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Differentiation of Natural Killer (NK) cells is a stepwise process having its origin in the

bone marrow and proceeding in the periphery, where these cells follow organ specific

trajectories. Several soluble factors and cytokines regulate the distinct stages of NK

cell differentiation, and ultimately, their functional properties. Cytokines activating the

Janus kinases (JAKs) and members of the signal transducer and activator of transcription

(STAT) pathway control distinct aspects of NK cell biology, ranging from development,

terminal differentiation, activation, and generation of cells with adaptive properties. Here,

we discuss how the recent advances of next generation sequencing (NGS) technology

have led to unravel novel molecular aspects of gene regulation, with the aim to provide

genomic views of how STATs regulate transcriptional and epigenetic features of NK cells

during the different functional stages.
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INTRODUCTION

Natural Killer (NK) cells are the founding members of the ILC family and represent the innate
counterpart of cytotoxic T lymphocytes (1, 2). Like CD8+ T cells, NK cells are able to kill infected
or transformed cells in a perforin and granzyme dependent manner, as well, these cells are able
to mount a rapid type-1 response by releasing the eponymous cytokine, interferon (IFN)-γ (3, 4).
NK cells share the ability to produce type-1 cytokines with a distinct “helper” prototypical innate
subset, termed ILC1 (5, 6). NK cells differ from ILC1 for their cytotoxic abilities, for a higher
propension to circulate in the bloodstream and for the expression of lineage defining transcription
factors (LDTFs) (7–9). In this regard, both NK cells and ILC1 are regulated by transcription factors
(TFs) of the T-box family; however, while Eomes is expressed and required only by NK cells, T-
bet (encoded by Tbx21) is expressed by both prototypical subsets (10–14). Expression of T-bet is
fundamental for the generation of ILC1, and it also has non-redundant roles in regulating NK cell
turnover, effector functions and egression from bone marrow (10, 11, 15).

Cytokines and other soluble factors regulate several aspects of NK cell biology, acting through
signal-dependent TFs (SDTFs). In particular, cytokines activating the Janus kinases (JAKs) and
members of the signal transducer and activator of transcription (STAT) pathway control NK cell
development, terminal differentiation, acquisition of effector phenotype up to generation of cells
with adaptive features able to provide secondary responses (16, 17). Mammalian genomes contain
four genes encoding for JAKs, namely JAK1, JAK2, JAK3, and TYK2; and seven genes for STATs,
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STAT1-4, STAT5A, STAT5B, and STAT6 (18, 19). Activation
of the JAK tyrosine kinases occurs upon receptor engagement,
and the juxtaposition of JAKs and STATs allows, after
phosphorylation, STAT dimers to dissociate from the membrane
complex and tomigrate into the nucleus, where they bind specific
DNA-motifs modulating gene expression (20).

The role of the JAK/STAT dependent signals on NK cells and
other ILCs has been discussed in recent reviews (16, 17, 21);
herein, we focus on the molecular mechanisms underlying NK
cell differentiation in physiological and pathological contexts.We
discuss how the advances of next generation sequencing (NGS)
technology and the establishment of novel mouse models have
led to a better definition of the genes regulated by STATs, and
their transcriptional and epigenetic control of NK cells during
differentiation and host defense. Finally, we provide an overview
of the JAK inhibitors currently approved for the treatment of
immune-mediated disorders and their possible implication on
NK cells.

STAT5 AS A CENTRAL NODE FOR
DEVELOPMENT, IDENTITY AND
HOMEOSTASIS OF NK CELLS

The bone marrow is the main site for NK cell and ILC
development in the adult, containing distinct progenitors and
precursors able to give rise to cells having different fates (22, 23).
Differentiation proceeds with a pool of circulating progenitors
which move to the periphery, where NK cells and other ILCs
follow organ specific trajectories and acquire distinct effector
functions (24). In the current model, NK cells have a dedicated
pathway of differentiation comprising a pool of committed NK
cell precursors (NKps) (25–27). Their differentiation follows a
stepwise process encompassing distinct developmental and/or
functional stages, discriminated through the expression of CD27
and CD11b levels in mice and CD56 and CD16 in humans
[redefined recently by single cell RNA-seq approach (28, 29)].

The cytokines IL-7 and IL-15 are critical for lymphoid
development by transmitting their signals through the common
IL-2 γ-chain receptor (CD132) and by activating JAK3, JAK1,
and STAT5 (30). Deletion of Jak3 in mice is associated with
reduced numbers of lymphoid and ILC precursors, in contrast
to an accumulation of NKp (31). This evidence is in line with
previous findings demonstrating that IL-15 was required for
the NKp to proceed toward the next maturation stages (25).
Similarly, mice carrying conditional deletion of Jak1 in Ncr1-
expressing cells (Jak1fl/fl Ncr1Cre) show profound defects in NK
cell differentiation and homeostasis; Jak2 deletion, instead, does
not affect NK cell development and survival (32).

JAK3 and JAK1 mainly activate STAT5, which represents a
key multi-lineage TF (MLTF) controlling development of both
adaptive and innate lymphocytes (33, 34). Ablation of the entire
Stat5 locus, comprising both Stat5a and Stat5b, results in a high
perinatal lethality, due to the pleiotropic role of this TF; however,
the few viable Stat5−/− mice show absence of NK cells (35).

Abbreviations: ILC, innate lymphoid cell; IFN, interferon; LDTF, lineage defining

transcription factor; SDTF, signal dependent transcription factor; NK, natural

killer; STAT, Signal Transducer and Activator of Transcription.

Conditional deletion of Stat5 in Ncr1-expressing cells allows to
eliminate the confounding effects related to lymphopenia and
inflammation observed in mice carrying germline ablation; in
these settings, both development and survival of NK cells remain
highly impaired (36).

Due to the massive effect of STAT5 deletion on NK cells,
our understanding of how this SDTF works at the molecular
level has remained elusive; the use of mice bearing only one
allele of STAT5 has helped to clarify this aspect. Between the
two paralogs, Stat5b is more expressed than Stat5a in innate and
adaptive lymphocytes, and its deletion has broad effects on NK
cell differentiation (37–39). Transcriptomic analyses performed
on NK cells retaining only one Stat5 allele (Stat5a−/−Stat5b+/−)
have shed light on the homeostatic impact of this TF on NK
cells, which consists on regulation of over 400 genes (39). The
residual NK cells present in these mice show a developmental
block associated with an accumulation of CD11blow cells, and
a drastic decrease of the expression of the anti-apoptotic gene,
Bcl2. Along with defects in development and survival, STAT5
sustains the expression of most of the genes (52 out of 76)
defining NK cell identity, including NKG2D, perforin and
granzymes, and the LDTF T-bet (39). These findings have
helped to discriminate between the instructive role of STAT5
during NK cell differentiation and its permissive function in
regulating survival.

Upon activation, STAT5 can form dimers but also tetramers
having distinct ability to interact with DNA-regulatory elements
(40, 41). While STAT5 dimers bind to canonical GAS (IFN-γ
activation site, TTCN3GAA) motif, STAT5 tetramers bind to
divergent motifs having an optimal spacing of 2–27 base pairs
between GAS and GAS-like sequences. The relative importance
of STAT5 dimers vs. tetramers in NK cells has been evaluated
by the generation of a mouse model carrying genes encoding
for tetramer defective mutant STAT5 proteins (40, 42). In these
mice, the impaired STAT5 binding to the Bcl2 locus, and the
consequent lower mRNA and protein expression, leads to a more
rapid cell death of NK cells compared to wild type cells (40).
Interestingly, transgenic expression of Bcl2 is able to rescue the
effect of Stat5 deficiency on the homeostatic pool of NK cells
(43). These “Bcl2-rescued” NK cells undergo a functional switch
from tumor-suppressive to tumor-promoting cells, since loss
of STAT5 determines upregulation of the pro-angiogenic factor
VEGFA, which sustains tumor growth (43). Thus, while STAT5
represents a central node in NK cell development, acquisition
of cell identity, and homeostasis (Figure 1), the involvement of
other STATs in regulating these processes appears limited. Of
note, type I IFNs and STAT1 can have distinct indirect effects
on NK cell homeostasis: including the regulation of MHC class
I expression (44), as well as the regulation of the production and
trans-presentation of IL-15 on accessory cells (45–47).

MULTIPLE STATs UNDERLIE EFFECTOR
FUNCTIONS OF NK CELLS

Effector functions of NK cells depend both on cytokines and
on a complex equilibrium between activating and inhibitory
receptors, which bind molecules present on healthy and stressed
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FIGURE 1 | Distinct requirements for STATs in NK cell differentiation. JAK/STAT signals control several aspects of NK cell biology, including development, terminal

differentiation, acquisition of effector functions, and generation of adaptive NK cells. NK cell development begins in the bone marrow from committed precursors and it

is driven by signals inducing STAT5 activation. In homeostatic conditions STAT5 sustains NK cell survival by direct regulation of Bcl2 expression. STAT5 is also

required for terminal differentiation and acquisition of NK cell identity. STAT4 and STAT1 have both specific and shared roles during viral infection. STAT4 controls a

network of TFs required for clonal expansion of NK cells during proliferation. STAT4 and STAT1 compete at genomic level for the expression of IFN-γ and other genes.

STAT3 has a role in restraining NK cell effector functions by inhibiting perforin, granzyme B, and NKG2D expression.

cells includingMHC class I and adhesion molecules (48–52). The
ability of NK cells to sense environmental changes and rapidly
release their effector potentials is favored by a primed epigenetic
and transcriptional state, leading to high basal expression of
cytokine receptors, LDTFs, and SDTFs, including STATs (53).
Although distinct STATs can be easily linked to particular effector
and helper functions, it is now clear that activation of NK cells,
like the other ILCs, can be influenced by complementary actions
of multiple STATs (54–56).

Acting downstream of IL-12, STAT4 is necessary to mount a
proper innate response against pathogens by actively regulating
NK effector functions, including both IFN-γ production and
cytotoxic response (57). The global impact of STAT4 in NK cell
activation has been recently tackled using transcriptomic and
epigenetic approaches (58, 59). Upon cytokine stimulation, over
300 differentially expressed genes are bound by STAT4 within
or in proximity of the locus (59). Along with direct regulation
of key effector genes, STAT4 controls the expression of several
TFs required for a proper antiviral response, including Zbtb32,
Runx1, Runx3, and Irf8. At molecular level, STAT4 binds to the
promoter and intergenic regions of the gene locus of these TFs,
leading to an increase of the permissiveness of the transcription
through modification of the chromatin state, via trimethylation
of histone H3 lysine 4 (59). Mouse models carrying selective
deletion of these TFs have helped to unravel their impact on the

cell cycle program of NK cells during viral infection. The effects
of Zbtb32 on the proliferative burst and protective ability of NK
cells are mediated by antagonizing the anti-proliferative effects of
the TF Blimp-1 (encoded by Prdm1) (60); Irf8, instead, regulates
proliferation acting upstream of Zbtb32 (61). During the course
of viral infection, the expression of STAT4 and STAT1 follows
an opposite fate. Indeed, while STAT4 expression is down-
regulated, STAT1 results progressively up-regulated (58, 62). This
differential expression pattern affects the signaling downstream
of type I IFNs, which mainly activates STAT4 in the early phases
of infection and STAT1 in later phases. The increased levels of
STAT1 cause a displacement of STAT4 from type I IFN receptors,
this switch induces a STAT1 dependent down-regulation of IFN-
γ production in NK cells (62).

The role of STAT3 on NK cells has been dissected by
employing distinct mouse models, showing differential effects
whether deletion of Stat3 gene occurs before or after NK
cell development (63, 64). When Stat3fl/fl mice are crossed
with Tie2-Cre mice, the effects of Stat3 deletion extend to
the whole hematopoietic compartment. In these settings, NK
cells show a decreased expression of NKG2D and impaired
effector functions (63). In line with these findings, NK cells
from subjects with dominant-negative STAT3 mutations show
an impaired expression of NKG2D both at steady state and
after cytokine stimulation (63). On the other hand, specific
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deletion of Stat3 in differentiated NK cells, using Ncr1iCre
Stat3fl/fl mice, leads to an increased expression of DNAM-1,
Perforin, and Granzyme B, and enhanced anti-tumor activity,
as the result of the possible repressive functions of STAT3 on
these cells (64). Considering these conflicting findings, genome-
wide studies aimed at dissecting the transcriptomic impact of
Stat3 deletion on NK cells would be particularly relevant to
discriminate between the direct and indirect roles of this TF in
regulating differentiation and effector functions.

Beyond the homeostatic requirement in sustaining the
expression of NK effector molecules, cytokines activating STAT5
have been used to stimulate NK cell functions in vitro, for
decades (65, 66). Genomic maps of STAT5 distribution obtained
by ChIP-seq analysis have revealed a widespread DNA binding
in untreated and IL-15-treated NK cells. However, the acute
stimulation with IL-15 induces a redistribution of this TF to a
new set of DNA regulatory elements. In these settings, STAT5
binding occurs on almost half of the differentially expressed
genes. Gene set enrichment analysis (GSEA) have confirmed
a positive enrichment for IL-2/STAT5 signaling in STAT5
bound genes (39). In contrast, unbound genes show a positive
enrichment for downstream targets of the mTOR pathway, which
has been shown to mediate IL-15-dependent functions in NK
cells, including proliferation and terminal differentiation, by
regulating CD122 (IL-2Rβ) and CD132 (IL-2Rγ) expression; as
well as metabolism, and acquisition of cytolytic features (67, 68).

SPECIFIC ROLES FOR STATs DURING
FORMATION OF ADAPTIVE NK CELLS

In the context of viral infection, NK cells are able to provide
secondary immune responses by following a differentiation path
which leads to generation of long-lived cells, named “memory” or
“adaptive” NK cells (69, 70). Changes of chromatin accessibility
of NK cells have been tracked in vivo up to 35 days after MCMV
infection, by ATAC-seq (58). This analysis has revealed that the
epigenetic landscape of NK cells is highly dynamic, with the
majority of chromatin remodeling occurring in the first 2 weeks.
These modifications pave the way for a further acquisition of the
transcriptional adaptive state, observed at later time points (58).
Genomic maps of STAT4 and STAT1 distribution in cytokine-
stimulated NK cells have shown a differential DNA occupancy,
being STAT4 mainly localized at putative enhancer sites and
STAT1 at promoter regions (58). In line with these results,
during MCMV infection the chromatin accessibility of putative
enhancer sites and promoters remains less accessible in NK
cells deficient for STAT4 and STAT1, respectively. Moreover,
due to the existing competitive effects between STAT4 and
STAT1, deletion of Stat1 in NK cells leads to an increased DNA
accessibility of non-promoter regions; as well as, to an increased
expression of selected STAT4 regulated genes, such as Ifng.
Conversely, the expression of several STAT1 targets, including
Mx1, Ifit2,Oas2, and Isg20, is upregulated in absence of Stat4 (58).

The interplay between STATs and LDTFs is a further
mechanism underlying acquisition of specific functions in innate
lymphocytes, including the generation of the adaptive phenotype

in NK cells. This is the case for the cross-regulation occurring
between STATs and T-bet (39, 71, 72); while STAT5 induces
T-bet expression in homeostatic conditions (39), STAT4 binds
to Tbx21 locus at a distal enhancer site and promotes T-bet
expression during MCMV infection (72). T-bet and Eomes
are both necessary for NK cell proliferation; however, the
IL-12/STAT4/T-bet axis plays a non-redundant role for the
maintenance of adaptive NK cells (72). We have discussed in
the previous section the network of TFs induced by STAT4,
namely Zbtb32, Runx1, Runx3, and Irf8, which are all necessary
to enhance proliferation and clonal expansion of NK cells (59–
61). As well, expression of STAT1 has a non-redundant role for
survival, regulating a Bcl2-independent mechanism enabling NK
cells to evade cell death after viral infection. In particular, type
1 IFNs and STAT1 are required to prevent a mechanism of NK
cell mediated fratricide, occurring via NKG2D and perforin (73).
Overall, these findings shed light on the complex network of TFs
and molecules regulated by STATs, required for the acquisition of
the adaptive traits by NK cells.

CONCLUSION: TRANSLATIONAL
RELEVANCE OF TARGETING THE
JAK/STAT PATHWAY IN INFLAMMATION
AND CANCER

Manipulation of cytokine signaling in NK cells and other ILCs
is drawing a growing interest for the treatment of inflammatory
diseases and cancer (74, 75). In particular, harnessing NK cell
effector functions against cancer by interfering with cytokine
signaling has led to promising results in several mouse models
(76–79). In this context, the suppressor of cytokine signaling
(SOCS) proteins are a class of natural regulators of the activity
of STATs. The SOCS protein CIS (encoded by Cish) is at the
top among the genes induced by STAT5 activation, and acts
as a negative regulator of IL-15 signaling, preventing excessive
activation (77). Targeting Cish has a huge impact in enhancing
NK cell dependent tumor immunity in several mousemodels (77,
79); thus, given its primary role in restraining NK cell functions,
CIS represents a novel immune checkpoint for these cells.

On the other hand, several small molecules capable to inhibit
JAKs enzymatic activity have been recently developed. At least
five JAK inhibitors (also known as JAKinibs) are now approved
by various regulatory agencies to treat immune-mediated
disorders. These first-generation JAKinibs comprise ruxolitinib,
a JAK1 and JAK2 inhibitor, approved for myeloproliferative
malignancies; tofacitinib, a JAK1, JAK2, JAK3 inhibitor, approved
for rheumatoid arthritis, psoriatic arthritis, and ulcerative colitis;
baricitinib, a JAK1 and JAK2 inhibitor, approved for rheumatoid
arthritis; peficitinib, a pan-JAK inhibitor approved (only in
Japan) for the treatment of rheumatoid arthritis; and oclacitinib,
a JAK1 and JAK2 inhibitor, approved for allergic dermatitis in
dogs (80).

The impact of ruxolitinib in NK cell homeostasis and
functions has been evaluated in humans in distinct contexts.
Myelofibrosis patients undergoing ruxolitinib treatment show
a defect in NK cell number and differentiation, as well as,
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impaired functions upon cytokine stimulation; these effects
have been related to the increased rates of infection observed
in these patients (81). Ruxolitinib also inhibits the generation
and functions of cytokine-induced memory-like NK cells by
interfering with both IL-15 and IL-12 signaling (82). Finally,
Ruxolitinib administration can limit STAT1 activation in patients
carrying STAT1 gain of function mutations. In these patients,
the prolonged STAT1 activation leads to an impaired NK
cell maturation and function, associated with lower STAT5
phosphorylation downstream of IL-15 stimulation, and with
lower levels of perforin. These defects are partially reverted by
ruxolitinib administration (83).

More selective agents have been developed and are currently
being tested. These next-generation inhibitors may possess
the advantage of a reduced toxicity. For example, selective
targeting of JAK1 would spare interfering with many of
JAK2-dependent cytokines involved in hematopoiesis, including

Epo, Tpo, G-CSF, GM-CSF, IL-3, and IL-11. Conversely, their
efficacy could also be limited. Recently, immunogenomic analysis

of mice administered with several JAKinibs, including both

first- and second-generation inhibitors, have highlighted the
impact of blocking either one or both JAK1 and JAK3 on
NK cell homeostasis. Moreover, the JAK1-specific inhibitor
(PF-02384554) was more efficient than the JAK3-specific (PF-
06651600) in blocking the secondary autocrine response to IFN-γ
induced in IL-2 activated NK cells (84).

The optimal degree of JAK inhibition required for an
individual cell type in any given tissue remains unknown.
To this end, selective JAKinibs may be the key to provide
new mechanistic insights in the modulation of the JAK/STAT
pathway in NK cells. This approach could be more effective

than the use of JAK-deficient mice, in which developmental
defects can mask the functional relevance of each JAK. Finally,
we are now aware that JAKinibs can affect the structure of the
epigenome and preferentially impact genes with super-enhancer
structure (85). Notably, several genes encoding for cytokines
or their cognate receptors are located within loci with super-
enhancer architecture. Therapeutically, it will be important to
understand how these drugs, alone or in combination with other
chemotherapeutic agents, can be used to effectively, and safely,
regulate these critical loci and, in turn, immune as well as non-
immune cells.
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