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 

Abstract—Distributed ISAR exploits the data acquired by 

multiple radar sensors carried by multiple platforms working in 

formation to increase the cross range resolution with respect to the 

value achievable by single platform systems.  In this frame, the 

paper addresses the problem of the estimation of the ship 

dynamics, i.e. yaw, pitch and roll rotation motions, exploiting the 

signals collected by such multi-platform radar imaging systems 

providing angular diversity in order to enable the focusing of the 

distributed ISAR images. Specifically, in this work a multi-angle 

formation of sensors is considered and the corresponding 

Maximum Likelihood estimator and Cramer Rao Bound are 

derived. Then, a new Doppler matching based technique is 

proposed as a sub-optimal approach exploiting only the linear 

component of the phase of the received signals. The performance 

analysis proves the effectiveness of the proposed techniques to 

separately estimate the horizontal, radial and vertical components 

of the rotation vector, therefore making possible both the focusing 

and accurate cross-range scaling of the distributed ISAR products 

(as well as of the low resolution ISAR images regarding the 

different sensors) and, as a further advantage, providing 

knowledge of the orientation of the corresponding image 

projection planes. The analysis of experimental multi-sensor 

datasets confirms the feasibility of the proposed techniques. 

 

Index Terms— radar imaging, Inverse SAR (ISAR), 

multiplatform, multistatic, motion estimation. 

I. INTRODUCTION 

HE monitoring and protection of the maritime environment 

is a challenging issue since a great variety of human 

activities usually takes place in the maritime scenario. The 

traditional legal civil/military maritime traffic/activities must 

be added to the irregular traffic, which can be responsible for 

illegal actions such as smuggling, illegal fishing, illegal 

dumping of pollutants and irregular migration. At the same 

time, the typical scenario for search and rescue operations is the 

maritime scenario. In the context outlined above the analysis of 

features/signatures of ship targets is of fundamental importance 

and radar imagery can be used for this purpose. As known, all-

weather all-day radar images of moving targets can be obtained 

by exploiting the Inverse Synthetic Aperture Radar (ISAR) 

principle: wide bandwidth waveforms are transmitted to 

achieve fine range resolution while cross-range resolution is 

obtained on the basis of the synthetic aperture provided by the 

 

 

motion of the target itself, [1]-[2]. Thus, ISAR products can 

enable the classification of non-cooperative targets (i.e. ships 

not equipped with the Automatic Identification System, AIS) 

and can support search and rescue operations for both 

cooperative and non-cooperative targets.  Obviously, the 

quality of these products strictly depends on the particular target 

motion conditions. Specifically ISAR assumes the sensor 

nearly stationary and the ship to be imaged rotating with respect 

to its center, being the rotation described by the effective 

rotation rate vector, [1]-[2]. Different kinds of images can be 

achieved depending on the different orientations of such vector, 

namely the 3D structure of the target is projected on a 2D Image 

Projection Plane (IPP) depending on the specific target rotation 

motion and radar acquisition geometry, [1]-[2]. Moreover, the 

cross range resolution is always determined by the aperture of 

the angle of view, and since the complex motion can strongly 

limit the usable Coherent Processing Interval (CPI), in many 

situations a poor cross-range resolution is obtained. These 

circumstances can have negative impact on the quality of the 

achievable ISAR images and therefore on the performance of 

NCTR (Non Cooperative Target Recognition) procedures, [3]-

[4], usually fed with ISAR images, [5]-[9]. The use of multiple 

sensors/channels (MS) systems observing the same target and 

the joint exploitation of the acquired data seem to be a viable 

solution to overcome the above limitations and to improve the 

performance with respect to conventional single sensor/channel 

(SS) ISAR systems. Indeed, in the recent literature the 

exploitation of MS systems for target imaging purposes has 

received considerable attention: in particular it has been 

considered mainly for i) 3D target reconstruction and ii) target 

imaging with enhanced quality. 

With specific reference to 3D target reconstruction, 

Interferometric ISAR (InISAR) relies on the use of multiple 

antennas properly located on the same platform and connected 

to separate channels. The exploitation of the interferometric 

phases measured at the available baselines allows the estimate 

of the height of the imaged target scatterers with respect to the 

IPP thus enabling 3D reconstruction. Different interferometric 

approaches have been proposed from first contributions, [10]-

[14], to more recent ones as [15] using MIMO techniques 

jointly with sparse signal recovery and [16] using two 

orthogonal baselines combined with a CLEAN approach. 
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With the aim to provide ISAR products with enhanced 

quality with respect to the conventional SS case, the distributed 

ISAR (DISAR) concept was introduced in  [17]-[19]. It consists 

in the exploitation of the data acquired by multiple radar sensors 

carried by multiple platforms working in formation to increase 

the cross range resolution with respect to the value achievable 

by single platform systems. As additional advantages of the 

distributed system, it is worth to mention also its robustness to 

failures and systems reconfiguration capability. Similarly to 

[17]-[19], in [20] multiple observations are coherently 

combined to reduce the CPI required to achieve a given cross-

range resolution. Spatial diversity has been considered also in 

[21] for improving the 2D (range&cross-range) resolution cell. 

Obviously, in both cases (increase of resolution/reduction of 

required CPI) the focusing of these DISAR images requires the 

knowledge of the target rotation motion typically a priori 

unknown. In this frame, the focus of this paper is on the 

exploitation of the signals acquired by such multiple sensors for 

ship 3D rotation motion estimation: this enables the enhanced 

imaging, at the same time overcoming limitations usually 

experienced by SS estimation techniques. 

The ship complex motion, resulting from the interaction of 

the object with the sea surface, is typically described as the 

superimposition of a translation and a rotation around vertical, 

lateral and longitudinal axes, defined as the yaw, pitch and roll 

motions, respectively, [22]. Many techniques can be found in 

literature exploiting SS data to perform the estimation of the 

target rotational motion. Usually, SS techniques aim at 

estimating only the factor needed for cross-range scaling (i.e. 

the effective rotation rate) and can be roughly categorized in 

three kinds. The first group comprises the image quality-based 

methods that estimate the scale parameter depending on target 

rotation as that value providing the best image quality [23]-[25]. 

The second group exploits series of range-Doppler (RD) images 

achieved by dividing the whole observation time in sub-

apertures, [26]-[30]. Finally, the third group obtains the motion 

information by extracting the high-order terms of the phase of 

some prominent point scatterers (PPS) [31]-[34]. These 

techniques usually assume that the rotational motion of the 

target is confined to a 2D plane during the coherent processing 

interval (CPI), and they can experience significant losses when 

this assumption is not verified and the target develops 3D 

motion, [35]. Moreover, even in presence of 2D motion, the 

achievement of good accuracy can impose severe constraints on 

target size, signal to background ratio and used CPI, [32]. To 

cope with the above-mentioned problems/limitations, 

knowledge based approach has been proposed in [36]. Such a 

technique works for ship targets exploiting some a priori 

information regarding the ship silhouette; however, despite the 

restriction to a specific kind of target, the estimation of the 

horizontal component is subordinate to observe the target with 

particular acquisition geometries. It makes sense that the 

exploitation of data acquired by multiple sensors providing 

spatial diversity could help in extracting the information 

concerning the 3D motion needed for DISAR images formation 

(as explained above). 

Few contributions can be found in literature concerning the 

use of MS ISAR data acquired from geometrically distributed 

systems for autofocus (translation motion compensation) and 

rotation motion estimation. Particularly an entropy based 

multistatic autofocus technique has been proposed in [37] 

while, with specific regard to rotation motion estimation, in 

[38]-[40] formations of sensors with different aspect angles 

have been considered for the estimation of motion of targets 

undergoing rotations mainly around a vertical axis. In this 

paper, we consider a formation of sensors with proper aspect 

and grazing diversity and we exploit the acquired data to 

provide the estimates of the three components of the rotation 

vector, therefore enabling the focusing and cross-range scaling 

of the DISAR images and, as a further advantage, the estimation 

of the IPP orientation. To this purpose, two different MS 

techniques are proposed using both model based and model free 

approaches. Exploiting the phase history of selected dominant 

scatterers, a Maximum Likelihood (ML) technique is first 

derived for the estimation of the full rotation vector (some 

preliminary results along this line were previously reported in 

[41]). Then a sub-optimum technique is derived which does not 

require any specific assumption on the phase model and 

exploits the Doppler positioning of the selected scatterers 

(Doppler-matching DM based technique). The study of the 

theoretical performance by means of the evaluation of the 

Cramer Rao Bound (CRB) and the simulated performance 

analysis are shown, demonstrating the capability of the 

proposed approach at providing high accuracy in the estimation 

of the rotation vector components and highlighting the 

robustness of the Doppler matching based technique. Finally, in 

order to validate the proposed techniques, results obtained by 

applying them to experimental MS ISAR data acquired in 

anechoic chamber are also shown. 

The paper is organized as follows: in Section II the MS 

system geometry and the echo model are introduced; in Section 

III the proposed MS estimation techniques are presented, and 

their performance are analyzed in Section IV under ideal and 

non-ideal conditions; Section V shows the results achieved 

against experimental MS data sets, and Section VI concludes 

the paper. Analytical details are reported in the appendices. 

II. MULTI-SENSOR ISAR GEOMETRY AND ECHO MODEL 

The considered scenario consists in a set of 𝑁 ≥ 3 platforms 

carrying a sensor, characterized by either transmitting or 

receiving, or both transmitting and receiving capabilities, 

observing a moving ship. Hereinafter, we consider the special 

case of a single platform equipped with an active sensor (sensor 

0), while the remaining 𝑁 − 1 carry receiving only devices. To 

be noticed that the concept could be easily generalized to 

combinations of active and passive sensors. In the inertial 

reference system (𝑂, 𝑥, 𝑦, 𝑧) north-west-up with origin in the 

position the target fulcrum occupies at aperture centre, the 𝑛th 

sensor belonging to the formation is characterized by its 

distance 𝐷𝑛 from the origin, its aspect angle 𝜁𝑛, measured 

clockwise starting from y-axis, and its grazing angle 𝜓𝑛, see 

Fig. 1.  
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The target is modeled as a rigid body in the far field with 𝐾 

dominant scatterers, with complex reflectivity constant during 

the time aperture 𝑇𝑎. As usual in ISAR literature, the target 

motion is decomposed as the translation of a reference point and 

the rotation of the body around that point. As previously stated, 

we assume any relative translational motion between the 

platforms and the target already compensated, i.e. the platforms 

and the target fulcrum can be considered stationary. The focus 

is therefore on the target rotation, which is usually described by 

the yaw, pitch and roll motions defined as the rotation around 

the vertical, lateral and longitudinal axis of the target, 

respectively, described by the rotation vector 𝝎𝑅𝑃𝑌  =

 [𝜔𝑟𝑜𝑙𝑙 𝜔𝑝𝑖𝑡𝑐ℎ 𝜔𝑦𝑎𝑤]𝑇. In the body reference system 

(𝑂, 𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏), defined as integral with the target and with 

origin in the target fulcrum, the 𝑘th scatterer is located in 𝒑𝑘 =
[𝑥𝑘

𝑏 𝑦𝑘
𝑏 𝑧𝑘

𝑏]𝑇 and its rotation is described by the rotation 

vector 𝝎𝑅𝑃𝑌. For sake of simplicity, we assume that the change 

between the body reference system and (𝑂, 𝑥, 𝑦, 𝑧) is given by 

only a clockwise rotation of an angle 𝜃0 around the 𝑧-axis, 

being 𝜃0 the initial heading angle of the target, so that 𝑧𝑏 ≡ 𝑧. 

The echo model is here given in the range compressed (fast 

time) & slow time domain, with reference to 𝐾 prominent target 

scatterers observed by the 𝑁 sensors and extracted by following 

the procedure detailed in Section III.A. The signal received by 

sensor 𝑛 (𝑛 =  0, … , 𝑁 − 1) from the 𝑘th scatterer at time 𝑡 is 

written as 

𝑔𝑘,𝑛(𝑡) = 𝜉𝑘,𝑛 ∙ 𝑠𝑘,𝑛(𝑡) + 𝜂𝑘,𝑛(𝑡)       (1) 

where 𝜉𝑘,𝑛 = 𝐴𝑘,𝑛 ∙ 𝑒𝑗𝜑𝑘,𝑛 is the unknown but deterministic 

complex reflectivity as viewed by the 𝑛th sensor, 𝜂𝑘,𝑛 is the 

zero-mean Gaussian distributed complex background 

contribution with power 𝜎𝜂
2 and 𝑠𝑘,𝑛(𝑡) is the normalized 

scatterer echo written as 

𝑠𝑘,𝑛(𝑡) = 𝑒𝑥𝑝 {−𝑗
2𝜋

𝜆
[𝑟𝑘,0(𝑡) + 𝑟𝑘,𝑛(𝑡)]} = 𝑒𝑥𝑝{−𝑗𝜙𝑘,𝑛(𝑡)} 

   (2) 

where 𝑟𝑘,𝑛(𝑡) is the distance of the 𝑘th scatterer of the target 

from the 𝑛th sensor in the formation and 𝜆 the wavelength. 

Above equations imply that range migration related to 

rotation motion can be neglected: this assumption can be 

regarded as reasonable due to the short CPI here considered to 

focus the 𝑁 low resolution images. In any case, if range 

migration occurs, an iterative procedure could be followed to 

cope with it, [42]. 

Considering that in the time aperture 𝑇𝑎 the radars collect 𝑀 

slow time samples at instants 𝑡𝑚 (𝑚 = −
𝑀

2
, … ,

𝑀

2
− 1) with 

sampling frequency equal to the Pulse Repetition Frequency 

(PRF), the joint probability density function associated to each 

sample of the data collected by the 𝑛th sensor for the 𝑘th 

scatterer is 

𝑓 (𝑔𝑘,𝑛(𝑚)) =
1

𝜋𝜎𝜂
2 𝑒𝑥𝑝 {−

|𝑔𝑘,𝑛(𝑚)−𝜉𝑘,𝑛∙𝑠𝑘,𝑛(𝑚)|
2

𝜎𝜂
2 }    (3) 

Therefore, under the hypothesis of independent noise samples 

𝜂𝑘,𝑛(𝑡𝑚), the joint probability density function of the collected 

data pertaining to the 𝐾 scatterers can be written as 

𝑓(𝒈) = ∏ ∏ ∏ 𝑓 (𝑔𝑘,𝑛(𝑡𝑚))𝐾
𝑘=1

𝑁
𝑛=1

𝑀
𝑚=1 =   

=
1

𝜋𝐾𝑁𝑀𝜎𝜂
2∙𝐾𝑁𝑀 𝑒𝑥𝑝 {−

∑ ∑ ∑ |𝑔𝑘,𝑛(𝑡𝑚)−𝜉𝑘,𝑛∙𝑠𝑘,𝑛(𝑡𝑚)|
2𝐾

𝑘=1
𝑁
𝑛=1

𝑀
𝑚=1

𝜎𝜂
2 }= 

=
1

𝜋𝐾𝑁𝑀𝜎𝜂
2∙𝐾𝑁𝑀 𝑒𝑥𝑝 {−

1

𝜎𝜂
2 (𝒈 − 𝑺𝜩)†(𝒈 − 𝑺𝜩)}       (4) 

where 𝒈 = [𝒈1
𝑇 𝒈2

𝑇 … 𝒈𝐾
𝑇 ]𝑇 is the 𝐾𝑁𝑀 × 1 data vector 

collecting the acquired signals with 𝒈𝑘 = [𝒈𝑘,0
𝑇 … 𝒈𝑘,𝑁−1

𝑇 ]
𝑇
 

and  𝒈𝑘,𝑛 = [𝑔𝑘,𝑛(𝑡−𝑀 2⁄ ) … 𝑔𝑘,𝑛(𝑡𝑀 2−1⁄ )]
𝑇
, 𝜩 =

[𝜩1 … 𝜩𝐾]𝑇 is the 𝐾𝑁 × 1 complex amplitude vector with 

𝜩𝑘 = [𝜉𝑘,0 … 𝜉𝑘,𝑁−1] and 𝑺 = 𝑑𝑖𝑎𝑔(𝑺1 … 𝑺𝐾) is the 

𝐾𝑁𝑀 × 𝐾𝑁 diagonal block phase matrix, where the 𝑘th 𝑁𝑀 ×
𝑁 block is a diagonal block matrix 𝑺𝑘 = 𝑑𝑖𝑎𝑔(𝑠𝑘,1 … 𝑠𝑘,𝑁) 

and 𝒔𝑘,𝑛 = [𝑒𝑗𝜙𝑘,𝑛(𝑡−𝑀 2⁄ ) … 𝑒𝑗𝜙𝑘,𝑛(𝑡𝑀 2−1⁄ )]𝑇 is the 𝑀 × 1 

block; † is the hermitian operator. 

To completely specify the model here presented, it is useful 

to develop the expression of the distance 𝑟𝑘,𝑛(𝑡) as a function 

of the target rotation. To the purpose, the local (𝑂, 𝐻𝑛 , 𝑅𝑛, 𝑉𝑛) 

reference system [36], representing the point of view of each 

platform belonging to the formation as sketched in Fig. 1, is 

introduced. The 𝑟𝑛-axis (𝒓̂𝑛 unit vector) is the 𝑛th Line Of Sight 

(LOS) direction, the ℎ𝑛-axis is given by the unit vector 𝒉̂𝑛 

normal to 𝒓̂𝑛 and belonging the (𝑥,𝑦) plane and the 𝑣𝑛-axis is 

given by the unit vector 𝒗̂𝑛 normal to the (𝑅𝑛, 𝐻𝑛) plane. We 

point out that in the following analysis the (𝑂, 𝐻0, 𝑅0, 𝑉0) 

reference system pertaining to the active sensor in the formation 

will act as the global reference system: indeed the estimation 

procedures devised in the present paper will allow retrieving the 

component of the target rotation motion vector 𝝎 =
[𝜔𝐻  𝜔𝑅  𝜔𝑉]𝑇 = 𝝎0 as defined in this global reference system. 

At aperture centre 𝑡0 = 0 the transformation from body 

reference system to (𝑂, 𝐻𝑛 , 𝑅𝑛, 𝑉𝑛) for sensor 𝑛 can be 

expressed by means of the matrixes 𝑴𝜓𝑛
 and 𝑴𝜁𝑛

, which 

describe respectively an anticlockwise rotation of the absolute 

reference system around the 𝑥-axis with the grazing angle 𝜓𝑛 

and a clockwise rotation around the 𝑧-axis with the aspect angle 

𝜁𝑛: 

Fig. 1. Multi-sensor acquisition geometry. 
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𝒒𝑘,𝑛
0 = [ℎ𝑘,𝑛

0 𝑟𝑘,𝑛
0 𝑣𝑘,𝑛

0 ]
𝑇

= 𝑴𝜓𝑛
𝑴𝜁𝑛

𝑴𝜃𝒑𝑘     (5) 

being 𝑴𝜃 the rotation matrix accounting for the initial heading 

angle of the target. Because of the 3D rotation motion for a 

rolling, pitching, and yawing target, we can assume that the 

scatterer in 𝒒𝑘,𝑛
0  rotates around the radial, horizontal and 

vertical axis (as viewed by the 𝑛th sensor). Let 𝜗𝛾
𝑛(𝑡) be the 

angle, changing with time, swept around the 𝛾𝑛-axis (𝛾 =
𝐻, 𝑅, 𝑉); therefore, we have 

[

ℎ𝑘,𝑛(𝑡)

𝑟𝑘,𝑛(𝑡)

𝑣𝑘,𝑛(𝑡)

] =

[

𝐶𝜗𝑉
𝑛𝐶𝜗𝑅

𝑛 (𝑆𝜗𝑉
𝑛𝐶𝜗𝐻

𝑛 +  𝐶𝜗𝑉
𝑛𝑆𝜗𝑅

𝑛𝑆𝜗𝐻
𝑛) (𝑆𝜗𝑉

𝑛𝑆𝜗𝐻
𝑛 − 𝐶𝜗𝑉

𝑛𝑆𝜗𝑅
𝑛𝐶𝜗𝐻

𝑛)

−𝑆𝜗𝑉
𝑛𝐶𝜗𝑅

𝑛 (𝐶𝜗𝑉
𝑛𝐶𝜗𝐻

𝑛 −  𝑆𝜗𝑉
𝑛𝑆𝜗𝑅

𝑛𝑆𝜗𝐻
𝑛) (𝐶𝜗𝑉

𝑛𝑆𝜗𝐻
𝑛 + 𝑆𝜗𝑉

𝑛𝑆𝜗𝑅
𝑛𝐶𝜗𝐻

𝑛)

𝑆𝜗𝑅
𝑛 −𝐶𝜗𝑅

𝑛𝑆𝜗𝐻
𝑛 𝐶𝜗𝑅

𝑛𝐶𝜗𝐻
𝑛

] ∙

𝒒𝑘,𝑛
0                           (6) 

being 𝑆𝑥 = 𝑠𝑖𝑛(𝑥(𝑡)) and 𝐶𝑥  =  𝑐𝑜𝑠(𝑥(𝑡)). 

The expression of the distance 𝑟𝑘,𝑛(𝑡) in (2) can be found 

from (6), but further mathematics is needed to properly explicit 

its dependence on the target rotation motion 𝝎. A first step is to 

expand 𝐶𝜗𝛾
𝑛 and 𝑆𝜗𝛾

𝑛  in (6) in Taylor series at second order 

around 𝑡0, in the hypothesis of uniform rotations, i.e. 𝜗𝛾
𝑛(𝑡) =

𝜔𝛾𝑛
𝑡; the vector 𝝎𝑛 = [𝜔𝐻𝑛

 𝜔𝑅𝑛
 𝜔𝑉𝑛

]
𝑇
 can be achieved by 

applying the same rotation matrices in (5) to the vector 𝝎𝑅𝑃𝑌. 

The expression of the distance 𝑟𝑘,𝑛(𝑡) becomes 

𝑟𝑘,𝑛(𝑡) = −ℎ𝑘,𝑛
0 𝜔𝑉𝑛

𝑡 + 𝑟𝑘,𝑛
0 (1 −

𝜔𝐻𝑛
2 𝑡2

2
−

𝜔𝑉𝑛
2 𝑡2

2
) +

𝑣𝑘,𝑛
0 (𝜔𝐻𝑛

𝑡 + 𝜔𝑉𝑛
𝜔𝑅𝑛

𝑡2), −
𝑇𝑎

2
≤ 𝑡 ≤

𝑇𝑎

2
           (7) 

Writing the components of 𝝎𝑛 as a function of the rotation 

motion as viewed in the global reference system (𝑂, 𝐻0, 𝑅0, 𝑉0) 

according to the transformation matrix 𝑼𝑛→0 =
𝑴𝜓0

𝑴𝜁0
𝑴𝜁𝑛

−1𝑴𝜓𝑛

−1 , from (2) and (7) it is possible to explicit the 

dependence of the phase of the signal backscattered from the 

𝑘th scatterer and received by the 𝑛th sensor on the vector 𝝎 

𝜙𝑘,𝑛(𝑡) =
2𝜋

𝜆
[𝑟𝑘,0(𝑡) + 𝑟𝑘,𝑛(𝑡)] =

2𝜋

𝜆
[𝑟𝑘,0

0 + 𝑟𝑘,𝑛
0 +

𝜆𝑓𝑑𝑘,𝑛
(𝝎)𝑡 + 𝛽𝑘,𝑛(𝝎)𝑡2]                 (8) 

where 𝑓𝑑𝑘,𝑛
(𝝎) is the scatterer Doppler frequency at the image 

time 𝑡0 and 𝛽𝑘,𝑛(𝝎) is the focus parameter 

𝑓𝑑𝑘,𝑛
(𝝎) =

1

𝜆
∑ 𝑎𝑘,𝑛

𝛾
(𝜓0, 𝜓𝑛 , 𝜁0, 𝜁𝑛 , 𝒒𝑘,𝑛

0 )𝜔𝛾𝛾=ℎ,𝑅,𝑉   

(9) 
𝛽𝑘,𝑛(𝝎) =

∑ ∑ 𝑏𝑘,𝑛
𝛾𝛿

(𝜓0, 𝜓𝑛 , 𝜁0, 𝜁𝑛 , 𝒒𝑘,𝑛
0 )ωγωδδ=H,R,Vγ=H,R,V   

It is necessary to underline that coefficients 𝑎𝑘,𝑛
𝛾

 and 𝑏𝑘,𝑛
𝛾𝛿

 

depend on the sensor positions through the aspect and grazing 

angles (𝜓0, 𝜓𝑛 , 𝜁0, 𝜁𝑛) as well as on the scatterer coordinates at 

𝑡0, 𝒒𝑘,𝑛
0 . It is supposed that the latter can be retrieved with a 

certain approximation by the range measures collected at the 

different sensors in the formation, i.e. 𝒒𝑘,𝑛
0 = 𝒒𝑘,𝑛

0 (𝑟𝑘,𝑛
0 ), as 

explained in the following (see section IIIA, equation (10)). 

Therefore, once the position vector 𝒒𝑘,𝑛
0  has been retrieved, 

according to the known acquisition geometry, the 𝑎𝑘,𝑛
𝛾

 and 𝑏𝑘,𝑛
𝛾𝛿

 

coefficients could be deterministically computed. 

III. MULTI-SENSOR ESTIMATION TECHNIQUES 

In this section, the proposed MS rotation motion estimation 

techniques are described. A requirement for the techniques to 

properly work is the capability of correctly associating brightest 

spots in the 𝑁 images as corresponding to the same scatterer of 

the target. How to achieve this result is described in the 

following subsection IIIA. Once this step is accomplished, the 

exploitation of both linear and quadratic phase terms of the 

model in (8) leads to the derivation of the ML technique 

described in subsection IIIB. Finally, subsection IIIC shows 

how a suboptimum DM technique can be devised based on the 

extraction of the Doppler frequencies of the selected scatterers 

in the different available images (namely by exploiting the 

linear component of the phase) and explains how such 

suboptimum technique is more insensitive to possible signal 

model mismatch. In both cases (ML and DM) it will be proven 

how the proper exploitation of the information acquired in 

spatial diversity allows us to estimate the full 3D rotational 

motion of the target, namely not only the horizontal and vertical 

components but also the radial one, which usually cannot be 

estimated by SS techniques. 

A. Extraction and association of the dominant scatterers 

The proposed MS techniques are based on the assumption 

that the same target scatterers can be selected in the 𝑁 images 

formed by processing the 𝑁 acquired signals. Many automatic 

methods have been proposed in the past for the extraction of the 

position of the PPS, [43], [44]. The pre-processing aimed at 

correctly extracting and associating the PPS is composed by 

three steps, namely images formation, scatterers extraction and 

scatterers association as described in the following. 

1. Images formation: for each sensor the corresponding RD 

image is focused by Fourier transforming the range 

compressed&slow-time data with respect to slow-time. 

Thus, 𝑁 RD images are obtained. 

2. Scatterers extraction: a procedure based on image 

segmentation is applied to each image in order to detect and 

separate the dominant target scatterers. As in [36], this 

procedure first applies a proper threshold to the RD image 

in order to identify the positions characterized by high 

energy level; then rejects those detected regions constituted 

by few pixels; finally returns the scatterers positions by 

applying a 2D peak detection algorithm to the cleaned 

image coming from the previous step. 

3. Scatterers association relies on the assumption that the same 

scatterer is observed in the 𝑁 exploited acquisitions. It has 

to be remarked that the proposed techniques apply to 
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operative scenarios implying quite limited changes of the 

observation angle over the different acquisitions so that the 

target can be assumed in the pseudo-monostatic region 

(angular differences lower than about 5 degrees), [45]. 

However, it is well known that ISAR images are generally 

quite sensitive to changes of target orientation with respect 

to the radar LOS, and scatterers’ distribution may vary even 

for limited angular separations (due to the susceptibility of 

coherent imaging to target scintillation). Nevertheless, it has 

been demonstrated that in ISAR imaging some scatterers 

persist over a certain degree of illumination angle [46], and 

many techniques relying on those scatterers have been 

successfully employed in autofocus and NCTR procedures 

[47]. Bright points that can be associated with single-

scatterer scattering centres are less sensitive to variation of 

the radar perspective, and therefore are suitable for the 

subsequent estimation process. Useful techniques to 

discriminate among spots deriving from single/multiple 

point sources have been proposed [9], however, a full 

discussion about this topic is beyond the scope of this paper. 

Furthermore, the proposed estimation techniques need only 

extracting a limited number of such scatterers. Given the 

simplified conditions of small illumination angle changes 

and the need of few points, the strategy suggested here is 

selecting few isolated scatterers at the edges of the target in 

all the 𝑁 images, such as the bow scatterer of a ship or the 

tail of an aircraft. In such conditions, the simple nearest 

neighboring method, as in [44], can be adopted to associate 

the scatterers in the different IPPs. 

Hereafter, we assume that 𝐾 scatterers have been properly 

associated in the different images. The range bins 

corresponding to these scatterers are extracted from data in 

range compressed&slow-time domain, and Doppler filtering is 

applied in order to discard the contribution of other minor 

scatterers and clutter background in the same range bin. 

At this point, the data vector 𝒈 with the statistic in (4) is 

obtained and the coordinates of the selected scatterers can be 

retrieved by the range measures collected at the different 

sensors in the formation. In particular, the relation between the 

measured slant ranges and the scatterer positions in (5) is given 

by 

𝒒𝑘,𝑛
0 = 𝑴𝜓𝑛

𝑴𝜁𝑛
𝑹‡𝒓𝑘          (10) 

In the above equation, 𝒓𝑘 denotes the 𝑁 × 1 vector collecting 

the measured slant ranges 
𝑟𝑘,𝑛

0 +𝑟𝑘,0
0

2
. 𝑹 is an 𝑁 × 3 matrix, which 

depends on the geometric distribution of the multi-platform 

radar system, transforming the scatterer coordinates in the 

(0, 𝑥, 𝑦, 𝑧) reference system in the measured ranges, and its 𝑛th 

row is given by 

[–
𝑆𝜁𝑛𝐶𝜓𝑛+𝑆𝜁0𝐶𝜓0

2

𝐶𝜁𝑛𝐶𝜓𝑛+𝐶𝜁0𝐶𝜓0

2
−

𝑆𝜓𝑛+𝑆𝜓0

2
]. Finally, ‡ 

indicates the pseudo-inverse operator. It is worth to notice that 

in the proposed MS formation we consider a joint multi-

aspect/multi-grazing formation of 𝑁 ≥ 3 sensors: therefore the 

linear system (10) is characterized by a good degree of stability, 

and the scatterer coordinates can be recovered even in presence 

of errors due to imprecision in the knowledge of the sensors 

positions and the quantization of the slant range axis. Therefore, 

we can consider as known the 𝑎𝑘,𝑛
𝛾

 and 𝑏𝑘,𝑛
𝛾,𝛿

 parameters in (9). 

B. Maximum likelihood estimator 

Based on the statistical model of the data in (4), it could be 

shown (see Appendix A), that the Maximum Likelihood 

estimate of the rotation rate vector is given by 

𝝎̂𝑀𝐿 = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝝎

{𝐿𝐹(𝝎)} =

𝑎𝑟𝑔 𝑚𝑎𝑥
𝝎

{∑ ∑ |𝒔𝑘,𝑛
† 𝒈𝑘,𝑛|

2𝐾
𝑘=1

𝑁−1
𝑛=0 }      (11) 

where 𝐿𝐹(𝝎) is the likelihood function. 

As it is apparent from (11), for each selected scatterer and 

considered sensor the ML estimator performs a coherent 

processing of the data to accomplish the estimation task. Let 

[𝜔̆𝐻 , 𝜔̆𝑅 , 𝜔̆𝑉] = 𝝎̆ be the rotation rate vector under test: as 

depicted in Fig. 2, this coherent elaboration of the data consists 

of the compensation of the linear and quadratic terms of the 

phase in (8) as a function of 𝑓𝑑𝑘,𝑛
(𝝎̆) and 𝛽𝑘,𝑛(𝝎̆). For the 𝑘th 

selected scatterer, the signal pertaining the 𝑛th sensor 𝒈𝑘,𝑛 is 

multiplied by exp {𝑗
2𝜋

𝜆
𝛽𝑘,𝑛(𝝎̆)𝑡2} and exp {𝑗

2𝜋

𝜆
𝑓𝑑𝑘,𝑛

(𝝎̆)𝑡}. 

The former operation is an azimuth dechirping procedure, 

whereas the latter corresponds at introducing a shift in the 

Doppler domain equal to 𝑓𝑑𝑘,𝑛
(𝝎) − 𝑓𝑑𝑘,𝑛

(𝝎̆). The following 

coherent summation of the slow time samples and squared 

modulus extraction allow extracting the power of the (focused 

and Doppler compensated) scatterer. The power values 

concerning the 𝑘th scatterer as observed by the 𝑁 sensors data 

are then averaged. We point out that the output of the processing 

Fig. 2. Maximum Likelihood based processing scheme. 
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of each signal vector 𝒈𝑘 will be the highest when 𝝎̆ = 𝝎, 

namely when 𝒔𝑘,𝑛
† = 𝒔𝑘,𝑛

† (𝝎̆) is matched to the signal under 

consideration. Such a processing is carried out for all the 𝐾 

selected scatterers, and the obtained power values are 

subsequently averaged, ultimately resulting in 𝐿𝐹(𝝎̆). The 

value 𝝎̆ corresponding to its global maxima is assumed as the 

estimated 𝛚̂𝑀𝐿. 

C. Doppler matching based technique 

As well known, the ML estimator can reach the highest 

accuracy (CRB evaluated in the next section), but on the other 

hand it requires a maximization over a 3D space, which makes 

heavy the required computational load and moreover can be 

problematic when local maxima are present. Therefore, it is also 

interesting to derive sub-optimum techniques not requiring the 

application of optimization procedures. To this purpose, in this 

section we present a Doppler-matching (DM) based estimation 

technique to perform the motion estimation. Differently from 

the ML procedure, this technique exploits only the linear phase 

term in (8) to estimate the rotation vector 𝝎. 

The Doppler-matching based estimation technique processing 

scheme is depicted in Fig. 3. From each branch of the scheme, 

i.e. for each input signal vector 𝒈𝑘,𝑛, the processing aims at 

recovering the Doppler frequency of the scatterer 𝑓𝑑𝑘,𝑛
 and it is 

composed by the cascade of four steps: focusing parameter 

estimation, azimuth dechirping, cross-range profiling and 

Doppler frequency extraction. 

The first step consists in the estimation of the best focusing 

parameter value for the selected range bin pertaining to the 𝑘th 

scatterer observed by the 𝑛th sensor. Differently from the ML 

technique such a step is not part of the rotation estimation 

searching procedure, but it is needed to remove Doppler 

migration before the subsequent processing. To this purpose the 

technique in [32] is exploited, which provides the best 𝛽𝑘,𝑛 

value regardless the components of 𝝎. The estimated 𝛽̂𝑘,𝑛 is 

then used to compensate the Doppler spread (i.e. azimuth 

dechirping). Finally, the cross-range profile can be obtained by 

means of frequency analysis and the scatterer Doppler 

frequency can thus be extracted. By processing all the signal 

vectors 𝒈, 𝐾𝑁 estimated Doppler frequencies are obtained. 

Each Doppler frequency 𝑓𝑑𝑘,𝑛
 can be written as a linear 

combination of the rotation vector components 𝜔𝐻, 𝜔𝑅 and 𝜔𝑉 

with coefficients 𝑎𝑘,𝑛
𝛾

, (9). By considering all the 𝑁 Doppler 

frequencies of each of the 𝐾 selected scatterers, the following 

linear system can be written 

𝚫𝝎 = 𝒇𝒅            (12) 

where 𝚫 =
1

𝜆
[𝒂H 𝒂R 𝒂V] is the [𝐾𝑁 × 3] matrix with 𝒂𝛾 =

[𝒂1
𝛾

𝒂2
𝛾

… 𝒂𝐾
𝛾

]
𝑇
 and 𝒂𝑘

𝛾
= [𝑎𝑘,0

𝛾
… 𝑎𝑘,𝑁−1

𝛾
]

𝑇
, 𝛾 =

𝐻, 𝑅, 𝑉, and 𝒇𝒅 is the vector of the 𝐾𝑁 measured Doppler 

frequencies. The estimated components of the rotation vector 

can be achieved by resorting to a least squares approach: 

𝝎̂𝑫𝑴 = 𝚫‡𝒇𝒅           (13) 

It could be shown that at least 𝐾 ≥ 2 scatterers are needed 

for the 𝚫  matrix to be full rank so that the full rotation rate 

vector can be retrieved; in contrast for the ML technique to 

work a single dominant scatterer could suffice (i.e. 𝐾 ≥ 1) 

since both linear and quadratic components of the scatterer 

phase are exploited.  

The advantage of using the DM based technique with respect 

to the ML estimator is twofold. The first benefit depends on its 

model-free characteristic: indeed Doppler frequencies 

𝑓𝑑𝑘,𝑛
(𝝎) are insensitive to potential angular accelerations, 

which would certainly affect the focus parameters 𝛽𝑘,𝑛(𝝎) 

instead. Consequently, ML estimation performance would 

suffer from the mismatch between target motion model and 

actual dynamics, while DM technique would automatically 

adapt to the presence of not negligible angular accelerations. 

ML approach could definitely recover its performance if both 

angular velocity and acceleration were used to model the target 

motion to the expense of an increased the computational load, 

which is not a secondary issue. Indeed the second advantage of 

the DM estimation approach resides in its higher computational 

efficiency, if compared to the ML technique, since it does not 

require any optimization procedure to retrieve the estimated 

values, except for 𝐾𝑁 linear independent and parallelizable 

searches over the focus parameters. This represents a significant 

benefit with respect to the ML estimator, which requires the 

joint maximization over the 3D space of horizontal, radial and 

vertical uniform rotations (6D if accelerations are considered). 

Obviously, we expect the DM approach to provide lower 

estimation accuracy with respect to the theoretical performance, 

Fig. 3. Doppler matching based processing scheme. 
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met by the ML technique if the target motion is accurately 

modelled. Nevertheless, as discussed in the next section, such 

performance degradation is quite limited making the DM 

technique appealing for practical applications. 

IV. PERFORMANCE ANALYSIS 

A. Theoretical performance analysis 

Considering the signal model in (4), the theoretical 

performance for the rotation motion estimation can be analyzed 

by evaluating the Cramer Rao lower Bound (CRB). It can be 

shown (see Appendix B) that the standard deviation of the 

estimation error for the 𝛾th component of the rotation vector 

(defined as 𝛿𝜔𝛾 = 𝜔̂𝛾 − 𝜔𝛾, being 𝜔̂𝛾 and 𝜔𝛾 the estimated and 

true value of 𝜔𝛾) for the model described above, is given by 

𝐶𝑅𝐵𝜔𝛾
= 𝜎𝜔𝛾

2 =

𝜆2𝜎𝜂
2

2𝜋2𝑀𝑇𝑎
2

𝑧𝛿,𝛿𝑧𝜇,𝜇−𝑧𝛿,𝜇
2

|𝒁|
 , {

𝛾, 𝛿, 𝜇 = 𝐻, 𝑅, 𝑉
𝛾 ≠ 𝜇, 𝛿 ≠ 𝛾, 𝛿 ≠ 𝜇

                      (14) 

being 𝒁 a 3 × 3 matrix whose element 𝑧𝛾,𝛿  (𝛾, 𝛿 = 𝐻, 𝑅, 𝑉) is 

given by the linear combination of two terms: 

𝑧𝛾,𝛿 = {𝐿𝛾,𝛿 + 𝑄𝛾,𝛿(𝝎)}         (15) 

The formers are related to the coefficients of the linear term 

of the phase in (9) 

𝐿𝛾,𝛿 =
1

3
∑ ∑ 𝐴𝑘,𝑛

2 𝑎𝑘,𝑛
𝛾𝐾

𝑘=1
𝑁−1
𝑛=0 𝑎𝑘,𝑛

𝛿        (16) 

whereas the latter are related to the coefficients of the quadratic 

term of the phase in (9) 

𝑄𝛾,𝛿(𝛚)  =
𝑇𝑎

2

45
∑ ∑ 𝐴𝑘,𝑛

2 𝑏̇𝑘,𝑛
𝛾

𝑏̇𝑘,𝑛
𝛿𝐾

𝑘=1
𝑁−1
𝑛=0      (17) 

with 𝑏̇𝑘,𝑛
𝛾 (𝝎) =

𝜕𝛽𝑘,𝑛
𝜕𝜔𝛾

⁄ . 

From the previous expressions, the case of the CRBs (14) 

with 𝑄𝛾,𝛿 = 0 (hereafter 𝐶𝑅𝐵𝜔𝛾
𝐿 ) is the maximum achievable 

accuracy when exploiting only the Doppler information but not 

the Doppler rate (as done by the Doppler-matching based 

technique), since it represents how the linear terms of the signal 

phases contribute to the estimation accuracy. On the other hand, 

the maximum accuracy we might achieve by exploiting only the 

quadratic term of the phases (as done in most of the SS 

estimation techniques, e.g. [25], [32], [33]) is represented by the 

CRBs (14) with 𝐿𝛾,𝛿 = 0 (hereafter 𝐶𝑅𝐵𝜔𝛾

𝑄
). The maximum 

achievable accuracy for the ML estimator is obtained for both 

𝐿𝛾,𝛿 , 𝑄𝛾,𝛿 ≠ 0 (hereafter 𝐶𝑅𝐵𝜔𝛾
). 

In order to study how the linear and quadratic terms of the 

phases affect the theoretical accuracy of the estimation, we 

compare 𝐶𝑅𝐵𝜔𝛾
𝐿 , 𝐶𝑅𝐵𝜔𝛾

𝑄
 and 𝐶𝑅𝐵𝜔𝛾

. For the analysis we 

consider the case of a ship target undergoing an angular motion 

given by 𝜔𝑟𝑜𝑙𝑙 = 0.03 rad/s , 𝜔𝑝𝑖𝑡𝑐ℎ = 0.02 rad/s, 𝜔𝑦𝑎𝑤 =

−0.05 rad/s. Without loss of generality, we assume the active 

radar sensor (reference sensor 𝑛 = 0) observing the ship, 

having initial heading angle 𝜃0 = 0°, with 𝜁0 = 𝜓0 = 0° (we 

Fig. 4. Comparison of the theoretical accuracy achievable by exploiting the linear and/or the quadratic phase terms for the horizontal (a), radial (b) and vertical 

(c) components of the rotation vector. 

     (a)      (b) 

     (c) 
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point out that in these specific conditions of observation, 𝑥𝑏 ≡
𝑥 ≡ ℎ0,  𝑦𝑏 ≡ 𝑦 ≡ 𝑟0, 𝑧𝑏 ≡ 𝑧 ≡ 𝑧0, and therefore 𝜔𝑟𝑜𝑙𝑙 ≡ 𝜔𝐻, 

𝜔𝑝𝑖𝑡𝑐ℎ ≡ 𝜔𝑅 and 𝜔𝑦𝑎𝑤 ≡ 𝜔𝑉). The acquisition time is 0.5 sec, 

the wavelength is 3 cm and 𝐷0 = 30 Km. Two additional 

platforms are considered carrying passive devices, having 

illumination angles equal to 𝜁1 = −2°, 𝜓1 = 1° and 𝜁2 = 3°, 
𝜓2 = 5°, and the mainmast and the bow scatterer, located in 

𝒑1 = [10, 0, 20]𝑇m and 𝒑2 = [30, 0, 0]𝑇m, respectively, are 

selected. 

Fig. 4 shows the theoretical normalized standard deviation 

of the estimation errors on the single components of the rotation 

vector as a function of the integrated signal-to-noise ratio, 

defined as 𝑆𝑁𝑅𝑘,𝑛 = 𝑀
𝐴𝑘,𝑛

2

𝜎𝜂
2 ; here, for sake of simplicity, it is 

assumed to be independent from 𝑛 and equal for both the 

scatterers. We can observe how the theoretical accuracy for the 

dechirping-based estimation is extremely poor; on the other 

hand, good performance can be achieved by the DM technique, 

reaching pretty much the same theoretical accuracy of the ML 

estimator. 

It is worth to notice that dechirping-based techniques can 

reach a maximum theoretical accuracy depending on the 

angular motion value, since 𝐶𝑅𝐵𝜔𝛾

𝑄 ≡ 𝐶𝑅𝐵𝜔𝛾

𝑄 (𝝎), and 

therefore on the cross-range resolution. Consequently, 

dechirping-based estimations need longer CPI in order to 

increase the estimation accuracy, i.e. higher cross-range 

resolution, in case of slow rotating targets. Nevertheless, 

typically short CPIs are employed in ISAR imaging. In contrast, 

for a given SNR the theoretical accuracy of the DM technique 

depends only on system geometry and scatterers position (by 

means of 𝑎𝑘,𝑛
𝛾

 parameters), so that high quality estimations can 

be obtained for both fast and slow rotating targets. 

It is also apparent how for all the SNR conditions the best 

performance is achieved for the vertical and horizontal 

components of the rotation vector, whereas the estimation of the 

radial component behaves slightly worse. However, it has to be 

underlined that, differently from the MS case, in a SS system it 

is not possible to estimate the radial rotation. Indeed the rotation 

around the radial axis does not affect the Doppler position of 

the scatterer. In contrast, in the MS formation case, both vertical 

and horizontal rotations (𝜔𝑉𝑛
, 𝜔𝐻𝑛

) as locally viewed by each 

sensor in the formation can be represented as a function of all 

the components of the rotation vector 𝝎. Therefore, the radial 

rotation can be estimated and recovered along with the vertical 

and horizontal components of the motion. Moreover, it is 

expected that the capability of the MS system to recover the 

radial rotation of the target improves if the angular separation 

among the sensors increases, since in such case a larger part of 

𝜔𝑅 is projected onto the horizontal and vertical axes pertaining 

the 𝑛th sensor. In Fig. 5 the theoretical normalized standard 

deviation of the estimation errors on the horizontal, radial and 

vertical components of the rotation vector are compared when 

the estimation is performed by exploiting both the linear and 

quadratic terms of the phases for two different sensor 

displacements: in geometry 1 (G1), the sensor displacement is 

as in Fig. 4, whereas in geometry 2 (G2) we consider 

illumination angles being ζ0 = 𝜓0 = 0°, ζ1 = −1°, 𝜓1 = 0.5°, 

ζ2 = 1.5°, 𝜓2 = 2.5°; remainder parameters are as in G1. As 

expected, the wider angular diversity in G1 resulted in an 

enhanced achievable accuracy of the radial rotation estimation 

than the one in G2. In addition, one can observe negligible 

variations moving from G1 to G2 for the estimations concerning 

the horizontal and radial components. Therefore, from a 

theoretical point of view, even very small separations among 

the individual perspectives may provide high quality 

estimations of the horizontal and vertical rotations. 

Nevertheless, as it will be analysed ahead, a greater angular 

diversity greatly helps in the achievement of reliable 

estimations under non-ideal conditions. 

B. Simulated performance analysis 

The simulated scenario is given by a formation of three 

sensors comprising an active sensor (𝑛 = 0) transmitting in X-

band (𝜆 = 3  cm) and two additional receivers (𝑛 = 1,2). 

Without loss of generality, we consider an “L” shape formation, 

with the reference sensor 0 observing the target with 𝜁0 = 0°, 
𝜓0 = 2° and 𝐷0 = 30 Km, sensor 1 characterized by the same 

grazing angle as the active sensor but different aspect 𝜁1 = 5° 
and, on the reverse, sensor 2 observing the target with the same 

aspect angle as the reference sensor but different grazing 𝜓2 =
7° (𝐷1 ≈ 𝐷0 ≈ 𝐷2). We consider the system observing a ship 

target of which the point model is given in Fig. 6. Ship 

dynamics consist in sinusoidal roll, pitch and yaw, namely the 

angles swept with time around the 𝑥𝑏, 𝑦𝑏  and 𝑧𝑏 axis are given 

by 

𝜃𝛿(𝑡) = 𝐴𝛿 sin(2𝜋𝑓𝛿𝑡 + 𝜙𝛿)       (18) 

𝐴𝛿 , 𝑓𝛿  and 𝜙𝛿  are the amplitude, the frequency and the initial 

phases of the sinusoidal rotations, respectively (𝛿 =
[roll, pitch, yaw]). Table I lists the values considered for the 

simulations, along with the corresponding constant components 

of the motions 𝜔𝛿 = 𝐴𝛿2𝜋𝑓𝛿 𝑐𝑜𝑠(𝜙𝛿) and the accelerations 

𝜔̇𝛿 = −𝐴𝛿(2𝜋𝑓𝛿)2 𝑠𝑖𝑛(𝜙𝛿). Considering the initial heading 

angle 𝜃0 = 45° and the aperture time 𝑇𝑎 = 0.55 s around the 

image time 𝑡0 = 0 s, the three receivers provide the set of RD 

images shown in Fig. 7. As it is apparent, because of the limited 

separation among the radar perspectives, the three images are 

very similar, and the association of a large number of scatterers 

Fig. 5. Comparison of the theoretical accuracies achievable for different 
sensor displacements. 
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may be a not so difficult task. Obviously, as discussed in 

Section IIIA, in realistic scenarios only few prominent 

scatterers approximating the field from a point source can be 

extracted and associated in the multi-angle images. Therefore, 

for the subsequent analyses, we assume only 𝐾 = 2 scatterers 

selected for the ship dynamics estimation; specifically, we 

assume that the bow and the mainmast scatterers, located in 

𝒑bow = [71.3, 0, 3.2]𝑇m and 𝒑𝑚𝑎𝑠𝑡 = [23.4, 0, 23.3]𝑇m in the 

body reference system, respectively, have been extracted from 

the three RD images. 

Monte Carlo simulations have been carried out to evaluate 

the estimation performance as a function of the integrated SNR 

(10000 independent trials for each SNR value, assumed the 

same for both the selected scatterers and the same for the three 

RD images). In a first case study, we analyze the estimation 

performance when the ship undergoes uniform rotations during 

the aperture time. To this purpose, we consider the scenario in 

which the motion is only given by the constant components of 

the sinusoidal rotations in Table I. The red ‘×’ and the blue ‘o’ 

markers in Fig. 8 represent the normalized standard deviation 

of the estimation error on the horizontal, radial and vertical 

components of the rotation vector achieved by the ML and the 

DM techniques, respectively, and the green full lines refer to 

the CRBs. As expected, the ML performance reaches the CRB 

for all the components of the rotation vector. Noticeably, the 

degradation of the performance achieved by applying the 

Doppler matching based techniques is extremely limited, as 

foreseen by the theoretical analysis in Fig. 4. 

In a second case study, we assume the target interested by 

the full sinusoidal roll, pitch and yaw, and Fig. 9 shows the 

corresponding estimation results. We can observe that in such a 

case the DM technique outperforms the ML estimator, which 

shows a degradation of the performance due to the presence of 

not negligible accelerations in the rotation motions. Such 

degradations are due to the mismatching between the model 

considered to derive the ML estimator (i.e. constant rotation 

rate) and the simulated signal. In contrast, accelerations do not 

affect the performance of the Doppler matching based 

technique, thus it provides also in this case performance 

comparable with the CRB. 

Previously we supposed the translation of the target  

Fig. 7. Range-Doppler images of the ship target for sensor 0 (a), 1 (b) and 2 (c). Bottom boxes show the bow (green boxes) and mainmast (red boxes) scatterers, 

selected for the motion estimation process. 

(c) 

TABLE I. SIMULATED SHIP DYNAMICS 

𝜹  
𝑨𝜹 

[deg] 

𝒇𝜹  

[Hz] 

𝝓𝜹  

[deg] 

𝝎𝜹 

[rad/s] 

𝝎̇𝜹 

[rad/s2] 

yaw 1 0.2152 15 0.022  0.0077 

pitch 1 0.1806 10 0.019 0.0038 

roll 5 0.0930 12 0.049 0.0059 

 
Fig. 6. Ship target model. 

(b) (a) 
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Fig. 8. Normalized standard deviation on the estimation error on the horizontal (a), radial (b) and vertical (c) components of the rotation vector in the case of 

uniform rotations – comparison for the ML, DM (without and with errors in TMC) and theoretical (CRB) performance. 

Fig. 9. Normalized standard deviation on the estimation error on the horizontal (a), radial (b) and vertical (c) components of the rotation vector in the case of 

sinusoidal rotations – comparison for the ML, DM (without and with errors in TMC) and theoretical (CRB) performance. 

(a) (b) 

(c) 

(c) 

(a) (b) 
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perfectly compensated following an ideal translational motion 

compensation (TMC) technique or autofocus procedure. In 

order to test the robustness of the proposed MS 3D rotational 

motion estimation approaches to non-ideal TMC, the following 

analyses have been performed. We simulate the outcome of the 

non-ideal TMC procedure as affected by linear and quadratic 

phase errors 𝑎1 and 𝑎2, respectively, both distributed according 

a zero mean Gaussian variable with standard deviations equal 

to the theoretical accuracy for the estimation of a constant 

amplitude polynomial phase signal embedded in AWGN, [48], 

namely 𝜎𝑎1
=

√6

𝑆𝑁𝑅∙𝑇𝑎
 and 𝜎𝑎2

=
√90

(𝑆𝑁𝑅∙𝑇𝑎)2. Black ‘+’ and pink ‘.’ 

markers in Fig. 8 and Fig. 9 show the normalized standard 

deviation of the estimation error of ML and DM techniques 

respectively as a function of the SNR when errors in the TMC 

are considered (10000 independent trials with independent 

errors for different sensors) for uniform and sinusoidal 

rotations. Looking at Fig. 8, it is apparent that for targets 

undergoing uniform rotations TMC phase errors slightly affect 

ML and DM techniques, providing the same accuracy levels as 

in the ideal case for 3 dB higher SNR. Moreover, it is apparent 

how both techniques show the same behavior with respect to 

the simulated phase errors. We would expect worse 

performance of the ML technique with respect to the DM 

approach, since in the latter case errors in the focusing 

parameter would be completely recovered in the 1D searching 

procedure prior the actual estimation stage. However, it has 

been demonstrated in Fig. 4 how even in the ML case the main 

contribution to the estimation is provided by the Doppler 

frequency diversity, as for the sub-optimal DM case. This 

explains why both techniques undergo nearly the same 

performance degradation in presence of both linear and 

quadratic TMC phase errors. For targets undergoing sinusoidal 

rotations, ML and DM techniques differentiate their behavior. 

Results in Fig. 9 confirm the trend that ML approach is worse 

since the model of the target motion is not compliant with the 

actual ship dynamic; moreover it is apparent how linear and 

quadratic TMC errors are surpassed by model errors, thus they 

don’t further degrade the already deteriorated performance. On 

the other end, DM technique experiments the same level of 

performance degradation as in the uniform target motion case 

in Fig. 8, due to its robustness to model mismatch. 

As stated in deriving the theoretical model, we assumed as 

ideally known the distances 𝒓𝑘 of the 𝑘th scatterer from the 𝑁 

sensors and therefore we used the true positions 𝒒𝑘,𝑛
0  in (10) for 

the computation of the coefficients 𝑎𝑘,𝑛
𝛾

 and 𝑏𝑘,𝑛
𝛾

. However, in 

practical situations, the accuracy whereby the slant ranges of 

the scatterers are retrieved according the procedure IIIA is 

limited by the transmitted bandwidth, i.e. by the slant range 

resolution 𝜌𝑟, as well as by the SNR: therefore in this condition 

a performance degradation is expected. To analyse such effect 

we can assume the measured slant ranges vector 𝒓𝑘 for the 𝑘th 

scatterer retrieved with an accuracy given by 
𝑐

2

1

𝐵𝐺√𝑆𝑁𝑅
 being 𝐵𝐺  

the Gabor bandwidth, [49], and, as a consequence, the matrix 𝚫 

in (12) perturbed by the errors in recovering the 𝑎𝑘,𝑛
𝐻 , 𝑎𝑘,𝑛

𝑅 , 𝑎𝑘,𝑛
𝑉  

parameters. Fig. 10 shows the normalized standard deviation of 

the estimation errors obtained with the DM estimator. Fig. 10a 

shows the achieved estimation accuracy as a function of the 

slant range resolution for the same operative conditions in Fig. 

8 and SNR = 30 dB. We can observe the reduction of the 

accuracy due the errors introduced in matrix 𝚫. However, even 

in these non-ideal conditions, very good performance can be 

achieved. Moreover, the robustness of the proposed MS system 

in estimating the rotation vector in the case of badly recovered 

scatterer slant ranges depends also on the sensor displacement. 

Indeed, the increasing of the angular diversities in both aspect 

and grazing makes the system (10) more stable (namely the 

matrix 𝑹 is characterized by a lower condition number). 

Fig. 10b shows the impact of the angular diversity on the 

estimation quality. In this case, we considered sensors 1 and 2 

providing respectively aspect and grazing diversity 𝛤, namely 

𝜁1 = 𝜁0 + 𝛤, 𝜁2 = 𝜁0, 𝜓1 = 𝜓0 and 𝜓2 = 𝜓0 + 𝛤; slant range 

resolution is set equal to 50 cm and SNR = 30 dB. As it is 

apparent, in the case of perturbed scatterers range coordinates, 

the increase of the angular diversity of the system enhances the 

quality of the estimations.  

A further source of non-ideality is represented by possibly 

inaccuracies in the knowledge of the sensors positions. To 

analyze the technique robustness to the presence of deviations 

of the actual acquisition geometry from the nominal sensors 

Fig. 10. DM based estimator performance for inaccurate knowledge of the slant range coordinates of the selected scatterers as a function of slant range 

resolution (a) and system geometry (b). SNR = 30 dB, 𝜓0 = 2°, 𝐷0 = 30 Km. 

(b) (a) 
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positions, we considered the position of each platform as a 

random variable uniformly distributed in a sphere, with center 

in the nominal position and radius 𝑑 (different platforms are 

affected by independent errors). As in Fig. 10b, sensor 1 

provides the aspect diversity and sensor 2 the grazing diversity, 

both equal to 𝛤. Fig. 11 shows the normalized standard 

deviation on the estimation errors on the three components of 

the rotation vector for different values of 𝛤 as a function of 𝑑 

(10000 independent trials for each 𝑑 value). As it is apparent, 

wider angular diversities allow the MS system to counteract the 

worsening of the estimation performance in the case of 

perturbation of the sensor positions. Nevertheless, we point out 

that even in the case of small angular separation among the 

sensors, very good performance can be obtained even in the 

case of medium/high deviation of the sensors from their 

nominal positions. Moreover, the worst case here considered of 

𝑑 = 10 m is a quite conservative assumption, since modern 

sensors can be equipped with high-precision satellite navigation 

receivers. 

V. APPLICATION TO EXPERIMENTAL MULTI-SENSOR ISAR 

DATA 

A. Experimental setup  

MS ISAR data have been acquired in an anechoic chamber 

at the SELEX Galileo (now Finmeccanica) facility in Caselle 

(Turin, Italy). The measurements are based on the use of a 

Compact Range system, which generates a planar wave front in 

the test area; therefore, the hypothesis of target in far field 

applies. The system includes a parabolic reflector, a system of 

feeds and a proper positioning of the target under test. The 

antenna is an offset parabolic reflector P/N 5755 made by 

Scientific Atlanta. The reflector is illuminated by a spherical 

wave front from a transmitting feed located into its focus; the 

signal from the target is focalized into its focus where the 

receiving feed is located. The measurements instrumentation is 

based on a HP 8510C Network Analyzer. The system transmits 

a series of narrowband pulses in the Ku-band (𝜆 = 1.82 cm), 

with the carrier frequency increased pulse by pulse by a fixed 

frequency step equal to 3.75 MHz to form a burst (stepped-

frequency waveform). The overall spanned bandwidth is 3 

GHz, resulting in 𝜌𝑟 = 5 cm, and the angular step of the 

turntable burst to burst is 𝛿𝜃 = 0.07°. A second receiving feed 

has been added 60 cm apart from the transmitting one, thus 

resulting in a bistatic channel having aspect diversity 𝛥𝜁 = 4.3° 
with respect to the monostatic link. 

Two kinds of targets have been analyzed. The first one is a 

grid of metallic cylinders, emulating the case of isolated point 

scatterers; in a second experiment, an aircraft model (ATR 42) 

has been considered as representative of a complex target since 

unfortunately no model of ship targets was available. Optical 

pictures of the used targets are shown in Fig. 12. 

B. Distributed ISAR images 

Fig. 13 shows the ISAR images of the aircraft obtained by 

applying the focusing technique presented in [50]; specifically, 

Fig. 13a is the image resulting when an overall illumination 

angle equal to Θ = 4.3° is selected from the monostatic 

channel, whereas Fig. 13b is the DISAR image obtained by 

selecting an illumination angle equal to 2.15° from the 

monostatic and 2.15° from the bistatic channel, so that a 

distributed overall aspect angle equal to 4.3° is again obtained. 

We can observe the very good similarity between the two 

images, confirmed by the comparison of the cross-range cuts 

around the scatterer corresponding to the tail of the aircraft (Fig. 

13c). This confirms the validity of the hypotheses of coherency 

of the scatterers echoes and of stability of the positions of the 

scattering centers in the case of limited angular separation 

(bistatic angle of the order of 5° so that the pseudo-monostatic 

assumption applies). Moreover, we point out that the coherency 

of the scatterer echoes among different images is not strictly 

required for the proposed estimation techniques. 

C. Motion estimation 

To apply the MS motion estimation techniques to these 

experimental data some preliminary considerations are in order. 

The proposed estimation techniques need a twofold diversity, 

in both aspect and grazing illumination angles. Actually, this 

experiment emulates a multi-aspect formation without grazing 

diversity. Consequently, some assumptions are mandatory. (i) 

We assume a flat target geometry, so that for each scatterer we 

have 𝒑𝑘 = [𝑥𝑘 , 𝑦𝑘 , 0]𝑇; therefore, since 𝜓𝑛 = 0° for both the 

monostatic channel (𝑛 = 0) and the bistatic channel (𝑛 = 1), 

the vertical coordinate of every scatterer is null (𝑣𝑘,𝑛 = 0, 𝑘 =

Fig. 11. Normalized standard deviation on the estimation error on the horizontal (a), radial (b) and vertical (c) components of the rotation vector obtained with 

the DM based estimator for deviation of the system geometry from the nominal displacement. SNR = 30 dB, 𝜓0 = 2°, 𝐷0 = 30 Km. 

(c) (b) (a) 
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1, . . , 𝐾); as a consequence, 𝒒𝑘,0 and 𝒒𝑘,1 can be recovered 

despite the lack of diversity on the grazing angle domain. (ii) 

Moreover, we point out that the rotational motion produced by 

the turntable is a yaw motion, and we assume as known such 

information. In these particular conditions, the ML and Doppler 

matching based techniques properly modified are able to work. 

Let 𝛿𝜃 be the objective of the estimation. In order to built 

𝐿𝐹(𝛿𝜃) each 𝑘th selected range bin concerning the 𝑛th 

receiving channel is multiplied by the exponential terms given 

by 𝑒𝑥𝑝 {𝑗
2𝜋

𝜆
(ℎ𝑘,0 + ℎ𝑘,𝑛)𝑚𝛿𝜃̆} and 𝑒𝑥𝑝 {𝑗

2𝜋

𝜆
(𝑟𝑘,0 +

𝑟𝑘,𝑛)𝑚2𝛿𝜃̆2}, corresponding to the Doppler shift and azimuth 

dechirping in Fig. 2, being 𝑚 = [−
𝑀

2
, … , +

𝑀

2
− 1] the burst 

index vector, 𝑀 the number of considered bursts and 𝛿𝜃̆ the 

angular step under test. The value of 𝛿𝜃̆ which maximizes 

𝐿𝐹(𝛿𝜃) is assumed as the ML estimation of the angular motion. 

Regarding the Doppler matching based technique, we need 

to resolve the reduction of the linear system (12) given by 

𝚫ℎ𝛿𝜃 = 𝒇𝜃          (19) 

being 𝚫ℎ the column vector of matrix 𝚫 containing the 𝑎𝑘,𝑛
𝐻  

entries and 𝒇𝜃 the vector containing the angular frequency of 

the selected scatterers. 

A further consideration concerns the impact of target size 

on the performance analysis. For the grid of metallic cylinders, 

the farthest cylinder from the fulcrum has distance equal to 1.45 

m, whereas the aircraft model is about [1.5 × 1] m2. Due to the 

very limited size of the targets, a poor accuracy may be 

expected, since, as obvious, scatterers far away from the image 

center should be used to achieve good performance for rotation 

motion estimation. To counteract the problem of accuracy 

worsening caused by the limited target size we emulated a wider 

angular separation between the two receiving channels, 

considering different heading angles for the two (monostatic 

and bistatic) acquisitions. In such a way, the emulated aspect 

diversity between the two channels is 𝛥𝜁̌ = 4.3° + 𝛥𝜃0, being 

𝛥𝜃0 the difference between the initial heading angles. 

In a first case study, we considered the grid of metallic 

cylinders and initial heading angles 𝜃0 = 0°  and 𝜃0 = 15°. 
𝑀 = 38 bursts were used for each channel to form the image, 

corresponding to a cross-range resolution 𝜌𝑐𝑟 = 20 cm. Fig. 14 

shows the resulting RD images. Despite the different 

illumination angles, the bright spots in the two images can be 

easily associated. The range bins in the monostatic and bistatic 

channels containing the bottom-right scatterer (white ‘×’ in  

Fig. 14a,b) are selected to perform the estimation process, and 

the measured slant range values are exploited to recover the 

horizontal coordinates of the scatterer. The angular step-

dependent likelihood function is built, Fig. 14c, and the tested 

𝛿𝜃 corresponding to its maximum is assumed as 𝛿𝜃̂𝑀𝐿, whereas 

the estimated 𝛿𝜃̂𝐷𝑀 is directly achieved from (19) starting from 

the measured 𝒇𝜃. The results are reported in Table II and we 

(a) (b) 
Fig. 12. Experimental datasets – a) framework with grid of metallic cylinders and b) ATR42 aircraft model (1:20 scale). 

Fig. 13. ATR42 aircraft model images – (a) Conventional monostatic ISAR, (b) DISAR, (c) cross-range cut comparison. 

(a) (b) (c) 
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can observe that both the techniques returned estimations close 

to the theoretical value. 

In a second case study, we considered the aircraft model. 

For each channel, 𝑀 = 50 bursts were used, resulting in 𝜌𝑐𝑟 =
15 cm, and the obtained RD images are shown in Fig. 15. Due 

to the smaller sizes of this target than the grid of metallic 

cylinders, a wider angular aperture than the previous case has 

been considered: heading angles were set to 𝜃0 = 15°  and 𝜃0 =
−9° for the monostatic and bistatic channels, respectively, 

therefore resulting in 𝛥𝜁̌ = 28.3°. Such a value of angular 

separation is well beyond the operative bounds of the MS radar 

system we are considering in this work. However, even in such 

conditions we can identify more than one scatterer persisting in 

the two images, e.g. the cluster of four scatterers corresponding 

to the wings (the spots in the central region around 𝑓𝜃 ≈ ±0.05) 

and the nose of the aircraft. Because of the wings scatterers are 

too close to the target fulcrum, only the nose scatterer has been 

considered for the estimation (the selected points on the two RD 

images are highlighted with white ‘×’ in Fig. 15). As for the 

previous case study, starting from the measured range-Doppler 

coordinates of the selected scatterer we are able to recover the 

estimated 𝛿𝜃̂𝐷𝑀, and by building 𝐿𝐹 (Fig. 15c) we can get its 

maximum as 𝛿𝜃̂𝑀𝐿. Table II collects the achieved results and, 

also for this case concerning a more complex target than the 

grid of metallic cylinders, both the techniques reached 

acceptable estimations.  

We point out that the 𝐿𝐹 curve concerning the ATR42 

model is larger than the curve pertaining to the grid of metallic 

cylinders, so that a greater standard deviation of the estimation 

error can be expected. Such a behavior follows from the 

selection of a scatterer closer to the target fulcrum, resulting in 

small variation of its position in different IPP. Scatterers 

sufficiently far from the target fulcrum should be selected to 

perform high quality estimations. Nevertheless, such a 

Fig. 14. Grid of metallic cylinders - Range Doppler images of (a) monostatic channel with 𝜃0 = 0° , (b) bistatic channel with 𝜃0 = 15°, and (c) likelihood 
function when the right bottom scatterer is selected. 

(a) (b) (c) 

(a) (b) (c) 
Fig. 15. ATR42 model - Range Doppler images of (a) monostatic channel with 𝜃0 = 15° , (b) bistatic channel with 𝜃0 = −9°, and (c) likelihood function when 
the nose scatterer is selected. 

TABLE II. RESULTS FOR THE LIVE MULTI-SENSOR ISAR DATA 

Target 
Range-Doppler 

coordinates, 
monostatic channel 

Range-Doppler 
coordinates, bistatic 

channel 

Recovered 
horizontal positions, 

mono/bi-static 
channel 

𝜹𝜽̂𝑴𝑳 

(normalized 
estimation error) 

𝜹𝜽̂𝑫𝑴 

(normalized 
estimation error) 

cylinders -1.023 m, 0.139 -1.283 m, 0.093 0.960 m, 0.568 m 
0.0714° 

(2.1%) 

0.0707° 

(1.1%) 

ATR42 -0.758 m, -0.028 -0.769 m, 0.018 -0.208 m, 0.163 m 
0.0693° 

(1.0%) 

0.0644° 

(8.0%) 
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condition is generally fulfilled in real cases, due to the greater 

size of real targets than the ones employed in the anechoic 

chamber and since the constraint of isolated scatterers requires 

the selection of scatterers on the edge of the targets. Shown 

results against experimental data further validate the 

effectiveness of the proposed approaches and support their 

practical application. 

VI. CONCLUSIONS 

The paper puts forward target motion estimation techniques 

for rolling, pitching and yawing ship by means of a multi-

platform radar imaging system. The spatial diversity offered by 

the distributed system is exploited to retrieve the full 3D  

rotation rate vector (i.e. horizontal, vertical and radial 

components) thus enabling the multi-platform system to focus 

and scale ISAR images with resolution improved with respect 

to the single platform case and, as a further advantage, 

providing knowledge of the orientation of the corresponding 

image projection planes. 

A Maximum Likelihood estimator has been derived, which 

exploits both the linear and quadratic terms of the phase of 

selected scatterers to achieve the best estimation accuracy. 

However, it requires a heavy computational load since it has to 

perform a 3D searching procedure over the rotation vector 

components, and, furthermore, it can show several 

shortcomings arising when the acquired data do not match the 

signal model. Therefore, a sub-optimal procedure has been 

devised and analytically described. This Doppler-matching 

based technique exploits only the linear term of the signal phase 

and it requires only parallel linear searching procedures, thus 

sensibly reducing the computational load. Moreover, it can 

achieve high performance, in line with the ML estimator that 

can be even outperformed if mismatching between the phase 

model and the received signal arise. 

The performance of the techniques have been first analyzed 

at the theoretical level by means of the study of the CRB, and 

subsequently by means of simulations under different non-ideal 

conditions, showing the effectiveness of the techniques in 

estimating the ship motion. 

Finally, the techniques have been tested against experimental 

multi-sensor datasets. As well as the case of a target composed 

by isolated point-like scatterers, the case of a complex target (an 

aircraft model was at our disposal) has been considered; the 

analysis proved that even for complex targets isolated scatterers 

can be associated in different projection planes, thus proving 

the feasibility of the proposed approaches. 

APPENDIX 

A. Analytical derivation of the Maximum Likelihood 

estimator 

For the joint statistic in (4), the log-likelihood function is 

given by 

𝑙𝑛 𝑓(𝒈) = −𝐾𝑁𝑀(𝑙𝑛 𝜋 + 𝑙𝑛 𝜎𝜂
2) −

1

𝜎𝜂
2 (𝒈 − 𝑺𝜩)†(𝒈 − 𝑺𝜩)   

                        (20) 

Accounting for the hypothesis concerning the knowledge of 

the range-Doppler position of the target scattering centers, the 

unknown quantities in (20) are 𝜎𝜂
2, 𝜩, 𝝎. The ML estimator can 

be obtained as 

𝝎̂𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥𝝎 {𝑎𝑟𝑔𝑚𝑎𝑥𝜎𝜂
2,𝜩[𝑙𝑛 𝑓(𝒈)]}    (21) 

Let us consider first the maximization with respect to 𝜎𝜂
2: 

𝜕 𝑙𝑛 𝑓(𝒈)

𝜕𝜎𝜂
2 = −

𝐾𝑁𝑀

𝜎𝜂
2 +

1

𝜎𝜂
4 (𝒈 − 𝑺𝜩)†(𝒈 − 𝑺𝜩) = 0

 
⇒ 𝜎𝜂

2 =
(𝒈−𝑺𝜩)†(𝒈−𝑺𝜩)

𝐾𝑁𝑀
                 (22) 

By substituting in (21) we obtain 

𝝎̂𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥𝝎 {𝑎𝑟𝑔𝑚𝑎𝑥𝜩 [−𝐾𝑁𝑀(ln 𝜋 + 1) −

𝐾𝑁𝑀 ln (
(𝒈−𝑺𝜩)†(𝒈−𝑺𝜩)

𝐾𝑁𝑀
)]}               (23) 

Let us consider the maximization with respect to 𝜩 

𝜕[−𝐾𝑁𝑀(ln 𝜋+1)−𝐾𝑁𝑀 ln(
(𝒈−𝑺𝜩)†(𝒈−𝑺𝜩)

𝐾𝑁𝑀
)]

𝜕𝜩
= 2𝑺†𝒈 − 2𝑺†𝑺 =

0
 

⇒ 𝜩 = (𝑺†𝑺)−1𝑺†𝒈                 (24) 

By substituting in (23) we obtain 

𝝎̂𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥𝝎 {−𝐾𝑁𝑀(ln 𝜋 + 1) − 𝐾𝑁𝑀 ln [
1

𝐾𝑁𝑀
|(𝑰 −

𝑺(𝑺†𝑺)−1𝑺†)𝒈|
2

]} = 𝑎𝑟𝑔𝑚𝑖𝑛𝝎 {|(𝑰 − 𝑺(𝑺†𝑺)−1𝑺†)𝒈|
2

} (25) 

being 𝑰 the [𝐾𝑁𝑀 × 𝐾𝑁𝑀] identity matrix. Based on (25), the 

ML estimate of the rotation rate vector is the 𝝎 value which 

minimizes the power of the projection of the received signal 

into the subspace orthogonal to the useful signal. This 

corresponds to maximize the power of the projection of the 

received signal into the useful signal subspace, since |(𝑰 −

𝑺(𝑺†𝑺)−1𝑺†)𝒈|
2

= |(𝑰 − 𝑺𝑳𝑳†𝑺†)𝒈|
2

= 𝒈†𝒈 −

𝒈†𝑺(𝑺†𝑺)−1𝑺†𝒈, where 𝑳 is the matrix defined as 𝑳𝑳† =
(𝑺†𝑺)−1. By substituting in (25), after simple manipulations we 

obtain the ML estimator as in (11). 

B. Analytical derivation of the Cramer Rao Bound 

In this appendix, we derive the CRB for the estimations of 

the three components of the rotation vector. Hereafter, 𝛾, 𝛿 =
𝐻, 𝑅, 𝑉; 𝑘, 𝑢 = 1, … , 𝐾; 𝑛, 𝑙 = 0, … , 𝑁 − 1. 𝑅𝑒{∙} and 𝐼𝑚{∙} 

denote the real and imaginary part operators, respectively. 

The CRB can be evaluated via the Fisher information matrix 

𝑭, defined as in [51] 

[𝑭]𝑖,𝑗 = 𝐸 {
𝜕 𝑙𝑛 𝑓(𝒈)

𝜕𝑥𝑖

𝜕 𝑙𝑛 𝑓(𝒈)

𝜕𝑥𝑗
}        (26) 

being 𝐸{∙} the mean operator and (𝑥𝑖 , 𝑥𝑗) any pair of the 2𝐾𝑁 +

4 unknown parameters, i.e., the noise power 𝜎𝜂
2, the 𝐾𝑁 

modulus and the 𝐾𝑁 phases of the reflectivity of the 𝐾 



 

 

16 

scatterers and the horizontal, radial and vertical components of 

the rotation vector 𝝎. The partial derivatives needed to evaluate 

(26) are 

𝜕 𝑙𝑛 𝑓(𝒈)

𝜕𝜎𝜂
2 = −

𝐾𝑁𝑀

𝜎𝜂
2 +

1

𝜎𝜂
22 ∑ ∑ ∑ |𝑔𝑘,𝑛(𝑡𝑚) −𝑀 2⁄ −1

𝑚=−𝑀 2⁄
𝐾
𝑘=1

𝑁−1
𝑛=0

𝐴𝑘,𝑛𝑒−𝑗[𝜑𝑘,𝑛+𝜙𝑘,𝑛(𝑡𝑚)]|
2
  

𝜕 𝑙𝑛 𝑓(𝒈)

𝜕𝐴𝑘,𝑛
=

2

𝜎𝜂
2 ∑ 𝑅𝑒{𝑔𝑘,𝑛(𝑡𝑚)𝑒−𝑗[𝜑𝑘,𝑛+𝜙𝑘,𝑛(𝑡𝑚)] − 𝐴𝑘,𝑛}𝑀 2⁄ −1

𝑚=−𝑀 2⁄   

𝜕 𝑙𝑛 𝑓(𝒈)

𝜕𝜑𝑘,𝑛
=

2

𝜎𝜂
2 ∑ 𝐴𝑘,𝑛𝐼𝑚{𝑔𝑘,𝑛(𝑡𝑚)𝑒−𝑗[𝜑𝑘,𝑛+𝜙𝑘,𝑛(𝑡𝑚)]}𝑀 2⁄ −1

𝑚=−𝑀 2⁄   

𝜕 𝑙𝑛 𝑓(𝒈)

𝜕𝜔𝛾
= −

4𝜋

𝜆𝜎𝜂
2 ∑ ∑ ∑ 𝐴𝑘,𝑛(𝑎𝑘,𝑛

𝛾
𝑡𝑚 +𝑀 2⁄ −1

𝑚=−𝑀 2⁄
𝐾
𝑘=1

𝑁−1
𝑛=0

𝑏̇𝑘,𝑛
𝛾

𝑡𝑚
2 )𝐼𝑚{𝑔𝑘,𝑛(𝑡𝑚)𝑒−𝑗[𝜑𝑘,𝑛+𝜙𝑘,𝑛(𝑡𝑚)]}  

(27) 

𝑭 can be arranged in the following sixteen blocks: 

𝑭1,1 = 𝐸 {
𝜕(∙)

𝜕𝜔𝛾

𝜕(∙)

𝜕𝜔𝛿
} =

2𝜋2𝑀𝑇𝑎
2

𝜆2𝜎𝜂
2 ∑ ∑ (

𝑎𝑘,𝑛
𝛾

𝑎𝑘,𝑛
𝛿

3
+𝐾

𝑘=1
𝑁−1
𝑛=0

𝑏̇𝑘,𝑛
𝛾

𝑏̇𝑘,𝑛
𝛿

20
𝑇𝑎

2),   [3 × 3]  

𝑭2,2 = 𝐸 {
𝜕(∙)

𝜕𝜑𝑘,𝑛

𝜕(∙)

𝜕𝜑𝑢,𝑙
} =

{

2𝑀

𝜎𝜂
2 𝐴𝑘,𝑛

2  , (𝑘, 𝑛) = (𝑢, 𝑙)

0              , (𝑘, 𝑛) ≠ (𝑢, 𝑙)

,   [𝐾𝑁 × 𝐾𝑁]  

𝑭3,3 = 𝐸 {
𝜕(∙)

𝜕𝐴𝑘,𝑛

𝜕(∙)

𝜕𝐴𝑢,𝑙
} =

{

2𝑀

𝜎𝜂
2  , (𝑘, 𝑛) = (𝑢, 𝑙)

0     , (𝑘, 𝑛) ≠ (𝑢, 𝑙)

,   [𝐾𝑁 × 𝐾𝑁]  

𝑭4,4 = 𝐸 {|
𝜕(∙)

𝜕𝜎𝜂
2 

|
2

} =
𝐾𝑁𝑀

𝜎𝜂
22 ,   [1 × 1]  

𝑭1,2 = 𝑭𝟐,1
𝑇 = 𝐸 {

𝜕(∙)

𝜕𝜔𝛾

𝜕(∙)

𝜕𝜑𝑘,𝑛
} = −

𝜋

𝜆𝜎𝜂
2

𝑀𝑇𝑎
2

3
 𝑏̇𝑘,𝑛

𝛾
,   [3 ×

𝐾𝑁]  

𝑭1,3 = 𝑭3,1
𝑇 = 𝐸 {

𝜕(∙)

𝜕𝜔𝛾

𝜕(∙)

𝜕𝐴𝑘,𝑛
} = 0,   [3 × 𝐾𝑁]  

𝑭1,4 = 𝑭4,1
𝑇 = 𝐸 {

𝜕(∙)

𝜕𝜔𝛾

𝜕(∙)

𝜕𝜎𝜂
2} = 0,   [3 × 1]  

𝑭2,3 = 𝑭3,2
𝑇 = 𝐸 {

𝜕(∙)

𝜕𝜑𝑘,𝑛

𝜕(∙)

𝜕𝐴𝑢,𝑙
} = 0,   [𝐾𝑁 × 𝐾𝑁]  

(28) 

𝑭2,4 = 𝑭4,2
𝑇 = 𝐸 {

𝜕(∙)

𝜕𝜑𝑘,𝑛

𝜕(∙)

𝜕𝜎𝜂
2} = 0,   [𝐾𝑁 × 1]  

𝑭3,4 = 𝑭4,3
𝑇 = 𝐸 {

𝜕(∙)

𝜕𝐴𝑘,𝑛

𝜕(∙)

𝜕𝜎𝜂
2} = 0,   [𝐾𝑁 × 1]   

The CRBs for 𝜔𝐻, 𝜔𝑅 and 𝜔𝑉 are derived by inverting 𝑭 

and reading its elements (1,1), (2,2) and (3,3). By considering 

the Frobenius relations for partitioned matrices and carrying out 

the calculus, we found that the bounds correspond to the 

diagonal elements of a [3 × 3] matrix given by (𝑭1,1 −

𝑭1,2𝑭2,2
−1𝑭1,2

𝑇 )
−1

; carrying out the calculus, we found the 

diagonal elements (14). 
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