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Abstract — This paper addresses performance 

characterization of a direction of arrival (DoA) estimator in the 

low signal-to-noise-ratio (SNR) region. The case of a sensor array 

simultaneously collecting signals emitted at multiple carrier 

frequencies by a single source is considered. A maximum 

likelihood (ML) approach is used as a reference method for DoA 

estimation and its accuracy is characterized in terms of mean 

square error (MSE). It is well known that, for SNR values 

included in the so-called threshold region, the DoA estimation 

accuracy decreases rapidly, due to the presence of outliers. This 

effect can be possibly mitigated when multiple frequency 

channels are jointly exploited. However, the capability to predict 

this performance degradation is fundamental either for assessing 

the robustness of an existing sensor or for supporting its design. 

Therefore, the scope of this paper is to introduce appropriate 

approximations to the MSE of a multi-frequency ML DoA 

estimator in order to provide a reliable characterization of its 

performance in the threshold region. Two models for the source 

signals are considered and separately discussed, namely the 

deterministic (or conditional) and stochastic (or unconditional). 

An extensive simulated analysis is reported to prove the tightness 

of the approximations and to characterize the benefits steming 

from the exploitation of signals emitted at multiple carriers.  

Index Terms — array signal processing, direction of arrival, 

maximul likelihood, estimation accuracy, threshold region. 
 

I. INTRODUCTION 

A. Overview 

Direction of arrival (DoA) estimation of narrow-band 

signals is a key problem in sensor array signal with a variety 

of application fields, such as radar, sonar, mobile 

communications, etc. The conspicuous interest attracted by 

this issue is testified by the amount of research literature 

dedicated to the topic, see e.g. [1] and the references therein. 

A variety of advanced estimation methods has been proposed 

and their performances have been extensively studied [2]-

[10].  

However, the majority of studies published over the years 

addressed the problem of characterizing the performance of 

DoA estimators under asymptotic assumptions, where 

asymptotic generally refers to either a high number of samples 

or high signal-to-noise ratio (SNR) regime, [5]-[8]. 

Nevertheless, in many practical applications, such 

conditions are unlikely to be continuously guaranteed. This is 

the case of  passive location systems, where the object of the 

location task could be an emitting source  [11]-[13]  or a target 

that backscatters a signal of opportunity, as in passive radar 

[14]-[16] or passive sonar [17] systems. The passive nature of 

such systems intrinsically limits the possibility to fully control 

the performance for any target of interest. Specifically, the 

DoA estimation accuracy largely depends on the power level 

and the transmission rate of either the emitting source, in one-

way propagation systems, or the illuminator of opportunity, in 

two-way propagation systems. These parameters cannot be 

directly controlled by the system designer. Therefore it is not 

unlikely that the aforementioned systems operate in the low 

SNR regime where accurate angular localization might 

represent a challenging task. This is especially true when a 

limited number of receiving sensors is employed in order to 

limit the system complexity. 

As it is well known, at low SNR values, the estimation 

accuracy of a nonlinear DoA estimator rapidly deviates from 

its asymptotic performance, experiencing the so-called 

threshold effect [8]-[10]. This effect is qualitatively shown in 

Fig. 1, where the mean square error (MSE) is reported versus 

the SNR: three  regions can be identified, referred to as no 

information region (as 𝑆𝑁𝑅 → 0 ), threshold region and 

asymptotic region (as 𝑆𝑁𝑅 → ∞ ). The Cramér-Rao lower 

bound (CRB) [8], in dashed red, correctly describes the 

estimator performance in the asymptotic region, but it is not 

able to predict the estimator performance for low SNR values. 

In fact, while the CRB essentially depends on the local errors 

around the true value, the threshold effect is due to outliers, 

namely global estimation errors that occur due to an actual 

estimate outside the mainlobe of the objective function. This 

issue has been addressed in the open literature by several 

authors [8],[18]-[23]. A number of lower bounds has been 

proposed, accounting for the global errors contribution to the 

overall MSE, see e.g. the Barankin bound [21], the Bayesian 

CRB [8],[18], the Ziv-Zakai bound [23].  

With reference to the problem under consideration, a very 

tight bound has been provided in [19], which is able to predict 

the threshold behaviour of a maximum likelihood (ML) DoA 
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estimator for an array of sensors, receiving narrow-band 

signals from far-field emitters. 

 It is based on some ideas presented in [9] and [10]. 

Basically, the MSE is splitted into two parts, the former 

coming from local errors obtained when the estimates are 

close to the true value, and the latter due to outliers. 

B. Contribution 

In this paper, we elaborate on the achievements in [19] and 

deal with the case of a multiple frequency (MF) ML DoA 

estimator that exploits a non-uniform linear array receiving 

multiple signals simultaneously emitted at different carrier 

frequencies. Frequency diversity has been considered in 

sensor array processing with various objectives, using both 

coherent and non-coherent integration approaches, in several 

applications. They include, for instance, frequency diverse 

array (FDA) [24], frequency diversity based multiple-input 

multiple-output (MIMO) [25],[26], and multi-frequency co-

prime arrays [27]. 

We refer to DoA estimation based on the non-coherent 

exploitation of signals received at multiple carriers as a mean 

to mitigate the problem of angular ambiguities in arrays 

enjoying a limited number of channels. This idea is based on 

recognizing the change in the array grating lobe pattern that 

results from the change of frequency and it finds application 

in several scenarios [28].  

Among the most interesting, we mention DoA estimation 

of single source that transmits signals on multiple carriers, 

either simultaneously or with rapid frequency hopping. For 

instance, this is the case of remotely piloted unmanned aerial 

vehicles (UAV) carrying RF emitting devices.  Since the 

considered multi-carrier sources should not necessarily share 

the same transmitting antenna, possible scenarios of 

application also encompass the case of multiple emitters 

carried by the same platform, e.g. ships or aircrafts [29]. 

Another very interesting application context is offered by 

multi-band radar and sonar systems that aim at localizing 

targets backscattering signals emitted on multiple frequency 

channels by either one (i.e. mono-/bi-static configuration) or 

several transmitters (i.e. multistatic configuration).  

This scenario also embraces the case of passive radar systems 

exploiting co-located or geographically distributed broadcast 

transmitters as illuminators of opportunity [16]. 

The purpose of this paper is to provide a reliable 

performance characterization of the MF ML estimator in the 

threshold region. To this end, we exploit the same approach 

adopted in [19] and use some recent results from 

the theory of indefinite quadratic forms in Gaussian random 

variables [30] to evaluate the probability of outlier for the 

considered estimator. With reference to the source signal, two 

different models are considered, namely the deterministic and 

the stochastic, often referred to as conditional model 

assumption (CMA) and unconditional model assumption 

(UMA), respectively.  

The capability to predict jointly the threshold and 

asymptotic performance of the MF ML DoA estimator via the 

expressions derived in this paper enables a fair comparison 

between different array configurations withouth resorting to 

time-consuming Monte Carlo simulations.  

Also the benefits of the multi-carrier approach can be 

easily characterized based on the developed tool. Finally the 

results derived in this work could also be used to address 

robust design optimization of the sensor array layout.  

C. Outline of the Paper 

The paper is organized as follows. We introduce the signal 

model and the MF ML DoA estimator in Section II. The 

approximations adopted for the MSE and the probability of 

outlier are illustrated in Section III, along with the results 

obtained in [19]. In Section IV and V we develop theoretical 

expressions for the probability of outlier with reference to the 

more general multi-carrier case, under deterministic and 

stochastic signal model assumptions, respectively.  

In both sections, the results of Monte Carlo simulations are 

provided to support the accuracy of the obtained expressions. 

The simulated analysis is further extended in Section VI 

where the validity of the adopted approximations is verified 

in terms of MSE and the threshold region performance of the 

MF ML estimator is investigated for various system 

configurations. Finally, some conclusions are drawn in 

Section VII. 

 

Notation 

�̂�0 estimate of 𝑢0 

(∙)𝑇 transpose 

(∙)∗ conjugate 

(∙)𝐻 Hermitian or conjugate transpose 

Pr [∙] probability 

E [∙] expectation 

𝐈𝑁 𝑁 × 𝑁 identity matrix 

Tr(∙) trace 

Re(∙), Im(∙) real and imaginary parts 

det(∙) determinant 

⨂ Kronecker product 

 

Fig. 1  Qualitate behavior of the MSE versus the SNR for nonlinear 

DoA estimation. Three different operative regions are distinguished. 
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II. SIGNAL MODEL AND MULTI-CARRIER 

MAXIMUM LIKELIHOOD DOA ESTIMATOR 

Let us consider a K-dimensional linear array1, with 𝐾 ≥  2 

identical spatial channels, receiving  narrowband signals at 𝑁 

different carrier frequencies. This array is employed to 

estimate the DoA 𝑢0 of a multi-frequency source when 

measurements are severely corrupted by noise.  

Assuming that a single source is present, the complex 

array output (after down-conversion, filtering and sampling) 

for the 𝑙-th frequency channel can be arranged into the K-

dimensional column vector 

𝐱𝑙(𝑡) = 𝐴𝑙(𝑡)𝐬𝑙(𝑢0) + 𝐧𝑙(𝑡)  
(𝑙 = 0, . . , 𝑁 − 1,    𝑡 = 0, . . , 𝑀𝑙 − 1) 

(1) 

where 

 𝐴𝑙(𝑡)  (𝑙 = 0, . . , 𝑁 − 1)  is the complex baseband 

source signal. Depending on the application, it can 

represent the samples of the signal emitted by the 

source to be localized or the complex amplitude of the 

target backscattering in response to the signal of 

opportunity emitted at the l-th frequency channel.  

We model 𝐴𝑙(𝑡) (𝑙 = 0, . . , 𝑁 − 1, 𝑡 = 0, . . , 𝑀𝑙 − 1) 

as unknown parameters and handle them according to 

the stochastic and the deterministic framework. 

 𝐬𝑙(𝑢0) is the target steering vector and accounts for the 

array response from the target DoA.  For a linear array 

composed by K elements at positions 𝑑𝑘  (𝑘 =
0, . . , 𝐾 − 1) measured with respect to a generic phase 

reference location along the array, it is 

𝐬𝑙(𝑢0) =  [𝑒
(−𝑗

2𝜋
𝜆𝑙

𝑑0𝑢0)
… 𝑒

(−𝑗
2𝜋
𝜆𝑙

𝑑𝐾−1𝑢0)]
𝐻

 (2) 

where 𝑢0 = sin(𝜃0)  is the target DoA measured 

relative to the array boresight and 𝜆𝑙  is the l-th 

wavelength. 

 𝐧𝑙  is a K-dimensional vector that collects the additive 

noise samples at the receiving sensors. The noise is 

assumed to be a spatially white zero-mean complex 

Gaussian process with unknown mean square value 

𝜎𝑛
2 , independent of the source signal. It is further 

supposed that the noise contributions at different 

frequency channels are statistically independent and 

identically distributed (i.i.d.). 

 𝑀𝑙 is the number of space snapshots available for the 

signal at the l-th carrier frequency and it is assumed 

known. In the general case, a different number of 

snapshots might be available for the different 

frequency channels and their total number is denoted 

by 𝐿 =  ∑ 𝑀𝑙
𝑁−1
𝑙=0 . 

                                                           
1 Whilst the model in (1) as well as the specific results reported in the manuscript have been developed for the case of linear 

arrays, the proposed methodology for DoA estimation performance analysis in the low SNR region still can be reframed to the 

case of a planar array, provided that a bi-dimensional (azimuth/elevation) domain is considered for the search. 

Under the above hypotheses, the ML estimate of the DoA 

𝑢0 [8] is found by jointly maximizing the likelihood function 

with respect to 𝐴𝑙(𝑡) (𝑙 = 0, . . , 𝑁 − 1,    𝑡 = 0, . . , 𝑀𝑙 − 1) 

and 𝑢0, yielding 

�̂�0 = argmax 
𝑢

{𝑉(𝑢)} (3) 

where 𝑢 ∈ [−𝑢𝑀𝐴𝑋 , 𝑢𝑀𝐴𝑋] with 𝑢𝑀𝐴𝑋 = 1  if the non-

ambiguous angular sector is [−𝜋, 𝜋]  and 𝑉(𝑢)  is the 

concentrated ML objective function 

𝑉(𝑢) = ∑ ∑ |𝐬𝑙
H(𝑢) 𝐱𝑙(𝑡)|

2

𝑀𝑙−1

𝑡=0

𝑁−1

𝑙=0

 (4) 

In the absence of noise, this function is proportional to the 

weighted sum of the estimated array beampattern amplitudes 

computed at different carrier frequencies, i.e. 𝑏𝑙(𝑢) =
|𝐬𝑙

H(𝑢) 𝐬𝑙(𝑢0)|
2 . This is a direct consequence of the used 

model for the complex amplitudes 𝐴𝑙(𝑡)  across multiple 

frequency channels that does not enable the coherent 

summation of the results obtained at different carrier 

frequencies. 

The asymptotic properties of the ML estimator are well 

known, whereas its performance in the threshold region has 

been characterized only in specific cases. In [19] an suitable 

approximation to the MSE of the ML estimator is provided for 

a non-uniform linear array expoiting a single carrier frequency 

case, i.e. for 𝑁 = 1.  

The purpose of this work is to extend the analysis of [19] 

to the multi-carrier (𝑁 > 1) scenario in order to provide a 

reliable characterization of the ML estimator performance 

close to the threshold when multiple frequency channels are 

employed. We observe that this extension is not 

straightforward as the exploitation of multiple signals emitted 

at multiple carriers has a non-trivial impact on the threshold 

SNR value. In fact it simultaneously affects (i) the useful 

signal energy thanks to the increase of the number of 

snapshots, and (ii) the multi-frequency beampattern 

characteristics thanks to the diversity conveyed by multiple 

frequency channels, especially when the corresponding 

carriers are widely separated.  

III. APPROXIMATION OF THE MSE AND PROBABILITY 

OF OUTLIER 

In this Section, we briefly summarize the approach 

proposed in [19] to obtain an approximate expression for the 

MSE of the ML estimator in the threshold region, as it 

represents the starting point adopted in this paper.  
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The MSE is split into two parts, one coming from small 

errors obtained when the estimates are close to the true value, 

and the other due to outliers. The total probability theorem 

implies that the MSE can be written as  

𝐸[(�̂�0 − 𝑢0)
2] = 

      Pr{no outlier} 𝐸[(�̂�0 − 𝑢0)
2|no outlier] 

+Pr{outlier} 𝐸[(�̂�0 − 𝑢0)
2|outlier] 

(5) 

We recall that the probability of outlier 𝑃0  is the 

probability of the event that, due to the presence of noise, the 

global maximum in the likelihood function is outside the 

mainlobe of the objective function. Close to the threshold 

region,  outliers will tend to concentrate around the sidelobe 

peaks of the beampattern. Therefore, considering the function 

in (4) at the sidelobe peaks, 𝑉(𝑢𝑚) (𝑚 = 1, . . , 𝑁𝑝) , and 

resorting to the union bound [31] we can approximate 𝑃0 as 

𝑃0 ≈ ∑ 𝑃𝑚

𝑁𝑝

𝑚=1

= ∑ 𝑃𝑟{𝑉(𝑢𝑚) > 𝑉(𝑢0)}

𝑁𝑝

𝑚=1

 (6) 

Notice that the positions 𝑢𝑚 of the nominal sidelobe peaks 

in (6) are identified based on the theoretical (noise-free) MF 

beampattern corresponding to (4). This can be written as 

𝑉𝑡ℎ𝑒𝑜(𝑢) = 𝜎𝑛
2 ∑ 𝑀𝑙  SNR𝑙  𝑏𝑙(𝑢)

𝑁−1

𝑙=0

 (7) 

where SNR𝑙  is the SNR available at the single antenna 

element, for the single snapshot received at the l-th frequency 

channel, and its explicit expression will be provided in the 

subsequent sections with reference to each adopted signal 

model. The numbering of the sidelobe peaks positions is 

defined so that 𝑢0 is the position of the mainlobe peak and 𝑢𝑚,
𝑚 = 1,… ,𝑁𝑝 are the positions of the 𝑁𝑝 sidelobe peaks of the 

resulting MF beampattern. The individual probabilities 𝑃𝑚 

will be referred to as the pairwise error probabilities, 

borrowing this terminology from communication theory [31]. 

Exploiting (6), the MSE approximation for the considered 

ML estimator is written as 

𝐸[(�̂�0 − 𝑢0)
2] ≈ [1 − ∑ 𝑃𝑚

𝑁𝑝

𝑚=1

] ∙ 𝐶𝑅𝐵

+ ∑ 𝑃𝑚

𝑁𝑝

𝑚=1

(𝑢𝑚 − 𝑢0)
2 

(8) 

where the CRB is used as a good predictor of the small errors 

of the MSE in the asymptotic region.  

Notice that this approximate expression is quite general 

and  applies also to the case under consideration since  the 

number 𝑁  of frequency channels, the corresponding 

wavelengths, and the number 𝑀𝑙 of snapshots available at the 

l-th carrier frequency will largely affect the pairwise error 

probabilities, the position of sidelobe peaks, and the CRB. 

A closed form epression for the pairwise error 

probabilities 𝑃𝑚  (𝑚 = 1, . . , 𝑁𝑝) has been derived in [19] for 

the case 𝑁 = 1, and two different signal models, namely the 

deterministic (or conditional) and the stochastic (or 

unconditional).   

In the former case, the amplitudes 𝐴(𝑡) (𝑡 = 0,… ,𝑀 − 1) 

are assumed to be deterministic (but unknown) complex 

values whereas in the latter situation, the signal is assumed to 

be a stationary, temporally white, zero-mean, complex 

Gaussian process. We report the derived expressions here for 

ease of reference. 

1) Deterministic Signal Model (or Conditional 

Model Assumption – CMA) 

𝑃𝑚 =

𝑄 (√
𝑆

2
(1 − √1 − |𝑔𝑚|2), √

𝑆

2
(1 + √1 − |𝑔𝑚|2)) −

𝑒−
𝑆

2 {𝐼0 (
|𝑔𝑚|𝑆

2
) −

1

22𝑀−1 𝐼0 (
|𝑔𝑚|𝑆

2
)∑ (2𝑀−1

𝑝
)𝑀−1

𝑝=0 −

1

22𝑀−1
∑ 𝐼𝑝 (

|𝑔𝑚|𝑆

2
) × [(

1+√1−|𝑔𝑚|2

|𝑔𝑚|
)

𝑙

−𝑀−1
𝑝=1

(
1−√1−|𝑔𝑚|2

|𝑔𝑚|
)

𝑙

] ∑ (2𝑀−1
𝑘

)
𝑀−1−p
𝑘=0 }  

(9) 

where  

𝑄(𝛼, 𝛽) = ∫ 𝑡𝑒−
(𝑡2+𝛼2)

2  𝐼0(𝛼𝑡) 𝑑𝑡
∞

𝛽

 (10) 

is the Marcum Q-function, 𝐼𝑝(∙)  is the modified Bessel 

function of the first kind and order 𝑝, 𝑔𝑚 =
1

𝐾
𝐬𝐻(𝑢0)𝐬(𝑢𝑚), 

and 𝑆 ≜
𝐾

𝜎𝑛
2 ∑ |𝐴(𝑡)|2𝑀−1

𝑡=0  may be interpreted as the total SNR 

integrated over the 𝐾 antennas and the M snapshots. 

2) Stochastic Signal Model (or Unconditional 

Model Assumption – UMA) 

𝑃𝑚 =
1

(1 + 𝑞𝑚)2𝑀−1
∑ (

2𝑀 − 1
𝑡

) 𝑞𝑚
𝑡

𝑀−1

𝑡=0

 (11) 

where 

𝑞𝑚 =

[
 
 
 
 
 

1 + √1 +
4𝜎𝑛

2(𝜎𝑛
2 + 𝜎𝑠

2𝐾)

𝜎𝑠
4𝐾2(1 − |𝑔𝑚|2)

−1 + √1 +
4𝜎𝑛

2(𝜎𝑛
2 + 𝜎𝑠

2𝐾)

𝜎𝑠
4𝐾2(1 − |𝑔𝑚|2)

]
 
 
 
 
 

 (12) 

where 𝜎𝑠
2 = E{|𝐴(𝑡)|2} is the signal power. 
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The expressions in (9) and (11) are no longer valid if 𝑁 >
1. They will be generalized for the multi-carrier case in the 

next two sections both for the deterministic and the stochastic 

signals model. 

IV. EVALUATION OF THE PAIRWISE ERROR 

PROBABILITIES UNDER CMA 

A. Theoretical derivation 

In this Section, we derive the expression for the pairwise 

error probabilities under deterministic signal model, or 

Conditional Model Assumption. 

The pairwise error probability in (6) can be written as 

 𝑃𝑚 = Pr{[V(𝑢𝑚) > 𝑉(𝑢0)]} = 

𝑃𝑟{[𝑉 < 0]} = ∫ 𝑝𝑉(𝑉)
0

−∞

d𝑉 
(13) 

being 𝑝𝑉(𝑉)  the pdf of the random variable 𝑉 = 𝑉(𝑢0) −
𝑉(𝑢𝑚). 

As it is apparent from (13), we need to evaluate the 

cumulative distribution function (CDF) of V in 0, i.e. 𝐹𝑉(0). 

To this end, V can be rewritten as 

𝑉 = 𝑉(𝑢0) − 𝑉(𝑢𝑚) =  ∑ ∑ | 𝐱𝑙
𝐻(𝑡)𝐏𝑙  𝐱𝑙(𝑡)|

2

𝑀𝑙−1

𝑡=0

𝑁−1

𝑙=0

 
(14) 

where 

𝐏𝑙 = 𝐬𝑙(𝑢0)𝐬𝑙
𝐻(𝑢0) − 𝐬𝑙(𝑢𝑚)𝐬𝑙

𝐻(𝑢𝑚) 

(𝑙 = 0, . . , 𝑁 − 1) 
(15) 

is a rank-2 𝐾 × 𝐾 Hermitian matrix.  

By arranging the available snapshots in the 𝐾𝐿 × 1 vector 

𝐱 =
1

𝜎𝑛

[𝐱0
𝐻(0) ⋯ 𝐱0

𝐻(𝑀0 − 1)  𝐱1
𝐻(0)⋯𝐱𝑁−1

𝐻 (𝑀𝑁−1 − 1)]𝐻  and 

by defining the corresponding 𝐾𝐿 × 𝐾𝐿  block diagonal 

matrix 

𝐏 = 𝜎𝑛
2 [

𝑰𝑀0
⊗ 𝐏0 ⋯ 𝟎

⋮ ⋱ ⋮
𝟎 ⋯ 𝑰𝑀𝑁−1

⊗ 𝐏𝑁−1

] , we can further 

simplify  (14) as 

𝑉 = 𝐱𝐻𝐏𝐱 (16) 

By definition, the rank of 𝐏 is equal to 2𝐿. Specifically, it 

exhibits at most 𝑁 pairs of distinct non-zero eigenvalues of 

equal magnitude but opposite sign. In the following, we 

assume that there are exactly 𝑁 pairs of distinct eigenvalues, 

each with multiplicity 𝑀𝑙  (𝑙 = 0… 𝑁 − 1). In other words we 

suppose that different carrier frequencies selected from the 

considered set yield distinct pairs of eigenvalues. Notice that 

this hypothesis is mild and easily verified in practical cases. 

In fact, one can easily evaluate the non-zero eigenvalues of 𝐏 

by using Theorem 18.1.1 in [34], thus obtaining 

𝛾𝑙 =  𝐾𝜎𝑛
2√1 − |𝑔𝑚,𝑙|

2
 

𝛾𝑙+𝑁 = − 𝐾𝜎𝑛
2 √1 − |𝑔𝑚,𝑙|

2
 

 

(𝑙 = 0,… , 𝑁 − 1) 

(17) 

where 𝑔𝑚,𝑙 =
1

𝐾
𝐬𝑙

𝐻(𝑢0)𝐬𝑙(𝑢𝑚) and we set 𝑀𝑙 = 𝑀𝑙+𝑁. 
 

Let 𝐏 = 𝐐𝚲𝐐𝐻  denote the eigenvalue decomposition of 

𝐏 , we can assume that 𝚲 is organized so that 𝚲 =

[
�̅� 𝟎2𝐿×(𝐾𝐿−2𝐿)

𝟎(𝐾𝐿−2𝐿)×2𝐿 𝟎(𝐾𝐿−2𝐿)×(𝐾𝐿−2𝐿)
] , where �̅�  is a 2𝐿 × 2𝐿 

block with the non-zero eigenvalues on its main diagonal. 

Equation (16) can be reworked as 

𝑉 = (𝐐𝐻𝐱)𝐻𝚲𝐐𝐻𝐱 = �̅�𝐻𝚲 ̅�̅� (18) 

where �̅� = 𝐒𝐻(𝐐𝐻𝐱), 𝐒 = [𝐈2𝐿  ⋮ 𝟎2𝐿×(𝐾𝐿−2𝐿)]
𝐻

. 

Under the deterministic signal model, or CMA, x is a 

complex Gaussian random vector, i.e. 𝐱 ~𝒞𝒩(𝐪, 𝐈𝐾𝐿)  with 

mean vector 

𝐪 =
1

𝜎𝑛

[𝐴0
∗ (0)𝐬0

𝐻(𝑢0)… 𝐴𝑁−1
∗ (𝑀𝑁−1 − 1)𝐬𝑁−1

𝐻 (𝑢0)]
𝐻 (19) 

Consequently, �̅� ~𝒞𝒩(�̅�, 𝐈2𝐿), with �̅� = 𝐒𝐻(𝐐𝐻𝐪), and (19) 

is usefully rewritten as 

𝑉 = (�̅� + �̅�)𝐻  �̅� (�̅� + �̅�) (20) 

where �̅�  is a white zero-mean circularly symmetric complex 

Gaussian vector, i.e. i.e. �̅� ~𝒞𝒩(𝟎, 𝐈2𝐿) . 
Using the expression in (20) for the variable 𝑉, we can 

now exploit the approach in [30] to derive an approximation 

of the sought pairwise error probability. Specifically, the CDF 

of 𝑉 can be written as  

𝐹𝑉(𝑦) = ∫ 𝑝(�̅�) u(𝑦 − (�̅� + �̅�)𝐻   �̅� (�̅� +  �̅�))𝑑�̅�
∞

−∞

 (21) 

where 𝑝(�̅�) is the pdf of �̅� and u(𝑥) is the unit step function. 

Resorting to the Fourier transform representation or the unit 

step function 

u(𝑥) =
1

2𝜋
∫

𝑒𝑥(𝑗𝜔+𝛽)

𝑗𝜔+𝛽
 𝑑𝜔

∞

−∞
    for any 𝛽 > 0 (22) 

one can write 𝐹𝑉(𝑦) as 

𝐹𝑉(𝑦) =
1

2𝜋2𝐿+1 ∙

∬ e−(‖�̅�‖
2
+(�̅�+ �̅�)H  (𝑗𝜔+𝛽) �̅� (�̅�+ �̅�) )𝑑�̅�

𝑒𝑦(𝑗𝜔+𝛽)

𝑗𝜔+𝛽
 𝑑𝜔

∞

−∞
              

(23) 

that, solving the inner integral, yields  
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𝑃𝑚 = 𝐹𝑉(0)

=
1

2𝜋
∫

exp {− �̅�𝐻 (𝐈2𝐿 +
1

(𝑗𝜔 + 𝛽)
�̅�−1)

−1

�̅�}

det(𝐈2𝐿 + (𝑗𝜔 + 𝛽)�̅�) (𝑗𝜔 + 𝛽)
𝑑𝜔

∞

−∞

 

(24) 

A closed form solution for the 1-D integral in (24) cannot 

be obtained [32]. Therefore, as in [30], we resort to the Saddle 

Point (SP) technique [33], which is a well-known method for 

approximating integrals. 

To this end, we write (24) as 

𝐹𝑉(0) =
1

2𝜋
∫ 𝑒𝑓(𝜔)

∞

−∞

𝑑𝜔 (25) 

with 

𝑓(𝜔) = 

− ln(𝑗𝜔 + 𝛽) − ∑ 𝑀𝑘  ln[1 + (𝑗𝜔 + 𝛽)𝛾𝑘]

2𝑁−1

𝑘=0

− ∑ 𝑆𝑘  (1 −
1

1 + (𝑗𝜔 + 𝛽)𝛾𝑘

)

2𝑁−1

𝑘=0

 

(26) 

where 𝑆𝑘 = ∑ |�̅�
𝑗
|
2

𝑗∈𝐼(𝑘) , and 𝐼(𝑘) containing the indices of 

the vector �̅�  entries corresponding to the k-th eigenvalue 

(|𝐼(𝑘)| = 𝑀𝑘). 

To apply the SP technique, we approximate 𝑓(𝜔)  using a 

second order Taylor expansion around 𝜔0  , where 𝜔0 =
𝑗(𝛽 + 𝑝0) is the solution of  

𝑓′(𝜔) = 

− ∑ 𝑆𝑘 [
𝑗𝛾𝑘

(1 + (𝑗𝜔 + 𝛽)𝛾𝑘)
2
]  

2𝑁−1

𝑘=0

−
j

(𝑗𝜔 + 𝛽)
− ∑ 𝑀𝑘 [

𝑗𝛾𝑘

1 + (𝑗𝜔 + 𝛽)𝛾𝑘

] 

2𝑁−1

𝑘=0

= 0 

(27) 

with 𝑝0 𝜖 (−𝜇𝑀𝐴𝑋 , 0)  , and 𝜇𝑀𝐴𝑋 = 1/𝛾𝑀𝐴𝑋  being 

𝛾𝑀𝐴𝑋 = max  { 𝛾𝑘, 𝑘 = 0,… , 𝑁 − 1 }.   

Consequently, the integral in (25) can be approximated as 

𝐹𝑉(0) ≈
1

2𝜋
𝑒𝑓(𝜔0)√

2𝜋

|𝑓′′(𝜔0)|
 (28) 

By expliciting 𝑓(𝜔0)  and 𝑓′′(𝜔0) , after some standard 

algebra, we eventually obtain 

𝑃𝑚 = 𝐹𝑉(0) ≈  

|𝑝0|

√2𝜋
exp {− ∑ 𝑀𝑘 ln(1 − 𝛾𝑘𝑝0) −

𝑆𝑘𝛾𝑘𝑝0

1 − 𝛾𝑘𝑝0

2𝑁−1

𝑘=0

} × 

|−
1

 𝑝0
2
− ∑

𝛾𝑘
2𝑀𝑘 

(1 − 𝛾𝑘𝑝0)
2
+

2𝛾𝑘
2𝑆𝑘

(1 − 𝛾𝑘𝑝0)
3
 

2𝑁−1

𝑘=0

 |

−1
2⁄

 

(29) 

B. Simulation Results 

We first verify the accuracy of the approximation in (29), 

by comparing it with its exact expression when available (i.e. 

for 𝑁 =  1, see (9)). 

In Fig. 2(a) we report the normalized theoretical MF 

beampattern 𝑉𝑡ℎ𝑒𝑜(𝑢)  in (7) for a three-element array with 

element position 𝑑 = [0 2 6.8] 𝜆1 , where 𝜆1  is the 

wavelength of the exploited frequency channel and the DoA 

of the signal source is 𝑢0 = 0. As it is apparent we considered 

a quite challenging array layout that is likely to yield outlier 

DoA estimates being the number of elements quite small and 

their spacing well above the employed wavelength. 

Consequently, a generally high sidelobe level is observed.  

The most relevant sidelobe leading to outliers when the 

SNR decreases is indeed the highest sidelobe (indicated by the 

red arrow in Fig. 2 (a). It represents the selected sidelobe 

where the pairwise error probability 𝑃𝑚 is evaluated in Fig. 2 

(b) for different SNR values, versus the number 𝑀  of 

snapshots collected. Specifically we refer to the SNR at the 

single antenna element, for the single snapshot, i.e. SNR ≜
1

𝜎𝑛 
2 𝑀

∑ |𝐴(𝑡)|2𝑀−1
𝑡=0 . 

Fig. 2 (b) shows that the 𝑃𝑚 expression derived in  (29) is 

able to approximate the pairwise error probability in (9), even 

for very low values, e.g. 𝑃𝑚 = 10−20 .  

In Fig. 3 we compare the normalized theoretical MF 

beampattern 𝑉𝑡ℎ𝑒𝑜(𝑢)  of Fig. 2 (a) with that obtained 

exploiting three different frequency channels (𝑁 = 3) with 

wavelengths 𝜆1 , 𝜆2 = 0.76 𝜆1 , and 𝜆3 = 0.57 𝜆1 , 

respectively. It is expected that the asymptotic DoA 

estimation accuracy could benefit from the joint exploitation 

of signals with higher carrier frequencies. However we 

observe that the additional frequency channels considered in 

this case study are more critical in term of outliers when 

separately employed with the same array of Fig. 2.  

Nevertheless, Fig. 3 shows that the sidelobe level is 

fruitfully reduced if the frequency diversity is exploited. 

Accordingly, we expect the probability of outlier to be lower 

since a higher noise level would be required for the sidelobes 

to exceed the main lobe peak. Clearly, the lower the 

probability of outlier, the higher the number of Monte Carlo 

simulation trials necessary to estimate such a rare event, i.e. 

the availability of a closed-form reliable expression to predict 

the estimator performance becomes more and more relevant.   
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To check the accuracy of the union bound approximation 

for the probability of outlier, we performed Monte Carlo (MC) 

simulations for different configurations. In all cases, the 

number of MC trials was 106,  whereas this number was 

increased to 5 ∙ 107  when the probability of outlier Po was 

expected to be below 10−4 . The outcome of the DoA 

estimation stage is labelled as “outlier” if it falls outside the 

mainlobe of the theoretical MF beampattern 𝑉𝑡ℎ𝑒𝑜(𝑢). Each 

outlier is associated with the closest sidelobe peak, according 

to a minimum distance criterion. We compare the results of 

the MC simulations with the probability of outlier evaluated 

as in (6) by using the result in (29) at each sidelobe peak. 

Although the positions of these peaks are usually not available 

in closed form, they can be readily calculated by some 

numerical methods. 

In Fig. 4 , we compare the probability of outlier 𝑃𝑜 with 

the results of MC simulations  (dots) for different SNR. The 

SNRl at the l-th frequency channel is defined as SNR𝑙 ≜
1

𝜎𝑛
2 𝑀𝑙

∑ |𝐴𝑙(𝑡)|
2𝑀𝑙−1

𝑡=0 , where the same SNR level is assumed for 

the employed frequency channels.  

The results are reported for the case studies in Table I. For 

cases A and B also the 𝑃𝑜 obtained with the exact expression 

in (9) is reported, in solid black line, for comparison. 

Observing Fig. 4 the following considerations are in order: 

 the expression in (29) effectively approximates the 

closed form solution, when available. 

 The union bound approximation is quite robust for 

high SNR whereas it overestimates the probability of 

outlier at very low SNR values, where the simplified 

hypotheses behind (6) are no longer verified. However 

this is not expected to be an issue since those values 

are likely to correspond to the no information region. 

 As expected, the higher the total number L of snapshots 

(collected either in time or in frequency domains) the 

better the performance. 

  Keeping constant the total number of snapshots, better 

results can be obtained if they are collected at different 

frequency channels (compare the green and light blue 

lines), revealing that the frequency diversity is 

essential besides the expected increase in integrated 

SNR. Basically, case B yields a gain of approximately 

5 dB for 𝑃𝑜  values below 10−2  whereas case C 

provides an additional gain of 7 dB. 

 The last consideration is confirmed comparing case B 

and case E (see the green and magenta lines). In fact, 

even if two out of three frequency channels provide a 

lower SNR, their exploitation still allows to 

significantly reduce the probability of outlier with 

respect to the situation using 𝑀 = 3 snapshots from 

the frequency channel with the highest SNR. This is 

due to the improvement arising in term of sidelobes 

level in the resulting multi-frequency likelihood 

function. 

 When exploiting three snapshots from three frequency 

channels, the improvement is significant with respect 

to 𝐿 = 1, since case D benefits from both the resulting 

SNR integration and the diversity of information 

conveyed by the multi-frequency approach. 

V. EVALUATION OF  THE PAIRWISE ERROR 

PROBABILITIES UNDER UMA 

A. Theoretical derivation 

In this Section, we derive the expression for the pairwise 

error probabilities under stochastic signal model, or  UMA. 

By proceding as in Section IV, we obtain the same 

expression as in (16). However, under UMA, vector 𝐱 is a set 

of statistically independent K-dimensional complex Gaussian 

random variables, with zero-mean vector and covariance 

matrix  𝑹 , i.e. 𝐱 ~𝒞𝒩(𝟎, 𝑹) , where 𝑹 =

[

𝑰𝑀0
⊗ 𝐑0 ⋯ 𝟎

⋮ ⋱ ⋮
𝟎 ⋯ 𝑰𝑀𝑁−1

⊗ 𝑹𝑁−1

]  and the 𝐾 × 𝐾  blocks on 

  
(a) (b) 

Fig. 2  – Results for a single frequency case (𝑁 = 1) with three-element array 𝑑 =  [0 2 6.8] 𝜆1  

(a) Theoretical MF beampattern 𝑉𝑡ℎ𝑒𝑜(𝑢); 
(b) Pairwise error probability for a selected sidelobe for different values of SNR versus the number of snapshots. 
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the main diagonal are given by 𝐑𝑙 =
𝜎𝑠,𝑙

2

𝜎𝑛
2 𝐬𝑙(𝑢0)𝐬𝑙(𝑢0)

𝐻 + 𝐈𝐾   

( 𝑙 = 0, . . , 𝑁 − 1 ), with  𝜎𝑠,𝑙
2 = E{|𝐴𝑙(𝑡)|

2} being the power 

of the l-th signal. Thus,  𝑉  in (16) is a complex central 

quadratic form. 

Without loss of generality, we can consider the central 

quadratic form in the variable 𝐱𝑤  which is the whitened 

version of 𝐱 

𝐱𝑤 = (𝑹−1/2)
𝐻
𝐱 

𝑷𝑤 = (𝑹1/2)
𝐻
𝑷 (𝑹1/2) 

(30) 

The rank of matrix 𝑷𝑤  is equal to 2𝐿 and it has at most 𝑁 

pairs of distinct non-zero eigenvalues.  

As in Section IV.A, we suppose that there are exactly 𝑁 

pairs of distinct eigenvalues, each with multiplicity 𝑀𝑙  (𝑙 =
0,… , 𝑁 − 1), given by 

 

𝛾𝑙 = −
𝐾2𝜎𝑠,𝑙

2 (1−|𝑔𝑚,𝑙|
2
)

2
 [−1 − √1 +

4𝜎𝑛
2(𝜎𝑛

2+𝜎𝑠,𝑙
2 𝐾 )

𝜎𝑠,𝑙
4 𝐾2(1−|𝑔𝑚,𝑙|

2
)
 ]  

𝛾𝑙+𝑁 = −
𝐾2𝜎𝑠,𝑙

2 (1−|𝑔𝑚,𝑙|
2
)

2
 [−1 + √1 +

4𝜎𝑛
2(𝜎𝑛

2+𝜎𝑠,𝑙
2 𝐾 )

𝜎𝑠,𝑙
4 𝐾2(1−|𝑔𝑚,𝑙|

2
)
 ]  

 

(𝑙 = 0,… , 𝑁 − 1) 

(31) 

Denoting by 𝑷𝑤 = 𝑸𝑤𝜦𝑤𝑸𝑤
𝐻  the eigenvalue 

decomposition of 𝑷𝑤, we can assume that 𝜦𝑤  is organized so 

that 𝜦𝑤 = [
�̅�𝑤 𝟎2𝐿×(𝐾𝐿−2𝐿)

𝟎(𝐾𝐿−2𝐿)×2𝐿 𝟎(𝐾𝐿−2𝐿)×(𝐾𝐿−2𝐿)
] where �̅�𝑤  is a 

2𝐿 × 2𝐿 diagonal matrix containing the non-zero eigenvalues 

on its main diagonal. 

Therefore, under UMA , the CDF of 𝑉 can be written as  

 

𝐹𝑉(𝑦)

=
1

2𝜋
∫

𝑒𝑦(𝑗𝜔+𝛽)

det(𝐈2𝐿 + (𝑗𝜔 + 𝛽)�̅�) (𝑗𝜔 + 𝛽)

∞

−∞

𝑑𝜔 
(32) 

 
The integral in (32) has a closed form solution that can be 

derived as in [30]. First, resorting to the partial fraction 

expansion, we can write 

 

1

det(𝐈2𝐿 + (𝑗𝜔 + 𝛽)�̅�) (𝑗𝜔 + 𝛽) 
= 

∑ ∑
𝛼𝑘,𝑡 

(1 + 𝛾𝑘(𝑗𝜔 + 𝛽))
𝑡+1

𝑀𝑘−1

𝑡=0

2𝑁−1

𝑘=0

+
1

 (𝑗𝜔 + 𝛽)
 

(33) 

where the coefficients 𝛼𝑘,𝑡 are given by 

𝛼𝑘,𝑡 =
1

Γ(𝑀𝑘 − 𝑡)
[∏ 𝜇𝑛

𝑀𝑛

2𝑁−1

𝑛=0

]  𝑦𝑘

(𝑀𝑘−𝑡−1)
(𝑠)|

𝑠=−𝜇𝑘

 

 

(𝑘 = 0, … ,2𝑁 − 1,      𝑡 = 0,… ,𝑀𝑘 − 1) 

(34) 

with 𝑦𝑘
(𝑀𝑘−𝑡−1)

(𝑠)  the (𝑀𝑘 − 𝑡 − 1)-th derivative of 𝑦𝑘(𝑠) , 

defined as  

 

 

Fig. 3  – Theoretical MF beampattern 𝑉𝑡ℎ𝑒𝑜(𝑢) for three-element 

array 𝑑 = [0 2 6.8] 𝜆1, exploiting one or three frequency 
channels 

 

TABLE I 

CASE STUDIES A-E 

 

Number of  

array elements  
(K) 

Number of 

carriers  
(N) 

Number of  

snapshots 
 (M) Array Wavelengths SNR 

 

case A 3 1 1 𝑑 =  [0  2  6.8] 𝜆1  𝜆1 − 

case B 3 1 3 𝑑 =  [0  2  6.8] 𝜆1  𝜆1 − 

case C 3 3 1 𝑑 =  [0  2  6.8] 𝜆1  𝜆1, 𝜆2 = 0.76 𝜆1,  𝜆3 = 0.57 𝜆1  SNR1 = SNR2 = SNR3 

case D 3 3 3 𝑑 =  [0  2  6.8] 𝜆1  𝜆1, 𝜆2 = 0.76 𝜆1,  𝜆3 = 0.57 𝜆1 SNR1 = SNR2 = SNR3 

 case E 3 3 1 𝑑 =  [0  2  6.8] 𝜆1  𝜆1, 𝜆2 = 0.76 𝜆1,  𝜆3 = 0.57 𝜆1 SNR2 = SNR3 = SNR1 − 3dB 
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𝑦𝑘(𝑠) = ∏(𝜇𝑛 + 𝑠)−𝑀𝑛

2𝑁

𝑛=0
𝑛≠𝑘

 (35) 

with  𝜇𝑛 =
1

𝛾𝑛
 (𝑛 = 0,… ,2𝑁 − 1 ), 𝜇2𝑁 = 0 and 𝑀2𝑁 = 1. 

 

Now, using the expression in (33), we can split the integral 

in (32) in two parts and evaluate them separately. Eventually, 

after some calculations, we obtain a closed form solution  

𝑃𝑚 = 𝐹𝑉(0) =
1

2
[1 + ∑ sign(𝛾𝑘) ∙ 𝛼𝑘,0 

2𝑁−1

𝑘=0

] (36) 

One can evaluate the coefficient 𝑦𝑘
(𝑀𝑛−1)

 in 𝛼𝑘,0  

differentiating the logarithm of 𝑦𝑘(𝑠) , i.e. 
𝑑

𝑑𝑠
log(𝑦𝑘(𝑠)) =

1

𝑦𝑘(𝑠)
𝑦

𝑘
(1)(𝑠), that yields 

𝑦𝑘
(1)

(𝑠) = −𝑦𝑘(𝑠) ∑ 𝑀𝑛(𝜇𝑛 + 𝑠)−1

2𝑁

𝑛=0
𝑛≠𝑘

 (37) 

Subsequently, Leibniz’s rule for differentiation of products 

may be applied. Thus, the required coefficients can be 

evaluated using the following recursion formula 

 

  𝑦𝑘
(𝑝)(𝑠)|

𝑠=−𝜇𝑘
= 

𝑑𝑝−1

𝑑𝑠𝑝−1
𝑦𝑘

(1)
(𝑠)|

𝑠=−𝜇𝑘

= 

∑ ∑ 𝑀𝑛 (
𝑝 − 1

𝑟
)
(−1)𝑝−𝑟Γ(𝑝 − 𝑟)

(𝜇𝑛 − 𝜇𝑘)
𝑝−𝑟

2𝑁

𝑛=0
𝑛≠𝑘

𝑦𝑘
(𝑟)(𝑠)|

𝑠=−𝜇𝑘

𝑝−1

𝑟=0

 

(𝑝 ≥ 1) 
(38) 

  𝑦𝑘
(0)(𝑠)|

𝑠=−𝜇𝑘

=   𝑦𝑘(−𝜇𝑘) = ∏(𝜇𝑛 − 𝜇𝑘)−𝑀𝑛

2𝑁

𝑛=0
𝑛≠𝑘

 

Equation (36), with coefficients obtained using (34) and 

(38), provides a closed form expression of the pairwise error 

probability under UMA for the m-th sidelobe peak. 

In particular, for the single-frequency case, namely when 

𝑁 = 1 and 𝑀 ≥ 1, it coincides with the solution in (11), being 

𝑞𝑚 = |
𝛾0

𝛾1
|  the ratio between the absolute values of the two 

eigenvalues. 

In the dual special case, namely when 𝑀 = 1 and 𝑁 ≥ 1, 

with the assumptions made on the distinct eigenvalues, we 

have 𝑀𝑘 = 1 (𝑘 = 0,… ,2𝑁). Consequently, we can write the 

residues 𝛼𝑘,0 as 

𝛼𝑘,0 =
∏ 𝜇𝑛

2𝑁−1
𝑛=0

∏ (𝜇𝑛 − 𝜇𝑘) 
2𝑁
𝑛=0
𝑛≠𝑘

 

(𝑘 = 0,… ,2𝑁 − 1) 

(39) 

 

B. Simulation Results 

To verify the accuracy of the expression in (36), Fig. 5 

compares the results of MC simulations with the probability 

of outlier evaluated using (6) and 𝑃𝑚 obtained from (36) under 

stochastic signal model.  

The results are reported versus SNR, being in this case 

SNR𝑙 ≜
𝜎𝑠,𝑙

2

𝜎𝑛
2 . The same methodology is adopted as in Section 

IV.B, and the same three-element array layout 𝑑 =
[0 2 6.8] 𝜆1  is employed together with some 

representative case studies, namely those B,C and D. 

Observing Fig. 5, some of the considerations made with 

reference to Fig. 4 under CMA can be confirmed also under 

UMA. In addition, we notice that: 

 when very few snapshots are available (collected either 

in time or in frequency), the union bound approximation 

slighly overestimates the probability of outlier also for 

high SNR values (see cases B and C); similar results 

were obtained also in [19] for the single-carrier case. 

 
Fig. 4  – Probability of outlier under CMA for a three-element 

array 𝑑 = [0 2 6.8] 𝜆1 and :  

- case A: one snapshot (𝑀 = 1) from one frequency channel 
(𝑁 = 1) 

- case B: three snapshots (𝑀 = 3) from one frequency 

channel (𝑁 = 1)  

- case C: one snapshot (𝑀 = 1) from each of the three frequency 

channels (𝑁 = 3) with wavelengths 𝜆1, 𝜆2, 𝜆3 

- case D: three snapshots (𝑀 = 3) from each of the three 

frequency channels (𝑁 = 3) with wavelengths 𝜆1, 𝜆2, 𝜆3 

- case E: one snapshot (𝑀 = 1) from each of  the three 

frequency channels (𝑁 = 3) with wavelengths 𝜆1, 𝜆2, 𝜆3,  with 

SNR2 = SNR3 = SNR1 − 3dB 
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 Increasing the number of snapshots, the union bound 

approximation seems quite robust for high SNR, 

whereas it still is not very tight for very low SNR values 

(see case D). However, as aforementioned, those values 

are likely to correspond to the no information region. 

 Compared with Fig. 4, a higher probability of outlier can 

be obtained under UMA for the same case study. The 

benefits provided by frequency diversity become smaller 

and smaller when few snapshots are available. In 

contrast, the gain resulting from the availability of multi-

frequency observations becomes quite evident 

increasing the number of snapshots collected at each 

carrier frequency, especially for low values of the 

probability of outlier. 

VI. SIMULATION RESULTS : MSE APPROXIMATION 

So far we have investigated the robustness of the 

expressions characterizing the pairwise error probability 

under CMA and under UMA in the multi-carrier case with 

reference to the the probability of outlier. 

In this section, the identified expressions are used to 

provide an accurate characterization of the MF ML DoA 

estimator performance for a multi-channel receiver operating 

in the threshold region. 

To this end, we resort to the approximate formula in (8) where  

 𝑃𝑚  is given by (29) or (36) depending on the signal 

model, namely CMA or UMA; 

 the CRB can be easily evaluated starting from the 

general expression of the Fisher information matrix 

𝑰(Θ) for the problem under consideration [35] 

I(Θ)(p,k) = Tr(
∂𝚪(𝛇)

∂ζ(p) 𝚪−1(𝛇)
∂𝚪(𝛇)

∂ζ(k) 𝚪−1(𝛇))

+ 2𝑅𝑒 (
∂𝐦𝐻(𝛇)

∂ζ(p) 𝚪−1(ζ)
∂𝐦(𝛇)

∂ζ(k) ) 

(40) 

where 𝚪(𝜻) and 𝐦(𝜻) are the covariance matrix and the mean 

vector of the received signal 𝐱  and depend on a set of 

unkwown parameters 𝜻, being 𝜻 a 𝑊-dimensional vector, so 

that  𝑝, 𝑘 = 0,… ,𝑊 − 1. 

The application of (40) to the DoA estimation problem of 

interest herein yields two different expressions for the CRB, 

relative to the deterministic and stochastic signal models.  

1) Deterministic Signal Model (or CMA) 

According to the definitions in Sections IV, we would 

have 𝜻 = [𝑢0  𝐴0(0) …  𝐴0(𝑀0 − 1) …𝐴𝑁−1(𝑀𝑁−1 − 1)] , 

namely 𝑊 = 𝐿 + 1 , 𝐦(𝛇) = 𝐪, being 𝐪 defined in (19) and 

𝚪(𝛇) = 𝚪 = 𝑰𝐾𝐿. Therefore, after some algebra, the following 

expression is obtained 

CRBCMA(𝑢0) = 
 

[8𝜋2 ∑ (𝑑𝑘 −
1

𝐾
∑ 𝑑𝑝

𝐾−1

𝑝=0

)

2

  

𝐾−1

𝑘=0

∑
𝑀𝑙  𝑆𝑁𝑅𝑙

𝜆𝑙
2

𝑁−1

𝑙=0

]

−1

 
(41) 

2) Stochastic Signal Model (or UMA) 

According to the definitions in Sections V, the set of 

unknown parameters would be reduced to a scalar ζ = 𝑢0 ,  

namely 𝑊 = 1 , while 𝐦(ζ) = 𝟎  and 𝚪(ζ) = 𝑹 . Therefore, 

after some algebra, the following expression is obtained 

CBRUMA(𝑢0) = 
 

[8𝜋2 ∑ (𝑑𝑘 −
1

𝐾
∑ 𝑑𝑝

𝐾−1

𝑝=0

)

2

 

𝐾−1

𝑘=0

∑
𝑀𝑙   𝑆𝑁𝑅𝑙

2 𝐾

𝜆𝑙
2(1 + 𝐾𝑆𝑁𝑅𝑙)

𝑁−1

𝑙=0

]

−1

 
(42) 

 

In both cases, the array layout affects the performance via 

the term G = ∑ (𝑑𝑘 −
1

𝐾
∑ 𝑑𝑝

𝐾−1
𝑝=0 )

2

  𝐾−1
𝑘=0 that basically 

measures the mean square distance of the array elements from 

a baricenter. Larger arrays (in the sense that the factor G is 

higher) yield better asymptotic performance. However, a 

given layout yields a different impact when employed at 

different carrier frequencies and this impact is related to the 

SNR available at each frequency channel.  

 

Fig. 5 – Probability of outlier under UMA for a three elements array 

𝑑 = [0 2 6.8] 𝜆1 and 

- case B: three snapshots (𝑀 = 3) from one frequency channel 
(𝑁 = 1)  

- case C: one snapshot (𝑀 = 1) from each of  the three 

frequency channels (𝑁 = 3) with wavelengths 𝜆1, 𝜆2, 𝜆3 

- case D: three snapshots (𝑀 = 3) from each of the three 

frequency channels (𝑁 = 3) with wavelengths 𝜆1, 𝜆2, 𝜆3 
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As expected, (42) tends to (41) for high SNR values. 

In the following, aiming at demonstrating the reliability of 

the MSE approximation in (8) when using the expressions in 

(29), (36), (41) and (42), we compare the theoretical 

performance to the results of MC simulations. As in Section 

IV, the number of trials was set to 106 and it was increased to 

5 ∙ 107 for SNR values such that Po < 10−4.  

In particular, Fig. 6 shows the comparison between the 

MSE approximation and the results of MC simulations (dots) 

versus the SNR under CMA for case studies A-D, defined in 

Section IV.B (see Table I). The corresponding CRB for each 

case is also reported in dashed gray.  

The three operative regions are quite easily identified and, 

as expected, the CRB is not able to model the ML estimator 

performance is the threshold region. In contrast, the MSE 

approximation considered in this paper is quite accurate in 

representing the performance of the estimator both in the 

threshold and the asymptotic region. In particular, this 

consideration applies both to the single-frequency cases A-B 

and to the multi-frequency situations C-D.  

We observe that in the former situations, the results of [19] 

could have been fruitfully exploited. However the reported 

analysis demonstrates that the approximate expression in (29) 

for the pairwise error probability provides a reliable tool that 

can be exploited either when a single frequency channel is 

available and when a multi-carrier receiver is considered. 

Remarkably, the approximate MSE can be successfully 

exploited to evaluate the lower limit SNR value that represents 

the boundary between the threshold region and the asymptotic 

region, namely the threshold SNR value. This value is heavily 

depedent on the probability of outlier (see Fig. 4): in each 

considered case, the MSE significantly deviates from the CRB 

curve when 𝑃𝑜  gets above 10−5 . This could represent an 

interesting point of view when comparing different array 

layouts and frequency channels combinations.   

For instance we report in Fig. 7 the results obtained using 

two different array layouts for a four-element array when 

 𝑀𝑙 = 𝑀 = 1 (𝑙 = 0,… , 𝑁 − 1))  snapshot is collected from 

each of the 𝑁 = 3 frequency channels (𝐿 = 3).    Specifically, 

we consider the case studies F,G and H in Table II.  

Observing Fig. 7, we notice that the more effective 

configuration in the asymptotic region is not necessarily the 

best also in the threshold region. Moreover,  keeping costant 

the array layout and the number of frequency channels (e.g. 

see cases G and H), the choice of the carrier frequencies has a 

non-negligible impact on the threshold value and this can be 

easily predicted using the proposed MSE approximation.  

In Fig. 8 we compare the MSE approximation under UMA 

with the results of MC simulations versus the SNR for the 

aforementioned case studies C, D and H (see Table I and Table 

II). 

 

 

Fig. 6 – MSE approximation under CMA for a three-element array 

with elements positions 𝑑 = [0 2 6.8] 𝜆1 and: 

- case A: one snapshot (𝑀 = 1) from one frequency channel 
(𝑁 = 1) 

- case B: three snapshots (𝑀 = 3) from one frequency 

channel (𝑁 = 1) 

- case C: one snapshot (𝑀 = 1) from each of the three 

frequency channels (𝑁 = 3) with wavelengths 𝜆1, 𝜆2, 𝜆3 

- case D: three snapshots (𝑀 = 3) from each of the three 

frequency channels (𝑁 = 3) with wavelengths 𝜆1, 𝜆2, 𝜆3 

 

TABLE II 

CASE STUDIES F-I 

 

Number of 

array elements 
(K) 

Number of 

carriers 
(N) 

Number of  

snapshots 
 (M) Array  

  
Wavelengths  SNR 

 

case F 4 3 1 
𝑑 =

[0  3.8  8.8  15.5] 𝜆1  
 

 𝜆1𝜆2 = 0.76 𝜆1, 𝜆3 = 0.57 𝜆1 
SNR1 = SNR2 = SNR3 

case G 4 3 1 
𝑑 =

 [0  2  6. 8  10] 𝜆1  
 𝜆1𝜆2 = 0.76 𝜆1, 𝜆3 = 0.57 𝜆1 SNR1 = SNR2 = SNR3 

case H 4 3 1 
𝑑 =

 [0  2  6. 8  10] 𝜆1  
 𝜆1, 𝜆3 = 0.57 𝜆1, 𝜆4 = 0.68 𝜆1 SNR1 = SNR2 = SNR4 

case I 4 4 1 
𝑑 =

 [0  2  6. 8  10] 𝜆1  
 𝜆1, 𝜆2 = 0.76 𝜆1, 𝜆3 = 0.57 𝜆1, 𝜆4 = 0.68 𝜆1 SNR1 = SNR2 = SNR3 = SNR4 
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Moreover, a new situation is also introduced, namely case I, 

exploiting the same three-element array as in C and D but with 

 𝑀𝑙 = 𝑀 = 1 (𝑙 = 0,… , 𝑁 − 1)) snapshot from each of the 

𝑁 = 4 frequency channels (see Table II for details). 

The following considerations are in order: 

 the three operative regions are still quite easily 

identified for all cases. 

 When only three snapshots are collected (see cases C 

and H), the MSE approximation slighly overestimates 

the performance in the threshod region. This is due to 

the fact that the union bound approximation does not 

appear tight in that situation, see e.g. case C in Fig. 5. 

 Compared to Fig. 6 and Fig. 7, a high MSE is obtained 

under UMA with respect to CMA for the same case 

studies (see cases C,D and H). 

 The exploitation of one additional snapshot collected 

from a different frequency channel allows to decrease 

significantly the MSE (e.g. compare cases C and I) thus 

reducing the threshold SNR value.   

 Since a larger array is used in case H, a better 

asymptotic performance is reached with respect to case 

I. This is no longer true when comparing performances 

in the threshold region. This behavior highlights that 

frequency diversity might be more useful than spatial 

diversity when few antenna elements are employed. 

 Although cases D and H  exhibit  a very similar 

asymptotic performance, the threshold SNR value is 

quite different for the two configurations. This is 

expected since a three times higher number of 

snapshots is available in case D (𝐿 = 9). 

 

 

 

 

 

VII. CONCLUSIONS 

Appropriate approximations to the MSE of a multi-

frequency DoA ML estimator have been introduced in this 

paper to provide a reliable performance characterization  in 

the threshold region. The reported analysis showed that the 

proposed MSE approximations are effectively able to model 

the performance of the estimator employing multiple 

observation possibly collected at different frequency channels 

both under CMA and under UMA. 

The capability of predicting the threshold SNR value could 

be a powerful tool that can be used in order to optimize the 

receiving system design. For instance it can be exploited to 

identify a suitable array layout with the aim to control the 

insurgence of statistical ambiguities on target localization,  

especially in systems typically operating with low SNR levels 

and few antenna elements. Possible future research avenues 

could also concern the extension of the framework to different 

amplitude fluctuation models (such as Swerling [36],[37] or 

Weibull [38]) which are relevant in some radar applications. 

 

 

 

 

 

Fig. 7 –MSE approximation under CMA for four-element array with 

different elements positions and one snapshot (𝑀 = 1) from each of 

three frequency channels (𝑁 = 3):  

- case F: 𝑑 =  [0  3.8   8.8  15.5] 𝜆1 exploiting  𝜆1, 𝜆2, 𝜆3 

- case G: 𝑑 =  [0  2  6. 8 10] 𝜆1 exploiting 𝜆1, 𝜆3, 𝜆4 

- case H:  𝑑 =  [0  2  6. 8 10] 𝜆1 exploiting  𝜆1, 𝜆2, 𝜆3 

 

 

Fig. 8 – MSE approximation under UMA and: 

- case C: three-element array with positions : 𝑑 =  [0  2  6. 8] 𝜆1 

and one snapshot (𝑀 = 1)  from each of three frequency 

channels (𝑁 = 3) with wavelengths 𝜆1, 𝜆2, 𝜆3 

- case D: three-element array with positions : 𝑑 =  [0  2  6. 8] 𝜆1 

and three snapshots (𝑀 = 3)  from each of three frequency 

channels (𝑁 = 3) with wavelengths 𝜆1, 𝜆2, 𝜆3 

- case H: four-element array with positions  𝑑 =
 [0  2  6. 8 10] 𝜆1  and one snapshot (𝑀 = 1)  from each of 

three frequency channels (𝑁 = 3) with wavelengths 𝜆1, 𝜆2, 𝜆3 

- case I: three-element array with positions : 𝑑 =  [0  2  6. 8] 𝜆1 

and one snapshot (𝑀 = 1)  from each of four frequency 

channels (𝑁 = 4) with wavelengths 𝜆1, 𝜆2, 𝜆3, 𝜆4 
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