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Preface

In the medical imaging field, accurate segmentation of structures is crucial
in many applications; for example, in detecting lesions and abnormalities.
However, segmentation is highly challenging due to such factors as the low
contrast between different tissues types that makes it difficult to even seg-
ment the desired object manually, and the motion artifacts associated with
the scans which adds noise to images. This book covers the state-of-the-art ap-
proaches for medical imaging segmentation based on the level set technique
that was implemented by Osher and Sethian. The level set technique mainly
relies on the theory of curve and surface evolution, in addition to the link
between front propagation and hyperbolic conservation laws. This makes it
easy to follow shapes that change topology.

Among numerical techniques, level sets are significantly powerful at in-
terpreting interface motion. Level set methods have provided great advances
to clinicians in assessing abnormalities through computer-aided diagnostic
(CAD) systems that can analyze images from these different modalities; for
example computed tomography (CT), magnetic resonance imaging (MRI),
and optical coherence tomography (OCT). Different modalities will be dis-
cussed in this book for different applications.

In summary, the main aim of this book is to survey an illustrative subset
of past and current applications of level set technique in medical imaging
segmentation. It focuses on major trends and challenges in this area, identifies
new techniques and presents their use in biomedical image analysis.

Ayman El-Baz
Jasjit S. Suri
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Tomography Reconstructions With
Stochastic Level-Set Methods
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1.1 Introduction

The level-set methods are now a well-known tool for the computation of
evolving boundaries since their introduction by Osher and Sethian [1]. They
have been designed newly to reconstruct solutions of inverse problems with
non-smooth and piecewise constant solutions [2—4]. The numerical results in-
dicate their sucess. Yet, inverse problems with piecewise constant solution are
non-convex and the reconstructed solution is a local minimum of the regu-
larization functional. It may be interesting to escape this local minimum with
global optimization methods. Stochastic algorithms based on stochastic dif-
ferential equations have been proposed for the global optimization of non-
convex functions [5-9]. Let (@, F, P) be a probability space, in order to obtain
the global minimum of a function ¢ : R” — IR™, a random trajectory X(f)
governed by the following diffusion process is often used [5-9]:

dX(f) = —=Ve(X(B)dt + u(HdW(t) 1.1)

where W = (Wq (), ...., Wy(t)) is the standard m-dimensional Brownian mo-
tion and u(t) the noise strength. For an appropriate annealing schedule p(t)
and under appropriate condition on g, the probability law of X(t) converges
weakly to a probability law which has its support on the set of the global min-
imizers of g [5-9]. In the field of image processing, stochastic partial differen-
tial equations applied to level-set functions have been used for segmentation
tasks [10]. The right way to study stochastic evolutions in the level-set frame-
work is through the Stratonovich integral so that evolution of the boundary
curve is independent of the level-set function used for its representation [10].
The aim of this chapter is to show that this type of approach can be general-
ized to inverse problems with piecewise constant solutions.

In the first section, we summarize some results about stochastic calcu-
lus and the level-set regularization of inverse problems. Then, the stochastic
level-set approach is applied to the binary tomography and to the phase con-
trast tomography inverse problem.

.|
1.2 Preliminaries

In this first section, we present the level-set regularization approach of inverse
problems and some aspects of stochastic calculus.
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1.2.1 Level-Set Regularization of Inverse Problems

In this section, we detail the level-set regularization approach of inverse prob-
lems. Let R : H; — H», a linear operator mapping two Hilbert spaces H; and
H,, and g € H,. Our aim is to find a piecewise constant solution f of the in-
verse problem:

Rf=g (1.2)

For Q a bounded Lipschitz open subset in IR?, we assume that the function
to be reconstructed f is the characteristic function of a regular set Q; C Q,
f = xq,- It canbe represented with the Heaviside distribution and with a level-
set function § € H;(Q) as f = H(0), where H1(Q) is the first-order Sobolev
space and with H(6) = 1 if 0 > 0 and 0 otherwise.

Assuming that the noisy data are such that ||g° — ¢|| < §, where § is the
noise level, the reconstruction problem becomes nonlinear and consists in de-
termining the level-set function # minimizing the regularization functional:

IRH(9) - &°1I3

E@) = 5

+ F(0) (1.3)
where F is a regularization term for the level-set function. We have considered
here a Total Variation-H; regularization functional [2,3]:

F(9) = A1IHO)l1v + B 1I0IIF, (1.4)

where |.|ry is the Total Variation semi-norm. The regularization parameters
P1, P, determine the relative weights of the stabilizing terms.

Since H is discontinuous, it is necessary to consider generalized mini-
mizers of the regularization functional [2, 3]. These minimizers can be ap-
proximated by minimizers of smoothed regularization functional with an
approximation H,. The following smooth approximations of the Heaviside
function H has been used H,.(x) = %(erf(x/ €) + 1) — e where € is a real pos-
itive constant. The smoothed regularization functional is given by:

IRH(0) - &°1[;

Ee(g) = )

+ A1IHeO) v + S 11611, (1.5)
The minimizers of the Tikhonov functionals are found with a first-order op-
timality condition for the smoothed functionals, E(6) = 0, with:

o|He(0)|Tv

E(6) = HiR"(RH.(0) = &°) + pol = M)(O) + fr—

(1.6)
where R* denotes the adjoint of the forward operator. From the current esti-
mate 6y, the update 6y, = 0 + 66 is obtained with a classical Gauss-Newton
method with a linearization of the condition G(6x + §6) = 0 [22].

This method can be generalized to nonlinear operators and R must be re-
placed by the Fréchet derivative of the direct operator. For high noise levels,
the solution # may be trapped in a local minima. In that case, the data term
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IRH(6) — ¢°|| at the end of the optimization is largely higher than the noise
level § and the many reconstruction errors are still present. In order to es-
cape from these stationary points, we propose stochastic global optimization
methods.

1.2.2 Some Notions of Stochastic Calculus

The stochastic evolution of the level-set function is based on the Stratonovich
integral. In this first section, we summarize some useful notions of stochastic
calculus [11,12]. We explain the difference between the It6 and Stratonovich
stochastic integrals. Let (Q, F, F;, P) represent a probability space and Wiy
a one-dimensional Brownian motion. The paths of the Brownian motion are
only 1-Hblder continous and nowhere differentiable, and in order to define
dW(t), itis usual to start with the stochastic integral. Given a square integrable
process (¢(s, w))s»0 and a subdivision A = {0 =t; < .... < t, = t}, the stochas-
tic It6 integral f(; ¢(s, )dW(s) with respect to the Brownian motion is defined
as the limit of the Riemann sum:

Y. bt @)(Witina) = W(E) (1.7)

1<i<n

when |A| = min|ti1 — t;| — 0. The limit obtained {I(¢)}s0 is a square inte-
grable martingale. This definition can be extended to an arbitrary dimension.

Considering a process X = (X;)i»0 and a smooth function «a of class C?, the
process Yy = (a(X;)) satisfies the It6 formula:

dY(t) = o (X(t))dt + %a”d <X, X>(t) (1.8)

The drift term involves the quadratic variation < X, X > of the process X
which depends on the stochastic part of the dynamics. For a stochastic pro-

cess, X(t) = fé f(s)dW(s) + A(t), where fis a continuous square integrable func-
tion and A(t) is continuous and increasing, the quadratic variation can be cal-
culated as:
t
<X, X>(t)= J f(s)*ds (1.9)
0
It is possible to give another definition of the stochastic integral so that the
classical chain rule is satisfied. Considering two processes X(t) = M(t) + B(t),
Y(t) = N(t) + C(t) where M, N are local continuous martingales and B, C are
increasing processes, the Stratonovich integral of Y with respect to X is given
by the formula

t t
J Y(s)odX(s) = J Y(s)dX(s) + % <MN> (1) (1.10)

0 0
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Then, it can be shown that the classical chain rule formula is satisfied [11,12]:

t
a(Xp) = a(Xo) + J o (X(3))od X(s) 1.11)
0

The principle of the stochastic level-set evolution framework is to transfer
the contour evolution to the level-set function. The dynamics of the level-set
contour should not be modified by a change of the level-set function. This
invariance property is not guaranted by the It6 rule. If the It6 integral is re-
placed by the Stratonovich for the stochastic evolution, the additional drift
term disappears and the invariance property is verified.

The Stratonovich evolution equation can be implemented with an implicit
scheme. The Stratonovich integral with respect to the Brownian motion W can
be approximated as:

T . ti+ ti
|| Yewoawe) = tim 3 Y( )(W(ti+1) “WE)  (112)

1<i<n 2

with W(tiz1) = W(t) ~ v/(tiz1 + £)N(0,1), where N (0, 1) is a Gaussian of stan-
dard deviation 1.

In [10], it was proposed to simulate the Stratonovich evolution with the
Itd formalism and an additional drift term. Using the formula Eq. 1.10, it can
be shown that, for a level-function 9:

IVOCx, £)odW(E) = |VO(x, )| dW(t)

(1.13)

+ %(Ae(x, B — |VO(x, t)|div< Vo, i) >

[VO(x, t)|

This evolution equation has been used for image segmentation tasks leading
to stochastic active contours [10]. It is the basis of the approaches presented
in the following. Some proper type of solutions can be defined for these equa-
tions with stochastic viscosity solutions [10].

1.3 Binary Tomography Reconstructions of Bone Microstructure
from Few Projections with Stochastic Level-Set Methods

1.3.1 The Binary Tomography Problem

The tomographic reconstruction from few projections is a very ill-posed prob-
lems with many applications in medical imaging or material science. The bi-
nary tomography methods can be used to set a simpler inverse problem [13].
The binary tomography problem can be formulated as an under-determined
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linear system of equations with the linear Radon projection operator R and
binary constraints:

Rf=p° f=(fi,...... fa) € {0,1})" (1.14)

relating the pixel values ( fi)1<i<, of the image and the noisy projection data
p°. Very often it is assumed that the non-noisy projections p are corrupted by
an additive Gaussian noise.

Various approaches have been investigated to solve this reconstruction
problem [14, 15, 19, 20]. The minimization of a functional with a data term
and a binary constraint may be performed with stochastic techniques [16]
or convex analysis optimization [17, 18]. A variational method based on
Total Variation regularization can also be used for this reconstruction
problem [21-23].

Yet, the discrete tomography problem is non-convex and the recon-
structed solution may be trapped in local minima of the regularization func-
tional. The reconstruction errors are very often localized on the boundaries
[22]. We use here stochastic level-set methods for the discrete tomography
problem to improve the reconstruction obtained with a deterministic level-set
scheme [22,23]. The reconstruction results obtained with this new approach
are compared with the ones obtained with the classical simulated annealing
method [24-26] in terms of reconstruction quality and convergence speed.

1.3.2 Global Optimization with Stochastic Level-Set Evolution and Simulated
Annealing

1.3.2.1 Stochastic Level-Set Evolution

We use here the level-set regularization and represent the function f with a
level-set function 0, f = H(6). Let Q be the domain of the image to be recon-
structed, we propose to improve the reconstruction image with the following
stochastic partial differential equation for the level-set function 6, for x € Q,
given by:

d0(x, t) = 60(x, 1) + u(t)|VO(x, )| od W(t) (1.15)

where 0 denotes the Stratanovich convention [12] and 66 is the gradient cal-
culated as explained in Section II.A, Eq. 1.6.

As explained in Section II.B, using the definition of the Stratonovich in-
tegral, the equation can be transformed to get the following Itd stochastic
differential equation:

d0(x,t) = 50 + |VO(x, )| dW(t)

(1.16)

+ %(Aa(x, h - |V9(x,t)|div< vow, b )

[VO(x, )|
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The level-set and stochastic level-set schemes are applied successively on
random time intervals. In the framework of the intermittent diffusion algo-
rithm, the coefficient for the intermittent diffusion is defined as:

u(t) = Y wilis, () (1.17)
j

where [ 5, 7] 18 the characteristic function of the interval [S}, T;]. The time inter-
vals length and the diffusion strengths y; are chosen at random in the range
[0, T] and [0, #,,,,] Where .., is the scale for the diffusion strength and T is
the scale for the diffusion time [8]. With probability arbitrarily close to 1, the
intermittent diffusion method can find the global minimum of the regular-
ization functional in a finite simulation time.

1.3.2.2 Classical Simulated Annealing

Simulated annealing methods are reviewed extensively in [24-26]. Let f; be
the binary reconstructed image, and U the data term U = ||Rf, — p°||, our
aim is to minimize the objective function U on a finite configuration space E
which is the set of binary images:

E={fy=(fihxn fi€{0,1} Vke[l,N]} (1.18)

The classical simulated annealing algorithm is based on the definition of a
Markov chain, ( f"),en on the finite state space E. Each point " in the state
space is defined by the set ( f")o<k<n Of the pixel values. A stochastic search
is performed on E with a “cooling down” algorithm. The boundary between
the 0 and the 1 regions is first calculated with a Sobel filter. Then one pixel is
selected at random on the boundary and is changed and this rule defines the
neighborhood system N( f;) of a point f;, € E:

g €EN(fy) <= 3k fr # gk (1.19)

It is thus possible to define a communication kernel go( f, g), in which all
the new states in the neighbourhood of f are equiprobable:

wor if 8 €N(f)

) (1.20)
0 otherwise

qo( fv, v) = {

The classical simulated annealing algorithm defines an inhomogeneous
Markov chain, with transitions constructed recursively as follows: P(f"*! =

glf" =f)=q(fg) with

(fg) = qo(f,Q)exp(=p,(U(Q) — U(f))" ifg#f
s 1_Zh;&f‘7(.ﬂh) ifg=f

where [a]l+=max(a,0), (S3,)nen the cooling schedule, fO an arbitrary initial
point.

(1.21)
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From the current state f", a test image fi.s; is sampled randomly according
to Egs. 1.20 and 1.21. If U( fiest) > U( f") the proposal f.ss may be accepted. In
the beginning of the simulation, the temperature is high and the state space
is explored freely. As f increases, the images distribution is more and more
concentrated around the minima of U [24-26]. Under some restricting condi-
tions on the cooling schedule, the convergence towards the global minimum
is obtained by the convergence rate may be very slow. Several techniques
have been used to speed up the simulated annealing method but the mod-
ifications are rather empirical [27, 28] and the results obtained seems to be
very dependent on the complexity of the objective function. They will not be
considered here.

1.3.3 Comparison of the Algorithms: Results and Discussion
1.3.3.1 Simulation Details

The simulated annealing algorithm and stochastic level-set methods have
applied to simulated projections of an experimental bone cross-section ac-
quired with synchrotron micro-CT (voxel size:15 um) [29]. Figure 1.1 dis-
plays the 256x256 bone cross-section f* reconstructed from 400 projections
with 400 rays per projections with Filtered Back Projection (FBP). The dis-
crete approximation of the Radon transform is the operator implemented in
the Matlab Toolbox.

First, the deterministic level-set scheme regularization is applied. To ob-
tain a good accuracy, the ¢ was set to ¢ = 0.03. The initial level-set function
chosenis 6y = 0. The regularization parameters were chosen to obtain the best
decrease of the regularization functional. The iterations are stopped when the
iterates stagnate, || fiz1 —fkll2 < 0.01. At the end of this first optimization step,

FIGURE 1.1
Reconstruction of the bone cross-section from 400 projections with the FBP algorithm. The bone
fraction is 14.20%.
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the Morozov discrepancy principle [30] is not satisfied. The discrepancy term
is much higher than the noise level, ||p? — Rf|| >> &. This image is the initial
image used for the application of the stochastic algorithms. For the simulated
annealing algorithm, the initial temperature value is chosen so that most tran-
sitions are accepted, with an acceptance ratio around 0.8.

For the simulation of Eq. 1.16, we use an explicit scheme with finite differ-
ences, the WENO scheme with Ax = 0.5 and At = 0.1. The noise strength p
and the number of iterations T are chosen randomly with a uniform distribu-
tionin [0.01,0.1] and [1,100]. A binary image is then obtained by thresholding
and a signed distance is then used for reinitializations before the stochastic
level-set step. The optimization method was applied for M equally spaced
noisy projections, with M = 10 and M = 15, with N = 367 rays per projections
and with a Gaussian noise added to the projections with a standard devia-
tion 6, = 3 (PSNR=20 dB) and ¢, = 6.5 (PSNR=7 dB). The noise level 6 can

estimated by 6 = v/ MNo,,.

1.3.3.2 Numerical Results

The reconstructed cross-sections obtained with 10 projections and 367 rays
per projection, for the standard deviation ¢, = 3 after the level-set algorithm
and after the stochastic level-set algorithm are displayed in Figure 1.2a and
Figure 1.3a respectively. The difference maps are displayed in Figure 1.2b and
Figure 1.3b. The reconstruction errors on the boundaries of the homogeneous
regions are reduced.

At the end of the deterministic optimization, the discrepancy term
IRf — p?|| is well-above the noise level for different number of projections.
A local minimum is obtained and the level-set algorithm can not escape this

FIGURE 1.2

(a) Reconstruction of the bone cross-section from 10 noisy projections (o, = 3) with the level-
set regularization method. The misclassification rate is 3.29% and the bone fraction is 12.27%
(b) Error map.
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FIGURE 1.3

(a) Reconstruction of the bone cross-section from 10 noisy projections (6, = 3) with the stochas-
tic level-set regularization method. The misclassification rate is 2.56% and the bone fraction is
14.14% (b) Error map.

local minimum. With the iterations, a significant decrease of the data term is
obtained towards these noise levels for both stochastic methods.

The decrease of the misclassification rate as a function of the number of
iterations is displayed in Figure 1.4 for the same number of projections and
noise levels. The misclassification rates obtained at the end of the simulations
are summarized in Table 1.1. Better reconstruction results are obtained with

4.5

N
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.L»)
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1

IS
W
1

Misclassification rate %
(98]
1

T T T
500 1000 1500 2000

Tteration number

FIGURE 1.4

Evolution of the misclassification rate with the iteration number (i) M = 15, 6, = 6.5 (ii) M = 10,
op = 6.5 (iii) M = 15, op = 3 (iv) M = 10, 6, = 3. The dotted lines corresponds to the simulated
annealing and the plain lines to the stochastic level method.
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TABLE 1.1

Misclassification Rates Obtained with the Stochastic Algorithms
Simulated Annealing Stochastic Level-Set

op=3,M=15 1.89 1.56

op=3,M=10 3.12 2.55

op=65M=15 2.9 2.48

op =65 M=10 4.23 3.97

the stochastic level-set algorithm than with the simulated annealing mini-
mization, for all noise levels and numbers of projections. At the end of the
simulations, the errors on the boundary of the images are much lower.

1.4 Stochastic Level-Set Reconstruction in Nonlinear Phase
Contrast Tomography

In this section, we detail the results obtained with stochastic level-set methods
for phase contrast tomography. The inverse problem considered is nonlinear
but the optimization methodology is very similar to the one applied to the
binary tomography problem.

1.4.1 Nonlinear Phase Contrast Tomography

X-ray in-line phase contrast tomography is a very sensitive technique for
soft tissues within dense materials. This imaging technique is based on a
coupling of tomography and phase retrieval [31, 32] and it aims at recon-
structing the complex refractive index [33]. For coherent X-rays obtained with
synchrotrons, the Fresnel intensity is recorded for one or several propagation
distances and for several projection angles after interaction of the X-rays with
the object [34,35]. The inverse problem set by the reconstruction of the refrac-
tive index is nonlinear.

For volumes with several homogeneous materials, the imaginary and real
part of the index are piecewise constant [33], and the level-set regularization
can account for this a priori on the index map. Assuming that the discrete real
and imaginary parts of the index are known, the inverse problem is then for-
mulated as a shape optimization problem. Yet, the nonlinear phase contrast
tomography problem is non-convex and the reconstructed solution obtained
with the deterministic level-set regularization is a local minimum. We inves-
tigate here stochastic perturbations of the boundaries performed with tools
similar to the ones used for binary tomography in [36] to improve the recon-
struction and escape the critical point of the cost functional obtained with the
deterministic method.
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1.4.2 Level-Set Regularization in In-Line Phase Contrast Tomography

The real and imaginary parts of the complex refractive index to reconstruct
from the Fresnel intensity measurements, denoted as 6 and f are defined on a
3D bounded domain (X) with spatial coordinates (x, i, z). We denote (x4, g, 2)
be the rotated spatial coordinate system for an angle ¢ around the z-axis
(Figure 1.5). The sample is irradiated with a monochromatic, coherent, par-
allel X-ray beam propagating in the y, direction with the wavelength 1. The
complex refractive index is given by [37,38]:

n(x,y,z)=1-68(x,y,z) + if(x,y,z) (1.22)

where § is the refractive index decrement and f is the absorption index. Let
Xg = (xg,2), the intensity detected at a distance D after the sample is given by
the squared modulus of the following convolution product [33]:

Ip,o(Xe) = |To(Xo) * Pp(Xo)I* (1.23)

where the Fresnel propagator is written:

1 T
Po(Xo) = —exp <1E|X9|2). (1.24)

The transmittance function Ty is given by:

Ty(Xp) = exp[—Ba(Xo) + ipe(Xos)] (1.25)

N

X-Ray beam Detector plane

FIGURE 1.5

Experimental set-up in propagation based phase contrast tomography with a single propagation-
distance showing the X-ray beam, the rotated coordinate system (xy, 1o, z) for a rotation angle 6,
the sample, and the detector.
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with
Ba(Xe) = = | Al Xy (1.26
and
27
0o(Xs) = 27 [ (1= 800, X (127

Let L(6, xg) the line defined by L(6,xp) = {ys0* + x¢0 : € R}, with § =
(cos(6), sin(0)) and 6" = (—sin(0), cos(9)), for parallel beam projection, with a
beam parallel to the X = (x,) plane and f € L!(X), the Radon transform of f
is defined as:

Rf(0,x9,2) = Rg f(xg) = J f(t)dt (1.28)
teL(6,x9,2)NZ
where L(6, xy, z) is the L(0, x¢) line for the coordinate z. The intensity Ip ¢ can
be reformulated with the Radon transform R.

For simplicity, we assume that § and f are piecewise constant and that
they can take two values &1, 6, and f;, 8, on disjoint subsets X1, X, such that
X = X1 U X,. In order to represent the unknown functions 6 and f, we have
used a level-set function of the first order Sobolev space n € H1(Z):

B =P +Hm) (B, - p1) (1.29)
6 =251+ H(n)(62 — 1) (1.30)

A variational approach is considered with the following regularization
functional:

Flnl = Npelnl = I, I3 + a1 (IlnllZ, + 11VallIZ,) (1.31)

where I, are the noisy intensity data and a; a regularization parameter.

The minimizers of the regularization are found numerically with first or-
der optimality conditions for the smoothed functional where the Heaviside
function is replaced by its approximation:

I3 olnllp,eln] = 15,1 + a1 (I = A)ly] = 0 (1.32)

where I7; denotes the adjoint of the Fréchet derivative of the intensity operator
with respect to L, spaces. I represent identity and A the Laplacian operator.
The solutions of the optimality system are obtained with a Gauss-Newton
method. The update is given by #,,; = 1, + 61 and 6y is obtained with the
linear system:

(U3l 1D 6l0*1) 80 + aa(I = A)on = —F'[n"] (1.33)

An explicit formula can be derived for the Fréchet derivative of the inten-
sity Ip[d, f] and its adjoint are given in [39].
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1.4.3 Stochastic Level-Set Methods for Phase Contrast Tomography

Stochastic level-set evolution The deterministic optimization of the level-set
function is often stopped in local minima. We propose to improve the recon-
struction image obtained with the deterministic level-set evolution with the
following stochastic partial differential equation for the level-set function 7,
for 7 € X by:

dn(7,t) = én(7,t) + p(t)|Vn(7, t)|odW(t) (1.34)

where o0 denotes the Stratanovitch convention and & is the deterministic
change calculated with the Gauss-Newton method of Egs. 1.32, 1.33 as ex-
plained in the former section. We obtain the following It6 stochastic differen-
tial equation with the definition of the Stratonovich integral:

dn(7,t) =én + p(t)|Vy(7, t)|dW(t) + %P(t)(A’I(71 t)

V(7,1 )
V(7 1)

The deterministic level-set and stochastic level-set schemes are applied
successively on random time intervals with an intermittent diffusion similar
to the one proposed for the binary tomography. For the stochastic evolution,
the time interval lengths and the diffusion strengths p are chosen at random
with a uniform distribution in the range [0, Tux] and [0, p,,.,.] Where p ., is
the scale for the diffusion strength and T}, is the scale for the diffusion time.

The minimization scheme is summarized in Algorithm 1:

Vi, )i ( (1.35)

Algorithm 1

Let At be the time step of the discretization of Eq. 1.35,
For k=1 to Maxiter:

Step 1: chose a projection angle 0 at random with a uniform distribution,
chose atrandom ¢ € [0, Ty0x], and p € [0, p,,,,.), fOr the iteration number
Niter,sto = t/ At, use the discrete version of Eq. 1.35.

Step 2: calculate 61 with Eqs. 1.32, 1.33, for Niter deterministic = 100 iterations.
Step 3: reinitialize the level-set function n with the signed distance
function.

end

The derivative in Eq. 1.32 and Eq. 1.33 describes the sensitivity of the reg-
ularization functional with respect to deterministic changes of shape of the
boundary between the regions of constant values of the index. The equation
Eq. 1.35 corresponds to stochastic perturbations of the geometry. Topology
changes like splitting and merging of domains can be obtained with the level-
set approach [40]. It has also been proposed to add some new components



Tomography Reconstructions With Stochastic Level-Set Methods 15

or small holes far from the boundaries to modify the topology of the recon-
structed images [39].

1.4.4 Numerical Results and Discussion

In the following, we compare the deterministic level-set algorithm with the
modified algorithms with the stochastic evolution.

1.4.4.1 Simulation Details

The deterministic and intermittent stochastic level-set algorithms and the
deterministic algorithm are compared in this section on one multi-material
object made up of two homogeneous materials. It is possible to extend
these results to objects with more than two materials with multi-level
regularization.

The simulated test object (O1) consists of an Al cylinder of 20 ym in diam-
eter and 110 ym in height embedded in PMMA. Some horizontal sections of
the # and 6 maps of the simulated object (O1) are displayed in Figure 1.6.

Letyu = 4”ﬁ , the § and u values used for PMMA and Al for 24 keV X-rays
are summarlzed in Table 1.2. The f and § values were discretized on a reg-
ular grid with a pixel size of 1.5 ym. The cylinder is included in a rectangu-
lar volume of size N1 X N; X N pixels with N; = 74 and N, = 109 used
for the simulations. The number of projection angles Ny used for the simu-
lation are Ny = 75,125 and 180. A single sample-to-detector distance D =
100 mm is considered. The Radon transform is the projection operator im-
plemented in the Mablab Toolbox. The intensity data were corrupted with
additive Gaussian white noise. This noise distribution corresponds to the
noise measured experimentally. The signal to noise ratio was measured with
the peak-to-peak signal to noise ratio (PPSNR). To obtain a good accuracy,
the e parameter of the smooth approximation of the Heaviside function was
fixed to e = 0.03.

3 (10%)

Il “M\H\‘\‘\/

= 70
40 o ‘ 50 60
Y(pixels]

FIGURE 1.6
Ground truth # and § maps for the object (O1).
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TABLE 1.2

Values of the § and p Values for the Materials
in the Object, at 24 keV X-rays from
http:/ /henke.lbl.gov /optical_constants

Material 8(1077) u(m-1)
PMMA 4.628 41.2
Al 9.396 502.6

In order to evaluate the efficiency of the reconstruction, the relative
mean square errors (RMSE) using the L,(Z) norm, [|6* — §|l2/116*|l> and || " —

Bll2/115 |12 have been studied. Let Dy = W the value of the data term
for the projection angle 6 and the value 7. The iterations are stopped when
the average value of the variation of the data term Dy — Dy evaluated on 10

iterations is below 0.05.

1.4.4.2 Numerical Results for Deterministic Level-Set Method

For piecewise constant § and f maps, the reconstruction results are improved
with the level-set regularization with respect to Tikhonov regularization
because some a priori information on the possible values of § and f is in-
cluded. Some simulations have been performed to reconstruct the object (O;)
with an initial diameter of the central Al cylinder equal to 40 um, twice the
diameter of the cylinder to be reconstructed and noise levels of 30 and 48 dB.
With this starting map for the refractive index, the inverse problem is an eas-
ier shape optimization problem in which only the possible discrete values of
the real and imaginary parts of the refractive index are known but not the
shape of the regions where the refractive index takes constant values.
Figure 1.7 displays the horizontal section of the initial # and § maps.
Figure 1.8 presents some horizontal sections of the errors for the real and
imaginary part of the reconstructed index map for a PPSNR of 48 dB after 500
iterations. These figures show that the reconstruction errors have been signif-
icantly reduced. Some errors are still present on the boundaries between the

0.3 0.15
0.25
~ 02

°¢O
2 015

= 0.1
0.05
0 0
60 L

0 70 70
a0 L Tso 60
Y pixels] 30

/ =0
; 30

. 2
09 1020 X[pixels]

X[pixels]

Y/pixels] 20 0 10

FIGURE 1.7
Horizontal section of the initial # and é maps for the object (07).
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FIGURE 1.8
Horizontal section of the final error map for f and é for a PPSNR of 48 dB.

two materials. Similar results are obtained for the other sections and the noise
level of 30 dB with reconstruction errors at the interface between the different
regions.

In order to have more quantitative information about the convergence of
the method, the evolution of the relative mean square errors (RMSE) ||5* —
Sll2/116%|I2 and ||* — Bll2/ 1|57 ||2, are displayed as a function of the number of
iterations for a PPSNR of 30 dB and 48 dB in Figures 1.9 and 1.10. The relative
mean square errors on the two components # and § of the refractive index are
much decreased.

1.4.4.3 Deterministic Level-Set versus Stochastic Level-Set Algorithm

For higher noise levels and initializations maps with very different shape
from the ground truth, the level-set regularization algorithm may be stuck in
local optima. The stochastic level-set algorithm improves the reconstruction
results. In order to perform a comparison of the deterministic and stochas-
tic level-set algorithm, a first reconstruction is performed on the simulated

MSE &

100 200 300 400 500
Iteration

FIGURE 1.9
Evolution of the RMSE on § with the iterations for the noise levels 30 dB (dotted line) and 48 dB
(plain line).
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MSE B

100 200 300 400 500
Iteration

FIGURE 1.10
Evolution of the RMSE on g with the iterations for the noise levels 30 dB (dotted line) and 48 dB
(plain line).

object (O1). The initial guess is a large cylinder with a diameter twice the di-
ameter of the object (01). Then algorithm 1 is applied to this initial recon-
struction for PPSNR of 24 and 18 dB. Following algorithm 1, the numbers
of stochatic iterations are chosen randomly with a uniform distribution be-
tween 1 and 50 and the noise strength in the range [1,107%]. For the simula-
tion of Eq. 1.35, we use an explicit scheme with finite differences, the WENO
scheme [41] with Ax = 0.1 and At = 0.01. An iterated deterministic min-
imization is performed for comparison with periodic reinitialization of the
level-set function and projection angles chosen at random.

The evolutions of the data term, ||Ipg[n] —Is,|l/Ills,|| are displayed in
Figure 1.11 for the deterministic and intermittent stochastic algorithms

0.4 T T T T

03}

02}

Data term

0.1}

20 40 60 80 100
Iteration

FIGURE 1.11

Evolution of the data term for the deterministic level-set algorithm for 24 dB (black line), for the
intermittent stochastic level-set algorithm for 24 dB (blue line) and for the intermittent stochastic
level-set algorithm for 18 dB (dotted line).
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FIGURE 1.12

Evolution of the RMSE for f and 6 for the deterministic level-set algorithm for 24 dB (black line),
for the intermittent stochastic level-set algorithm for 24 dB (blue line) and for the intermittent
stochastic level-set algorithm for 18 dB (dotted line).

starting from the initial reconstruction for the noise levels 18 dB and 24 dB.
The deterministic algorithm is not efficient to achieve lower reconstruction
errors. Different behaviours are obtained depending on the random projec-
tion angles 6 for similar noise levels. Yet, after hundred iterations, only small
fluctuations are observed on the real and imaginary parts of the refractive in-
dex, # and 6, and the uncertainty on the RMSE given in the Tables is below
5% for a given noise level.

The evolution of the normalized mean square error, ||5* — §||2/|6*||2 and
I8 = Bll2/115*|l2, are displayed as a function of the number of iterations for
the deterministic and stochastic algorithms in Figure 1.12. The iterated deter-
ministic minimization can not escape the local minimum corresponding to
the initial reconstructed § and § volumes. A larger decrease is obtained with
the stochastic scheme. Table 1.3 presents the reconstuction quality results for
different noise levels and the different algorithms. The results correspond to
an average over three trials. This table shows the efficiency of the stochastic
optimization.

Some horizontal sections of the difference image between the ground
truth image and the reconstructed real index map obtained for the mini-
mum of the discrepancy term for 24 dB with the stochastic or the deter-
ministic methods are displayed in Figure 1.13. These figures show that the

TABLE 1.3
RMSE for f and 6 for Deterministic Level-Set and Stochastic Level-Set
RMSE B,LS RMSE §,LS RMSE g, Stochastic LS RMSE §, Stochastic LS

PPSNR=18 dB 0.28 0.85 0.15 0.55
PPSNR=24 dB 0.22 0.80 0.06 0.26
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FIGURE 1.13

Horizontal section of the difference image between the ground truth and the reconstructed g
maps with the stochastic and the deterministic level-set algorithms for the noise level 24 dB.

reconstruction errors have been significantly reduced. Similar results are ob-
tained for the imaginary part of the refractive index.

1.4.5 Conclusion

We have studied some aspects of the nonlinear inverse problem associated
with the reconstruction of the real and imaginary parts of the refractive index
in phase contrast tomography and with the binary tomographic reconstruc-
tion problem. Both are regularized with level-set functions and with Total-
Sobolev penalty term. The deterministic optimization of the regularization
functional leads to local minima with large reconstruction errors. The recon-
struction results are improved with a stochastic perturbation of the shape of
the reconstructed regions with a stochastic level-set evolution. The evolution
is based on a stochastic partial differential equation with the Stratonovich
formulation. The stochastic algorithm leads to a decreased reconstruction er-
rors localized on the boundaries for different noise levels. The method gives
better reconstruction results than the classical simulated annealing method.
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