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Abstract—Distributed ISAR exploits the data acquired by
multiple radar sensors carried by multiple platforms working in
formation to increase the cross range resolution with respect to the
value achievable by single platform systems. In this frame, the
paper addresses the problem of the estimation of the ship
dynamics, i.e. yaw, pitch and roll rotation motions, exploiting the
signals collected by such multi-platform radar imaging systems
providing angular diversity in order to enable the focusing of the
distributed ISAR images. Specifically, in this work a multi-angle
formation of sensors is considered and the corresponding
Maximum Likelihood estimator and Cramer Rao Bound are
derived. Then, a new Doppler matching based technique is
proposed as a sub-optimal approach exploiting only the linear
component of the phase of the received signals. The performance
analysis proves the effectiveness of the proposed techniques to
separately estimate the horizontal, radial and vertical components
of the rotation vector, therefore making possible both the focusing
and accurate cross-range scaling of the distributed ISAR products
(as well as of the low resolution ISAR images regarding the
different sensors) and, as a further advantage, providing
knowledge of the orientation of the corresponding image
projection planes. The analysis of experimental multi-sensor
datasets confirms the feasibility of the proposed techniques.

Index Terms— radar imaging, Inverse
multiplatform, multistatic, motion estimation.
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I. INTRODUCTION

HE monitoring and protection of the maritime environment

is a challenging issue since a great variety of human

activities usually takes place in the maritime scenario. The
traditional legal civil/military maritime traffic/activities must
be added to the irregular traffic, which can be responsible for
illegal actions such as smuggling, illegal fishing, illegal
dumping of pollutants and irregular migration. At the same
time, the typical scenario for search and rescue operations is the
maritime scenario. In the context outlined above the analysis of
features/signatures of ship targets is of fundamental importance
and radar imagery can be used for this purpose. As known, all-
weather all-day radar images of moving targets can be obtained
by exploiting the Inverse Synthetic Aperture Radar (ISAR)
principle: wide bandwidth waveforms are transmitted to
achieve fine range resolution while cross-range resolution is
obtained on the basis of the synthetic aperture provided by the

motion of the target itself, [1]-[2]. Thus, ISAR products can
enable the classification of non-cooperative targets (i.e. ships
not equipped with the Automatic Identification System, AIS)
and can support search and rescue operations for both
cooperative and non-cooperative targets. Obviously, the
quality of these products strictly depends on the particular target
motion conditions. Specifically ISAR assumes the sensor
nearly stationary and the ship to be imaged rotating with respect
to its center, being the rotation described by the effective
rotation rate vector, [1]-[2]. Different kinds of images can be
achieved depending on the different orientations of such vector,
namely the 3D structure of the target is projected on a 2D Image
Projection Plane (IPP) depending on the specific target rotation
motion and radar acquisition geometry, [1]-[2]. Moreover, the
cross range resolution is always determined by the aperture of
the angle of view, and since the complex motion can strongly
limit the usable Coherent Processing Interval (CPI), in many
situations a poor cross-range resolution is obtained. These
circumstances can have negative impact on the quality of the
achievable ISAR images and therefore on the performance of
NCTR (Non Cooperative Target Recognition) procedures, [3]-
[4], usually fed with ISAR images, [5]-[9]. The use of multiple
sensors/channels (MS) systems observing the same target and
the joint exploitation of the acquired data seem to be a viable
solution to overcome the above limitations and to improve the
performance with respect to conventional single sensor/channel
(SS) ISAR systems. Indeed, in the recent literature the
exploitation of MS systems for target imaging purposes has
received considerable attention: in particular it has been
considered mainly for i) 3D target reconstruction and ii) target
imaging with enhanced quality.

With specific reference to 3D target reconstruction,
Interferometric ISAR (InISAR) relies on the use of multiple
antennas properly located on the same platform and connected
to separate channels. The exploitation of the interferometric
phases measured at the available baselines allows the estimate
of the height of the imaged target scatterers with respect to the
IPP thus enabling 3D reconstruction. Different interferometric
approaches have been proposed from first contributions, [10]-
[14], to more recent ones as [15] using MIMO techniques
jointly with sparse signal recovery and [16] using two
orthogonal baselines combined with a CLEAN approach.
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With the aim to provide ISAR products with enhanced
quality with respect to the conventional SS case, the distributed
ISAR (DISAR) concept was introduced in [17]-[19]. It consists
in the exploitation of the data acquired by multiple radar sensors
carried by multiple platforms working in formation to increase
the cross range resolution with respect to the value achievable
by single platform systems. As additional advantages of the
distributed system, it is worth to mention also its robustness to
failures and systems reconfiguration capability. Similarly to
[17]-[19], in [20] multiple observations are coherently
combined to reduce the CPI required to achieve a given cross-
range resolution. Spatial diversity has been considered also in
[21] for improving the 2D (range&cross-range) resolution cell.
Obviously, in both cases (increase of resolution/reduction of
required CPI) the focusing of these DISAR images requires the
knowledge of the target rotation motion typically a priori
unknown. In this frame, the focus of this paper is on the
exploitation of the signals acquired by such multiple sensors for
ship 3D rotation motion estimation: this enables the enhanced
imaging, at the same time overcoming limitations usually
experienced by SS estimation techniques.

The ship complex motion, resulting from the interaction of
the object with the sea surface, is typically described as the
superimposition of a translation and a rotation around vertical,
lateral and longitudinal axes, defined as the yaw, pitch and roll
motions, respectively, [22]. Many techniques can be found in
literature exploiting SS data to perform the estimation of the
target rotational motion. Usually, SS techniques aim at
estimating only the factor needed for cross-range scaling (i.e.
the effective rotation rate) and can be roughly categorized in
three kinds. The first group comprises the image quality-based
methods that estimate the scale parameter depending on target
rotation as that value providing the best image quality [23]-[25].
The second group exploits series of range-Doppler (RD) images
achieved by dividing the whole observation time in sub-
apertures, [26]-[30]. Finally, the third group obtains the motion
information by extracting the high-order terms of the phase of
some prominent point scatterers (PPS) [31]-[34]. These
techniques usually assume that the rotational motion of the
target is confined to a 2D plane during the coherent processing
interval (CPI), and they can experience significant losses when
this assumption is not verified and the target develops 3D
motion, [35]. Moreover, even in presence of 2D motion, the
achievement of good accuracy can impose severe constraints on
target size, signal to background ratio and used CPI, [32]. To
cope with the above-mentioned problems/limitations,
knowledge based approach has been proposed in [36]. Such a
technique works for ship targets exploiting some a priori
information regarding the ship silhouette; however, despite the
restriction to a specific kind of target, the estimation of the
horizontal component is subordinate to observe the target with
particular acquisition geometries. It makes sense that the
exploitation of data acquired by multiple sensors providing
spatial diversity could help in extracting the information
concerning the 3D motion needed for DISAR images formation
(as explained above).

Few contributions can be found in literature concerning the
use of MS ISAR data acquired from geometrically distributed
systems for autofocus (translation motion compensation) and
rotation motion estimation. Particularly an entropy based
multistatic autofocus technique has been proposed in [37]
while, with specific regard to rotation motion estimation, in
[38]-[40] formations of sensors with different aspect angles
have been considered for the estimation of motion of targets
undergoing rotations mainly around a vertical axis. In this
paper, we consider a formation of sensors with proper aspect
and grazing diversity and we exploit the acquired data to
provide the estimates of the three components of the rotation
vector, therefore enabling the focusing and cross-range scaling
ofthe DISAR images and, as a further advantage, the estimation
of the IPP orientation. To this purpose, two different MS
techniques are proposed using both model based and model free
approaches. Exploiting the phase history of selected dominant
scatterers, a Maximum Likelihood (ML) technique is first
derived for the estimation of the full rotation vector (some
preliminary results along this line were previously reported in
[41]). Then a sub-optimum technique is derived which does not
require any specific assumption on the phase model and
exploits the Doppler positioning of the selected scatterers
(Doppler-matching DM based technique). The study of the
theoretical performance by means of the evaluation of the
Cramer Rao Bound (CRB) and the simulated performance
analysis are shown, demonstrating the capability of the
proposed approach at providing high accuracy in the estimation
of the rotation vector components and highlighting the
robustness of the Doppler matching based technique. Finally, in
order to validate the proposed techniques, results obtained by
applying them to experimental MS ISAR data acquired in
anechoic chamber are also shown.

The paper is organized as follows: in Section II the MS
system geometry and the echo model are introduced; in Section
III the proposed MS estimation techniques are presented, and
their performance are analyzed in Section IV under ideal and
non-ideal conditions; Section V shows the results achieved
against experimental MS data sets, and Section VI concludes
the paper. Analytical details are reported in the appendices.

II. MULTI-SENSOR ISAR GEOMETRY AND ECHO MODEL

The considered scenario consists in a set of N > 3 platforms
carrying a sensor, characterized by either transmitting or
receiving, or both transmitting and receiving capabilities,
observing a moving ship. Hereinafter, we consider the special
case of a single platform equipped with an active sensor (sensor
0), while the remaining N — 1 carry receiving only devices. To
be noticed that the concept could be easily generalized to
combinations of active and passive sensors. In the inertial
reference system (0, x,y, z) north-west-up with origin in the
position the target fulcrum occupies at aperture centre, the nth
sensor belonging to the formation is characterized by its
distance D,, from the origin, its aspect angle {,, measured
clockwise starting from y-axis, and its grazing angle v,,, see
Fig. 1.
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Fig. 1. Multi-sensor acquisition geometry.

The target is modeled as a rigid body in the far field with K
dominant scatterers, with complex reflectivity constant during
the time aperture T,. As usual in ISAR literature, the target
motion is decomposed as the translation of a reference point and
the rotation of the body around that point. As previously stated,
we assume any relative translational motion between the
platforms and the target already compensated, i.e. the platforms
and the target fulcrum can be considered stationary. The focus
is therefore on the target rotation, which is usually described by
the yaw, pitch and roll motions defined as the rotation around
the wvertical, lateral and longitudinal axis of the target,
respectively, described by the rotation vector @gpy =

[Wrou In the body reference system
(0,x?,y?,zP), defined as integral with the target and with
origin in the target fulcrum, the kth scatterer is located in p;, =
[x2 yb 2zP]" and its rotation is described by the rotation
vector wgpy. For sake of simplicity, we assume that the change
between the body reference system and (O, x, y, z) is given by
only a clockwise rotation of an angle 6, around the z-axis,
being 6, the initial heading angle of the target, so that z;,, = z.

wpitch a)yaw]T.

The echo model is here given in the range compressed (fast
time) & slow time domain, with reference to K prominent target
scatterers observed by the N sensors and extracted by following
the procedure detailed in Section III.A. The signal received by
sensorn (n = 0,..., N — 1) from the kth scatterer at time t is
written as

gk,n(t) = Szk,n ' Sk,n(t) + nk,n(t) (1)
where &, = Ay -e/Pkn is the unknown but deterministic
complex reflectivity as viewed by the nth sensor, 1y, is the
zero-mean Gaussian distributed complex background
contribution with power o7 and sy ,(t) is the normalized
scatterer echo written as

2
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where 73, ,(t) is the distance of the kth scatterer of the target
from the nth sensor in the formation and A the wavelength.

Above equations imply that range migration related to
rotation motion can be neglected: this assumption can be

regarded as reasonable due to the short CPI here considered to
focus the N low resolution images. In any case, if range
migration occurs, an iterative procedure could be followed to
cope with it, [42].

Considering that in the time aperture T, the radars collect M

. . M M .
slow time samples at instants ¢, (m =T 1) with

sampling frequency equal to the Pulse Repetition Frequency
(PRF), the joint probability density function associated to each
sample of the data collected by the nth sensor for the kth
scatterer is
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Therefore, under the hypothesis of independent noise samples
Nk (tm), the joint probability density function of the collected
data pertaining to the K scatterers can be written as
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g% is the KNM x 1 data vector

gg.N—l]T

where g = [g] g7
collecting the acquired signals with g, = [ggo

T
and Iin = [Grn(t-ms2) Ikn(tue-1)] . E=
[E1 .. Ek]Tis the KN x 1 complex amplitude vector with
Er = [Eko ¢kn—-1] and S = diag (S, Sx) is the

KNM x KN diagonal block phase matrix, where the kth NM X
N block is a diagonal block matrix S, = diag(Sk1 Sk.N)
and sy, = [eitkn(t-m/2) eJPkn(tm/2-1)]T is the M x 1
block; T is the hermitian operator.

To completely specify the model here presented, it is useful
to develop the expression of the distance 7y, (t) as a function
of the target rotation. To the purpose, the local (0, H,, Ry, },)
reference system [36], representing the point of view of each
platform belonging to the formation as sketched in Fig. 1, is
introduced. The 7;,-axis (#,, unit vector) is the nth Line Of Sight
(LOS) direction, the h,-axis is given by the unit vector h,,
normal to #, and belonging the (x,y) plane and the v, -axis is
given by the unit vector ¥,, normal to the (R,, H,,) plane. We
point out that in the following analysis the (O, Hy, Ry, Vy)
reference system pertaining to the active sensor in the formation
will act as the global reference system: indeed the estimation
procedures devised in the present paper will allow retrieving the
component of the target rotation motion vector w =
[wy wg wy]T = W, as defined in this global reference system.

At aperture centre t, = 0 the transformation from body
reference system to (O, H,, R, V,) for sensor n can be
expressed by means of the matrixes My, and M, , which
describe respectively an anticlockwise rotation of the absolute
reference system around the x-axis with the grazing angle i,
and a clockwise rotation around the z-axis with the aspect angle

n



qlg,n = [hg,n r]?,n Ul(c),n]T = MlpnM(nMepk (5)
being My the rotation matrix accounting for the initial heading
angle of the target. Because of the 3D rotation motion for a
rolling, pitching, and yawing target, we can assume that the
scatterer in q%n rotates around the radial, horizontal and
vertical axis (as viewed by the nth sensor). Let 9 (t) be the
angle, changing with time, swept around the y,-axis (y =
H,R,V); therefore, we have

hk,n (t)
Tkn (t) =
1]k,n (t)

CopCop  (SopCop + CopSonSap) (SopSaep — CopSapCon)
—519‘1/16‘19}721 (Cﬁ&tcﬁg — 519‘1/1519351917;) (Cﬁ{}Sﬁg + 51917}51917216'192) :
Sop —CopSon ConCon
Tin (6)

being S, = sin(x(t)) and C, = cos(x(t)).

The expression of the distance 73, ,(t) in (2) can be found
from (6), but further mathematics is needed to properly explicit
its dependence on the target rotation motion w. A first step is to
expand Con and Sop in (6) in Taylor series at second order

around t,, in the hypothesis of uniform rotations, i.e. 9y (t) =
T .
wy t; the vector w,, = [a)Hn Wg,, an] can be achieved by

applying the same rotation matrices in (5) to the vector wgzpy.
The expression of the distance 73 ,,(t) becomes
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Writing the components of w,, as a function of the rotation
motion as viewed in the global reference system (0, Hy, Ry, Vy)
according to the transformation matrix U, o=
MII,OM%ME;MJ,Z, from (2) and (7) it is possible to explicit the
dependence of the phase of the signal backscattered from the
kth scatterer and received by the nth sensor on the vector w

Bren(6) = 2 [0 (8) + Tien ()] = 2[00 + 100 +
Mn (@)t + Brn(@)t?] ®)

where f, . (w) is the scatterer Doppler frequency at the image
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time t, and S, (w) is the focus parameter
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It is necessary to underline that coefficients aj ,, and b,’;‘;
depend on the sensor positions through the aspect and grazing
angles (W, Y, o, §n) as well as on the scatterer coordinates at
to, q%n. It is supposed that the latter can be retrieved with a
certain approximation by the range measures collected at the

different sensors in the formation, i.e. qj, = q%n(r,?’n), as
explained in the following (see section IIIA, equation (10)).
Therefore, once the position vector gy, has been retrieved,

according to the known acquisition geometry, the a};n and b,’;‘:l
coefficients could be deterministically computed.

III. MULTI-SENSOR ESTIMATION TECHNIQUES

In this section, the proposed MS rotation motion estimation
techniques are described. A requirement for the techniques to
properly work is the capability of correctly associating brightest
spots in the N images as corresponding to the same scatterer of
the target. How to achieve this result is described in the
following subsection IITA. Once this step is accomplished, the
exploitation of both linear and quadratic phase terms of the
model in (8) leads to the derivation of the ML technique
described in subsection IIIB. Finally, subsection IIIC shows
how a suboptimum DM technique can be devised based on the
extraction of the Doppler frequencies of the selected scatterers
in the different available images (namely by exploiting the
linear component of the phase) and explains how such
suboptimum technique is more insensitive to possible signal
model mismatch. In both cases (ML and DM) it will be proven
how the proper exploitation of the information acquired in
spatial diversity allows us to estimate the full 3D rotational
motion of the target, namely not only the horizontal and vertical
components but also the radial one, which usually cannot be
estimated by SS techniques.

A. Extraction and association of the dominant scatterers

The proposed MS techniques are based on the assumption
that the same target scatterers can be selected in the N images
formed by processing the N acquired signals. Many automatic
methods have been proposed in the past for the extraction of the
position of the PPS, [43], [44]. The pre-processing aimed at
correctly extracting and associating the PPS is composed by
three steps, namely images formation, scatterers extraction and
scatterers association as described in the following.

1. Images formation: for each sensor the corresponding RD
image is focused by Fourier transforming the range
compressed&slow-time data with respect to slow-time.
Thus, N RD images are obtained.

2. Scatterers extraction: a procedure based on image
segmentation is applied to each image in order to detect and
separate the dominant target scatterers. As in [36], this
procedure first applies a proper threshold to the RD image
in order to identify the positions characterized by high
energy level; then rejects those detected regions constituted
by few pixels; finally returns the scatterers positions by
applying a 2D peak detection algorithm to the cleaned
image coming from the previous step.

3. Scatterers association relies on the assumption that the same
scatterer is observed in the N exploited acquisitions. It has
to be remarked that the proposed techniques apply to
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Fig. 2. Maximum Likelihood based processing scheme.

operative scenarios implying quite limited changes of the
observation angle over the different acquisitions so that the
target can be assumed in the pseudo-monostatic region
(angular differences lower than about 5 degrees), [45].
However, it is well known that ISAR images are generally
quite sensitive to changes of target orientation with respect
to the radar LOS, and scatterers’ distribution may vary even
for limited angular separations (due to the susceptibility of
coherent imaging to target scintillation). Nevertheless, it has
been demonstrated that in ISAR imaging some scatterers
persist over a certain degree of illumination angle [46], and
many techniques relying on those scatterers have been
successfully employed in autofocus and NCTR procedures
[47]. Bright points that can be associated with single-
scatterer scattering centres are less sensitive to variation of
the radar perspective, and therefore are suitable for the
subsequent estimation process. Useful techniques to
discriminate among spots deriving from single/multiple
point sources have been proposed [9], however, a full
discussion about this topic is beyond the scope of this paper.
Furthermore, the proposed estimation techniques need only
extracting a limited number of such scatterers. Given the
simplified conditions of small illumination angle changes
and the need of few points, the strategy suggested here is
selecting few isolated scatterers at the edges of the target in
all the N images, such as the bow scatterer of a ship or the
tail of an aircraft. In such conditions, the simple nearest
neighboring method, as in [44], can be adopted to associate
the scatterers in the different IPPs.

Hereafter, we assume that K scatterers have been properly
associated in the different images. The range bins
corresponding to these scatterers are extracted from data in
range compressed&slow-time domain, and Doppler filtering is
applied in order to discard the contribution of other minor
scatterers and clutter background in the same range bin.

At this point, the data vector g with the statistic in (4) is
obtained and the coordinates of the selected scatterers can be
retrieved by the range measures collected at the different
sensors in the formation. In particular, the relation between the
measured slant ranges and the scatterer positions in (5) is given
by

qg’n = MwnM{nR*rk (10)

In the above equation, 1, denotes the N X 1 vector collecting

from g,

from g, ,
Mean over K
scatterers

Mean over

Power in zero
N sensors

Doppler cell

K-1

Yo

k=0

max{LF (@)} = @y,

0 0
T, +1 . . .
the measured slant ranges % Risan N X 3 matrix, which

depends on the geometric distribution of the multi-platform
radar system, transforming the scatterer coordinates in the
(0, x,y, z) reference system in the measured ranges, and its nth
row is given by
[_ Schwn;rSzono Cznfwn;rccocwo _ Sllln;‘sllio]. Finally, #
indicates the pseudo-inverse operator. It is worth to notice that

in the proposed MS formation we consider a joint multi-
aspect/multi-grazing formation of N > 3 sensors: therefore the
linear system (10) is characterized by a good degree of stability,
and the scatterer coordinates can be recovered even in presence
of errors due to imprecision in the knowledge of the sensors
positions and the quantization of the slant range axis. Therefore,

. 5 .
we can consider as known the a}, , and b}, parameters in (9).

B. Maximum likelihood estimator

Based on the statistical model of the data in (4), it could be
shown (see Appendix A), that the Maximum Likelihood
estimate of the rotation rate vector is given by

@y, = arg max{LF (w)} =
w

(11)

_ 2
arg max {ENZ SH st g1l

where LF (w) is the likelihood function.

As it is apparent from (11), for each selected scatterer and
considered sensor the ML estimator performs a coherent
processing of the data to accomplish the estimation task. Let
[@y, DR, @y] = @ be the rotation rate vector under test: as
depicted in Fig. 2, this coherent elaboration of the data consists
of the compensation of the linear and quadratic terms of the
phase in (8) as a function of f;, (@) and By, (&). For the kth

selected scatterer, the signal pertaining the nth sensor gy, is

multiplied by exp {j%n,[)’k,n((f))tz} and exp {jszdk'n((f))t}.
The former operation is an azimuth dechirping procedure,
whereas the latter corresponds at introducing a shift in the
Doppler domain equal to fdk,n(w) —fa k'n((T)). The following
coherent summation of the slow time samples and squared
modulus extraction allow extracting the power of the (focused
and Doppler compensated) scatterer. The power values
concerning the kth scatterer as observed by the N sensors data
are then averaged. We point out that the output of the processing
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Fig. 3. Doppler matching based processing scheme.

of each signal vector g, will be the highest when @ = w,
namely when s,:n = s,:n((f)) is matched to the signal under
consideration. Such a processing is carried out for all the K
selected scatterers, and the obtained power values are
subsequently averaged, ultimately resulting in LF(&®). The
value @ corresponding to its global maxima is assumed as the
estimated @ .

C. Doppler matching based technique

As well known, the ML estimator can reach the highest
accuracy (CRB evaluated in the next section), but on the other
hand it requires a maximization over a 3D space, which makes
heavy the required computational load and moreover can be
problematic when local maxima are present. Therefore, it is also
interesting to derive sub-optimum techniques not requiring the
application of optimization procedures. To this purpose, in this
section we present a Doppler-matching (DM) based estimation
technique to perform the motion estimation. Differently from
the ML procedure, this technique exploits only the linear phase
term in (8) to estimate the rotation vector w.

The Doppler-matching based estimation technique processing
scheme is depicted in Fig. 3. From each branch of the scheme,
i.e. for each input signal vector g, ,, the processing aims at
recovering the Doppler frequency of the scatterer fy, , and it is
composed by the cascade of four steps: focusing parameter
estimation, azimuth dechirping, cross-range profiling and
Doppler frequency extraction.

The first step consists in the estimation of the best focusing
parameter value for the selected range bin pertaining to the kth
scatterer observed by the nth sensor. Differently from the ML
technique such a step is not part of the rotation estimation
searching procedure, but it is needed to remove Doppler
migration before the subsequent processing. To this purpose the
technique in [32] is exploited, which provides the best S ,
value regardless the components of w. The estimated ﬁk_n is
then used to compensate the Doppler spread (i.e. azimuth
dechirping). Finally, the cross-range profile can be obtained by
means of frequency analysis and the scatterer Doppler
frequency can thus be extracted. By processing all the signal
vectors g, KN estimated Doppler frequencies are obtained.

Each Doppler frequency fg,, can be written as a linear

combination of the rotation vector components wy, wg and wy,

with coefficients az‘n, (9). By considering all the N Doppler
frequencies of each of the K selected scatterers, the following

linear system can be written

Aw = fq (12)

where A = %[aH aR aV]isthe [KN x 3] matrix with a¥ =

@ o .. al] and al=[af, .. dy.], ¥=
H,R,V, and f4 is the vector of the KN measured Doppler
frequencies. The estimated components of the rotation vector
can be achieved by resorting to a least squares approach:

Wpy = A*fd (13)

It could be shown that at least K > 2 scatterers are needed
for the A matrix to be full rank so that the full rotation rate
vector can be retrieved; in contrast for the ML technique to
work a single dominant scatterer could suffice (i.e. K = 1)
since both linear and quadratic components of the scatterer
phase are exploited.

The advantage of using the DM based technique with respect
to the ML estimator is twofold. The first benefit depends on its
model-free characteristic: indeed Doppler frequencies
fa kn (w) are insensitive to potential angular accelerations,

which would certainly affect the focus parameters Sy ,(w)
instead. Consequently, ML estimation performance would
suffer from the mismatch between target motion model and
actual dynamics, while DM technique would automatically
adapt to the presence of not negligible angular accelerations.
ML approach could definitely recover its performance if both
angular velocity and acceleration were used to model the target
motion to the expense of an increased the computational load,
which is not a secondary issue. Indeed the second advantage of
the DM estimation approach resides in its higher computational
efficiency, if compared to the ML technique, since it does not
require any optimization procedure to retrieve the estimated
values, except for KN linear independent and parallelizable
searches over the focus parameters. This represents a significant
benefit with respect to the ML estimator, which requires the
joint maximization over the 3D space of horizontal, radial and
vertical uniform rotations (6D if accelerations are considered).
Obviously, we expect the DM approach to provide lower
estimation accuracy with respect to the theoretical performance,



met by the ML technique if the target motion is accurately
modelled. Nevertheless, as discussed in the next section, such
performance degradation is quite limited making the DM
technique appealing for practical applications.

IV. PERFORMANCE ANALYSIS

A. Theoretical performance analysis

Considering the signal model in (4), the theoretical
performance for the rotation motion estimation can be analyzed
by evaluating the Cramer Rao lower Bound (CRB). It can be
shown (see Appendix B) that the standard deviation of the
estimation error for the yth component of the rotation vector
(defined as Sw, = &, — w,, being &, and w,, the estimated and
true value of w, ) for the model described above, is given by

CRBa,y = O'Z)y =
Ao} Za,azu,ﬂ—zg'” { y,8,u=H,R,V (14)
2n2MTZ 1Z| "y=ud+y,6 #u

being Z a 3 X 3 matrix whose element z, 5 (y,6 = H,R,V) is
given by the linear combination of two terms:

Zys = {Lys + Qys(w)} (15)

The formers are related to the coefficients of the linear term
of the phase in (9)

(16)
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whereas the latter are related to the coefficients of the quadratic
term of the phase in (9)

T‘% _ . .
Qy,é‘(w) ZEZ¥=(} II§=1Ai,an}</,an§,n (17)
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with b} (w) = Prcn dw,’

From the previous expressions, the case of the CRBs (14)
with @, 5 = 0 (hereafter C RB(f)y) is the maximum achievable
accuracy when exploiting only the Doppler information but not
the Doppler rate (as done by the Doppler-matching based
technique), since it represents how the linear terms of the signal
phases contribute to the estimation accuracy. On the other hand,
the maximum accuracy we might achieve by exploiting only the
quadratic term of the phases (as done in most of the SS
estimation techniques, e.g. [25], [32], [33]) is represented by the
CRBs (14) with L, 5 = 0 (hereafter CRBf,y). The maximum

achievable accuracy for the ML estimator is obtained for both
Ly s Qys # O (hereafter CRB,, ).

In order to study how the linear and quadratic terms of the
phases affect the theoretical accuracy of the estimation, we
compare CRB(f,y, CRBgy and CRB,,. For the analysis we
consider the case of a ship target undergoing an angular motion
given by w,oy = 0.03 rad/s , wpiren = 0.02 rad/s, wygy =
—0.05 rad/s. Without loss of generality, we assume the active
radar sensor (reference sensor n = 0) observing the ship,
having initial heading angle 8, = 0°, with {;, = ¥, = 0° (we

20 25 30 35
Integrated Signal-to-Noise Ratio. SNR [dB]

(b)

40

v

Theoretical normalized standard deviation on 8o

. L
20 25

30 35

Integrated Signal-to-Noise Ratio, SNR [dB]
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Fig. 4. Comparison of the theoretical accuracy achievable by exploiting the linear and/or the quadratic phase terms for the horizontal (a), radial (b) and vertical

(c) components of the rotation vector.
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Fig. 5. Comparison of the theoretical accuracies achievable for different
sensor displacements.

point out that in these specific conditions of observation, x? =
x = hy, y? =y =1,, 2 = z = z,, and therefore w,,; = wy,
Wpitch = wg and wyq, = wy). The acquisition time is 0.5 sec,
the wavelength is 3 cm and Dy, = 30 Km. Two additional
platforms are considered carrying passive devices, having
illumination angles equal to {; = —2°, ¢; = 1°and {, = 3°,
P, = 5°, and the mainmast and the bow scatterer, located in
p; = [10,0,20]"m and p, = [30,0,0]"m, respectively, are
selected.

Fig. 4 shows the theoretical normalized standard deviation
of the estimation errors on the single components of the rotation
vector as a function of the integrated signal-to-noise ratio,

2
defined as SNRy, = M?—%"; here, for sake of simplicity, it is

assumed to be independent from n and equal for both the
scatterers. We can observe how the theoretical accuracy for the
dechirping-based estimation is extremely poor; on the other
hand, good performance can be achieved by the DM technique,
reaching pretty much the same theoretical accuracy of the ML
estimator.

It is worth to notice that dechirping-based techniques can
reach a maximum theoretical accuracy depending on the

angular motion value, since CRBgy = CRBSy(w), and

therefore on the cross-range resolution. Consequently,
dechirping-based estimations need longer CPI in order to
increase the estimation accuracy, i.e. higher cross-range
resolution, in case of slow rotating targets. Nevertheless,
typically short CPIs are employed in ISAR imaging. In contrast,
for a given SNR the theoretical accuracy of the DM technique
depends only on system geometry and scatterers position (by
means of azyn parameters), so that high quality estimations can
be obtained for both fast and slow rotating targets.

It is also apparent how for all the SNR conditions the best
performance is achieved for the vertical and horizontal
components of the rotation vector, whereas the estimation of the
radial component behaves slightly worse. However, it has to be
underlined that, differently from the MS case, in a SS system it
is not possible to estimate the radial rotation. Indeed the rotation
around the radial axis does not affect the Doppler position of
the scatterer. In contrast, in the MS formation case, both vertical

and horizontal rotations (wy,, wy,) as locally viewed by each
sensor in the formation can be represented as a function of all
the components of the rotation vector w. Therefore, the radial
rotation can be estimated and recovered along with the vertical
and horizontal components of the motion. Moreover, it is
expected that the capability of the MS system to recover the
radial rotation of the target improves if the angular separation
among the sensors increases, since in such case a larger part of
wg 1s projected onto the horizontal and vertical axes pertaining
the nth sensor. In Fig. 5 the theoretical normalized standard
deviation of the estimation errors on the horizontal, radial and
vertical components of the rotation vector are compared when
the estimation is performed by exploiting both the linear and
quadratic terms of the phases for two different sensor
displacements: in geometry 1 (G;), the sensor displacement is
as in Fig. 4, whereas in geometry 2 (Gz) we consider
illumination angles being ¢, =y, = 0°, {; = —1°,; = 0.5°,
¢, = 1.5°, Y, = 2.5° remainder parameters are as in Gi. As
expected, the wider angular diversity in G; resulted in an
enhanced achievable accuracy of the radial rotation estimation
than the one in G. In addition, one can observe negligible
variations moving from G, to G for the estimations concerning
the horizontal and radial components. Therefore, from a
theoretical point of view, even very small separations among
the individual perspectives may provide high quality
estimations of the horizontal and vertical rotations.
Nevertheless, as it will be analysed ahead, a greater angular
diversity greatly helps in the achievement of reliable
estimations under non-ideal conditions.

B.  Simulated performance analysis

The simulated scenario is given by a formation of three
sensors comprising an active sensor (n = 0) transmitting in X-
band (A =3 cm) and two additional receivers (n = 1,2).
Without loss of generality, we consider an “L” shape formation,
with the reference sensor 0 observing the target with {, = 0°,
Yo = 2°and Dy = 30 Km, sensor 1 characterized by the same
grazing angle as the active sensor but different aspect {; = 5°
and, on the reverse, sensor 2 observing the target with the same
aspect angle as the reference sensor but different grazing 1, =
7° (D, = Dy = D,). We consider the system observing a ship
target of which the point model is given in Fig. 6. Ship
dynamics consist in sinusoidal roll, pitch and yaw, namely the
angles swept with time around the x;,, y;, and z,, axis are given
by

95(1’) = AS sin(27tf5t + ¢)5) (18)
As, fs and ¢ are the amplitude, the frequency and the initial
phases of the sinusoidal rotations, respectively (8 =
[roll, pitch, yaw]). Table I lists the values considered for the
simulations, along with the corresponding constant components
of the motions ws = As2mfscos(¢s) and the accelerations
ws = —As(27f3)? sin(¢s). Considering the initial heading
angle 8, = 45° and the aperture time T, = 0.55 s around the
image time t, = 0 s, the three receivers provide the set of RD
images shown in Fig. 7. As it is apparent, because of the limited
separation among the radar perspectives, the three images are
very similar, and the association of a large number of scatterers



TABLE 1. SIMULATED SHIP DYNAMICS

30 4
_ 20 As [s bs Ws W
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E 0 [deg] [Hz] [deg]  [rad/s] [rad/s?]
0
yaw 1 0.2152 15 0.022 0.0077
-10 =
pitch 1 0.1806 10 0.019 0.0038
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0 0 roll 5 0.0930 12 0.049 0.0059
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Fig. 6. Ship target model.
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Fig. 7. Range-Doppler images of the ship target for sensor 0 (a), 1 (b) and 2 (c)
selected for the motion estimation process.

may be a not so difficult task. Obviously, as discussed in
Section IIIA, in realistic scenarios only few prominent
scatterers approximating the field from a point source can be
extracted and associated in the multi-angle images. Therefore,
for the subsequent analyses, we assume only K = 2 scatterers
selected for the ship dynamics estimation; specifically, we
assume that the bow and the mainmast scatterers, located in
Poow = [71.3,0,3.2]"m and ppase = [23.4,0,23.3]"m in the
body reference system, respectively, have been extracted from
the three RD images.

Monte Carlo simulations have been carried out to evaluate
the estimation performance as a function of the integrated SNR
(10000 independent trials for each SNR wvalue, assumed the
same for both the selected scatterers and the same for the three
RD images). In a first case study, we analyze the estimation
performance when the ship undergoes uniform rotations during
the aperture time. To this purpose, we consider the scenario in
which the motion is only given by the constant components of
the sinusoidal rotations in Table I. The red ‘%’ and the blue ‘o’
markers in Fig. 8 represent the normalized standard deviation
of the estimation error on the horizontal, radial and vertical

©)

. Bottom boxes show the bow (green boxes) and mainmast (red boxes) scatterers,

components of the rotation vector achieved by the ML and the
DM techniques, respectively, and the green full lines refer to
the CRBs. As expected, the ML performance reaches the CRB
for all the components of the rotation vector. Noticeably, the
degradation of the performance achieved by applying the
Doppler matching based techniques is extremely limited, as
foreseen by the theoretical analysis in Fig. 4.

In a second case study, we assume the target interested by
the full sinusoidal roll, pitch and yaw, and Fig. 9 shows the
corresponding estimation results. We can observe that in such a
case the DM technique outperforms the ML estimator, which
shows a degradation of the performance due to the presence of
not negligible accelerations in the rotation motions. Such
degradations are due to the mismatching between the model
considered to derive the ML estimator (i.e. constant rotation
rate) and the simulated signal. In contrast, accelerations do not
affect the performance of the Doppler matching based
technique, thus it provides also in this case performance
comparable with the CRB.

Previously we supposed the translation of the target
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perfectly compensated following an ideal translational motion
compensation (TMC) technique or autofocus procedure. In
order to test the robustness of the proposed MS 3D rotational
motion estimation approaches to non-ideal TMC, the following
analyses have been performed. We simulate the outcome of the
non-ideal TMC procedure as affected by linear and quadratic
phase errors a; and a,, respectively, both distributed according
a zero mean Gaussian variable with standard deviations equal
to the theoretical accuracy for the estimation of a constant
amplitude polynomial phase signal embedded in AWGN, [48],
= SNRT, and g5, = %. Black ‘+’ and pink .’
markers in Fig. 8 and Fig. 9 show the normalized standard
deviation of the estimation error of ML and DM techniques
respectively as a function of the SNR when errors in the TMC
are considered (10000 independent trials with independent
errors for different sensors) for uniform and sinusoidal
rotations. Looking at Fig. 8, it is apparent that for targets
undergoing uniform rotations TMC phase errors slightly affect
ML and DM techniques, providing the same accuracy levels as
in the ideal case for 3 dB higher SNR. Moreover, it is apparent
how both techniques show the same behavior with respect to
the simulated phase errors. We would expect worse
performance of the ML technique with respect to the DM
approach, since in the latter case errors in the focusing
parameter would be completely recovered in the 1D searching
procedure prior the actual estimation stage. However, it has
been demonstrated in Fig. 4 how even in the ML case the main
contribution to the estimation is provided by the Doppler
frequency diversity, as for the sub-optimal DM case. This
explains why both techniques undergo nearly the same
performance degradation in presence of both linear and
quadratic TMC phase errors. For targets undergoing sinusoidal
rotations, ML and DM techniques differentiate their behavior.
Results in Fig. 9 confirm the trend that ML approach is worse
since the model of the target motion is not compliant with the
actual ship dynamic; moreover it is apparent how linear and
quadratic TMC errors are surpassed by model errors, thus they
don’t further degrade the already deteriorated performance. On
the other end, DM technique experiments the same level of
performance degradation as in the uniform target motion case
in Fig. 8, due to its robustness to model mismatch.
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As stated in deriving the theoretical model, we assumed as
ideally known the distances 7, of the kth scatterer from the N
sensors and therefore we used the true positions gy, in (10) for
the computation of the coefficients a,,, and by ,,. However, in
practical situations, the accuracy whereby the slant ranges of
the scatterers are retrieved according the procedure IIIA is
limited by the transmitted bandwidth, i.e. by the slant range
resolution p,., as well as by the SNR: therefore in this condition
a performance degradation is expected. To analyse such effect
we can assume the measured slant ranges vector 1, for the kth

c 1

2 BGVSNR
the Gabor bandwidth, [49], and, as a consequence, the matrix A
in (12) perturbed by the errors in recovering the af ,, af ,, ay ,
parameters. Fig. 10 shows the normalized standard deviation of
the estimation errors obtained with the DM estimator. Fig. 10a
shows the achieved estimation accuracy as a function of the
slant range resolution for the same operative conditions in Fig.
8 and SNR = 30 dB. We can observe the reduction of the
accuracy due the errors introduced in matrix A. However, even
in these non-ideal conditions, very good performance can be
achieved. Moreover, the robustness of the proposed MS system
in estimating the rotation vector in the case of badly recovered
scatterer slant ranges depends also on the sensor displacement.
Indeed, the increasing of the angular diversities in both aspect
and grazing makes the system (10) more stable (namely the
matrix R is characterized by a lower condition number).

scatterer retrieved with an accuracy given by being B

Fig. 10b shows the impact of the angular diversity on the
estimation quality. In this case, we considered sensors 1 and 2
providing respectively aspect and grazing diversity I', namely
GG =6+ T, 8 =G, Y1 =1 and P, =P + I'; slant range
resolution is set equal to 50 cm and SNR = 30 dB. As it is
apparent, in the case of perturbed scatterers range coordinates,
the increase of the angular diversity of the system enhances the
quality of the estimations.

A further source of non-ideality is represented by possibly
inaccuracies in the knowledge of the sensors positions. To
analyze the technique robustness to the presence of deviations
of the actual acquisition geometry from the nominal sensors

horizontal
=9+ radial
=@ vertical

.
3 4 5
Aspect/grazing angular diversity, I [deg]

(b)

Fig. 10. DM based estimator performance for inaccurate knowledge of the slant range coordinates of the selected scatterers as a function of slant range

resolution (a) and system geometry (b). SNR =30 dB, ¥, = 2°, D, = 30 Km.
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Fig. 11. Normalized standard deviation on the estimation error on the horizontal (a), radial (b) and vertical (c) components of the rotation vector obtained with
the DM based estimator for deviation of the system geometry from the nominal displacement. SNR = 30 dB, ¢, = 2°, D, = 30 Km.

positions, we considered the position of each platform as a
random variable uniformly distributed in a sphere, with center
in the nominal position and radius d (different platforms are
affected by independent errors). As in Fig. 10b, sensor 1
provides the aspect diversity and sensor 2 the grazing diversity,
both equal to I'. Fig. 11 shows the normalized standard
deviation on the estimation errors on the three components of
the rotation vector for different values of I" as a function of d
(10000 independent trials for each d value). As it is apparent,
wider angular diversities allow the MS system to counteract the
worsening of the estimation performance in the case of
perturbation of the sensor positions. Nevertheless, we point out
that even in the case of small angular separation among the
sensors, very good performance can be obtained even in the
case of medium/high deviation of the sensors from their
nominal positions. Moreover, the worst case here considered of
d =10 m is a quite conservative assumption, since modern
sensors can be equipped with high-precision satellite navigation
receivers.

V. APPLICATION TO EXPERIMENTAL MULTI-SENSOR ISAR
DATA

A. Experimental setup

MS ISAR data have been acquired in an anechoic chamber
at the SELEX Galileo (now Finmeccanica) facility in Caselle
(Turin, Italy). The measurements are based on the use of a
Compact Range system, which generates a planar wave front in
the test area; therefore, the hypothesis of target in far field
applies. The system includes a parabolic reflector, a system of
feeds and a proper positioning of the target under test. The
antenna is an offset parabolic reflector P/N 5755 made by
Scientific Atlanta. The reflector is illuminated by a spherical
wave front from a transmitting feed located into its focus; the
signal from the target is focalized into its focus where the
receiving feed is located. The measurements instrumentation is
based on a HP 8510C Network Analyzer. The system transmits
a series of narrowband pulses in the Ku-band (1 = 1.82 cm),
with the carrier frequency increased pulse by pulse by a fixed
frequency step equal to 3.75 MHz to form a burst (stepped-
frequency waveform). The overall spanned bandwidth is 3
GHz, resulting in p, =5 cm, and the angular step of the

turntable burst to burst is §6 = 0.07°. A second receiving feed
has been added 60 cm apart from the transmitting one, thus
resulting in a bistatic channel having aspect diversity A = 4.3°
with respect to the monostatic link.

Two kinds of targets have been analyzed. The first one is a
grid of metallic cylinders, emulating the case of isolated point
scatterers; in a second experiment, an aircraft model (ATR 42)
has been considered as representative of a complex target since
unfortunately no model of ship targets was available. Optical
pictures of the used targets are shown in Fig. 12.

B. Distributed ISAR images

Fig. 13 shows the ISAR images of the aircraft obtained by
applying the focusing technique presented in [50]; specifically,
Fig. 13a is the image resulting when an overall illumination
angle equal to ® = 4.3° is selected from the monostatic
channel, whereas Fig. 13b is the DISAR image obtained by
selecting an illumination angle equal to 2.15° from the
monostatic and 2.15° from the bistatic channel, so that a
distributed overall aspect angle equal to 4.3° is again obtained.
We can observe the very good similarity between the two
images, confirmed by the comparison of the cross-range cuts
around the scatterer corresponding to the tail of the aircraft (Fig.
13c¢). This confirms the validity of the hypotheses of coherency
of the scatterers echoes and of stability of the positions of the
scattering centers in the case of limited angular separation
(bistatic angle of the order of 5° so that the pseudo-monostatic
assumption applies). Moreover, we point out that the coherency
of the scatterer echoes among different images is not strictly
required for the proposed estimation techniques.

C. Motion estimation

To apply the MS motion estimation techniques to these
experimental data some preliminary considerations are in order.
The proposed estimation techniques need a twofold diversity,
in both aspect and grazing illumination angles. Actually, this
experiment emulates a multi-aspect formation without grazing
diversity. Consequently, some assumptions are mandatory. (i)
We assume a flat target geometry, so that for each scatterer we
have py = [Xx, Vi, 0]"; therefore, since ¥, = 0° for both the
monostatic channel (n = 0) and the bistatic channel (n = 1),
the vertical coordinate of every scatterer is null (v, = 0,k =
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Fig. 12. Experimental datasets — a) framework with grid of metallic cylinders and b) ATR42 aircraft model (1:20 scale).
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Fig. 13. ATR42 aircraft model images — (a) Conventional monostatic ISAR, (b) DISAR, (c) cross-range cut comparison.

1,..,K); as a consequence, i, and g, can be recovered
despite the lack of diversity on the grazing angle domain. (ii)
Moreover, we point out that the rotational motion produced by
the turntable is a yaw motion, and we assume as known such
information. In these particular conditions, the ML and Doppler
matching based techniques properly modified are able to work.

Let 66 be the objective of the estimation. In order to built
LF(66) each kth selected range bin concerning the nth
receiving channel is multipli