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In modern shape analysis, deformation is quanti ed in diffent ways depending on
the algorithms used and on the scale at which it is evaluatedWhile global af ne
and non-af ne deformation components can be decoupled and @mputed using a
variety of methods, the very local deformation can be consigled, in nitesimally, as
an af ne deformation. The deformation gradient tensorF can be computed locally
using a direct calculation by exploiting triangulation oretrahedralization structures or
by locally evaluating the rst derivative of an appropriaténterpolation function mapping
the global deformation from the undeformed to the deformed tte. A suitable function
is represented by the thin plate spline (TPS) that separateafne from non-af ne
deformation components. F, also known as Jacobian matrix, encodes both the locally
af ne deformation and local rotation. This implies that it kould be used for visualizing
primary strain directions (PSDs) and deformation ellipseand ellipsoids on the target
con guration. Using C D F'F allows, instead, one to compute PSD and to visualize
them on the source con guration. Moreover, C allows the computation of the strain
energy that can be evaluated and mapped locally at any point foa body using
an interpolation function. In addition, it is possible, by xploiting the second-order
Jacobian, to calculate the amount of the non-af ne deformaion in the neighborhood
of the evaluation point by computing the body bending energyensity encoded in the
deformation. In this contribution, we present (i) the mainamputational methods for
evaluating local deformation metrics, (ii) a number of diffent strategies to visualize them
on both undeformed and deformed con gurations, and (iii) te potential pitfalls in ignoring
the actual three-dimensional nature of when it is evaluated along a surface identi ed
by a triangulation in three dimensions.

Keywords: local deformation, tensor visualization, strain d
second derivative

irections, thin plate spline, rst derivative,
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INTRODUCTION under the same equivalence classes of rotation translatidn a
) _ ) ~ size (de ned as CS).
Modern shape analysis exploits the potential of specic OPA and GPA translate all shapes imposing their centroids on

computational algorithms applied to phenomena wherethe origin of axes and rotating them to minimize the Procrisste
the deformation and/or the variation of shapes are undelgistanceD as de ned as in Equation (1):
investigation. In geometrical terms, shapes are represented

by vectors of point coordinatesD{andmarks) that can be Eq F km sy 22
compared by means of di erent mathematical formalisms. In D D 2arcsin oo 1)
: 2 ;

shape analysis, the term “shape” is referred to forms (intdrade
shap€size) that have been standardized at unit size that can be
guanti ed in various ways (see below). Prior to computing anywhere X and Y represent two centered, aligned, and scaled
kind of shape distance or deformation estimation, two or morecon gurations; k is the number of landmarks; and is the
shapes are commonly “superimposed” to Iter out information number of dimensionsD is a geodesic distance that is often
relative to position, rotation, and, optionally, size, whiohdot  linearized by orthogonally projecting it in the plane tangeat t
represent intrinsic shape variation. At this point, two principa the consensus. After GPA, common ordination methods, such
cases must be distinguished: as principal component analysis (PCA), are frequently applied in
. . . . . order to nd directions of variations. This work ow is routiely
i) Shapes are identied by clouds of points without any Lo . . . )
speci ¢ correspondence/homology. applied in G(.aomet_rlc Morphomet_rlcs (GMBookstem, 1991;
- . Claude, 2008; Zelditch et al., 2012; Dryden and Mardia, 2016
ii) Shapes are dened by landmarks that are anatomically . . L .
. ) . In this article, we focus on those applications where point
or topologically homologous across di erent con gurations h loav/ dence is assumed (). In th f 1
(Dpoints correspondence). omologyicorrespon ) € case of two
aligned shapes or of a PCA performed on a collection of
As for the rst case, while most applications, from biologyshapes either, the notion of deformation always pertains to a
(Adams et al., 20)3to paleontology Piras et al., 20)0to  pair of shapes, i.e., a sourc¥: (the “undeformed” shape that
medicine Piras et al., 20)9usually analyze shapes and forms bycan be a real shape or a sample's consensus) and a tatget (
using homologous anatomical landmarks, the use of contirsuo representing the deformation of the source, i.e., a real shape
surfaces without points correspondence is faced by exploitingr a shape predicted by an ordination axis). Recently, several
the potential of a plethora of di eomorphic techniques not contributions focused on the visualization of deformatsohy
treated in detail here (seg&ouvé, 1998; Durrleman et al., 2012 using di erent kinds of local measures from in nitesimal lat
Brie y, when using these di eomorphic techniques, shapes ararea changesfarquez etal., 2012, 20)it6 velocity elds of local
considered as images (2D) or surfaces (3D) that are registerdeformations Kratz et al., 2013 Locally (see below), tensors
using di erent algorithms Ceritoglu et al., 200)3di eomorphic  are used to quantify local deformation. The choice to viseal
approaches are used for this purpose such as large di eomorphix unique particular metric extracted from a tensor inevitably
deformation metric mapping (LDDMMMiller et al., 2014, 20)5 implies a certain loss of information even in the simplest azfse
that represents, today, one of the most used (among many stherlocal a ne deformation of nite elements (FE) that are usually
approaches for estimating shape di erences, surface matchingiangular in 2D or tetrahedral (less commonly cubic) in 3D
and Parallel Transport of deformation§larlier et al., 200)7In  (tetrahedral FE structures will be treated herglarquez et al.
this context, size is more frequently quanti ed usingVolume.  (2012)showed the importance of the evaluation, quanti cation,
In the second case, one of the most used approaches to aligmad statistical assessment of local deformation in GM exasnple
shape onto another is ordinary Procrustes analysis (@RAyer, coming from evolutionary biology. GM is being routinely
1979. If multiple shapes are to be analyzed, their consensussed to address a wide spectrum of hypotheses. In particular,
landmark con guration @grand mean) is computed by applying the use of shape analysis has been fruitfully coupled with
the generalized Procrustes analysis (GPAyver, 1975; Rohlfand phylogenetic comparative methods in order to explore patterns of
Slice, 1990 OPA and GPA can be performed with or without convergence/divergenc8t@ayton, 2015; Castiglione et al., 2))19
scaling landmark con gurations to unit size, the latter hgi morphospace occupationSantos et al., 20),.9morphological
usually represented by centroid size (CS, the square root oftegration Piras et al., 2014; Sansalone et al., p{uactional
sum of squared distance between landmark’s con guratiod anhypothesis Qxnard and O'Higgins, 2009 and developmental
their centroid). Scaling or not scaling shapes at unit CSde¢ad growth (Angulo-Bedoya et al., 2019; Colangelo et al., POAB
di erent Riemannian manifolds (size- and shape-space or shap¢hese studies share the same basic source of phenomenblogica
spacePryden and Mardia, 200)cdescribed by di erent metrics interpretation: the shape change studied via shape analysig (v
and possessing di erent geometrical properties,(198% The often GM). The importance to evaluate more quantitatively the
Riemannian manifolds are curved spaces that can be considerlegal deformation stems from the fact that it allows a statét
as the multidimensional generalization of a curved surfacdreatment of shape variatioMarquez et al., 20)2
Shape-spaces are particular Riemannian spaces whose pointdn this paper, we aim to describe and discuss the principal
represent shapes. In general, shape-spaces are not representstshtegies available for computation of local deformatiow a
pictorially except for the shape-space case of three landmarksits visualization for paleontologists and evolutionary biikts
two dimensions where the manifold is a sphere where shapes litleat usually use shape analysis in their investigations. \§e al
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FIGURE 1 | Left panel : a non-af ne deformation of a regular square Right panel : a global non-af ne deformation is shown. In nitesimally, thedeformation can be
considered as linear.

present the very basic mathematical details underlying gicaly If we add the identity matrixl, we obtain the deformation
machinery encoded in common shape analysis practice couplegtadient tensor
with essential notions of continuum mechanics related te th "

estimation of local deformation. In particular we (i) dedmithe @ccy O

. . : part . FDHCID @ @ (3)
main analytical basis for the quanti cation of local defoation; @ Gy~
(ii) illustrate and, in some cases, implement the main optiand @ @

metrics for visualizing it on both 2D and 3D objects; (iiiuititrate Denoting X the k m matrix. with k the number of

an important feature of deformation in 3D when the shapes arg;ngmarks andn the number of dimensions, of an undeformed
represented by triangular surfaces having only a “shellicstire ¢y gration (here we refer to the small squared cell of thielgr

rather than a volumetric appearance; and (iv) present SOMgq can obtairy as linear transformation ok using
applications in both 2D and 3D paleontological case studies.

We also provide (as Supplementary Materia) fully Y D XET (4)
reproducible codes in R with all necessad/hocbuilt functions
aimed at reproducing any gure and analysis presented irwith “T” the transpose symbol.

the paper. The same holds inR® by adding the z-coordinate to
the system.
COMPUTATION METHODS F encodes deformatiof rotation, and these two aspects can

. . be decoupled by computing a polar decompositiorf-of
Deformation Gradient Tensors at Local

Scale FDRU ®)
The main statement of the present paper is related to the concept

of local deformation that is always considered, in nitesitty, as  With Rthem  mrotation matrix encoded i~ and

an a ne transformation even when the global transformation p—

a ecting the source shape is noFigure 1). For simplicity, we ub C (6)
will use here the term ane as a synonym of uniform and
linear deformation. In fact, one gets linear deformationg b
removing translations from a ne deformations. Uniform mean CDF'F @)
that the gradient of the deformation (the local strain, setolw)

is constant. At the same time, we will use non-uniform as & js symmetric and positive de nite. The very nature®fs that
synonym of non-linear and non-ane. In the rst example, we t encodes exclusively the local deformation on the sowitieout
consider the non-a ne deformation a ecting a square grid in yotation. It can be used to perform an eigenvalue decompasitio
Figure 1 In nitesimally, each square sub-element of the gridgptainingv and |, i.e., the eigenvectors and the corresponding
experiences an ane ftransformation that deforms it into a gjgenvalues; is the collection ofn eigenvalues usually returned
parallelogram. IrR (i.e., in two-dimensions), the neighborhood decreasing order, whilg is its corresponding collection of
around every point of a square can be mapped onto a di erenf, yectors each witim components. It must be noted thd
one by alinear transformation represented by a 2 matrix. We  esuiting from the polar decomposition &Fis not equal to the
would deal with 3 3 matrix inR3 (i.e., in three dimensions). In rotation found during OPA for the minimization oD. Varano
particular, it is possible to transform a point of coordinaes ¢t 51,(2018 section 4.3) distinguish the two rotations by unifying
(x, ) into an in nitesimally deformed one of coordinatgsC U opa and modi ed OPA (MOPA) in one formalism. MoreoveR
() C (ux,uy) D (x C ux,y C uy) with the displacement vector a5 g |ocal meaning and can be di erent at any chosen evaluatio

with

eld u  (ux, uy) through the displacement gradient tensor point while when two con gurations are superimposed, a global
"o @ rotation is found.
HD & @ 2 It is not uncommon, in GM studies, to interpret the
@y @ 2 . .
@ @ local deformation of a given target (w.r.t. a source) as the
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FIGURE 2 | Relationship between displacement vectors (in blue) and ¢al deformations as depicted usingp C (on the source) orF (on the target). First row/eft
panel : a simple rotation that produces displacements without dedrmation; rst row, right panel : a shearCrotation with deformation ellipses evaluated at target
vertices; second row, left panel : the same sheafCrotation with deformation ellipses evaluated at source véces; second row, left panel : the same shear without
global rotation ( Itered out via OPA) with deformation ellges evaluated at source vertices; third rowleft panel : a generic source (in black) and a non-aligned generic
target (in red); third rowright panel : plot with source and the target aligned using OPA (in red) dviOPA (in blue). Principal strain direction®llipse's axes) are in
black if tensile and in violet if compressive.

collection of displacement vectors of landmarks identifythe  Figure 2shows this point by starting with a simple rotation ( rst
con gurations. This practice inevitably leads to a miscqutecen  row, left panel) of a squarX with coordinates x( 0.5,0.5),

of what local deformation actually is and, consequentlyato x»(0.5,0.5), %(0.5,0.5), x( 0.5,0.5) that does not encode a shape
misinterpretation of the process underlying observed shapedeformation but that presents non-null displacements (blue
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if tensile and in violet if compressive.
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FIGURE 3 | Left panel : a bilinear transformation deforms the regular square inta trapezoid; C was used to compute local deformations at source vertices v
displacement vectors (in blue)Right panel : the same with deformation ellipses evaluated on the targaising F. Principal strain directionsDellipse's axes) are in black

arrows). When applying a she& rotation—deformation using

112 2
FD 0.31 1.12
in the case of a ne transformations), evaluated at targedan
source vertices, respectively, do not follow displacemerasyn
way (rst row, right panel and second row, left panel). Even
removingglobalrotation using OPA, displacements do not bear,
the same meaning of deformation ellipses. In this particuéese;
OPA and MOPA coincide: the two rotations, in fact, coincide,
if we found UXTX D XTXU with U de ned in Equation (6).

we can show thef and C (which are constant

h

This is the same as saying that the principal axes of X have the

same directions as the principal strainsfofA square is also a

P, D

FIGURE 4 | Left panel : an undeformed triangle.Right panel : its deformed
state. Axes used for deriving~ are shown. c, centroid.

particular case as the inertia tensif X is spherical and does
not have principal axes. In the case of two generic shapes,
source and a target linked by a non-ane transformation, .
OPA and MOPA lead to di erent global alignmentgigure 2
third row). The same e ects are evident also in the case
non-a ne transformations. Figure 3 shows a simple bilinear
transformation that deforms the same square asFigure 2
into a trapezoid with coordinates %( 1,0.25), %(1,0.25),
x%(0.3,0.25), %( 0.3,0.25). Rotation is not present in this
transformation, and the two shapes are then intrinsicaligregd.

CandF were evaluated at source and target vertices, respectiveW

a

any point along all directions simultaneously. It is also known
in literature as Jacobian matriXviarquez et al., 20)21In this
Jpaper, we consideF as a synonym of Jacobian matrix and
its determinant indicates the ratio between target and seur
m-Volumes, i.e., the in nitesimal change im-Volume in the
neighborhood of the point wherE is evaluated.

While the explanation above refers to the general continuous

caseF andC can be obtained in the discrete case using alternative

ays. In this paper, we propose two approaches:

Displacements, again, cannot be considered as proxies df loed Direct calculation: the simplest case to illustrate thikhe case

deformation mainly for landmarks 1 and P(at the square base).
It is thus important to underline that during OPA, position and
rotation (as well as optionally size) are removed globathgally,
rotations are still present and the relationship betweeraloc
deformation and displacements depends on thenitesimal

of two trianglesX andY as illustrated inFigure 4. Triangles

are the most used basic geometries in 2D FE analysis, and they
can experience only a ne transformations. For this reason,
they are used for mesh generation (as done in this paper)
in order to evaluatd= within a larger body (see below). We

di erencesamong displacements as encoded in the displacement calculate the covariant basiég and a, on X as the vector

gradient tensoH. When dealing with shapes more complex than

di erences between two verticgg andp, and X centroid (€)

the platonic ones shown here, things become more complex, and and their normal vectosg.

it is necessary to carefully look at local deformations and
displacements in the correct way (see real examples bekow).
maps in nitesimal deformations between the reference amgea

con gurations by measuring the rate of shape deformation at

aa D pp c
a D p c
aDa &
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we can us@g in order to obtain the contravariant basis

a D .a a=a .a agll
a2 D .ag alay .a agl

The covariant basis i¥ is as follows

QD p% &
a D p% &
Fis obtained as

FD &% at c &% & (8)
This work ow is valid for triangles in bothR? and R2. For
tetrahedra inR3, the work ow is pretty similar with the
inclusion of the calculation of a third axis corresponding to
the tetrahedron’s face not lying along the plane identi ed by
three landmarks belonging to the tetrahedron.

Evaluation of the deformation gradient tendestarting from

a global interpolating function that models the deformation o
X to obtainY.

A convenient interpolant is represented by the thin
plate spline (TPS), a special case of kriginger{t and
Mardia, 199). TPS is the most used interpolation function
in biological and paleobiological investigations that eiplo
modern shape analysis potential.

X andY can be complex bodies constituted by homologous
landmarks within which we evaluatelocally at any desired
point (thus not by using the direct calculation on mesh
triangle’'s centroids) starting from TPS coe cients.

The landmark-wise representation of TPBryden and
Mardia, 2016Equation 12.8) is

b

~

%.x/ D cCAXCWTs.x/,x2"M 9)
with "™ being the m-dimensional Euclidean space,is a
point of "™ represented by am 1 matrix, A is a linear
transformation of' ™ represented by am  m matrix, W is a
k mmatrix representing the non-a ne componenti{ryden
and Mardia, 201gsee below), andis ak 1 matrixgx) D

(s(x—x1)...S(x—x))T with:
h D h%g h?if h>0 h
DOif h D OformD 2.
h D h if h >0 hDOif h DO
formD 3.

TPS nds the best functions by minimizing the cost
function bending energy

J.% D

trace (W' SW) (11)

where D 16formD 2and D 8formD 3 (see/aranoetal.,
2017. This corresponds to the integral

X mXmXmn?
iD1

@%n °

0,
X% D @@

jbl1 D1 gm (12)
This represents a mean elastic energy evaluated owliode

R™ as the e ect of the non-a ne part of the deformatiofb
(Bookstein, 19809

The usefulness of TPS is that it separates the global a ne
part from the non-a ne one.XAT in Equation (10) represents
the ane part of the transformation withA an m m
matrix that corresponds exactly #6 in the special case of a
uniform deformation applied tX. Varano et al. (201&rgued
that while XAT ? W, it is not orthogonal toSW (i.e., the
non-a ne part of the deformation).Sis thek  k matrix
where the biharmonic functios(h) is evaluated on the source
con guration and

WD 1Y (13)
With 17 being the bending energy matrix (s@eyden and
Mardia, 201§ estimated uporX.

Varano et al. (2018)proposed dierent methods and
strategies to calculate the a ne component even while using
the TPS by exploiting the so-called “TPS spabetfno et al.,
2017, 2018 For the same reasoRohlf and Bookstein (2003)
added to the existing method proposed fookstein (1996)
two new methods for computing the a ne component in
a transformation: (i) the complement of the space of pure
bending shape variation and (ii) the regression method. €hes
two methods do not require the reference con guration to
be aligned to its principal axes. While the former implies the
computation of the bending energy matrix, the latter does not
and can be easily implemented using the computation of the
pseudoinverse matrix in a linear system relating the source
and the target con gurations. This solution is the same as th
least squares estimator when the aim is the estimation of the
a ne transformation between a source and a target shape.

When evaluating in nitesimally the gradient of the
deformation estimated by the TPS, namelfps, we
always obtain a linear transformation as, in nitesimalbf|
transformations become linear.

Using the shape wise representation, where a con guration ifjgure 5 summarizes the main concept briey exposed in

de ned in theQn con guration space (withk the number of
landmarks andn the number of dimensions), we have:
%X) D I,c" CXAT CSW,X2 CK,§ D (x x) (10)

wherely is a column vector of ones of lengkh

this section.

Computationally Fps can be derived as follows:

— Given a pair of shapeé CK, (the undeformed) aney CK, (the
deformed), one can compute A, W, and S using Equation (10),
yielding the best interpolari.
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C=F'F F=RU

(right Cauchy-Green symmetric deformation
tensor: it encodes deformation without rotation)

polar decomposition %

F (encodes deformation-+rotation) rotation matrix

B=FF' F=VR
. (left Cauchy-Green symmetric deformation
tensor: it encodes deformation without rotation)% \/ — B

' B C 7 Vit Vi) V=eigenvectors=SD'=principa1 directions
Eigen decomposition of \ of unitary norms

A, A, eigenvalues = squared magnitudes of SL

They rotate original SD
and already contain
magnitutdes

v,=Fv SD plotted in the deformed configuration

<«—> Tensile A>1

USING C Compressive A,<1 USING F

N ~
S o -
S &
T T T T T T T T T T T T T T
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

FIGURE 5 | Synthetic illustration showing the very basic mathematidaelationship betweenF, C, and R as well as the geometrical meaning o¥ and vy.

— The gradient of the interpolant is the map% +" ! My m them kmatrix WT in Equation (10) and th& m matrix
associating to each point A" the My, , matrix resulting r s containing the rst partial derivatives of the biharmonic
from the sum ofA in Equation (10) with the product between  function evaluated on each point n.
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Speci cally in 2D:
" #

With second partial derivatives:

% % A1 A €] 242 2
0, -
r %, D Gy & o Aos pa D 2C (4d°Hd* C dy?) C 2 log(dx® C dy?)
@ @ 5 3
@ % g (24)
c WuiiWu g5 5L (g Z_ D 2c @ddKB C d?) C 2 log(dlC d?)
War it W @, @ @’
a @ (25)
With rst partial derivatives: @ D 4dxdy (26)
) @@ &2 C oy
@ =@ D 2 xlog( x*C y?)C2x (15)
@ =@D 2ylog(x°C y?)C2y (16) Where
Wheredx D x, Xxanddy D 17
nook dDyn (7 XD Xn x¢and yDyn Yk (27)
Andin 3D
2 3 In 3D, we have:
@ @ @ 2
(g g (g A11 A2 A1z 5 3
r(%nDE@?@Qﬁ?ZD“AZlAZZA%S Go Gy On gn du Gu dn dn dn
% % % As1 Asz Ass (%) Dg@g @% @g @7(%2@ U(/?z g“% @%o(? &g "(/?zz
2 3 n @ @ @ ag 9@@@9@@8@
2 3@, @@ @ B @ @ 0% @k %k O O%
Wi oo Wy 2@1@@1% @ @,@ 00 06 GG G& 66 GO
4 - 5 -v...... 2 3 A @1 . N . , A . )
C oWy 110 Wy o o o (18) Wip o Wy %@%g@ %%%%%
W31 1 Wy @k@k@f D4Wop 110 Woy §::: Srooiinoononnonnnotionn :::é
Wap i: Wy @k @ @ @k @@ @, @« G
. . - @ @ @ ©Q G@0eQEaeaa@d Ga
With rst partial derivatives: (28)
3 ax
@=@D PW (19) With second partial derivatives:
dy @ g
= p: =~ 3=2
@=@0 Poesvica (20) oz D yizF xicyic 7 (29)
a 3=2
X2C y2C 2 (1) a@ (xyF y (30)
@ 32
Where & D (x* y»» x2C y?C 7 (31)
XD Xy Xk, yD ,and zD z 22 _
n X YDYn o Yk noz (22) S@D(xz): x?C y2c 232 (32)
While r (%) informs about the deformation directions and @
magnitudes at evaluation points, one could be interestetdén t =5 D(yzF x?C y?C 7 =2 (33)
local changes of these directions and magnitudes. This miean Q
computing the second-order gradient deformation tensor @ 2 2 2 2 5 32
rr (%) that allows to quantify the amount of local bending o@ D( x%z% x°C y°C z (34)
energy stored in the deformationr .% hasm (m m)
components. It is convenient to represent these components Where
in matrix format. In particular, we represemt .%/, as the
product ofanm kmatrix withak (m m) matrix with n XD Xn X, YDVn Vi.and zD z, z (35)

the point whererr .9% is evaluated.
For 2D problems we have:

2 3
@@ Q

MDA Gy Gy o O
@ @@ @@ a@*

jirr .9 jj? represents jusi.% presented in Equation (12)
when it is evaluated on whol®™. Locally, jirr .%/jj?
can be interpreted as thbending energy densitye., how
much is non-a ne (Dnon constant) local deformation in the
3 neighborhood of n where it has been evaluated. Moreover, in
@ the presence of an FE mesh, it can be evaluated at centroids

@,68.8, @,
Wip i Wy § @ G@@a 6° of each element and multiplied by the elements/olume to
D Toolnnouinoan (23) ; ; .
Wor it W 450 & o0 @ compute, in a discrete way, the body bending enekgyhat
ﬁ@k 7@3( 7@5 ﬁ@k has an important mechanical meaning in the decomposition
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of deformation and for its relationship with the strain ermggr
' (see below).Varano et al. (2018)provided a detailed
description of the relationship betweénl. , and# and their
importance in computing the direct transport, i.e., the paralle
transport the TPS spac&drano et al., 2017, 20).8

In particular,

D Xl

gives thedecayindex Varano et al. (2018)i.e., the ratio
between bending energy computed on whol& Bnd on
the body only. Recentlyyarano et al. (2019proposed the
construction of the body bending energy matrix B order to
restrict it exclusively within the physical boundaries ofextis
involved in the deformation analysis.

The bending energy can be considered as a pseudo-distance

as it vanishes for globally a ne transformations. A more
physical distance, used in continuum mechanics, that vaasish
on the rotational part of the local deformation, is the complete
strain energy:
V4
. 1 2
sDé 2 EEC (trB (36)

where and are the Lamé elastic moduli, related to the
material properties of the body, and

rucCru’
2

ED (37)
is the strain tensor (for small displacement). In the case oépu
geometrical structures, and are immaterial and we could
adopt a simpli ed expression for the strain energy:

(38)

As already stated for body bending energy, this strain gnerg
becomes an energy density when evaluated in nitesimally at
speci c locations.

Principal Strain Directions, Deformation
Ellipses, and Ellipsoids

One can us& and in order to depict deformation directions
of a unitary circumference (in 2D) or a sphere (in 3D) as
shown inFigure 5 conveniently rescaled if necessary, and the
principal axes of the resulting ellipses (or ellipsoid&KH).

The principal axes identify the (reciprocally) orthogonal
principal strain direction (SD) given by while gives their
squared magnitudes. p_

As stated aboveC does not encode rotation; thus, C,

v, and must be used in order to map SD, and to depict
deformation ellipses or ellipsoids, on tteourceshape; in
order to depict this information on the target shape using SD
encoded inv, v must be pre-multiplied byr in order to depict
SD on the target con guration such as

vy D Fv (39)

vy already encodes SD magnitudes. This procedure rotates
within the target according t&® encoded irF.

SD possesses an important deformational and mechanical
meaning when computed on deformed shapes that are the
result of speci c forces such as in the left ventricle contiat
(Evangelista et al., 2015; Gabriele et al., 2016; Piras20 ¥,
Varano et al., 2008 ; D 1 indicates no deformation,; > 1
indicates a deformation that produces an expansibtefisile
SD) along the direction of the corresponding SD, while
< 1 indicates a deformation that produces a compression
(Dcompressive SD). The closer theto 1, the smaller is the
deformation. This means that in case of > 1 or ;< 1,
the direction of maximal deformatioris dictated by thev
corresponding to the; most distant from 1:

OD argmaxj1  j/ (40)
The corresponding direction of maximal deformation (either
tensile or compressive) on the source, 0@ on the target, is
often called primary strain direction (PSD).

We recall here that we are dealing with locally ane
transformations. In case of direct calculation (see above)
made on single triangular (or tetrahedral) FE of a Delaunay
triangulation computed within two general X and Y shapes,
these FEs should not be re-aligned via OPA  Accordingly,
if using Fps, One should us&yys D FtTpsFtps and ﬁps for
deforming unitary circumference or sphere on the source
and vyips D Fypsvips and Fyps for plotting them on the
target. Figure 6 illustrates a square that is deformed in a
112 2
0.31 1.12
the direct calculation or TPS jinterpolation iR2, F is fully
recovered. One can useé or = C in order to depict the
deformation ellipse and corresponding SD on target or source
con guration, respectively.

parallelogram using the tens@r Using either

Choosing Evaluation Points and Their

Visualization

The concept of “localness” inevitably implies the choice of a
series of evaluation points within the geometry subjected to
a deformation. One of the most e ective approaches, widely
applied over a large spectrum of applications, is the Delaunay
triangulation (Marquez etal., 2014; Dryden and Mardia, 216
The construction of the triangulation proceeds iteratively
by choosing the centroids of the initial sets of de ned
triangles as a new set of triangle's vertices. In this mararer
unlimited number of triangles can be assembled. Speci cally
the constrainedDelaunay triangulation allows limiting the
construction of the triangulation itself exclusively withihe
body of interest by providing proper contour information in
2D and surface in 3D. Once a criterion to choose deformation
gradient evaluation points is established (i.e., constdine
Delaunay), it is essential to have also a criterion to locate
them in both source and target con gurations as homologous
points. While this could be of lesser importance in non-
biological applications, it is instead mandatory to have them
as much as possible anatomically homologous when dealing
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FIGURE 6 | The deformation of a square in a parallelogram and SD plottedn source and target con gurations. C, F, and 2 , are also shown.

with biological structures. Whereas, the homology of a point
in a biological structure, is an elusive concept (as a point is
dimensionless3ookstein, 1991; Dryden and Mardia, 2()1i6

decomposition onC returns only two non-zero eigenvalues
and that deforming a sphere results in a at ellipsoid, in
practice an ellipse ifR3. Instead, using TPS to estimatgs

is nevertheless approached in those cases where histologicabnd Cyys leads to an ambiguous reading of the morphological

delimitations are visible, for example, at the meeting point
between cranial sutures (“Type I” landmarks). A less strict
homology occurs if landmarks are digitized on curves or
surfaces (“Type II” and “Type IlII” landmarks). Of course,
centroids of a triangulation cannot be manually re-digiiz

on the target once estimated on the source. For this reason,

change experienced by the source's triangle. In fact, TPS in
RS deforms the ambient space in all directions. In the case of
two non-coplanar triangles iR, TPS looks for the function
whoseA in Equation (10) corresponds just to the deformation
gradientF, being the transformation uniform. However, it can
be easily veri ed thafps and Cyps are non-singular andryps

we suggest to use the same TPS computed centroids to6D F and Cyps 6D C: if a sphere is deformed according to

estimate evaluation points within the target con guration.
TPS coe cients are then used to deform the set of centroids
coordinates of constrained Delaunay triangulation built on
the source to predict a new set of points to be used for
visualization within the target con guration body. This we
set could be considered reasonably (though with a certain
approximation) “continuously homologous” between source
and target con guration. Besides TPS, many other spline
functions can be used for this purposddrquez et al., 20)2

Surfaces in 3D

We dedicate a special attention to surfaces in 3D. These
particular shapes are dealt with, in classic GM studies, using
TPS as formulated inR3. Shapes are often represented,
however, using triangulation that mimics a shell structure
Frequently, once TPS deformation coe cients have been
estimated, the morphological interpretation is made by
looking at the deformation of the surface triangles. In this
case, the appropriate way to visualize local deformation is to

Fips or Cips, it transforms into an ellipsoid. Nevertheless, if
we deform the source triangle usirigps, we obtain exactly
the target triangle. This happens becalsgs produces a
deformation that acts on the entire ambient spaceRiﬁ but
this deformation vanishes in those points not belonging te th
plane identi ed by target triangle. It follows that given two
generic triangles iR®, a sourceX and a targeY, the deformed
stateY can be obtained using eith&ror Fyps.

Y D XFT D XFy
Interestingly, if we deform a cube, thus a non-planar shape,
using F or Fyps, We obtain di erent deformed states. Onfy
attens the cube in a planar shape, whigs confers an a ne
three-dimensional transformatiorfzigure 7 shows the e ect
of FandFps on triangles and cubes iR3.

It is worth noticing that if X and Y are two coplanar
triangles w.r.t. each other but still iR3, the direct calculation
still returnsF and C while TPS cannot nd a solution as the

compute energies, and to depict deformation ellipses and PSD L matrix (Bookstein, 1989becomes singular; it happens as

on the surface of triangles. A triangle R® is a particular

in the absence of any displacement, betwXeand Y, along

type of 3D shape: its landmarks are always coplanar and, asthe dimension perpendicular to the plane containing them, no

for any other coplanar shape, if we compulien a discrete
way using Equation (8) between two generic triangles in
RS, this leads toF and C that are 3 3 matrices but that
are also singular: this means that performing an eigenvalue

interpolation is possible ifR3.

The abovementioned example therefore suggests that,
when looking at a surface's elements, deformation estidiaye
TPS could not be adequate to interpret what happens on them.
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FIGURE 7 | Computation of F for two triangles inR3. Top row : the undeformed black triangle is deformed into the red onethe direct computation leads to a tensor
that attens a unitary sphere in an ellipse irR®. Mid row : Fy,s deforms a unitary sphere into an ellipsoid. BotfF and Fys return the deformed state if used to deform
the source triangle.Bottom row : when applied to a regular cube, onlyF deforms it into a at shape, while it does not hold forFs.

Another simple example is to deform a cube with a known explained abovel and C, e.g., the projections df and C

F and looking what happens to a single cube's faEegire 8 on the faces, were calculated for any face and corresponding

synthetically depicts this simple experiment. The ellipsoids at deformation ellipses were drawn. As it can be seen, these
e cubes' centroids (source and target) were generategjusi ellipses are very di erent descriptors w.r.t. the deformation
C andF, respectively. Using the direct discrete computation encoded in the ellipsoidF on a specic face is just the
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FIGURE 8 | Top row : a regular black cube is deformed onto the red parallelepip® Bottom row : F is then projected onto single faces using the procedure expsed

in the text. Six projected tensors are then obtained.

projection of F on the plane containing the face. To project The normalized axis@®s perpendicular toa;s and aps is

C, we calculateys andaps on a face on the source sha¥eas found as
the vector di erences between two vertigeg and pas and X ags
centroid % and their normal vector asD &s  apsl @sD j2a Xe (41)
The projector on the sourcis is derived as
a1sD p1s X pro) s
sD pas X PsD I %s@s (42)
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Cis then found as 1977; Harrison, 1997; Boisserie, 2))Ohere considered as
B the undeformed shape, and the extant specigzpopotamus
CD Ps'CPs (43) amphibiusdistributed on the sub-Saharan African continent
_ (Lewison and Pluhéek, 201Y treated as the target shape.
In order to nd F, we derivedP; (in the same way used for A harvardi is one of the most primitive species within
derivingPs); then,F can be found using Hippopotamidae and displays some peculiar plesiomorphic
traits including the low orbits whose rim ushes not beyond
the prole of cranial roof. Moreover, the skull is shorter
and less massive than in the extant hippo, with lower orbits
and a slender zygomatic arch. The latter features are also
present in the pigmy-insular Madagascan hippd3aifdol
et al., 202)) which are characterized by reduction of size with
EXAMPLES respect to their continental ancestors, by a general deereas
Simulated Example of the height of the orbits Caloi and Palombo, 1994and by

Figure 9shows a regular square grid composed of 49 landmark¥ain size reduction \(eston and Lister, 20)9The opposite
that is deformed in an irregular shape that is stretched an&O”d'F'Or? can be found in more denvgtﬂ-lexaprotodon(H.
compressed in two dierent landmark columns, respectivelyPalaeindicus and in H. amphibius (Boisserie, 2005, 2007;
The procedure for estimating an approximately homologoug>©/Sserie et al., 2011; Pandol et al., 2Ji2ia these species,
triangulation as explained above on both source and target &Pits are elevated beyond the cranial roof. Elevated sybit
also shown. The deformed shape is rotated onto the undeformedy Iong faqal region, and a short postorbltgl _part of the
one via OPA without scalingFigure 10shows the rst options skulll in H!ppopotamldae are related to specialization for a
we present for the visualizatiog of local deformation. 22 ~ Semiaquatic lifestyle. _ o

local tensorsk for the target and C for the source) have been '€ adaptation to a semiaquatic lifestyle evolved
used to deform unitary circumferences appropriately rescalelfdependently |nH|ppopotamusanq Hexaprotod_onsuggestlng
(magni cation: 0.07). The color of each ellipse corresponds t& convergence between the two lineagesigserie, 2005, 2007;

the log(det F/), thus indicating the local in nitesimal area ratio S°!Sserie etal., 20hd references therein). _
between target and source. ValuesO indicate a reduction in  1he morphological information encoded in Hippopotamidae

local areas, values 0 denote an enlargement, while 0 indicatesSkU!l lateral view is thus very important to depict evolutiona
during clade diversication, morphological

no area change. The change in area alone does not inforRRUEMS , , , e
about the direction of the deformation given by SD. Hereythe cOnvergences, and adaptations to di erent lifestyles inirigd
are black if tensile and violet if compressive. In this exar,nplete”e_sm""“z"Jltlon of some Species (etg.madagascanensus

all SD1 are tensile and they are larger in correspondence of Flgurg l,Z,ShOWS reisults rell?tlve to this 2D elxlample. K

the two columns of landmarks that undergo a compression e digitized 15 landmarks and 32 semi-landmarks from
and an expansion, respectively. We also depicted SD withoRhotographs in lateral view on each specimen using the tpsDig2 v.
ellipses; this gives a more clear perception of the directiah an?-17 software Rohlf, 2013 Seml-landrr_larks were used FO
magnitude of local deformation only. The e ect Ofp rotation c@Pture the morphology of complex outlines where anatomical

encoded inF is highly visible when using on target o~ C on homology is di cult to recognize. SeEigure 1in Pandol et al.
source shape. (2020) for landmarks de nition. Semi-landmarks assume that

Figure 11 shows in the upper left panel the interpolation curves or co_ntours are homologoqs among sp(_acim@miams
(via TPS) within the entire body of loglet.F/ , while in €t @, 2004; Perez et al., 2)06irst, a GPA implemented
the upper right panel, log() density interpolated in the same N the procSym() function from the R-package “Morpho
manner. Larger values, as expected, can be found arou,ggchlager, 20)4vas used to rotate, translate, and scale landmark
regions corresponding to the two landmark's columns sulgéct con gurations to unit CS; here, we used the minimization of

to stretching and compression. In the lower left panel, w€nding energy during the sliding of semi-landmarks as an
show the distribution of log(rr (%), 2) density: here, we can alignment method. Second, OPA was used to align the two

. . o . : con gurations. During OPA, the semi-landmarks previously
appreciate the “non-a nity” of deformation around points wher . . .
P e used to align shapes with their consensus were treated as
rr.% was evaluated; log(r (%), ) density is distributed

; xed landmarks, an approximation here considered not relevant
on alternate bands of large and small values with largesegal ¢ the purposes of the present article. The second row in
in correspondence of the two landmarks columns that werg-g,re 12shows the direction of SD and deformed ellipses (left
stretched and compressed. side) colored according to log(d&)), while on the right side,
log(detf)) has been continuously interpolated (using TPS) on
the body domain of the target shape. The third row shows on
. 2 L. . .
The 2D real example is related to the deformationth® 1€ft side lod() and log( rr %/, °) densities (right side),
respectively. The fourth row shows SD on the left side and PSD

occurring between two con gurations in lateral view of two A ) P
Hippopotamidae species: the extinct specfeshaeopotamus anhe right side. SD and PSD are colored according toand

harvardi from the Late Miocene of Eastern Afric&¢ryndon, Q respectively.

FD P, TFPs (44)

This procedure can be done for any face for whitatr C need
to be calculated.

Real Examples
2D Paleontological Case Study
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FIGURE 9 | Top row: a regular square grid(left) is deformed onto an irregular polygor(right) . Bottom row: a constrained Delaunay triangulation derivedn the
source shape (left) is estimated on the target using TPS; source and target shapewere aligned via OPA. Triangle's centroids will be used asvaluation points for
estimatingF, rr  .%/, and other metrics.

From all these panels, an interesting pattern emerge8D Paleontological Case Study
the elevated orbit ofH. amphibius has, on its upper The rst 3D example considers the deformation occurring
borders, approximately horizontal PSD as also visible bgetween the humeral morphology of two Talpoidea species:
oblique/horizontal ellipses in the second row (lef)légure 12 the extinctMesoscalops montanen&isirnosky, 1981from the
This means that the “elevation” of the orbit and related sttres  Early Miocene of North America and the extaNeurotrichus
takes place on the ventral side of the skull in lateral vievia@t,  gippsiiBaird 1858 distributed in northwestern United States and
this is observable on the PSD pane), where it appears evidel;ihwestern British Columbia. These two species belong to
that PSDs are oriented vertically with© > 1 in particular  a clade (Talpoidea) well-known for including several fossor
in the jugal area. Closely outside the orbit, instead, we ndmoles Piras et al.,, 2012, 20)L5Among these species, di erent
oblique/vertical PSD with O < 1 indicating that, there, the degrees of fossoriality can be found from complex tunnel
target bones (the frontal and parietal in particular) expedera diggers to more ambulatorial species. Fossoriality degsee i
local dorso-ventral contraction. linked mainly to the adaptation shown by humeral morphology.

Without the help of PSD, one could still look at the usualWhile slender humeri are less adapted to borrowing activity,
deformation grid, but it does not furnish equally clear dita the humeral morphology of subterranean species experienced
and, more importantly, cannot quantify locally the amountdan several shape changes in both distal and proximal regions with
direction of local deformation. evident enlargements in medio-lateral direction. Prospalae,
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FIGURE 10 | Top row : C (left) is used to deform unitary spheres appropriately rested for sake of visualizationF (right) was used for the same purpose on the target
con guration. Ellipse’s color is proportional to log(detf)). Values< 0 indicate a reduction in local area, values 0 indicate an expansion.Bottom row : the direction of
deformation is dictated byvy and @ (i.e., SDD ellipse's axes). Tensile and compressive SD actions are ifwated. Source and target shapes were aligned via OPA.

the clade to whichMesoscalopbelongs, shows one of the species Barnosky, 1981, 1982; Piras et al., J01For our
most peculiar humeral morphologies among mammals, withexperiment here, we used CT scan data fréimas et al. (2015)
unique shape and mechanical stress in the context of burrgwinfor M. montanensignd for the non-complex tunnel digge\X.
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FIGURE 11 | Visualization of local deformation via interpolation (ugj TPS) of log(detf)), logé), and log{jrr . %/ ,ji?). Source and target shapes were aligned via OPA

gibbsii As our procedure requires homologous triangulation,by homologous landmarks and triangulations. In this example,
we used the TPS coe cients found when applying TPS to thevhen aligning source and target via OPA, we did not scale
32 landmarks set used iRiras et al. (2015belonging toM.  shapes at unit size in order to show the e ect of size and shape
montanensigas source) and tbl. gibbsii(as target) to defornM.  variation when evaluated on a local triangle's surfaceshen t
montanensisnesh; this allows dealing with meshes constitutedvholeR3.
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FIGURE 12 | Local deformations observable betweenmArchaeopotamus harvardiKNM-LT 4 (as source) andHippopotamus amphibiusMSNF 1135 (as target). We
show both deformation ellipses obtained using= as well as main metrics derived using approaches explagLedl ithe text. In particular, we show log(deff)), log#), and
log(lfr %/, |P). vy and @ are also shown colored according to corresponding values itthe interval [, OJ; values< 1 indicate compressivevy and @, values>
1 indicate tensile actions. Source and target shapes were gned via OPA. Scales equal 10 cm. KNM, Kenya National MuseunMSNFS, Museo di Storia Naturale di
Firenze, sezione di Zoologia La Specola.
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FIGURE 13 | Local deformations observable betweerMesoscalops montanensisUWBM 54708 (as sourcE)gnd\leurotrichus gibbsiiLACM 093944 (as target). 3D
meshes are also shown ) calculated uponF or F are shown and colored according to the corresponding ©O. Meshes' triangular faces are colored according to
log(detf)). Densities of relevant metrics are also illustrated. Sme and target shapes were aligned via OPA without scaling. WBM, University of Washington, Burke
Memorial Washington State Museum, Seattle; LACM, Los Ange$ County Museum.
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Figure 13 shows data and results relative to this analysisthe position of the selected xed landmarks and ensures the
Triangle face colors correspond to log(del, WhBeQ (i.e., PSD geometric homologyGunz et al., 20050f the points between

plotted on the target) color is proportional to Ocomputed the con gurations. Con gurations were then symmetrizedrw.

either onC or on C, i.e., on tensors evaluated at the trianglesSadittal plane. _ _
centroids on the wholeR3 (Figure 13 third row, right) or The target was aligned to the source via OPA and both shapes

successively projected on the triangle's surfaigife 13 third ~ Were scalgd atunitCS. Fo.r the sake of visualization, WerrdEed.
row, left). Corresponding distributions of these metriceaiso  tiangulation of meshes in order to better show deformation
illustrated. log(deff)) presents all values 0, thus indicating €lliPSoids (see belowigure 14shows data collection and results
a considerably smaller Bize of target shape as exempli ed E';glatlve to computation of, F and related metrics. Trinil 2 and

. 0 — gandong }2 are usyally ascribed to .the same specigﬂ:!.i.e.,
source shaded S|Ihoyette. _and Q comp_uted uppnC or € erectusalbeit Trinil 2 is commonly considered a more primitive
and F or F, respectively, give dierent information: in fact

. . . . stage inH. erectusevolution, while Ngandong 12 constitutes,
when usingC arbdf’ we obtain centripetal PSP d'Ctited by probably, a more derived form. Ngandong 12 shows a larger
size change with Oconstantly< 0, while usingC and F, we  encephalization than Trinil 2 with a more elevated occipital
obsebvg PSDs that are formally tangent to the body surfate bycale relatively to the lambda. However, in both specimens,
with  Othat in some cases have values, thus indicating an the opistocranion (the most distant point from the glabella)
expansion. We note here that it is not inherently better loakin coincides with inion. A very marked di erence is the morpholog
atF or F. We highlight that, in most cases, this distinction is notof occipital torus that is approximately straight in Trinil 2,
considered and very often only deformation on meshes' serfa while in Ngandong 12, it is a jutting structure laterally airt
is described and interpreted in functional, morphologicaf, o and with a noticeable thickness both medially and laterally.
biomechanical terms. This could lead to an incomplete or parti The orientation of@ varies considerably if they are computed
appreciation of the actual deformative phenomenon under studypon F or F. We depicted the ellipsoids circumscribed @
This ine ectiveness could be partially mitigated by perforigin computed fromF: they clearly cross the body surface and are
analyses in the shape-space. We used here the size-and shapiented in some regions nearly orthogonally @ computed
space with a purely didactic aim as it makes more evident the fagpon F. This detail deserves particular attention as, looking
that PSDs of thevhole bodythusnot the body surface) when the at the surface only, one would underestimate the fact that
target is considerably smaller than the source are very dier the deformation acts primarily along a direction that, in sem

from those on its surface. regions, is far from being tangent to the surface itself. In
particular, the dorsal region of occipital scale, which inda
Surfaces in 3D the lambda, is more elevated dorso-ventrally in Ngandong 12

The 3D surface example observes the occipital scale (exatrarthan in Trinil 2. This is related to the more pronounced dorso-
surface) of twoHomo erectusskulls from Java: Trinil 2 ventral attening of the latter w.r.t. the former that pressn
skull (belonging to the original Dubois collection from 189 also a larger cranial capacity. Lack of cultural evidenassh s
excavation) is of uncertain age, the estimate spanning froras particular lithic industry, does not allow linking the ¢gar
about 1 Ma and 0.5Ma, and Ngandong 12 from Ngandong sitencephalization of Ngandong 12 with an increased complexity
(discovered in 1933 by von Koenigswald) about 50 km northof cultural behavior. Instead, the shape of occipital scales w
from Trinil dated between 550 and 143 ka hydriati et al.  probably more related to the development of neck muscles
(2011) and recently re-placed between 110 and 120 ka bgxpansion and the antero-posterior deformation indicated@py
Rizal et al. (2020) computed fromF (and much less clearly %) can be interpreted
We digitized 133 landmarks distributed over the entire bongust as the structural bone response to nuchal muscle hyper-
surface between the superior nuchal lines and the lambda atevelopment. We suggest that the useFahstead ofF leads
Ngandong 12 CT scans kindly provided by Dominique Grimaud-to a very di erent morphological reading of the actual local
Hervé (GE medical systems/high speed RP; voxel size: 512deformation process than looking at surfaces only. The OPA
512 pixels; pixel size: 0.48; slice increment: 1 mm) and onilTrin(or GPA) alignment, in fact, superimposes centroid's shapes and
2 acquired with NextEngine laser scanner at the Departmerdlobally rotates them in such a way that the target could appear
of Environmental Biology (Sapienza University of Rome). Thedess deformed locally than it does actually. Local straialysis,
con gurations of points were digitized through the 3D softwa instead, being locally rotation-independent, allows vigiireg
EVAN Toolbox v. 1.0 (www.evan-society.org). The same sofw and quantifying PSDs and their magnitudes independentlynfro
was used for the 3D sliding procedure. In this way, 129nitial position of source and target.
semi-landmarks were de ned in relation to 4 xed landmarks
represented by the lambda, the inion and the two asteriong)|SCUSSION AND CONCLUSIONS
(left and right). Spline relaxationBookstein, 1996, 199 Wwas
carried out by sliding semi-landmarks on a plane tangent ® th |n this study, we presented several strategies in order toiifya
surface of each specime®(nz et al., 2005 This procedure and visualize local deformation in the context of geometric
involves the minimization of the bending energy with respect morphometrics, a kind of shape analysis that exploits the
the distribution of semi-landmarks on the surface of theglbr concept of homologous landmarks digitization. Startingnfro
dimensional object (not on a single curve) with reference taorresponding points found on both the source and target
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FIGURE 14 | Local deformations observable betweerHomo erectus Trinil 2 (aB source) andH. erectus Ngandong 12 (as target). 3D meshes are also shown@)
calculated uponF or F are shown and colored according to the corresponding O. Meshes' triangular faces are colored according to log(d€f)). Densities of relevant
metrics are also illustrated. Source and target shapes weraligned via OPA. Trinil 2 is housed at the Nationaal Museum maNatuurlijke Historie, Leiden, The
Netherlands; Ngandong 12 is housed at the Department of Phyisal Anthropology, Gadja Mada University College of Mediug, Yogyakarta, Indonesia.
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TABLE 1 | Relevant objects used for visualization of local deformain.

Object Notation Equation or de nition Meaning
First-order gradient tensor F InR? 2 3 Compute local deformation of a unitary
@iy G circumference inR? or a sphere inR® on
FDHCID4 @ @ 5 P
@ Gy, 4 the target shape
@ [c]
InR3 2 3
@x @x @
g @@C ' @@ ;
Y Y Y
FDHCI D o G Cc1l @
@, @ @
@ @ waeC?
First-order gradient tensor Fips OF InR? 2 3 Compute local deformation of a unitary
computed upon TPS r (% 2 @ @013 2 Al A 3 2W w 3 %% circumference inR? or a sphere inR® on
interpolation r.%, D4 g g5 p 4 "1 M25 gL - Tk g - ;;:é the target shape according to TPS rst
T T Ao Ax War 22 Wk 7 g, @, partial derivatives
@ o
InR3 2 3
@y @ @6
@a @ a
G O %é
r®, DIE G @
0n @n @y
2 @ q g 32 0 0.3
A Az Aag Wi i Wi, .55 @
D§A21 Ao Azéc W21:::W2ké§:::::::::g
B B As1 Asz Ass Wap 11t Wa %%%
Projected rst-order gradient F FD P, "FPs Project F on a plane inR®
tensor
Right Cauchy—Green C CDF'F Compute local deformation of a unitary
symmetric deformation tensor circumference inR? or a sphere inR® on
the source shape
Projected right Cauchy—Green C CDPs"CPs Project C on a plane inR®
symmetric deformation tensor
Eigenvalues ofC Eigenvalues ofC Squared magnitudes ofv
Eigenvalue of largest o @ argmax(|1 - |) Largest deformation’ (the most distant
deformation from 1) squared magnitude
Strain directions (on source s Eigenvectors ofC Strain directions on the source at unitary
con guration) norm
Strain directions on target Vy vy D Fv Strain directions on the target; they
con guration contain magnitudes
Primary strain direction 12} Eigenvectors corresponding toO Strain directions corresponding to the
largest deformation
Second-order gradient tensor  rr (%) InR? 2 3 It noti es how much is non-constantr (%)
computed upon TPS . 2 %’2"1 @é'g (g/é} %’2‘4 5 in the neighborhood whererr (%) is
interpolation rr (8, D @"Zzz 8% G% @"/zug evaluated according to TPS second partial
e 0@ @9 @@ 3 derivatives
1
2 3 @;21 Qe g 4 @721
D4W11 :W1k5§:::é::::@:
. k
Wor i Wok 36, ga @, @«
2 Q 2
InR3 2 3
@ @ @% @wm @% @% @% @% G%
@ @ @ @@ @@ @@ @@ @@ Q@
rm @), DEC% €% % d% d%n % G% Gn d%
@ @ @ @@ 0@ @@ @@ @ 0a
Bk BG% @% B% % G% B% Or %
, @ @ g @@ 0@ @@ @@ @@ @@
@, @, é, 8,8,8,8,@, @,
W. W
- ke @ @ @@ 0@ 6@ @@ @@ 0@
D§W21 Wik g T Do
CoWawa GG G G Giiti e %
Strain energy # "D % .E E Strain energy associated to a deformation

shapes, reasonably homologous triangulations can be aksgmbobjects, together with their de nitions, presented in thettekhe
using constrained Delaunay triangulation (or similar $égies) use of direct calculation on triangles (or tetrahedra ifikalze)
on both two and three dimensiongable 1 presents the main or of the evaluation of (%) at appropriate evaluation points
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leads to the identi cation of the deformation gradient tems whole system. These forces could be related to muscle insertio
F that is the base to derive the necessary objects needed firch as in long bones of sauropod dinosaugi{nan, 200y
the quanti cation of local deformation and for its visuadidton  or to mechanical pressures exerted in the complex reciprocal
on source or target shapeC D F'F, v, and , i.e., the relationships existing between brain and its braincase dantly
eigenvectors and eigenvalues @f log(detf)) has been used investigated in paleoanthropologiuner, 201% The range of

in the past Marquez et al., 20)Zo illustrate the in nitesimal  use of the methods presented here is as wide as the range of shape
area change around the evaluation points. However, this doemalysis applications; their implementation is now availahble i
not inform about the direction of deformation. SDs, e.g., R language using a set of speciad hocfunctions available
and vy, are proper objects for this purpose: they notify thein the online Supplementary Material together with scripts
(locally ane) directions of deformation dictated byC and to reproduce each gure of the present paper. Each script is
F and can be further investigated by selecting PSDs, i.e., tletended to work “stand alone” after loading the source léhw
primary direction of local shape change corresponding to thosancillary functions and necessary R packages indicateeither
eigenvalues most distant from 1 (that indicates no defoiomgt ~ No workspace loading is necessary and landmark coordinages a
We have shown that depicting SD could be very e ective foffurnished in individual scripts. More indications can be falim
interpreting the shape change and allows identifying paréicul the “read me” le.

regions characterized by deformations whose e ects takespiac

di erent parts of the target shape as illustrated in the 2D exanpl DATA AVAILABILITY STATEMENT

regarding orbit elevation il\rchaeopotamuand Hippopotamus

In three dimensions we distinguished the two cases of “fullll the data used in this study can be generated by runningRhe
volume” shapes, such as in Talpoidea example, and “shell-liketripts associated to the article.

con gurations such as irH. erectusoccipital scale example. In

these cases, we highlighted the importance of interprefing AUTHOR CONTRIBUTIONS

F: in fact, looking at what happens to a triangle's surface canno

account for the deformation of the entire ambient space thaPP and VV conceived the paper. PP, PR, AM, and LP wrote the
also embraces the landmarks belonging to the surface.itself paper. AP, LP, and FD acquired experimental data. PP, VV, and
in fact, models deformation in every space direction andvedlo SC implemented necessary R functions.

the appreciation of actual PSD representing the full shape ahang

between source and target. Of course, b&tland F can be  ACKNOWLEDGMENTS

used to interpret the phenomenon. It is important, however,

to be aware of whaF really means, i.e., a projection of the We thank Luciano Teresi for useful advice during manuscript
local actual deformation in three dimensions. While, in rhos preparation. LP developed part of this paper within the research
GM applications related to paleontological and biological &ad project Ecomorphology of fossil and extant Hippopotamids
the evaluation of local deformation in a quasi-continuouayw and Rhinocerotids granted by the University of Florence
is not very common, it could be of great help in inferring the (Progetto Giovani Ricercatori Protagonisti initiative). eV
deformational phenomenon when referred to bone's growth anclso thank two reviewers for useful suggestions during
development: for example, appreciating concomitant(ye) and  manuscript preparation.

rr (%) would permit the evaluation of the direction at speci c

locations of developmental process as well as its local i@viat SUPPLEMENTARY MATERIAL

possibly related to speci ¢ growth factors: in fact, as thenglo

is not an isotropic process (i.e., not homothetic), observingrhe Supplementary Material for this article can be found
the eigendecomposition and spatial variation of the gradienbnline at: https://www.frontiersin.org/articles/10.388&art.
tensor would inform about di erential forces involved in the 2020.00066/full#supplementary-material
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