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In modern shape analysis, deformation is quanti�ed in different ways depending on
the algorithms used and on the scale at which it is evaluated.While global af�ne
and non-af�ne deformation components can be decoupled and computed using a
variety of methods, the very local deformation can be considered, in�nitesimally, as
an af�ne deformation. The deformation gradient tensorF can be computed locally
using a direct calculation by exploiting triangulation or tetrahedralization structures or
by locally evaluating the �rst derivative of an appropriateinterpolation function mapping
the global deformation from the undeformed to the deformed state. A suitable function
is represented by the thin plate spline (TPS) that separatesaf�ne from non-af�ne
deformation components. F, also known as Jacobian matrix, encodes both the locally
af�ne deformation and local rotation. This implies that it should be used for visualizing
primary strain directions (PSDs) and deformation ellipsesand ellipsoids on the target
con�guration. Using C D FTF allows, instead, one to compute PSD and to visualize
them on the source con�guration. Moreover, C allows the computation of the strain
energy that can be evaluated and mapped locally at any point of a body using
an interpolation function. In addition, it is possible, by exploiting the second-order
Jacobian, to calculate the amount of the non-af�ne deformation in the neighborhood
of the evaluation point by computing the body bending energydensity encoded in the
deformation. In this contribution, we present (i) the main computational methods for
evaluating local deformation metrics, (ii) a number of different strategies to visualize them
on both undeformed and deformed con�gurations, and (iii) the potential pitfalls in ignoring
the actual three-dimensional nature ofF when it is evaluated along a surface identi�ed
by a triangulation in three dimensions.

Keywords: local deformation, tensor visualization, strain d irections, thin plate spline, �rst derivative,
second derivative
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INTRODUCTION

Modern shape analysis exploits the potential of speci�c
computational algorithms applied to phenomena where
the deformation and/or the variation of shapes are under
investigation. In geometrical terms, shapes are represented
by vectors of point coordinates (Dlandmarks) that can be
compared by means of di�erent mathematical formalisms. In
shape analysis, the term “shape” is referred to forms (intended as
shapeCsize) that have been standardized at unit size that can be
quanti�ed in various ways (see below). Prior to computing any
kind of shape distance or deformation estimation, two or more
shapes are commonly “superimposed” to �lter out information
relative to position, rotation, and, optionally, size, which do not
represent intrinsic shape variation. At this point, two principal
cases must be distinguished:

i) Shapes are identi�ed by clouds of points without any
speci�c correspondence/homology.

ii) Shapes are de�ned by landmarks that are anatomically
or topologically homologous across di�erent con�gurations
(Dpoints correspondence).

As for the �rst case, while most applications, from biology
(Adams et al., 2013) to paleontology (Piras et al., 2010) to
medicine (Piras et al., 2019), usually analyze shapes and forms by
using homologous anatomical landmarks, the use of continuous
surfaces without points correspondence is faced by exploiting
the potential of a plethora of di�eomorphic techniques not
treated in detail here (seeTrouvé, 1998; Durrleman et al., 2012).
Brie�y, when using these di�eomorphic techniques, shapes are
considered as images (2D) or surfaces (3D) that are registered
using di�erent algorithms (Ceritoglu et al., 2013): di�eomorphic
approaches are used for this purpose such as large di�eomorphic
deformation metric mapping (LDDMM;Miller et al., 2014, 2015)
that represents, today, one of the most used (among many others)
approaches for estimating shape di�erences, surface matching,
and Parallel Transport of deformations (Charlier et al., 2017). In
this context, size is more frequently quanti�ed usingm-Volume.

In the second case, one of the most used approaches to align a
shape onto another is ordinary Procrustes analysis (OPA;Gower,
1975). If multiple shapes are to be analyzed, their consensus
landmark con�guration (Dgrand mean) is computed by applying
the generalized Procrustes analysis (GPA;Gower, 1975; Rohlf and
Slice, 1990). OPA and GPA can be performed with or without
scaling landmark con�gurations to unit size, the latter being
usually represented by centroid size (CS, the square root of
sum of squared distance between landmark's con�guration and
their centroid). Scaling or not scaling shapes at unit CS leads to
di�erent Riemannian manifolds (size- and shape-space or shape-
space;Dryden and Mardia, 2016) described by di�erent metrics
and possessing di�erent geometrical properties (Le, 1988). The
Riemannian manifolds are curved spaces that can be considered
as the multidimensional generalization of a curved surface.
Shape-spaces are particular Riemannian spaces whose points
represent shapes. In general, shape-spaces are not representable
pictorially except for the shape-space case of three landmarks in
two dimensions where the manifold is a sphere where shapes live

under the same equivalence classes of rotation translation and
size (de�ned as CS).

OPA and GPA translate all shapes imposing their centroids on
the origin of axes and rotating them to minimize the Procrustes
distanceD as de�ned as in Equation (1):

D D 2arcsin

8
<

:

q P km
ij

�
Xij � Yij

� 2

2

9
=

;
(1)

where X and Y represent two centered, aligned, and scaled
con�gurations; k is the number of landmarks; andm is the
number of dimensions.D is a geodesic distance that is often
linearized by orthogonally projecting it in the plane tangent to
the consensus. After GPA, common ordination methods, such
as principal component analysis (PCA), are frequently applied in
order to �nd directions of variations. This work�ow is routinely
applied in Geometric Morphometrics (GM;Bookstein, 1991;
Claude, 2008; Zelditch et al., 2012; Dryden and Mardia, 2016).

In this article, we focus on those applications where point
homology/correspondence is assumed (i). In the case of two
aligned shapes or of a PCA performed on a collection of
shapes either, the notion of deformation always pertains to a
pair of shapes, i.e., a source (X: the “undeformed” shape that
can be a real shape or a sample's consensus) and a target (Y:
representing the deformation of the source, i.e., a real shape
or a shape predicted by an ordination axis). Recently, several
contributions focused on the visualization of deformations by
using di�erent kinds of local measures from in�nitesimal local
area changes (Márquez et al., 2012, 2014) to velocity �elds of local
deformations (Kratz et al., 2013). Locally (see below), tensors
are used to quantify local deformation. The choice to visualize
a unique particular metric extracted from a tensor inevitably
implies a certain loss of information even in the simplest caseof
local a�ne deformation of �nite elements (FE) that are usually
triangular in 2D or tetrahedral (less commonly cubic) in 3D
(tetrahedral FE structures will be treated here).Márquez et al.
(2012)showed the importance of the evaluation, quanti�cation,
and statistical assessment of local deformation in GM examples
coming from evolutionary biology. GM is being routinely
used to address a wide spectrum of hypotheses. In particular,
the use of shape analysis has been fruitfully coupled with
phylogenetic comparative methods in order to explore patterns of
convergence/divergence (Stayton, 2015; Castiglione et al., 2019),
morphospace occupation (Santos et al., 2019), morphological
integration (Piras et al., 2014; Sansalone et al., 2019), functional
hypothesis (Oxnard and O'Higgins, 2009), and developmental
growth (Angulo-Bedoya et al., 2019; Colangelo et al., 2019). All
these studies share the same basic source of phenomenological
interpretation: the shape change studied via shape analysis (very
often GM). The importance to evaluate more quantitatively the
local deformation stems from the fact that it allows a statistical
treatment of shape variation (Márquez et al., 2012).

In this paper, we aim to describe and discuss the principal
strategies available for computation of local deformation and
its visualization for paleontologists and evolutionary biologists
that usually use shape analysis in their investigations. We also
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FIGURE 1 | Left panel : a non-af�ne deformation of a regular square.Right panel : a global non-af�ne deformation is shown. In�nitesimally, thedeformation can be
considered as linear.

present the very basic mathematical details underlying analytical
machinery encoded in common shape analysis practice coupled
with essential notions of continuum mechanics related to the
estimation of local deformation. In particular we (i) describe the
main analytical basis for the quanti�cation of local deformation;
(ii) illustrate and, in some cases, implement the main optionsand
metrics for visualizing it on both 2D and 3D objects; (iii) illustrate
an important feature of deformation in 3D when the shapes are
represented by triangular surfaces having only a “shell” structure
rather than a volumetric appearance; and (iv) present some
applications in both 2D and 3D paleontological case studies.

We also provide (as Supplementary Material) fully
reproducible codes in R with all necessaryad hocbuilt functions
aimed at reproducing any �gure and analysis presented in
the paper.

COMPUTATION METHODS

Deformation Gradient Tensors at Local
Scale
The main statement of the present paper is related to the concept
of local deformation that is always considered, in�nitesimally, as
an a�ne transformation even when the global transformation
a�ecting the source shape is not (Figure 1). For simplicity, we
will use here the term a�ne as a synonym of uniform and
linear deformation. In fact, one gets linear deformations by
removing translations from a�ne deformations. Uniform means
that the gradient of the deformation (the local strain, see below)
is constant. At the same time, we will use non-uniform as a
synonym of non-linear and non-a�ne. In the �rst example, we
consider the non-a�ne deformation a�ecting a square grid in
Figure 1. In�nitesimally, each square sub-element of the grid
experiences an a�ne transformation that deforms it into a
parallelogram. InR2 (i.e., in two-dimensions), the neighborhood
around every point of a square can be mapped onto a di�erent
one by a linear transformation represented by a 2� 2 matrix. We
would deal with 3� 3 matrix inR3 (i.e., in three dimensions). In
particular, it is possible to transform a point of coordinatesp �
(x, y) into an in�nitesimally deformed one of coordinatesp C u
� (x,y) C (ux,uy) D (x C ux,yC uy) with the displacement vector
�eld u � (ux, uy) through the displacement gradient tensor

H D

" @ux
@x

@ux
@y

@uy
@x

@uy
@y

#

(2)

If we add the identity matrixI , we obtain the deformation
gradient tensor

FD H C I D

" @ux
@x C 1 @ux

@y
@uy
@x

@uy
@y C 1

#

(3)

Denoting X the k � m matrix, with k the number of
landmarks andm the number of dimensions, of an undeformed
con�guration (here we refer to the small squared cell of the grid),
we can obtainY as linear transformation ofX using

Y D XFT (4)

With “T” the transpose symbol.
The same holds inR3 by adding the z-coordinate to

the system.
F encodes deformationC rotation, and these two aspects can

be decoupled by computing a polar decomposition ofF.

F D RU (5)

with R them � m rotation matrix encoded inF and

U D
p

C (6)

with

C D FTF (7)

C is symmetric and positive de�nite. The very nature ofC is that
it encodes exclusively the local deformation on the sourcewithout
rotation. It can be used to perform an eigenvalue decomposition
obtainingv and � , i.e., the eigenvectors and the corresponding
eigenvalues;� is the collection ofm eigenvalues usually returned
in decreasing order, whilev is its corresponding collection of
m vectors each withm components. It must be noted thatR
resulting from the polar decomposition ofF is not equal to the
rotation found during OPA for the minimization ofD. Varano
et al.(2018, section 4.3) distinguish the two rotations by unifying
OPA and modi�ed OPA (MOPA) in one formalism. Moreover,R
has a local meaning and can be di�erent at any chosen evaluation
point while when two con�gurations are superimposed, a global
rotation is found.

It is not uncommon, in GM studies, to interpret the
local deformation of a given target (w.r.t. a source) as the
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FIGURE 2 | Relationship between displacement vectors (in blue) and local deformations as depicted using
p

C (on the source) orF (on the target). First row,left
panel : a simple rotation that produces displacements without deformation; �rst row, right panel : a shearCrotation with deformation ellipses evaluated at target
vertices; second row,left panel : the same shearCrotation with deformation ellipses evaluated at source vertices; second row, left panel : the same shear without
global rotation (�ltered out via OPA) with deformation ellipses evaluated at source vertices; third row,left panel : a generic source (in black) and a non-aligned generic
target (in red); third row,right panel : plot with source and the target aligned using OPA (in red) orMOPA (in blue). Principal strain directions (Dellipse's axes) are in
black if tensile and in violet if compressive.

collection of displacement vectors of landmarks identifying the
con�gurations. This practice inevitably leads to a misconception
of what local deformation actually is and, consequently, toa
misinterpretation of the process underlying observed shapes.

Figure 2shows this point by starting with a simple rotation (�rst
row, left panel) of a squareX with coordinates x1(� 0.5,0.5),
x2(0.5,0.5), x3(0.5,0.5), x4(� 0.5,0.5) that does not encode a shape
deformation but that presents non-null displacements (blue
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FIGURE 3 | Left panel : a bilinear transformation deforms the regular square intoa trapezoid;
p

C was used to compute local deformations at source vertices with
displacement vectors (in blue).Right panel : the same with deformation ellipses evaluated on the targetusing F. Principal strain directions (Dellipse's axes) are in black
if tensile and in violet if compressive.

arrows). When applying a shearC rotation–deformation using

F D
�
1.12 2
0.31 1.12

�
, we can show thatF andC (which are constant

in the case of a�ne transformations), evaluated at target and
source vertices, respectively, do not follow displacements inany
way (�rst row, right panel and second row, left panel). Even
removingglobalrotation using OPA, displacements do not bear
the same meaning of deformation ellipses. In this particular case,
OPA and MOPA coincide: the two rotations, in fact, coincide
if we found UXTX D XTXU with U de�ned in Equation (6).
This is the same as saying that the principal axes of X have the
same directions as the principal strains ofF. A square is also a
particular case as the inertia tensorXTX is spherical and does
not have principal axes. In the case of two generic shapes, a
source and a target linked by a non-a�ne transformation,
OPA and MOPA lead to di�erent global alignments (Figure 2,
third row). The same e�ects are evident also in the case of
non-a�ne transformations. Figure 3 shows a simple bilinear
transformation that deforms the same square as inFigure 2
into a trapezoid with coordinates x0

1(� 1,0.25), x02(1,0.25),
x0

3(0.3,0.25), x04(� 0.3,0.25). Rotation is not present in this
transformation, and the two shapes are then intrinsically aligned.
C andF were evaluated at source and target vertices, respectively.
Displacements, again, cannot be considered as proxies of local
deformation mainly for landmarks 1 and 2 (D at the square base).
It is thus important to underline that during OPA, position and
rotation (as well as optionally size) are removed globally. Locally,
rotations are still present and the relationship between local
deformation and displacements depends on thein�nitesimal
di�erencesamong displacements as encoded in the displacement
gradient tensorH. When dealing with shapes more complex than
the platonic ones shown here, things become more complex, and
it is necessary to carefully look at local deformations and
displacements in the correct way (see real examples below).F
maps in�nitesimal deformations between the reference and target
con�gurations by measuring the rate of shape deformation at

FIGURE 4 | Left panel : an undeformed triangle.Right panel : its deformed
state. Axes used for derivingF are shown. c, centroid.

any point along all directions simultaneously. It is also known
in literature as Jacobian matrix (Márquez et al., 2012). In this
paper, we considerF as a synonym of Jacobian matrix and
its determinant indicates the ratio between target and source
m-Volumes, i.e., the in�nitesimal change inm-Volume in the
neighborhood of the point whereF is evaluated.

While the explanation above refers to the general continuous
case,FandCcan be obtained in the discrete case using alternative
ways. In this paper, we propose two approaches:

a) Direct calculation: the simplest case to illustrate this is the case
of two trianglesX and Y as illustrated inFigure 4. Triangles
are the most used basic geometries in 2D FE analysis, and they
can experience only a�ne transformations. For this reason,
they are used for mesh generation (as done in this paper)
in order to evaluateF within a larger body (see below). We
calculate the covariant basisa1 and a2 on X as the vector
di�erences between two verticesp1 andp2 andX centroid (c)
and their normal vectora3.

a1 D p1 � c

a2 D p2 � c

a3 D a1 � a2
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we can usea3 in order to obtain the contravariant basis

a1 D .a2 � a3/=.a1 � .a2 � a3//

a2 D .a3 � a1/=.a1 � .a2 � a3//

The covariant basis inY is as follows

a0
1 D p0

1 � c0

a0
2 D p0

2 � c0

F is obtained as

F D
�
a0

1 
 a1�
C

�
a0

2 
 a2�
(8)

This work�ow is valid for triangles in bothR2 and R3. For
tetrahedra inR3, the work�ow is pretty similar with the
inclusion of the calculation of a third axis corresponding to
the tetrahedron's face not lying along the plane identi�ed by
three landmarks belonging to the tetrahedron.

b) Evaluation of the deformation gradient tensorF starting from
a global interpolating function that models the deformation of
X to obtainY.

A convenient interpolant is represented by the thin
plate spline (TPS), a special case of kriging (Kent and
Mardia, 1994). TPS is the most used interpolation function
in biological and paleobiological investigations that exploit
modern shape analysis potential.

X andY can be complex bodies constituted by homologous
landmarks within which we evaluateF locally at any desired
point (thus not by using the direct calculation on mesh
triangle's centroids) starting from TPS coe�cients.

The landmark-wise representation of TPS (Dryden and
Mardia, 2016, Equation 12.8) is

%.x/ D cC Ax C WTs.x/ ,x 2 " m (9)

with " m being them-dimensional Euclidean space,c is a
point of " m represented by anm � 1 matrix, A is a linear
transformation of" m represented by anm � m matrix,W is a
k � m matrix representing the non-a�ne component (Dryden
and Mardia, 2016; see below), ands is ak � 1 matrix s(x) D
(s(x – x1). . . s(x – xk))T with:

�
�
h
�

D
�
�
�
�h

�
�
�
�2log

� �
�
�
�h

�
�
�
�2

�
if

�
�
�
�h

�
�
�
� > 0I �

�
h
�

D 0 if
�
�
�
�h

�
�
�
� D 0 for m D 2.

�
�
h
�

D �
�
�
�
�h

�
�
�
� if

�
�
�
�h

�
�
�
� > 0I �

�
h
�

D 0 if
�
�
�
�h

�
�
�
� D 0

for m D 3.

Using the shape-wise representation, where a con�guration is
de�ned in the Ck

m con�guration space (withk the number of
landmarks andm the number of dimensions), we have:

%(X) D lkcT C XAT C SW,X 2 Ck
m,Sij D � (xi � xj) (10)

wherelk is a column vector of ones of lengthk.

TPS �nds the best functions by minimizing the cost
function bending energy

J.%/ D �� trace (WTSW) (11)

where� D 16 form D 2 and� D 8 for m D 3 (seeVarano et al.,
2017). This corresponds to the integral

J(%) D
X m

iD1

X m

jD1

X m

lD1

Z

Rm

�
@2%i

@xj@xl

� 2

(12)

This represents a mean elastic energy evaluated on thewhole
Rm as the e�ect of the non-a�ne part of the deformation%
(Bookstein, 1989).

The usefulness of TPS is that it separates the global a�ne
part from the non-a�ne one.XAT in Equation (10) represents
the a�ne part of the transformation with A an m � m
matrix that corresponds exactly toF in the special case of a
uniform deformation applied toX. Varano et al. (2018)argued
that while XAT ? W, it is not orthogonal toSW (i.e., the
non-a�ne part of the deformation).S is the k � k matrix
where the biharmonic functions(h) is evaluated on the source
con�guration and

W D � 11Y (13)

With � 11 being the bending energy matrix (seeDryden and
Mardia, 2016) estimated uponX.

Varano et al. (2018)proposed di�erent methods and
strategies to calculate the a�ne component even while using
the TPS by exploiting the so-called “TPS space” (Varano et al.,
2017, 2018). For the same reason,Rohlf and Bookstein (2003)
added to the existing method proposed inBookstein (1996)
two new methods for computing the a�ne component in
a transformation: (i) the complement of the space of pure
bending shape variation and (ii) the regression method. These
two methods do not require the reference con�guration to
be aligned to its principal axes. While the former implies the
computation of the bending energy matrix, the latter does not
and can be easily implemented using the computation of the
pseudoinverse matrix in a linear system relating the source
and the target con�gurations. This solution is the same as the
least squares estimator when the aim is the estimation of the
a�ne transformation between a source and a target shape.

When evaluating in�nitesimally the gradient of the
deformation estimated by the TPS, namely,Ftps, we
always obtain a linear transformation as, in�nitesimally,all
transformations become linear.

Figure 5 summarizes the main concept brie�y exposed in
this section.

Computationally,Ftps can be derived as follows:

– Given a pair of shapesX� Ck
m (the undeformed) andY� Ck

m (the
deformed), one can compute A, W, and S using Equation (10),
yielding the best interpolant%.

Frontiers in Earth Science | www.frontiersin.org 6 March 2020 | Volume 8 | Article 66

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Piras et al. Visualization of Local Deformation in Paleobiology

FIGURE 5 | Synthetic illustration showing the very basic mathematical relationship betweenF, C, and R as well as the geometrical meaning ofv and vy.

– The gradient of the interpolant is the map:r %: +m ! Mm� m
associating to each point n� +m the Mm� m matrix resulting
from the sum ofA in Equation (10) with the product between

them � k matrix WT in Equation (10) and thek � m matrix
r s containing the �rst partial derivatives of the biharmonic
function evaluated on each point n.
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Speci�cally in 2D:

r .%/n D

" @%1
@x

@%1
@y

@%2
@x

@%2
@y

#

D
�
A11 A12
A21 A22

�

C
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W11 : : : W1k
W21 : : : W2k

�
2

6
4

@�1
@x
: : :
@�k
@x

@�1
@y
: : :
@�k
@y

3

7
5 (14)

With �rst partial derivatives:

@�=@x D 2� xlog(� x2 C � y2) C 2� x (15)

@�=@y D 2� ylog(� x2 C � y2) C 2� y (16)

Wheredx D xn � xk anddy D yn � yk (17)

And in 3D
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With �rst partial derivatives:

@�=@x D �
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(19)
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(20)

@�=@z D �
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p
� x2 C � y2 C � z2

(21)

Where

� x D xn � xk, � y D yn � yk, and� z D zn � zk (22)

While r (%) informs about the deformation directions and
magnitudes at evaluation points, one could be interested in the
local changes of these directions and magnitudes. This means
computing the second-order gradient deformation tensor
rr (%) that allows to quantify the amount of local bending
energy stored in the deformation.rr .%/ hasm � (m � m)
components. It is convenient to represent these components
in matrix format. In particular, we representrr .%/n as the
product of anm � k matrix with ak � (m � m) matrix with n
the point whererr .%/ is evaluated.

For 2D problems we have:
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With second partial derivatives:

@2�

@x2 D 2 C (4 dx2)=(dx2 C dy2) C 2 log(dx2 C dy2)

(24)
@2�

@y2 D 2 C (4 dx2)=(dx2 C dy2) C 2 log(dx2 C dy2)

(25)
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@x@y

D
4dxdy
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Where

� x D xn � xk and� y D yn � yk (27)

In 3D, we have:
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With second partial derivatives:
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(34)

Where

� x D xn � xk, � y D yn � yk, and� z D zn � zk (35)

jjrr .%/ jj 2 represents justJ.%/ presented in Equation (12)
when it is evaluated on wholeRm. Locally, jjrr .%/n jj 2

can be interpreted as thebending energy density, i.e., how
much is non-a�ne (Dnon constant) local deformation in the
neighborhood of n where it has been evaluated. Moreover, in
the presence of an FE mesh, it can be evaluated at centroids
of each element and multiplied by the element'sm-Volume to
compute, in a discrete way, the body bending energyJ• that
has an important mechanical meaning in the decomposition
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of deformation and for its relationship with the strain energy
' (see below).Varano et al. (2018)provided a detailed
description of the relationship betweenJ, J• , and# and their
importance in computing the direct transport, i.e., the parallel
transport the TPS space (Varano et al., 2017, 2018).

In particular,

� D J=J•

gives thedecayindex Varano et al. (2018), i.e., the ratio
between bending energy computed on whole Rm and on
the body only. Recently,Varano et al. (2019)proposed the
construction of the body bending energy matrix B• in order to
restrict it exclusively within the physical boundaries of objects
involved in the deformation analysis.

The bending energy can be considered as a pseudo-distance
as it vanishes for globally a�ne transformations. A more
physical distance, used in continuum mechanics, that vanishes
on the rotational part of the local deformation, is the complete
strain energy:

' s D
1
2

Z

•
2� E � E C � (trE)2 (36)

where � and � are the Lamé elastic moduli, related to the
material properties of the body, and

E D
r u C r uT

2
(37)

is the strain tensor (for small displacement). In the case of pure
geometrical structures,� and � are immaterial and we could
adopt a simpli�ed expression for the strain energy:

' D
1
2

Z

•
E� E (38)

As already stated for body bending energy, this strain energy
becomes an energy density when evaluated in�nitesimally at
speci�c locations.

Principal Strain Directions, Deformation
Ellipses, and Ellipsoids
One can usev and� in order to depict deformation directions
of a unitary circumference (in 2D) or a sphere (in 3D) as
shown inFigure 5, conveniently rescaled if necessary, and the
principal axes of the resulting ellipses (or ellipsoids inR3).

The principal axes identify the (reciprocally) orthogonal
principal strain direction (SD) given byv while � gives their
squared magnitudes.

As stated above,C does not encode rotation; thus,
p

C,
v, and � must be used in order to map SD, and to depict
deformation ellipses or ellipsoids, on thesourceshape; in
order to depict this information on the target shape using SD
encoded inv, v must be pre-multiplied byF in order to depict
SD on the target con�guration such as

vy D Fv (39)

vy already encodes SD magnitudes. This procedure rotatesv
within the target according toR encoded inF.

SD possesses an important deformational and mechanical
meaning when computed on deformed shapes that are the
result of speci�c forces such as in the left ventricle contraction
(Evangelista et al., 2015; Gabriele et al., 2016; Piras et al., 2017;
Varano et al., 2018). � i D 1 indicates no deformation,� i > 1
indicates a deformation that produces an expansion (Dtensile
SD) along the direction of the corresponding SD, while� i
< 1 indicates a deformation that produces a compression
(Dcompressive SD). The closer the� i to 1, the smaller is the
deformation. This means that in case of� i > 1 or � i < 1,
the direction of maximal deformationO� is dictated by thev
corresponding to the� i most distant from 1:

O� D argmax.j1 � � j/ (40)

The corresponding direction of maximal deformation (either
tensile or compressive)Ov, on the source, orOvy on the target, is
often called primary strain direction (PSD).

We recall here that we are dealing with locally a�ne
transformations. In case of direct calculation (see above)
made on single triangular (or tetrahedral) FE of a Delaunay
triangulation computed within two general X and Y shapes,
these FEs should not be re-aligned via OPA. Accordingly,
if using Ftps, one should useCtps D FT

tpsFtps and
p

Ctps for
deforming unitary circumference or sphere on the source
and vytps D Ftpsvtps and Ftps for plotting them on the
target. Figure 6 illustrates a square that is deformed in a

parallelogram using the tensorD
�

1.12 2
� 0.31 1.12

�
. Using either

the direct calculation or TPS interpolation inR2, F is fully
recovered. One can useF or

p
C in order to depict the

deformation ellipse and corresponding SD on target or source
con�guration, respectively.

Choosing Evaluation Points and Their
Visualization
The concept of “localness” inevitably implies the choice of a
series of evaluation points within the geometry subjected to
a deformation. One of the most e�ective approaches, widely
applied over a large spectrum of applications, is the Delaunay
triangulation (Márquez et al., 2014; Dryden and Mardia, 2016).
The construction of the triangulation proceeds iteratively
by choosing the centroids of the initial sets of de�ned
triangles as a new set of triangle's vertices. In this manner, an
unlimited number of triangles can be assembled. Speci�cally,
the constrainedDelaunay triangulation allows limiting the
construction of the triangulation itself exclusively withinthe
body of interest by providing proper contour information in
2D and surface in 3D. Once a criterion to choose deformation
gradient evaluation points is established (i.e., constrained
Delaunay), it is essential to have also a criterion to locate
them in both source and target con�gurations as homologous
points. While this could be of lesser importance in non-
biological applications, it is instead mandatory to have them
as much as possible anatomically homologous when dealing

Frontiers in Earth Science | www.frontiersin.org 9 March 2020 | Volume 8 | Article 66

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


Piras et al. Visualization of Local Deformation in Paleobiology

FIGURE 6 | The deformation of a square in a parallelogram and SD plottedon source and target con�gurations. C, F, and 2 z are also shown.

with biological structures. Whereas, the homology of a point,
in a biological structure, is an elusive concept (as a point is
dimensionless;Bookstein, 1991; Dryden and Mardia, 2016), it
is nevertheless approached in those cases where histological
delimitations are visible, for example, at the meeting point
between cranial sutures (“Type I” landmarks). A less strict
homology occurs if landmarks are digitized on curves or
surfaces (“Type II” and “Type III” landmarks). Of course,
centroids of a triangulation cannot be manually re-digitized
on the target once estimated on the source. For this reason,
we suggest to use the same TPS computed centroids to
estimate evaluation points within the target con�guration.
TPS coe�cients are then used to deform the set of centroids
coordinates of constrained Delaunay triangulation built on
the source to predict a new set of points to be used for
visualization within the target con�guration body. This new
set could be considered reasonably (though with a certain
approximation) “continuously homologous” between source
and target con�guration. Besides TPS, many other spline
functions can be used for this purpose (Márquez et al., 2012).

Surfaces in 3D
We dedicate a special attention to surfaces in 3D. These
particular shapes are dealt with, in classic GM studies, using
TPS as formulated inR3. Shapes are often represented,
however, using triangulation that mimics a shell structure.
Frequently, once TPS deformation coe�cients have been
estimated, the morphological interpretation is made by
looking at the deformation of the surface triangles. In this
case, the appropriate way to visualize local deformation is to
compute energies, and to depict deformation ellipses and PSD
on the surface of triangles. A triangle inR3 is a particular
type of 3D shape: its landmarks are always coplanar and, as
for any other coplanar shape, if we computeF in a discrete
way using Equation (8) between two generic triangles in
R3, this leads toF and C that are 3� 3 matrices but that
are also singular: this means that performing an eigenvalue

decomposition onC returns only two non-zero eigenvalues
and that deforming a sphere results in a �at ellipsoid, in
practice an ellipse inR3. Instead, using TPS to estimateFtps
andCtps leads to an ambiguous reading of the morphological
change experienced by the source's triangle. In fact, TPS in
R3 deforms the ambient space in all directions. In the case of
two non-coplanar triangles inR3, TPS looks for the function
whoseA in Equation (10) corresponds just to the deformation
gradientF, being the transformation uniform. However, it can
be easily veri�ed thatFtps and Ctps are non-singular andFtps
6D F and Ctps 6D C: if a sphere is deformed according to
Ftps or Ctps, it transforms into an ellipsoid. Nevertheless, if
we deform the source triangle usingFtps, we obtain exactly
the target triangle. This happens becauseFtps produces a
deformation that acts on the entire ambient space inR3, but
this deformation vanishes in those points not belonging to the
plane identi�ed by target triangle. It follows that given two
generic triangles inR3, a sourceX and a targetY, the deformed
stateY can be obtained using eitherF or Ftps.

Y D XFT D XFT
tps

Interestingly, if we deform a cube, thus a non-planar shape,
usingF or Ftps, we obtain di�erent deformed states. OnlyF
�attens the cube in a planar shape, whileFtps confers an a�ne
three-dimensional transformation.Figure 7 shows the e�ect
of F andFtps on triangles and cubes inR3.

It is worth noticing that if X and Y are two coplanar
triangles w.r.t. each other but still inR3, the direct calculation
still returnsF and C while TPS cannot �nd a solution as the
L matrix (Bookstein, 1989) becomes singular; it happens as
in the absence of any displacement, betweenX and Y, along
the dimension perpendicular to the plane containing them, no
interpolation is possible inR3.

The abovementioned example therefore suggests that,
when looking at a surface's elements, deformation estimated by
TPS could not be adequate to interpret what happens on them.
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FIGURE 7 | Computation of F for two triangles inR3. Top row : the undeformed black triangle is deformed into the red one;the direct computation leads to a tensor
that �attens a unitary sphere in an ellipse inR3. Mid row : Ftps deforms a unitary sphere into an ellipsoid. BothF and Ftps return the deformed state if used to deform
the source triangle.Bottom row : when applied to a regular cube, onlyF deforms it into a �at shape, while it does not hold forFtps .

Another simple example is to deform a cube with a known
F and looking what happens to a single cube's faces.Figure 8
synthetically depicts this simple experiment. The ellipsoids at
the cubes' centroids (source and target) were generated usingp

C andF, respectively. Using the direct discrete computation

explained above,F and C, e.g., the projections ofF and C
on the faces, were calculated for any face and corresponding
deformation ellipses were drawn. As it can be seen, these
ellipses are very di�erent descriptors w.r.t. the deformation
encoded in the ellipsoid.F on a speci�c face is just the

Frontiers in Earth Science | www.frontiersin.org 11 March 2020 | Volume 8 | Article 66



Piras et al. Visualization of Local Deformation in Paleobiology

FIGURE 8 | Top row : a regular black cube is deformed onto the red parallelepiped. Bottom row : F is then projected onto single faces using the procedure exposed
in the text. Six projected tensors are then obtained.

projection ofF on the plane containing the face. To project
C, we calculatea1s anda2s on a face on the source shapeX, as
the vector di�erences between two verticesp1s andp2s andX
centroid xc and their normal vector

a1s D p1s � xc

a2s D p2s � xc

The normalized axisOa3s perpendicular toa1s and a2s is
found as

a3s D a1s � a2sI Oa3s D
a3s

ja3sj
� xc (41)

The projector on the sourcePs is derived as

Ps D I � Oa3sOaT
3s (42)
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C is then found as

C D Ps
TCPs (43)

In order to �nd F, we derivedPt (in the same way used for
derivingPs); then,F can be found using

F D Pt
TFPs (44)

This procedure can be done for any face for whichF or C need
to be calculated.

EXAMPLES

Simulated Example
Figure 9shows a regular square grid composed of 49 landmarks
that is deformed in an irregular shape that is stretched and
compressed in two di�erent landmark columns, respectively.
The procedure for estimating an approximately homologous
triangulation as explained above on both source and target is
also shown. The deformed shape is rotated onto the undeformed
one via OPA without scaling.Figure 10shows the �rst options
we present for the visualization of local deformation. 2� 2
local tensors (F for the target and

p
C for the source) have been

used to deform unitary circumferences appropriately rescaled
(magni�cation: 0.07). The color of each ellipse corresponds to
the log(det.F/), thus indicating the local in�nitesimal area ratio
between target and source. Values< 0 indicate a reduction in
local areas, values> 0 denote an enlargement, while 0 indicates
no area change. The change in area alone does not inform
about the direction of the deformation given by SD. Here, they
are black if tensile and violet if compressive. In this example,
all SD1 are tensile and they are larger in correspondence of
the two columns of landmarks that undergo a compression
and an expansion, respectively. We also depicted SD without
ellipses; this gives a more clear perception of the direction and
magnitude of local deformation only. The e�ect of rotation
encoded inF is highly visible when usingF on target or

p
C on

source shape.
Figure 11 shows in the upper left panel the interpolation

(via TPS) within the entire body of log
�
det.F/

�
, while in

the upper right panel, log(' ) density interpolated in the same
manner. Larger values, as expected, can be found around
regions corresponding to the two landmark's columns subjected
to stretching and compression. In the lower left panel, we
show the distribution of log(


 rr (%)n


 2) density: here, we can

appreciate the “non-a�nity” of deformation around points where
rr .%/ was evaluated; log (


 rr (%)n


 2) density is distributed

on alternate bands of large and small values with largest values
in correspondence of the two landmark's columns that were
stretched and compressed.

Real Examples
2D Paleontological Case Study
The 2D real example is related to the deformation
occurring between two con�gurations in lateral view of two
Hippopotamidae species: the extinct speciesArchaeopotamus
harvardi from the Late Miocene of Eastern Africa (Coryndon,

1977; Harrison, 1997; Boisserie, 2005), here considered as
the undeformed shape, and the extant speciesHippopotamus
amphibius distributed on the sub-Saharan African continent
(Lewison and Pluhá�cek, 2017) treated as the target shape.
A. harvardi is one of the most primitive species within
Hippopotamidae and displays some peculiar plesiomorphic
traits including the low orbits whose rim �ushes not beyond
the pro�le of cranial roof. Moreover, the skull is shorter
and less massive than in the extant hippo, with lower orbits
and a slender zygomatic arch. The latter features are also
present in the pigmy-insular Madagascan hippos (Pandol�
et al., 2020), which are characterized by reduction of size with
respect to their continental ancestors, by a general decrease
of the height of the orbits (Caloi and Palombo, 1994), and by
brain size reduction (Weston and Lister, 2009). The opposite
condition can be found in more derivedHexaprotodon(H.
palaeindicus) and in H. amphibius (Boisserie, 2005, 2007;
Boisserie et al., 2011; Pandol� et al., 2020): in these species,
orbits are elevated beyond the cranial roof. Elevated orbits,
a long facial region, and a short postorbital part of the
skull in Hippopotamidae are related to specialization for a
semiaquatic lifestyle.

The adaptation to a semiaquatic lifestyle evolved
independently inHippopotamusand Hexaprotodon, suggesting
a convergence between the two lineages (Boisserie, 2005, 2007;
Boisserie et al., 2011and references therein).

The morphological information encoded in Hippopotamidae
skull lateral view is thus very important to depict evolutionary
patterns during clade diversi�cation, morphological
convergences, and adaptations to di�erent lifestyles including
terrestrialization of some species (e.g.,H. madagascariensis).

Figure 12shows results relative to this 2D example.
We digitized 15 landmarks and 32 semi-landmarks from

photographs in lateral view on each specimen using the tpsDig2 v.
2.17 software (Rohlf, 2013). Semi-landmarks were used to
capture the morphology of complex outlines where anatomical
homology is di�cult to recognize. SeeFigure 1in Pandol� et al.
(2020) for landmarks de�nition. Semi-landmarks assume that
curves or contours are homologous among specimens (Adams
et al., 2004; Perez et al., 2006). First, a GPA implemented
in the procSym() function from the R-package “Morpho”
(Schlager, 2014) was used to rotate, translate, and scale landmark
con�gurations to unit CS; here, we used the minimization of
bending energy during the sliding of semi-landmarks as an
alignment method. Second, OPA was used to align the two
con�gurations. During OPA, the semi-landmarks previously
used to align shapes with their consensus were treated as
�xed landmarks, an approximation here considered not relevant
for the purposes of the present article. The second row in
Figure 12shows the direction of SD and deformed ellipses (left
side) colored according to log(det(F)), while on the right side,
log(det(F)) has been continuously interpolated (using TPS) on
the body domain of the target shape. The third row shows on
the left side log(' ) and log(

�
�
�
�rr .%/n

�
�
�
�2) densities (right side),

respectively. The fourth row shows SD on the left side and PSD
on the right side. SD and PSD are colored according to

p
� andp

O� , respectively.
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FIGURE 9 | Top row: a regular square grid(left) is deformed onto an irregular polygon(right) . Bottom row: a constrained Delaunay triangulation derivedon the
source shape(left) is estimated on the target using TPS; source and target shapes were aligned via OPA. Triangle's centroids will be used as evaluation points for
estimatingF, rr .%/ , and other metrics.

From all these panels, an interesting pattern emerges:
the elevated orbit of H. amphibius has, on its upper
borders, approximately horizontal PSD as also visible by
oblique/horizontal ellipses in the second row (left) ofFigure 12.
This means that the “elevation” of the orbit and related structures
takes place on the ventral side of the skull in lateral view; infact,
this is observable on the PSD panel where it appears evident

that PSDs are oriented vertically with
p

O� > 1 in particular
in the jugal area. Closely outside the orbit, instead, we �nd

oblique/vertical PSD with
p

O� < 1 indicating that, there, the
target bones (the frontal and parietal in particular) experience a
local dorso-ventral contraction.

Without the help of PSD, one could still look at the usual
deformation grid, but it does not furnish equally clear details
and, more importantly, cannot quantify locally the amount and
direction of local deformation.

3D Paleontological Case Study
The �rst 3D example considers the deformation occurring
between the humeral morphology of two Talpoidea species:
the extinctMesoscalops montanensis(Barnosky, 1981) from the
Early Miocene of North America and the extantNeurotrichus
gibbsiiBaird 1858 distributed in northwestern United States and
southwestern British Columbia. These two species belong to
a clade (Talpoidea) well-known for including several fossorial
moles (Piras et al., 2012, 2015). Among these species, di�erent
degrees of fossoriality can be found from complex tunnel
diggers to more ambulatorial species. Fossoriality degree is
linked mainly to the adaptation shown by humeral morphology.
While slender humeri are less adapted to borrowing activity,
the humeral morphology of subterranean species experienced
several shape changes in both distal and proximal regions with
evident enlargements in medio-lateral direction. Proscalopidae,
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FIGURE 10 | Top row : C (left) is used to deform unitary spheres appropriately rescaled for sake of visualization;F (right) was used for the same purpose on the target
con�guration. Ellipse's color is proportional to log(det(F)). Values< 0 indicate a reduction in local area, values> 0 indicate an expansion.Bottom row : the direction of
deformation is dictated byvy and Ovy (i.e., SDD ellipse's axes). Tensile and compressive SD actions are indicated. Source and target shapes were aligned via OPA.

the clade to whichMesoscalopsbelongs, shows one of the
most peculiar humeral morphologies among mammals, with
unique shape and mechanical stress in the context of burrowing

species (Barnosky, 1981, 1982; Piras et al., 2015). For our
experiment here, we used CT scan data fromPiras et al. (2015)
for M. montanensisand for the non-complex tunnel diggerN.
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FIGURE 11 | Visualization of local deformation via interpolation (using TPS) of log(det(F)), log(#), and log(jjrr .%/njj 2). Source and target shapes were aligned via OPA.

gibbsii. As our procedure requires homologous triangulation,
we used the TPS coe�cients found when applying TPS to the
32 landmarks set used inPiras et al. (2015)belonging toM.
montanensis(as source) and toN. gibbsii(as target) to deformM.
montanensismesh; this allows dealing with meshes constituted

by homologous landmarks and triangulations. In this example,
when aligning source and target via OPA, we did not scale
shapes at unit size in order to show the e�ect of size and shape
variation when evaluated on a local triangle's surfaces on the
wholeR3.
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FIGURE 12 | Local deformations observable betweenArchaeopotamus harvardiKNM-LT 4 (as source) andHippopotamus amphibiusMSNF 1135 (as target). We
show both deformation ellipses obtained usingF as well as main metrics derived using approaches explained in the text. In particular, we show log(det(F)), log(#), and

log(||rr .%/n ||2). vy and Ovy are also shown colored according to corresponding values inthe interval [
p

� ,
p

O� ]; values< 1 indicate compressivevy and Ovy , values>
1 indicate tensile actions. Source and target shapes were aligned via OPA. Scales equal 10 cm. KNM, Kenya National Museum; MSNFS, Museo di Storia Naturale di
Firenze, sezione di Zoologia La Specola.
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FIGURE 13 | Local deformations observable betweenMesoscalops montanensisUWBM 54708 (as source) andNeurotrichus gibbsiiLACM 093944 (as target). 3D

meshes are also shown.Ovy calculated uponF or F are shown and colored according to the corresponding
p

O� . Meshes' triangular faces are colored according to
log(det(F)). Densities of relevant metrics are also illustrated. Source and target shapes were aligned via OPA without scaling. UWBM, University of Washington, Burke
Memorial Washington State Museum, Seattle; LACM, Los Angeles County Museum.
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Figure 13 shows data and results relative to this analysis.
Triangle face colors correspond to log(det(F)), while Ovy (i.e., PSD

plotted on the target) color is proportional to
p

O� computed
either onC or on C, i.e., on tensors evaluated at the triangle's
centroids on the wholeR3 (Figure 13, third row, right) or
successively projected on the triangle's surfaces (Figure 13, third
row, left). Corresponding distributions of these metrics are also
illustrated. log(det(F)) presents all values< 0, thus indicating
a considerably smaller size of target shape as exempli�ed by

source shaded silhouette.
p

O� and Ovy computed uponC or C
and F or F, respectively, give di�erent information: in fact
when usingC and F, we obtain centripetal PSD dictated by

size change with
p

O� constantly< 0, while usingC and F, we
observe PSDs that are formally tangent to the body surface but

with
p

O� that in some cases have values> 1, thus indicating an
expansion. We note here that it is not inherently better looking
at F or F. We highlight that, in most cases, this distinction is not
considered and very often only deformation on meshes' surface
is described and interpreted in functional, morphological, or
biomechanical terms. This could lead to an incomplete or partial
appreciation of the actual deformative phenomenon under study.
This ine�ectiveness could be partially mitigated by performing
analyses in the shape-space. We used here the size-and shape-
space with a purely didactic aim as it makes more evident the fact
that PSDs of thewhole body(thusnot the body surface) when the
target is considerably smaller than the source are very di�erent
from those on its surface.

Surfaces in 3D
The 3D surface example observes the occipital scale (exocranial
surface) of two Homo erectusskulls from Java: Trinil 2
skull (belonging to the original Dubois collection from 1891's
excavation) is of uncertain age, the estimate spanning from
about 1 Ma and 0.5 Ma, and Ngandong 12 from Ngandong site
(discovered in 1933 by von Koenigswald) about 50 km north
from Trinil dated between 550 and 143 ka byIndriati et al.
(2011) and recently re-placed between 110 and 120 ka by
Rizal et al. (2020).

We digitized 133 landmarks distributed over the entire bone
surface between the superior nuchal lines and the lambda on
Ngandong 12 CT scans kindly provided by Dominique Grimaud-
Hervé (GE medical systems/high speed RP; voxel size: 512�
512 pixels; pixel size: 0.48; slice increment: 1 mm) and on Trinil
2 acquired with NextEngine laser scanner at the Department
of Environmental Biology (Sapienza University of Rome). The
con�gurations of points were digitized through the 3D software
EVAN Toolbox v. 1.0 (www.evan-society.org). The same software
was used for the 3D sliding procedure. In this way, 129
semi-landmarks were de�ned in relation to 4 �xed landmarks
represented by the lambda, the inion and the two asterions
(left and right). Spline relaxation (Bookstein, 1996, 1997) was
carried out by sliding semi-landmarks on a plane tangent to the
surface of each specimen (Gunz et al., 2005). This procedure
involves the minimization of the bending energy with respectto
the distribution of semi-landmarks on the surface of the three-
dimensional object (not on a single curve) with reference to

the position of the selected �xed landmarks and ensures the
geometric homology (Gunz et al., 2005) of the points between
the con�gurations. Con�gurations were then symmetrized w.r.t.
sagittal plane.

The target was aligned to the source via OPA and both shapes
were scaled at unit CS. For the sake of visualization, we decimated
triangulation of meshes in order to better show deformation
ellipsoids (see below).Figure 14shows data collection and results
relative to computation ofF, F and related metrics. Trinil 2 and
Ngandong 12 are usually ascribed to the same species, i.e.,H.
erectus, albeit Trinil 2 is commonly considered a more primitive
stage inH. erectusevolution, while Ngandong 12 constitutes,
probably, a more derived form. Ngandong 12 shows a larger
encephalization than Trinil 2 with a more elevated occipital
scale relatively to the lambda. However, in both specimens,
the opistocranion (the most distant point from the glabella)
coincides with inion. A very marked di�erence is the morphology
of occipital torus that is approximately straight in Trinil 2,
while in Ngandong 12, it is a jutting structure laterally arching
and with a noticeable thickness both medially and laterally.
The orientation ofOvy varies considerably if they are computed
upon F or F. We depicted the ellipsoids circumscribed toOvy
computed fromF: they clearly cross the body surface and are
oriented in some regions nearly orthogonally toOvy computed
upon F. This detail deserves particular attention as, looking
at the surface only, one would underestimate the fact that
the deformation acts primarily along a direction that, in some
regions, is far from being tangent to the surface itself. In
particular, the dorsal region of occipital scale, which includes
the lambda, is more elevated dorso-ventrally in Ngandong 12
than in Trinil 2. This is related to the more pronounced dorso-
ventral �attening of the latter w.r.t. the former that presents
also a larger cranial capacity. Lack of cultural evidences, such
as particular lithic industry, does not allow linking the larger
encephalization of Ngandong 12 with an increased complexity
of cultural behavior. Instead, the shape of occipital scales was
probably more related to the development of neck muscles
expansion and the antero-posterior deformation indicated byOvy
computed fromF (and much less clearly byF) can be interpreted
just as the structural bone response to nuchal muscle hyper-
development. We suggest that the use ofF instead ofF leads
to a very di�erent morphological reading of the actual local
deformation process than looking at surfaces only. The OPA
(or GPA) alignment, in fact, superimposes centroid's shapes and
globally rotates them in such a way that the target could appear
less deformed locally than it does actually. Local strain analysis,
instead, being locally rotation-independent, allows visualizing
and quantifying PSDs and their magnitudes independently from
initial position of source and target.

DISCUSSION AND CONCLUSIONS

In this study, we presented several strategies in order to quantify
and visualize local deformation in the context of geometric
morphometrics, a kind of shape analysis that exploits the
concept of homologous landmarks digitization. Starting from
corresponding points found on both the source and target
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FIGURE 14 | Local deformations observable betweenHomo erectus Trinil 2 (as source) andH. erectus Ngandong 12 (as target). 3D meshes are also shown.Ovy

calculated uponF or F are shown and colored according to the corresponding
p

O� . Meshes' triangular faces are colored according to log(det(F)). Densities of relevant
metrics are also illustrated. Source and target shapes werealigned via OPA. Trinil 2 is housed at the Nationaal Museum van Natuurlijke Historie, Leiden, The
Netherlands; Ngandong 12 is housed at the Department of Physical Anthropology, Gadja Mada University College of Medicine, Yogyakarta, Indonesia.
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TABLE 1 | Relevant objects used for visualization of local deformation.

Object Notation Equation or de�nition Meaning

First-order gradient tensor F In R2

FD H C I D

2

4
@ux
@x +1 @ux

@y
@uy
@x

@uy
@y +1

3

5

In R3

F D H C I D

2

6
6
4

@ux
@x C 1 @ux

@y
@ux
@z

@uy
@x

@uy
@y C 1 @uy

@z
@uz
@x

@uz
@y

@uz
@z C 1

3

7
7
5

Compute local deformation of a unitary
circumference inR2 or a sphere inR3 on
the target shape

First-order gradient tensor
computed upon TPS
interpolation

Ftps or
r (%)

In R2

r .%/n D

2

4
@%1
@x

@%1
@y

@%2
@x

@%2
@y

3

5 D

2

4 A11 A12

A21 A22

3

5 C

2

4 W11 : : : W1k

W21 : : : W2k

3

5

2

6
6
4

@�1
@x

: : :
@�k
@x

@�1
@y

: : :
@�k
@y

3

7
7
5

In R3

r (%)n D

2

6
6
4

@%1
@x

@%1
@y

@%1
@z

@%2
@x

@%2
@y

@%2
@z

@%3
@x

@%3
@y

@%3
@z

3

7
7
5

D

2

6
6
4

A11 A12 A13

A21 A22 A23

A31 A32 A33

3

7
7
5 C

2

6
6
4

W11 : : : W1k

W21 : : : W2k

W31 : : : W3k

3

7
7
5

2

6
6
4

@�1
@x

: : :
@�k
@x

@�1
@y

: : :
@�k
@y

@�1
@z

: : :
@�k
@z

3

7
7
5

Compute local deformation of a unitary
circumference inR2 or a sphere inR3 on
the target shape according to TPS �rst
partial derivatives

Projected �rst-order gradient
tensor

F F D Pt
TFPs Project F on a plane inR3

Right Cauchy–Green
symmetric deformation tensor

C C D FTF Compute local deformation of a unitary
circumference inR2 or a sphere inR3 on
the source shape

Projected right Cauchy–Green
symmetric deformation tensor

C C D Ps
T CPs Project C on a plane inR3

Eigenvalues ofC � Eigenvalues ofC Squared magnitudes ofv

Eigenvalue of largest
deformation

O� O� D argmax(|1 –� |) Largest deformation' (the most distant
from 1) squared magnitude

Strain directions (on source
con�guration)

v Eigenvectors ofC Strain directions on the source at unitary
norm

Strain directions on target
con�guration

vy vy D Fv Strain directions on the target; they
contain magnitudes

Primary strain direction Ovy Eigenvectors corresponding toO� Strain directions corresponding to the
largest deformation

Second-order gradient tensor
computed upon TPS
interpolation

rr (%) InR2

rr (%)n D

2

4
@2%1
@x2

@2%1
@x@y

@2%2
@x2

@2%2
@x@y

@2%1
@y@x

@2%1
@y2

@2%2
@y@x

@2%2
@y2

3

5

D

2

4 W11 : : : W1k

W21 : : : W2k

3

5

2

6
6
6
6
6
4

@2 � 1
@x2

: : :
@2 � k
@x2

@2 � 1
@y@x

: : :
@2 � k
@y@x

@2 � 1
@x@y

: : :
@�k
@x@y

@2 � 1
@y2

: : :
@2 � k
@y2

3

7
7
7
7
7
5

In R3

rr (%)n D

2

6
6
6
4

@2%1
@x2

@2%1
@y2

@2%1
@z2

@2%2
@x2

@2%2
@y2

@2%2
@z2

@2%3
@x2

@2%3
@y2

@2%3
@z2

@2%1
@x@y

@2%1
@y@x

@2%1
@x@z

@2%2
@x@y

@2%2
@y@x

@2%2
@x@z

@2%3
@x@y

@2%3
@y@x

@2%3
@x@z

@2%1
@z@x

@2%1
@z@y

@2%1
@y@z

@2%2
@z@x

@%2
@z@y

@2%2
@y@z

@2%3
@z@x

@%3
@z@y

@2%3
@y@z

3

7
7
7
5

D

2

6
6
4

W11 : : : W1k

W21 : : : W2k

W31 : : : W3k

3

7
7
5

2

6
6
4

@2 � 1
@x2

: : :
@2 � k
@x2

@2 � 1
@y2

: : :
@2 � k
@y2

@2 � 1
@z2

: : :
@2 � k
@z2

@2 � 1
@x@y

: : :
@2 � k
@x@y

@2 � 1
@y@x

: : :
@2 � k
@y@x

@2 � 1
@x@z

: : :
@2 � k
@x@z

@2 � 1
@z@x

: : :
@2 � k
@z@x

@2 � 1
@z@y

: : :
@2 � k
@z@y

@2 � 1
@y@z

: : :
@2 � k
@y@z

3

7
7
5

It noti�es how much is non-constant r (%)
in the neighborhood whererr (%) is
evaluated according to TPS second partial
derivatives

Strain energy # ' D 1
2

R
• E � E Strain energy associated to a deformation

shapes, reasonably homologous triangulations can be assembled
using constrained Delaunay triangulation (or similar strategies)
on both two and three dimensions.Table 1 presents the main

objects, together with their de�nitions, presented in the text. The
use of direct calculation on triangles (or tetrahedra if available)
or of the evaluation ofr (%) at appropriate evaluation points

Frontiers in Earth Science | www.frontiersin.org 21 March 2020 | Volume 8 | Article 66



Piras et al. Visualization of Local Deformation in Paleobiology

leads to the identi�cation of the deformation gradient tensor
F that is the base to derive the necessary objects needed for
the quanti�cation of local deformation and for its visualization
on source or target shape:C D FTF, v, and � , i.e., the
eigenvectors and eigenvalues ofC; log(det(F)) has been used
in the past (Márquez et al., 2012) to illustrate the in�nitesimal
area change around the evaluation points. However, this does
not inform about the direction of deformation. SDs, e.g.,v
and vy, are proper objects for this purpose: they notify the
(locally a�ne) directions of deformation dictated byC and
F and can be further investigated by selecting PSDs, i.e., the
primary direction of local shape change corresponding to those
eigenvalues most distant from 1 (that indicates no deformation).
We have shown that depicting SD could be very e�ective for
interpreting the shape change and allows identifying particular
regions characterized by deformations whose e�ects take place in
di�erent parts of the target shape as illustrated in the 2D example
regarding orbit elevation inArchaeopotamusandHippopotamus.
In three dimensions we distinguished the two cases of “full
volume” shapes, such as in Talpoidea example, and “shell-like”
con�gurations such as inH. erectusoccipital scale example. In
these cases, we highlighted the importance of interpretingF or
F: in fact, looking at what happens to a triangle's surface cannot
account for the deformation of the entire ambient space that
also embraces the landmarks belonging to the surface itself. F,
in fact, models deformation in every space direction and allows
the appreciation of actual PSD representing the full shape change
between source and target. Of course, bothF and F can be
used to interpret the phenomenon. It is important, however,
to be aware of whatF really means, i.e., a projection of the
local actual deformation in three dimensions. While, in most
GM applications related to paleontological and biological studies,
the evaluation of local deformation in a quasi-continuous way
is not very common, it could be of great help in inferring the
deformational phenomenon when referred to bone's growth and
development: for example, appreciating concomitantlyr (%) and
rr (%) would permit the evaluation of the direction at speci�c
locations of developmental process as well as its local variation
possibly related to speci�c growth factors: in fact, as the growth
is not an isotropic process (i.e., not homothetic), observing
the eigendecomposition and spatial variation of the gradient
tensor would inform about di�erential forces involved in the

whole system. These forces could be related to muscle insertions
such as in long bones of sauropod dinosaurs (Bonnan, 2007)
or to mechanical pressures exerted in the complex reciprocal
relationships existing between brain and its braincase abundantly
investigated in paleoanthropology (Bruner, 2018). The range of
use of the methods presented here is as wide as the range of shape
analysis applications; their implementation is now available in
R language using a set of speci�cad hocfunctions available
in the online Supplementary Material together with scripts
to reproduce each �gure of the present paper. Each script is
intended to work “stand alone” after loading the source �le with
ancillary functions and necessary R packages indicated therein.
No workspace loading is necessary and landmark coordinates are
furnished in individual scripts. More indications can be found in
the “read me” �le.
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