. The generalised SGS turbulent stress tensor, 

, can be split into three tensors: 

 (17)

where  is the -th component of the instantaneous 
velocity, the overbar represents the application of 
the grid filtering operator, ,  and  are the 
so-called modified Leonard tensor, the modified 
cross tensor and the modified Reynolds tensor, 
respectively;  is the -th component of the 
fluctuating velocity, . 

Starting from (17), by adopting the scale 
similarity assumption, by simple mathematical 
calculations, a closure relation is reached for the 
generalized SGS turbulent stress tensor, in which 
there are no coefficients to be calibrated or to be 
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calculated dynamically, and which is given by the 
following relation: 

2   (18)

where . See [4] for the details. 

     The generalised SGS turbulent stress tensor is 
related exclusively to the generalised SGS turbulent 
kinetic energy and the modified Leonard tensor that 
are, respectively, a zero order and a second order 
objective tensor that are independent of the 
translational and angular velocity of the frame. 
Consequently, the closure relation (18) for the 
generalised SGS turbulent stress tensor: takes into 
account the anisotropy of the turbulence; removes 
any balance assumption between the production and 
dissipation of SGS turbulent kinetic energy; does 
not use any closure coefficient calculated by means 
of a dynamic procedure; respects the new rule of 
turbulent closure relations, proposed in section 3. 

The generalised turbulent kinetic energy  is 
calculated by solving its transport equation (15). 
The proposed modelled form of Equation (15) is: 
 

√ ∆

∗
/

  
(19)

where the 1  and 3  terms on the right-hand side 
of the exact balance equation of  (15) are modelled 
by the 1  term of equation (19); the last term of the 
right-hand side of equation (15), which represents 
the viscous dissipation of the turbulent kinetic 
energy, is modelled by the last term on the right-
hand side of equation (19); the values of the 
coefficients ∗ and  are evaluated by means of a 
dynamic procedure. 
 

5 Results and discussion 
Turbulent channel flows (between two flat parallel 
plates placed at a distance of 2 ) are simulated with 
the model that uses the presented closure relation, 
hereinafter called TEM model, at friction-velocity-
based Reynolds number ∗ equal to 2340. The 
numerical results obtained with the TEM model are 
compared with experimental data [11]. 
     Figure 1a shows the profile of the time-averaged 
streamwise velocity component for a channel flow 
at ∗ 2340 obtained with the TEM model, 
compared with the profile of the analogous velocity 
component measured experimentally [11]. The 
agreement between the two velocity profiles is very 
good. 

     Figure 1b compares the profile of the component 
 of the Reynolds stress tensor (where the 

subscripts 1 and 3 denote, respectively, the 
streamwise and wall-normal directions), calculated 
with the TEM model, with the profile of the similar 
component of the Reynolds stress tensor obtained 
from experimental measurements [11], for a channel 
flow at ∗ 2340. Figure 1b shows that at the 
TEM model provides a profile of the component 

 in agreement with the one obtained from the 
experimental measurements. 

 

Figure 1. Comparison between experimental 
measurements and LES results obtained with the 
TEM model. Channel flow, ∗ 2340. (a): Time-
averaged streamwise velocities. (b) Reynolds stress 

.  

 
Figure 2. Vortex identification with  method, x-z 
plane. 
     In figure 2 the near-wall vortex structures (inside 
the turbulent boundary layer) are clearly identified 
by the  method of Joeng & Hussain [12]: the 
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dimensions of the spatial discretization steps allow 
the optimal simulation of the abovementioned 
vortex structures that govern the transport, the 
production and the dissipation of the turbulent 
kinetic energy. See also [13] and [14]. 

 

 
5 Conclusion 
The relation between Noll’s formulation of the 
principle of material frame indifference and the 
principle of turbulent frame indifference, has been 
revised. The definition of a new Rule of Turbulent 
Closure Relations has been proposed. The 
aforementioned rule of Turbulent Closure Relations 
has been expressed in the following form: “In a 
turbulent closure relation, the modelled expressions 
of an unknown objective tensor must be formulated 
in terms of objective tensors, allowing the closure 
relations to fulfil the requirement of Euclidean form 
invariance, and must retain the same dependence on 
the angular velocity of the frame of the unknown 
tensor”. The generalized SGS turbulent stress tensor 
is related exclusively to the generalized SGS 
turbulent kinetic energy, which has been calculated 
by means of its balance equation, and the modified 
Leonard tensor. 
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