
Preliminary results in using Deep Learning to emulate BLOB, a nuclear interaction model

A. Ciardielloa,b, M. Asaic, B. Cacciad, G. A. P. Cirronee, M. Colonnae, A. Dottic, R. Faccinia,b,
S. Giagua,b, A. Messinaa,b, P. Napolitanif, L. Pandolae, D. H. Wrightc, C. Mancini-Terraccianoa,b

aDip. Fisica, Sapienza Univ. di Roma, Rome, Italy
bINFN Sezione di Roma, Rome, Italy

cSLAC National Accelerator Laboratory, Menlo Park, United States
dNational Center for Radiation Protection and Computational Physics,

Istituto Superiore di Sanit, Italy
eINFN, Laboratori Nazionali del Sud, Catania, Italy

fUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

Abstract

Purpose: A reliable model to simulate nuclear interactions is fundamental for Ion-therapy. We already showed how BLOB
(“Boltzmann-Langevin One Body”), a model developed to simulate heavy ion interactions up to few hundreds of MeV/u, could
simulate also 12C reactions in the same energy domain. However, its computation time is too long for any medical application. For
this reason we present the possibility of emulating it with a Deep Learning algorithm.

Methods: The BLOB final state is a Probability Density Function (PDF) of finding a nucleon in a position of the phase space.
We discretised this PDF and trained a Variational Auto-Encoder (VAE) to reproduce such a discrete PDF. As a proof of concept, we
developed and trained a VAE to emulate BLOB in simulating the interactions of 12C with 12C at 62 MeV/u. To have more control
on the generation, we forced the VAE latent space to be organised with respect to the impact parameter (b) training a classifier of b
jointly with the VAE.

Results: The distributions obtained from the VAE are similar to the input ones and the computation time needed to use the VAE
as a generator is negligible.

Conclusions: We show that it is possible to use a Deep Learning approach to emulate a model developed to simulate nuclear
reactions in the energy range of interest for Ion-therapy. We foresee the implementation of the generation part in C++ and to
interface it with the most used Monte Carlo toolkit: Geant4.

Keywords: Monte Carlo simulations, Deep Learning, Nuclear reactions, Ion-therapy, Hadron-therapy,

1. Introduction

Ion-therapy is a technique that aims at treating tumour deeply
located in the patient body exploiting the ions characteristic
dose deposition shape, with the peak at the end of their range,
the so-called Bragg peak. It is performed mainly with protons
but also with heavier ions, like 12C.

Having reliable nuclear fragmentation models in MC simu-
lation toolkits is of utmost importance for Ion-therapy [1] as
they are considered the gold standard for dosimetric calcula-
tions [2]; they are used to generate the input parameters of the
treatment planning algorithms [3] and to validate the dose cal-
culation of such algorithms, especially in cases with large tissue
heterogeneities [4]. Finally, a large effort is ongoing to develop
detectors to measure the radiation emitted during the treatment
to allow a non-invasive on-line monitoring of the treatment it-
self, see for instance [5–8], and MC calculations are needed to
infer the delivered dose from the observed spectra [9, 10]

Geant4 [11] is one of the most widely used MC toolkits, also
for medical applications. It is written in C++ and takes ad-

Email address: carlo.mancini.terracciano@roma1.infn.it
(C. Mancini-Terracciano)

vantage of its object-oriented coding paradigm. Geant4 also
exploits the multithread capabilities of C++11, allowing an ef-
ficient use of modern CPUs. It is developed by a large inter-
national collaboration and distributed with an open source li-
cence, which allows also to develop wrappers around it. In
the last years many programs dedicated to MC medical sim-
ulations have been developed wrapping Geant4, and then us-
ing its Physics models, such as GATE [12], GAMOS [13], and
TOPAS [14]. The latter in particular is dedicated to Ion-therapy
simulations.

Finally, Geant4 has the capability to simulate the body of a
specific patient importing his Computed Tomography (CT) scan
in DICOM format [15].

Many critical aspects must be taken into account when mod-
elling the therapeutic ion beams, e.g. although elastic and mul-
tiple Coulomb scattering events are negligible for charged parti-
cles, they contribute to dosimetric uncertainty especially in on-
cological applications, because they cause beam widening [16].
However, one of the main uncertainties comes from nuclear
interaction models. Moreover, while there are several models
for electromagnetic interactions in the Geant4 package [17–19],
there is no dedicated model to describe inelastic nuclear reac-

Preprint submitted to Physica Medica April 13, 2020

ar
X

iv
:2

00
4.

04
96

1v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 1
0

A
pr

 2
02

0

tions below 100 MeV/u. It is possible to use models developed
to simulate nuclear reactions at higher energies but recent liter-
ature has shown their limitations in reproducing the measured
secondary yields in terms of production rates and angular distri-
butions, see for instance [20–23]. The most recent benchmark
is the one developed by the Geant4 Medical Physics Bench-
marking Group [24]. Such a benchmark does not include the
“Quantum Molecular Dynamics” (QMD) [25] model, as it has
to be forced to work below 100 MeV/u, but a recent benchmark
of it, with the same dataset, can be found in [26].

To fill this gap we interfaced BLOB (“Boltzmann-Langevin
One Body”) [27] with Geant4. BLOB is a model designed and
developed to simulate heavy ion reactions from the Coulomb
barrier up to few hundreds of MeV/u and we showed that it
can be used also to simulate lighter ion, such as 12C, inter-
actions [28]. However, the BLOB computation time is of the
order of tens of minutes per interaction, too large for any prac-
tical application. To overcome this obstacle we are exploring
the possibility of substituting BLOB with a Deep Learning al-
gorithm, namely a Variational Auto-Encoder (VAE).

An alternative could be porting BLOB to GPU, profiting
from their single instruction on multiple data approach which
would fit very well with the test particles approach used in
BLOB. However, porting the code to GPU means to completely
redesign and rewrite the code, to fully exploit the GPU capa-
bilities, therefore the developing time required is much larger
than developing a Deep Learning algorithm with the existing
libraries, like TensorFlow [29] (especially with Keras [30]) and
PyTorch [31], to emulate the model. Finally, by porting the
code to GPU we do not expect a speed-up greater than 3 orders
of magnitudes, while the Deep Learning approach could result
in an acceleration of 9 orders of magnitude [32], so fast to be
used also in the fast Monte Carlo codes, developed on purpose
for Ion-therapy, such as Fred [33].

Several Deep Learning algorithms are powerful probabilistic
generative models that, after being trained on real examples, are
able to produce realistic synthetic samples, and VAE are a class
of them [34].

Figure 1: A schematic representation of an AE. An input image, here a
melanoma produced with a generative Deep Learning algorithm [35], is in-
put of the encoder, which finds a representation of the input in the latent space.
Subsequently, a decoder samples points in the latent space to produce and out-
put image. Usually the encoder and the decoder are symmetric. The AE is
trained to produce an output as similar as possible to the input, therefore it can
be seen as an identity function.

VAE are an evolution of Auto-Encoders (AE) which, in turn,
are a class of Deep Learning algorithms trained to reproduce
their input as closely as possible. As shown in Figure 1, AE
are made by an encoder and a decoder, the encoder assignes a
point in the latent space for each input; the decoder, starting

from each point in the latent space, produces an output with the
same dimensionality of the encoder input. The encoder and the
decoder are jointly trained so that the output, generated from the
decoder starting from the latent space point where the encoder
maps a given input, is as similar as possible to the input itself.
To make a similarity, the encoder can be seen as an injective
function (y = f (x); x ∈ X, y ∈ Y), as it maps each distinct point
of its domain X in a distinct point of the codomain Y . Once
trained, the decoder is like the inverse of the previous function
x = f −1(y). Indeed, giving in input to f −1 the point y′ in the
codomain where f maps an input point x′ of the domain, it gives
back x′ itself as output, i.e. x′ = f −1(y′). Therefore, the AE is
trained to be an identity function as it is like the subsequent
application of an injective function and its inverse, i.e. x′ =

f −1 (f (x′)).
Being the latent space dimensionality smaller than the input

one, the AE is forced to “learn” features from the input. VAEs
differs from AEs because each input is represented by a distri-
bution probability in the latent space, and not just by a point, in
this way similar inputs are encoded in points close to each other.
When used as generative methods this regularisation helps the
network to decode plausible outputs from every point of the la-
tent space. In this way, once trained, the VAE -in particular
the decoder- can be used to emulate BLOB sampling from the
latent space.

The main alternative generative model to a VAE is a Gen-
erative Adversarial Network (GAN) [36]. It consists of two
separate models that are trained in an “adversarial” fashion: a
generative model produces synthetic data and a discriminative
model tries to identify the synthetic data from the real training
data. The two models are trained simultaneously. For image
generation GAN are often preferred to VAE because the intrin-
sic probabilistic nature of VAE output tends to generate blurry
samples [37]. However, in our case, even if we chose a neu-
ral network architecture derived from image generation (to be
precise from video generation), we work, as we will describe
lather on, with Probability Density Functions (PDFs), therefore
this is not a weakness. Moreover, training a VAE is simpler and
requires less data than a GAN, it has a clear probabilistic for-
mulation, and it is easier to introduce priors [37]. In addiction, a
VAE architecture provides an explicit latent representation that
can be interpreted as a dimensional reduction of the input space
and one of our interests is to explore how the BLOB outputs are
encoded in the latent space. This will allow to perform a sam-
pling strategy from the latent space, which in the near future
will allow to control the sampling of the impact parameter and
in the next steps, to control also the energy of the projectile or
the mass number and the charge of the projectile and the target.

2. Material and Methods

2.1. Nuclear Interaction Models

In Geant4, as in many other codes, nuclear reactions are sim-
ulated in two steps. The first one describes the dynamic part of
the reaction, from the moment in which the projectile and the
target collide until the “thermalisation” is reached, i.e. when the

2

excitation energy of the large fragments is balanced among all
the nucleons composing them. It includes the pre-equilibrium
emissions of small fragments. The de-excitation phase takes
place at this point with the decays of the excited large frag-
ments.

BLOB handles the first part of the nuclear reactions. It
is based on a semi-classical one-body approach to solve the
Boltzmann-Langevin equation. It describes the time evolu-
tion of the nucleon phase space density distribution in a semi-
classical way, i.e. taking into account the Pauli principle. The
corresponding transport equation is solved numerically, sam-
pling the density distribution in phase space with test particles,
whose evolution is done under the action of an effective mean-
field nuclear potential. Fluctuations in the dynamics are intro-
duced as collisions between the test particles.

The BLOB final state is a Probability Density Function
(PDF) of finding a nucleon in a position of the phase space built
as a list of the positions of the test particles at the end of the re-
action. A “liquid” and a “gas” phase are defined by applying a
clustering procedure to this PDF. Each liquid phase neighbour-
hoods stands for a large fragment. The rest of the test particles,
the gas phase, represents the nucleons emitted in the first part
of the reaction.

BLOB (Boltzmann-Lagevein One Body)

�7

• the final state is a
distribution probability of
finding a nucleon in a
position of the phase
space

• from which the physical
state has to be sampled

“Gas” phase

“Liquid” phase

Figure 2: A pictorial representation of a BLOB output, two “liquid phase”
clusters of test particles are visible in green and many “gas” particles emitted
are in red. The clustering procedure is described in detail in [28].

We already showed in precedent works [38, 28] the BLOB
potentialities in describing 12C fragmentation, comparing its
predicted yields with experimental data using the SIMON
code [39] for the de-excitation phase and the Geant4 de-
excitation model G4ExcitationHandler [40].

The BLOB computation time for the interaction of two light
(like 12C) ions at the energy of interest for Ion-therapy takes
order of tens of minutes because, as already mentioned, BLOB
relies on the test particles method and, to improve the simula-
tion and the effects of the mean field in particular, we used 500
test particles per nucleon. Therefore the code has to track or-
der of 104 test particles to simulate the interaction of two 12C
ions. In addition, in BLOB the potential is self consistent, i.e.
it depends on the test particles positions, therefore it has to be
computed at each step and its computation time increases lin-
early with the number of test particles. Moreover, the Pauli
blocking term in the collision integral depends on the positions
of the couples of test particles and, therefore, it has a quadratic
dependence on the number fo test particles.

In this work, we present the preliminary results obtained em-

ulating the BLOB model with a Deep Learning algorithm, fore-
seeing the interface of such algorithm with the Geant4 toolkit.

2.2. Dimensionality reduction
Let us remind that the BLOB output is a PDF of finding

a nucleon in a position of the phase space, therefore it con-
sists of two, one for protons and one for neutrons, six dimen-
sional, three for the spatial coordinates and three for the mo-
menta, distributions. Such output can be discretised, binning
the phase space. In theory a VAE can be trained to reproduce
these two discretised PDFs, however, at the moment convolu-
tional six dimensional layers are not available in the most used
libraries to develop Deep Learning algorithm, Keras [30] and
PyTorch [31]. To perform this feasibility study, we decided to
use the existing convolutional layers in Keras. They can han-
dle at most three distributions with three dimensions, as they
are made for color videos. Therefore we reduced the dimen-
sionality of the problem from six to three degrees of freedom.
We will show that the information loss do not invalidate the
ability of our method to reproduce the BLOB output. For the
reaction under investigation, 12C on 12C at 62 MeV/u, BLOB
predicts typically two, and at most three, large fragments in its
final state. To simplify this dimensionality reduction, for the
moment, we will focus only on events with two large fragments
in the final state dividing the BLOB output in two discretised
PDF, one per large fragment. We associate each gas particle to
one of the two large fragment, in particular to the one with the
larger value of cos

(
θ f rag

)
, where θ f rag is the angle formed be-

tween the gas particle momentum and the fragment momentum.
For each gas particle we retain as information:

1. the modulus of its momentum
∣∣∣~p∣∣∣;

2. sin (θẑ), where θẑ is the angle formed between its momen-
tum and the interaction axis ẑ;

3. the distance r of each gas particle with respect to the large
fragment to which it has been associated.

These three variable are the three dimensions of the two PDFs
output of the dimensionality reduction, one per each large frag-
ment in the final state.

As described in the subsection 2.1, the large fragments are
the “liquid” phase identified by a clustering procedure. There-
fore, a large fragment stands for many test particles (the mass
number of the fragment A is sampled from the number of test
particles composing it [28]) and the clustering procedure as-
signs a position and a momentum to the large fragment, plus
an excitation energy. To include in the three dimensional PDFs
output of this dimensionality reduction the large fragment in-
formation, we set the sin (θẑ) to the value of the large fragment
and to 0 the values of r. In order to preserve the information
about the momentum modulus of the large fragment and its ex-
citation energy, we sampled each entry of momentum modulus
from a normal distribution, centred on the momentum modulus
of the large fragment itself and with a variance equal to its exci-
tation energy. Figure 3 shows schematically this dimensionality
reduction.

Finally, the PDFs are normalised to the maximum of the two,
in order to give in input to the VAE numbers not too small.

3

BLOB (Boltzmann-Lagevein One Body)

�7

• the final state is a
distribution probability of
finding a nucleon in a
position of the phase
space

• from which the physical
state has to be sampled

(⃗x , ⃗p)

(⃗x frag, ⃗p frag, Ek)

BLOB (Boltzmann-Lagevein One Body)

�7

• the final state is a
distribution probability of
finding a nucleon in a
position of the phase
space

• from which the physical
state has to be sampled

(| ⃗p |, sin(θ), r)

(!(| ⃗p frag|, Ek), sin(θfrag), 0)

Figure 3: Same BLOB output shown in Figure 2. The gas test particles can be
described by their position and momentum, besides the electrical charge; the
large fragments have also an excitation energy. The dimensionality reduction
describes the positions of all the gas test particles with respect to the closest
large fragment in polar coordinates but saving only the distance (r), the az-
imuthal and polar angle are inferred from the direction of flight. The r is as-
sumed to be 0 for all the test particles being part of a large fragment itself. Also
the momenta are saved in polar coordinates, saving the modulus of it

(
|~p|
)
, and

its angle with the interaction axis, (θ) (to be precise the sin(θ)). To keep the
momentum and excitation energy of the large fragments we sample the |~p| from
a Gaussian distribution with the fragment momentum as mean and its excitation
energy as variance.

Figure 4 shows the projection on the three axis of a reduced
dimension PDF, i.e. it is one of the two PDFs output of the
dimensionality reduction. The peaks at sin (θẑ) ≈ 0.4 and r = 0
axis represent the large fragment. If we select these entries, we
would see on the

∣∣∣~p∣∣∣ projection a Gaussian distribution centred
roughly at 150 MeV, the large fragment momentum.

The inverse operation of the dimensionality reduction is done
starting from the identification of the entries in the discrete re-
duced PDF relative to the large fragment, which is easily done
selecting all the entries of the bin at 0 in the r axis. Then, the
large fragment momentum and excitation energy are computed
extracting their average and variance on the

∣∣∣~p∣∣∣ axis. All the
large fragment entries have also only one value in sin (θẑ). The
momentum azimuthal angle is sampled uniformly. As we fill
the discrete reduced PDF with sin (θẑ), there is an ambiguity
on the direction of the momentum on the ẑ axis, but as BLOB
simulates the interactions in the center of mass frame, the di-
rection of the first fragment is chosen randomly and the second
fragment is assumed to flight in the opposite direction.

The same reconstruction is applied to each gas particle, tak-
ing the momentum direction on the ẑ axis as the one of the cor-
related large fragment.

Finally, the correct normalisation of the two PDFs, each one
associated with a large fragment, is recovered imposing that the
sum of the integrals of the two PDFs is 1.

Figure 5 shows the results obtained in this dimensionality re-
duction and its inverse operation. Neglecting events with three
large fragments in the BLOB final state produces a lack of high
energy ejectiles at large angles, but the distributions up to 7.6◦

are well reproduced, enough for the proof-of-concept purpose
of this work.

2.3. Variational Auto-Encoder

As mentioned in the introduction, the VAE is a generative
model based on the standard Auto-Encoder that also imple-
ments a strong regularisation on the form of the latent variables.

0 100 200 300 400 500 600
| [MeV]p|

2−10

1−10

1

m
ax

P
/P

 (Projection X) (Projection X)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
)θsin(

2−10

1−10

1

10m
ax

P
/P

 (Projection Y) (Projection Y)

0 5 10 15 20 25 30 35 40
r [fm]

2−10

1−10

1

10m
ax

P
/P

 (Projection Z) (Projection Z)

Figure 4: Example of one the reduced dimensionality PDF obtained from the
BLOB output. The three panels show the projections on the three axis. As
described in the text, the 3 dimensional PDF output of the dimensionality re-
duction is normalised to its maximum, therefore on the ordinate axes these
three plots have a probability (P) divided by the maximum probability of the
PDF itself (Pmax). The maximum of the three distributions shown is not 1 be-
cause they are projections on the axis (the 3 dimensional PDF has maximum
1). The peaks at sin (θẑ) ≈ 0.4 and r = 0 represent the large fragment. On the
|~p| projection, the large fragment is the gaussian distribution centred roughly at
150 MeV.

This family of models are made by an encoder and a symmetric
decoder.

In our implementation of the VAE, the encoder consists of
two 3D convolutional block, each composed by a 3D Convolu-
tional layer, a batch normalisation, a dropout layer with p = 0.2,

4

Figure 5: Double differential cross sections of alpha particle production in the
reaction of 12C on a thin natC target at 62 MeV/u as a function of the kinetic
energy of the produced fragment for different angles. The experimental data,
in black crosses, are from De Napoli et al. [21]; the continuous light blue lines
show the BLOB predictions and the dashed magenta lines show the calculated
values once encoded to reduce the PDF dimensionality and then decoded back.
It is also the expected output of VAE once it will be integrated in Geant4 and
interfaced with its nuclear de-excitation phase model. The differences between
the two are due to the approximation made in taking into account events with
up to two fragments in the final state.

and a 3D convolutional downsampling layer with stride 2. Both
blocks had a filter size 3x3, and 48 and 24 convolutional ker-
nels respectively. We used in the first layer an Exponential Lin-
ear Unit (ELU) activation function that behaves better with our
sparse input and Rectified Linear Units (ReLU) activation func-
tion elsewhere because it is one of the less computationally ex-
pensive. The second block is followed by a 3D convolutional
layer (24 kernels) and one fully connected layer of width 64
with a hyperbolic tangent as activation function. The last layer
is a 2-dimension latent space vector.

At the moment, the latent space is bidimensional and we are
obtaining good result, as it will be shown hereinafter, but we
plan a dedicated study to verify the best latent space dimension.

The decoder is symmetric with respect to the encoder, using
the Keras Conv3DTranspose layers as upsampling. Also in the
decoder, all the layers have a ReLU activation function except
the last one, in which we used a Sigmoid, as it is monotonic and
has a fixed output range (0, 1), perfect to represent probabilities,
as in our case.

2.3.1. Conditioning the latent space
Taking inspiration from Gómez-Bombarelli et al. [41], we

trained a classifier for the impact parameter (b) jointly with the
VAE. Such classifier tries to predict the impact parameter for
each point encoded in the latent space, to force the latent space

itself to be organised with respect to b. I.e. more likely close
points in the latent space encode for events with similar b. To
implement this classifier we used two fully connected layer with
64 neurons.

The reason of this conditioning is twofold:

• Allowing to decide the impact parameter of each event
once the VAE will be used to generate events;

• Showing that it is possible to use this technique to condi-
tion the event generation as we plan to use the same tech-
nique to train a VAE with a larger latent space to emulate
events at different energies and, in a near future, to allow
also to emulate different couples of projectile and target.

2.3.2. Loss function, annealing and training
The loss function for a VAE is usually the sum of a recon-

struction term, that express how well the model is able to re-
construct the input data from the compressed latent representa-
tion, plus a term that quantify the distance between the encoded
distribution (the posterior) and a normal distribution (the prior).
The latter is, as usually done for VAE, a KullbackLeibler diver-
gence (KL) [42]. For the first one, usually called Reconstruc-
tion Loss (RC), we chose a Binary Cross-entropy. The two have
been linearly combined to be of the same order of magnitude.
The predictor is jointly trained with a mean square error loss
function and this loss term is added to the VAE losses.

To successfully train the model to correctly reproduce the
input data, we used an annealing [43] strategy for the KL loss.
It consists in multiplying the KL by a weight. At the start of
the training this weight is set to zero and after 10 epochs it is
linearly increased until it reaches one in 100 epochs. In this
way the model is free to learn to reproduce the input before
the conditions on the posterior are applied. Intuitively this is
equivalent to gradually transform a standard Auto-Encoder to a
Variational Auto-Encoder so that when the learned distribution
are forced to match the prior distributions the model is already
able to encode in the latent space much of the information of
the input.

Our data set consists of 2000 events generated with BLOB
and preprocessed with the dimensionality reduction procedure
described in subsection 2.2. Such events have been generated
with uniform b distribution. 1500 of them have been used for
training and 500 for validation.

We used Adam as optimisation algorithm and, to mitigate
the problem due to the high sparseness of the input and acceler-
ate the convergence of back-propagation learning, we initialised
randomly the weights of each layer using the “Le Cunn Nor-
mal” function [44].

3. Results and Discussion

We trained our model for 600 epoch and, as can be seen in
Figure 6, we found that it reaches optimal performance within
150-200 epochs. Indeed, Figure 6 shows the validation loss,
i.e.: the sum of the RC and KL losses calculated on the vali-
dation set, as a function of the training epoch and it reaches a
plateau roughly after 150 epochs.

5

Figure 6: Validation loss as a function of the training epoch, in blue, which
is the sum of the RC, in orange, and the KL, in green, losses. The KL linear
decreasing is inversely proportional to the annealing weight, described in the
text. The large fluctuations are an effect of the small batch size and the small
validation set. This effect will be mitigated once the training dataset is enlarged.
The batch size is limited by the memory of the GPU used for the training.

After such training, we tested that the latent space had been
conditioned by the classifier encoding all the training set, the
result of this test is shown in Figure 7. Each point is the encod-
ing point of one event and the color scale represents the impact
factor (b) of each one. The events with large b cluster in the
upper part of the plot, for the other events it seems that there is
an organisation but we have to improve it enlarging the training
set, as the organisation of the latent space with respect to b is
fundamental to sample from it when the VAE will be used to
generate events.

To test the VAE generative capabilities, we used it to gener-
ate a distribution from a point close to the one where the first
event of the validation set is encoded. The generating point in
the phase space has been sampled from two normal distribu-
tions, one for each axis of the latent space, using as the mean
values the coordinates of the encoding point of the testing dis-
tribution and as variances 10% of them. The results are shown
in Figure 8 where it can be seen that the output distribution is
very close to the input one. It has to be underlined that we did
not use this input distribution for the training phase and so that
the VAE never saw this particular event before. We are show-
ing only one of the two color channels because they are pretty
similar. To give an estimation of the similarity of the two distri-
butions, we computed the average ratio on the

∣∣∣~p∣∣∣ projection, as
it is the most significant value from the physical point of view.
For the event shown in Figure 8 the average ratio is 1.06. We
performed the same procedure with all the events of the valida-
tion set, Figure 9 shows the distribution of the average ratio on
all the validation set events. 85% of the events are in the first
four bins, i.e. the average ratio between the VAE output and the
closest input is less than 2. To improve this result we need to
enlarge the training and validation datasets.

Figure 7: Latent space of the VAE representation. Each point is the encoding
point of one training distribution, the color scale represent the impact parameter
of the event.

4. Conclusions

We explored the possibility of using a VAE to emulate
BLOB, a model made to simulate nuclear interactions below
100 MeV/u. The rationale of this proof-of-principle is that
these interactions are of great importance for MC simulations
for Ion-therapy and therefore a reliable model is needed but the
running time of this kind of models is too large for medical
applications. Taking advantage of the fact that the BLOB final
state is a PDF and of the recent improvements of the capabilities
of Deep Learning algorithms in generating realistic synthetic
samples, we developed and trained a VAE to emulate BLOB.
To use the existing libraries to implement our VAE we reduced
the dimensionality of the problem, exploiting the characteristic
of 12C interactions in this energy domain.

The obtained results are encouraging, however we need to
increase the training set to improve the latent space organisa-
tion. We aim to sample from the latent space, extracting the
impact parameter event by event. We used a limited training set
in this work as this is just a proof-of-concept and keeping the
training set limited shorten considerably the training time and
the computational resources needed.

As mentioned in subsubsection 2.3.1, we plan to enlarge the
VAE latent space and train the VAE with different projectile en-
ergies and using different ions as projectile and target, adding a
classifier to condition the latent space for each degree of free-
dom introduced. In this way a point in the latent space is asso-
ciated to a desired output properties and we will be able to set
for each event generated after the training phase, all the char-
acteristics of the projectile and target couple and the interaction
energy, as we can do now with the impact parameter.

Finally, we plan to import the decoder part of the VAE in
C++ to interface it directly with Geant4, so that it will be pos-
sible to use a state-of-the-art model for low energy nuclear in-
teraction without its computational overhead.

6

0 100 200 300 400 500 600

4−10

3−10

2−10

P

Decoded

Input

 (Projection X)

0 100 200 300 400 500 600
| [MeV]p|

0
0.5

1
1.5

2
2.5

3
3.5

4

R
at

io

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

4−10

3−10

2−10

1−10

P

Decoded

Input

 (Projection Y)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
)θsin(

0
1
2

3
4

5

R
at

io

0 5 10 15 20 25 30 35 40
r [fm]

4−10

3−10

2−10

1−10

P

Decoded

Input

 (Projection Z)

0 5 10 15 20 25 30 35 40
r [fm]

0
0.5

1

1.5
2

2.5

R
at

io

Figure 8: Same as Figure 4 but on top of the input distribution projections,
in blue, the red histograms show the projections of the distribution generated
from the decoder part of the VAE. Such an event has been generated starting
from a point in the latent space close to the one where the input is encoded.
Unlike Figure 4, here both the PDFs are probabilities, as they are normalised
imposing that the integrals is 1. The bottom part of each panel is showing the
ratio between the generated distribution and the input one. Such ratio deviates
significantly from 1 only for the bins with quite low statistics (or close to the
peak in the middle panel).

References

[1] U. Amaldi, G. Kraft, Radiotherapy with beams of carbon ions, Reports
on Progress in Physics 68 (8) (2005) 1861–1882.

[2] D. W. O. Rogers, Fifty years of Monte Carlo simulations for medical
physics, Physics in Medicine and Biology 51 (13) (2006) R287–R301.
doi:10.1088/0031-9155/51/13/R17.

0 2 4 6 8 10
Ratio

0

20

40

60

80

100

120

140

160

180

200

N
um

be
r

of
 e

ve
nt

s

Figure 9: Distribution of the average ratio calculated bin per bin on each output
distribution obtained sampling a point in the latent space close to each point
where an input from the validation set is encoded.

[3] K. Parodi, et al., Monte Carlo simulations to support start-up and treat-
ment planning of scanned proton and carbon ion therapy at a synchrotron-
based facility 57 (12) (2012) 3759–3784.

[4] S. Molinelli, et al., Dosimetric accuracy assessment of a treatment plan
verification system for scanned proton beam radiotherapy: one-year ex-
perimental results and Monte Carlo analysis of the involved uncertainties,
Physics in Medicine and Biology 58 (11) (2013) 3837–3847.

[5] I. Mattei, et al., Secondary radiation measurements for particle therapy
applications: prompt photons produced by 4he, 12c and 16o ion beams in
a pmma target, Physics in Medicine and Biology 62 (2017) 1438–1455.
doi:10.1088/1361-6560/62/4/1438.

[6] A. Rucinski, et al., Secondary radiation measurements for particle therapy
applications: Charged secondaries produced by 4he and 12c ion beams in
a pmma target at large angle, Physics in Medicine and Biology (2017)
1–13doi:10.1088/1361-6560/aaa36a.

[7] M. Marafini, et al., Secondary radiation measurements for particle ther-
apy applications: nuclear fragmentation produced by 4he ion beams in a
pmma target, Physics in Medicine and Biology 62 (4) (2017) 1291–1309.
doi:10.1088/1361-6560/aa5307.

[8] G. Traini, et al., Design of a new tracking device for on-line beam range
monitor in carbon therapy, Physica Medica: European Journal of Medical
Physics 34 (2017) 18–27. doi:10.1016/j.ejmp.2017.01.004.

[9] G. Battistoni, et al., The FLUKA code and its use in hadron therapy,
Nuovo Cimento Della Societa Italiana Di Fisica C-Colloquia on Physics
31 (1) (2008) 69–75.

[10] A. C. Kraan, Range Verification Methods in Particle Therapy: Underlying
Physics and Monte Carlo Modeling, Frontiers in Oncology 5 (2015) 1–27.

[11] S. Agostinelli, et al., Geant4, a simulation toolkit, Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrome-
ters, Detectors and Associated Equipment 506 (3) (2003) 250–303.

[12] D. Sarrut, et al., A review of the use and potential of the GATE
Monte Carlo simulation code for radiation therapy and dosimetry appli-
cations, Medical Physics 41 (6 Part 1) (2014) 064301. doi:10.1118/1.
4871617.

[13] P. Arce, et al., GAMOS: A Geant4-based easy and flexible framework
for nuclear medicine applications, in: 2008 IEEE Nuclear Science Sym-
posium Conference Record, 2008, pp. 3162–3168. doi:10.1109/

NSSMIC.2008.4775023.
[14] J. Perl, et al., TOPAS - an innovative proton monte carlo platform for

research and clinical applications, Med. Phys. 39 (2012) 6818–6837.
[15] The Geant4 Collaboration, Resources for medical physics

applications, twiki.cern.ch/twiki/bin/view/Geant4/

Geant4MedicalPhysics.
[16] A. C. Kraan, Range verification methods in particle therapy: Underlying

physics and monte carlo modeling, Frontiers in Oncology 5 (2015) 150.
doi:10.3389/fonc.2015.00150.

[17] J. Apostolakis, et al., Geant4 low energy electromagnetic models for elec-
trons and photons, Technical Report CERN-OPEN-99-034, INFN/AE-

7

http://dx.doi.org/10.1088/0031-9155/51/13/R17
http://dx.doi.org/10.1088/1361-6560/62/4/1438
http://dx.doi.org/10.1088/1361-6560/aaa36a
http://dx.doi.org/10.1088/1361-6560/aa5307
http://dx.doi.org/10.1016/j.ejmp.2017.01.004
http://dx.doi.org/10.1118/1.4871617
http://dx.doi.org/10.1118/1.4871617
http://dx.doi.org/10.1109/NSSMIC.2008.4775023
http://dx.doi.org/10.1109/NSSMIC.2008.4775023
twiki.cern.ch/twiki/bin/view/Geant4/Geant4MedicalPhysics
twiki.cern.ch/twiki/bin/view/Geant4/Geant4MedicalPhysics
http://dx.doi.org/10.3389/fonc.2015.00150

99/18, CERN/INFN (1999).
[18] J. Apostolakis, et al., Geometry and physics of the geant4 toolkit for

high and medium energy applications, Radiation Physics and Chem-
istry 78 (10) (2009) 859 – 873, workshop on Use of Monte Carlo Tech-
niques for Design and Analysis of Radiation Detectors. doi:10.1016/
j.radphyschem.2009.04.026.

[19] M. H. Mendenhall, R. A. Weller, An algorithm for computing screened
Coulomb scattering in Geant4, Nuclear Instruments and Methods in
Physics Research B 227 (2005) 420–430. arXiv:physics/0406066,
doi:10.1016/j.nimb.2004.08.014.

[20] B. Braunn, et al., Comparisons of hadrontherapy-relevant data to nuclear
interaction codes in the Geant4 toolkit, Journal of Physics: Conference
Series 420 (2013) 012163.

[21] M. De Napoli, et al., Carbon fragmentation measurements and valida-
tion of the Geant4 nuclear reaction models for hadrontherapy, Physics in
Medicine and Biology 57 (22) (2012) 7651–7671.

[22] J. Dudouet, et al., Benchmarking Geant4 nuclear models for hadron ther-
apy with 95 MeV/nucleon carbon ions, Phys. Rev. C 89 (2014) 054616.

[23] T. T. Böhlen, F. Cerutti, M. Dosanjh, A. Ferrari, I. Gudowska, A. Mairani,
J. M. Quesada, Benchmarking nuclear models of FLUKA and GEANT4
for carbon ion therapy, Physics in Medicine and Biology 55 (19) (2010)
5833–5847.

[24] P. Arce, et al., Report on G4–Med, a Geant4 benchmarking system for
medical physics applications developed by the Geant4 Medical Physics
Benchmarking Group, Accepted by Phyisica Medica.

[25] T. Koi, et al., New native QMD code in Geant4, Proceedings of the
MC2010 Monte Carlo Conference.

[26] C. Mancini-Terracciano, et al., Validation of Geant4 Nuclear Reaction
Models for Hadron Therapy and Preliminary Results with BLOB, Vol.
68/1 of IFMBE Proceedings, Springer Singapore, Singapore, 2018. doi:
10.1007/978-981-10-9035-6_126.

[27] P. Napolitani, M. Colonna, Bifurcations in Boltzmann-Langevin one body
dynamics for fermionic systems 726 (2013) 382–386.

[28] C. Mancini-Terracciano, et al., Preliminary results coupling “Stochastic
Mean Field” and “Boltzmann-Langevin One Body” models with Geant4,
Physica Medica 67 (2019) 116 – 122. doi:10.1016/j.ejmp.2019.

10.026.
[29] M. Abadi, et al., TensorFlow: Large-scale machine learning on heteroge-

neous systems, software available from tensorflow.org (2015).
URL https://www.tensorflow.org/

[30] F. Chollet, et al., Keras, https://keras.io (2015).
[31] A. Paszke, et al., Pytorch: An imperative style, high-performance deep

learning library, in: Advances in Neural Information Processing Systems
32, Curran Associates, Inc., 2019, pp. 8024–8035.

[32] M. F. Kasim, et al., Up to two billion times acceleration of scientific
simulations with deep neural architecture search, arXiv e-prints (2020)
arXiv:2001.08055arXiv:2001.08055.

[33] A. Schiavi, et al., Fred: a GPU-accelerated fast-Monte Carlo code for
rapid treatment plan recalculation in ion beam therapy, Vol. 62, Phys.
Med. Biol., 2017. doi:10.1088/1361-6560/aa8134.

[34] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016,
http://www.deeplearningbook.org.

[35] X. Yi, E. Walia, P. Babyn, Unsupervised and semi-supervised learning
with categorical generative adversarial networks assisted by wasserstein
distance for dermoscopy image classification, CoRR abs/1804.03700.
arXiv:1804.03700.

[36] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: Ad-
vances in neural information processing systems, 2014, pp. 2672–2680.

[37] S. Zhao, J. Song, S. Ermon, Towards deeper understanding of variational
autoencoding models, arXiv preprint arXiv:1702.08658.

[38] P. Napolitani, M. Colonna, C. Mancini-Terracciano, Cluster formation
in nuclear reactions from mean-field inhomogeneities, in: Journal of
Physics: Conference Series, 2018. doi:10.1088/1742-6596/1014/

1/012008.
[39] D. Durand, An event generator for the study of nuclear collisions in

the Fermi energy domain (I). Formalism and first applications, Nuclear
Physics A 541 (2) (1992) 266–294.

[40] J. M. Quesada, et al., Recent developments in pre-equilibriumand de-
excitation models in geant4, Progress in Nuclear Science and Technology
2 (2011) 936–941. doi:10.15669/pnst.2.936.

[41] R. Gómez-Bombarelli, et al., Automatic Chemical Design Using a Data-
Driven Continuous Representation of Molecules, ACS Central Science
4 (2) (2018) 268–276. doi:10.1021/acscentsci.7b00572.

[42] S. Kullback, R. A. Leibler, On information and sufficiency, Ann. Math.
Statist. 22 (1) (1951) 79–86. doi:10.1214/aoms/1177729694.

[43] S. R. Bowman, et al., Generating sentences from a continuous space, in:
Proceedings of The 20th SIGNLL Conference on Computational Natural
Language Learning, Association for Computational Linguistics, Berlin,
Germany, 2016, pp. 10–21. doi:10.18653/v1/K16-1002.

[44] Y. LeCun, et al., Efficient BackProp, neural networks: tricks of the trade
Edition, Vol. 7700 of Lecture Notes in Computer Science, Springer, 2012.
doi:10.1007/978-3-642-35289-8_3.

8

http://dx.doi.org/10.1016/j.radphyschem.2009.04.026
http://dx.doi.org/10.1016/j.radphyschem.2009.04.026
http://arxiv.org/abs/physics/0406066
http://dx.doi.org/10.1016/j.nimb.2004.08.014
http://dx.doi.org/10.1007/978-981-10-9035-6_126.
http://dx.doi.org/10.1007/978-981-10-9035-6_126.
http://dx.doi.org/10.1016/j.ejmp.2019.10.026
http://dx.doi.org/10.1016/j.ejmp.2019.10.026
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io
http://arxiv.org/abs/2001.08055
http://dx.doi.org/10.1088/1361-6560/aa8134
http://www.deeplearningbook.org
http://arxiv.org/abs/1804.03700
http://dx.doi.org/10.1088/1742-6596/1014/1/012008
http://dx.doi.org/10.1088/1742-6596/1014/1/012008
http://dx.doi.org/10.15669/pnst.2.936
http://dx.doi.org/10.1021/acscentsci.7b00572
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.18653/v1/K16-1002
http://dx.doi.org/10.1007/978-3-642-35289-8_3

	1 Introduction
	2 Material and Methods
	2.1 Nuclear Interaction Models
	2.2 Dimensionality reduction
	2.3 Variational Auto-Encoder
	2.3.1 Conditioning the latent space
	2.3.2 Loss function, annealing and training

	3 Results and Discussion
	4 Conclusions

