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Abstract

The separation of overlapping components is a well-known and difficult problem
in multicomponent signals analysis and it is shared by applications dealing with
radar, biosonar, seismic and audio signals. In order to estimate the instantaneous
frequencies of a multicomponent signal, it is necessary to disentangle signal
modes in a proper domain. Unfortunately, if signal modes supports overlap both
in time and frequency, separation is only possible through a parametric approach
whenever the signal class is a priori fixed. In this work, time-frequency analysis
and Radon Transform are jointly used for the unsupervised separation of modes of
a generic frequency modulated signal in noisy environment. The proposed method
takes advantage of the ability of the Radon Transform of a proper time-frequency
distribution in separating overlapping modes. It consists of a blind segmentation
of signal components in Radon domain by means of a near-to-optimal threshold
operation. The inversion of the Radon Transform on each detected region allows
us to isolate the instantaneous frequency curves of each single mode in the
time-frequency domain. Experimental results performed on constant amplitudes
chirp signals confirm the effectiveness of the proposed method, opening the way
for its extension to more complex frequency modulated signals.

Keywords: Overlapping modes; Non-linear FM signals; Instantaneous frequency;
Ridge curves; Radon Transform; Radon Wigner Transform; Spectrogram; ICI rule;
Minimum Description Length principle

Introduction
Frequency modulated (FM) signals appear everywhere in applications as they well

model a large class of signals including radar, audio, seismic, biosonar and gravita-

tional waves [1–4]. In a real scenario, a FM signal is multicomponent, i.e. it consists

of the superposition of oscillating components having specific time-dependent am-

plitudes and frequencies [5,6]. Given a multicomponent signal (MCS), a fundamen-

tal goal in various applications is the recovery of its single modes (decomposition

problem) which represents a difficult task if the modes interfere [4, 7–9].

In the literature, there exist several methods devoted to addressing this issue.

Even though methods like Empirical Mode Decomposition (EMD) [10] extract signal

oscillatory components (i.e. its intrinsic mode functions) directly in the time domain,

most of the existing approaches are based on time-frequency (TF) signal analysis

[11–13] as it provides an efficient characterization of non-stationary signals.

A good TF transform is designed to concentrate the energy of a monocomponent

signal around the ridge curve or instantaneous frequency (IF) — defined as the

time derivative of signal phase. The higher the energy concentration around ridge
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points, the better the TF transform. If MCS modes present non-overlapping TF

supports, IF curves can be separated in TF domain by efficient methods such as re-

assignment, syncrosqueezing [14–16], S-Transform [17], whose main goal is actually

to concentrate TF distribution around ridge points. Unfortunately, if IF curves are

”too close” in TF domain, the separation task becomes harder. Neither EMD nor

the above-mentioned TF methods offer a general solution to this problem, that still

represents a very challenging goal in signal processing. That is why existing and

more recent procedures are mostly signal-dependent. Indeed, they either assume a

specific class for the phase/IF function or they consist of adaptive, parametric and

local refinements of already existing approaches and/or transforms — a brief review

of the state of the art methods is given in Section 2.

This paper aims at combining both strategies in a unique framework by further

investigating and exploiting the concept of TF modes separability. The final goal

is to develop a blind and automatic modes separation method. In particular, the

work represents a step forward with respect to the preliminary study presented

in [18], where authors proposed an energy-based signal modes separation method

which combines TF analysis and Radon Transform (RT), with limited assumptions

on signals class. The main idea is that crossing modes in TF plane are mapped

into distinct points in Radon domain. As a consequence, a thresholding operation

is able to separate modes contribution in Radon domain and IF curves can be

recovered by simply inverting RT on each separated component. As expected, the

choice of threshold value is a delicate task, since part of the informative content

may be removed, especially in the presence of noise. The aim of this paper is then:

(i) to provide a method for the automatic selection of the separation threshold, (ii)

to investigate the properties of TF transform that guarantees the enhancement of

modes contribution in Radon domain, as well as their separability.

With regard to the first issue, the method in [19] has been considered, as it pro-

vides a computationally advantageous procedure for extracting useful information

from noisy TF distributions, independently of the considered signal class. A Mini-

mum Description Length (MDL) based criterion has been then proposed in order to

automatically tune the parameters required by the threshold evaluation procedure

in [19] when applied in the Radon domain.

With regard to the second point, the applicability conditions have been studied

and tested on TF transforms having different properties, i.e. providing a more or

less spread TF signal representation. In particular, the most interesting and quite

counter-intuitive result is that TF transform is required to be enough spread around

the ridge curve to map each signal mode into separated, significant and connected

components in the Radon domain.

The proposed approach is then twofold advantageous. On the one hand, it is

completely automatic, adaptive and robust to noise; on the other hand, it takes

advantage of the limit, in terms of spread, of the TF transform to better emphasize

the significant contribution of each signal mode in Radon domain.

Experimental results show that the use of Short Time Fourier Transform (STFT)

in TF analysis and the MDL criterion for the automatic tuning of threshold value al-

lows us to properly separate signal modes while being robust to noise. The extension

of the proposed method to other distributions is also investigated with particular

reference to Radon Wigner (RW) transform.
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The remainder of the paper is the following. Sections 1 briefly reviews the state

of the art methods. Section 2 contains the main definitions and properties of the

transforms used in the proposed method: Wigner-Ville distribution, Short Time

Fourier Transform and Radon Transform. Section 3 presents a detailed description

of the proposed modes separation method, while some numerical examples, results

evaluation and comparative studies are presented in Section 4. Finally, Section 5

draws the conclusions and future perspectives.

1 Brief state of the art
As mentioned in the Introduction, modes separation in overlapping MCSs is a hard

and still open problem in signal processing. Despite the variety of proposed methods

and mathematical tools, the complete separation of overlapping MCSs is reliable

only for very specific cases. Approaches dealing with this issue can be divided in two

categories: (i) methods assuming the signal class a priori and (ii) tracking peaks-

based refinement techniques.

Concerning the first category, linear FM (LFM) signals can be separated by Radon

Transform (RT), chirplet Transform [20], Radon-Wigner (RW) Transform [21, 22]

and Lv’s distribution [23], while sinusoidally modulated signals can be separated by

using the Inverse Radon Transform [24]. Recently, new solutions have been proposed

for multivariate MCSs, i.e. for those signals whose measurement is available from

several channels [25]. In this framework, modes decomposition can be achieved

also for very noisy signals via a sufficient number of sensors. More in general, de-

chirping and filtering-based methods can be applied to the polynomial class as it

consists of the removal of the “non-stationary term” of a chirp signal, so that a

narrowband filter can be utilized to extract the target component. For instance,

in [26], a discrete-time polynomial model for the signal phases is adopted in order

to define a de-chirping method suitable for overlapping components; on the contrary,

in [27] polynomial IF estimation is significantly improved in the non-separable case

by selecting proper non-ridge points providing the same IF information.

With regard to the second category, several tracking peaks-based methods for IF

estimation of overlapping components have been established. Most of them rely on

a TF representation obtained by iteratively adapting the kernel to the signal under

analysis, known as Adaptive Directional Time-Frequency Distributions (ADTFDs).

Maxima points extracted from ADTFD are the starting point for IF estimation. The

latter is usually performed by some modifications of the Viterbi Algorithm, which

is designed to find the optimal path through minimization of a proper penalty

function. In order to avoid the so-called ”switch problem”, that is the assignment

of a ridge point to the wrong component, the penalty functions are defined to

promote the local direction of the estimated ridge [28] as well as to impose the local

monotonicity [29]. A similar peak-detection and tracking procedure promoting the

direction of the estimated IF is proposed in [30]. In the above mentioned methods,

ridge path regrouping is achieved under the basic assumption that the set of detected

peaks as a whole can reflect the global TF pattern of a multicomponent signal.

Unfortunately, this hypothesis immediately fails to be satisfied if two modes interact

in a destructive way. In this critical case, TFD can present much lower energy at the

interference region and then the detected ridge curve can appear so deviated to not
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correlate at all with the global TF pattern. In order to overcome this problem, the

works in [31–33] provide iterative procedures for enhancing spectrogram resolution,

even in the non-separable and destructive case, by taking advantage of an evolution

law for spectrogram. A different approach has been proposed in [34], where it has

been proved that the energy of spectrogram of a MCS, computed with respect to the

frequency variable, is still a time-varying MCS having fast decaying and predictable

amplitude.

2 Methods
2.1 Wigner-Ville distribution and Spectrogram

In this section we recall TF tools and the main results behind the proposed work—

for more details see [5].

The Wigner-Ville distribution (WVD) of a function f ∈ L2(R) in a TF point

(u, ξ) is defined as

WVf (u, ξ) =

∫
R
f
(
u+

τ

2

)
f
(
u− τ

2

)
e−iτξ dτ . (1)

WVD is a TF energy density obtained by the correlation between the signal f and

its shifted copies. As a result, it presents high resolution properties which can be

exploited to identify TF signal structure. Indeed, if f(t) = a(t) cosφ(t) is a FM

signal, WVD is well-concentrated on the ridge curve (u, φ′(u)), also known as IF

curve, and the following result holds

φ′(u) =

∫
R ξ WVf (u, ξ) dξ∫
RWVf (u, ξ) dξ

. (2)

Unfortunately, for a MCS f , i.e.

f(t) =

P∑
k=1

fk(t) =

P∑
k=1

ak(t)eiφk(t), (3)

where fk is the k−th mode having time-dependent amplitude ak and phase φk and

P is the number of components, the quadratic form of WVD leads to interference be-

tween modes (cross terms), making φ′k(t) , k = 1, ..., P , detection more complicated.

Even though cross terms can be reduced by averaging WVD by means of proper

kernels, it causes a loss of resolution that is undesirable in practical applications.

On the other hand, the simultaneous cross terms suppression and preservation of

energy concentration property is not a trivial task.

Spectrogram is the energy density corresponding to STFT. More precisely, given

a function f(t) ∈ L2(R), its STFT at a TF point (u, ξ) is defined as

Sf (u, ξ) =

∫
R
f(t)g(t− u)e−iξt dt , (4)

where g(t) is an even and real window. Hence, the spectrogram is defined as p(u, ξ) =

|Sf (u, ξ)|2.
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It is worth noting that all TF distributions can be written as a WVD averaging;

indeed spectrogram can be equivalently expressed as

p(u, ξ) =
1

2π

∫
R

∫
R
WVf (t, ω)WVg(t− u, ω − ξ)dt dω . (5)

As a result, spectrogram is a spreader distribution than WVD. Even though

reassignment-like methods allow us to overcome this problem, their success is lim-

ited to separable components, i.e. fk, fj defined as in eq.(3) and satisfying

|φ′k(t)− φ′j(t)| ≥ ∆ω , ∀ t (6)

where ∆ω is the frequency bandwidth of the analysis window — see Fig.1. In fact,

in case of signals having overlapping components, i.e. there exists t̄ ∈ Ωt such that

|φ′k(t̄)− φ′j(t̄)| < ∆ω , (7)

ridge curves resolution is quite limited in the non-separability region and then

reassignment-like methods are not able to discriminate components, as depicted

in Fig.2. On the contrary, the joint use of TF analysis and RT allows us to reach

this goal as a complementary separation condition property holds. In particular,

the spread of the TF transform, which should be a limit, will actually represent a

fundamental feature of the method proposed in this paper, as it will be explained

in details in the sequel.

2.2 From TF to Radon domain

RT of a function F (x, y) ∈ R2 is defined as the integral along each straight line in

R2. More precisely, the RT of F in a point (r, θ) ∈ R2 is the projection of F along

the direction identified by the parameters r and θ, i.e. [35]

RF (r, θ) =

∫
R
F (rnθ + sn⊥θ ) ds , (8)

where nθ = (cos θ, sin θ) and n⊥θ = (− sin θ, cos θ). A rotation of the coordinate

system (x, y) by an angle θ gives the new coordinates

[
x′

y′

]
=

[
cos θ − sin θ

sin θ cos θ

][
x

y

]
, (9)

and RT can be rewritten as [35]

RF (r, θ) =

∫
R
F (r cos θ − s sin θ, r sin θ + s cos θ)ds . (10)

RT is 2π-periodic with respect to θ, hence the Fourier Slice Theorem allows for its

inversion whenever all function projections with respect to θ ∈ [0, π) are known.



Bruni et al. Page 6 of 29

More precisely, F (x, y) can be then recovered by applying the backprojection

formula

F (x, y) =
1

π

∫ π

0

RF ((x, y) · nθ, θ) dθ . (11)

Remark: In tomography, a filter-backprojection formula is adopted, since it is more

suitable for removing the unwanted artifacts given by the inversion procedure and

get a clear ”target” image. Conversely to tomography, in this work the ”target” to

be reconstructed is spread all over the domain and the Gibbs effects are informative

for our purpose; that’s why the reduced formula in (11) is used.

As discussed in the sequel, the application of RT to spectrogram, referred as

Radon Spectrogram distribution (RSD), and to WVD maps non-separable modes

in a domain where the separation task is feasible.

2.3 Resolution enhancement of overlapping components in Radon domain

RT of a TF distribution representing a LFM signal is well concentrated around the

point (r0, θ0) uniquely identifying the ridge curve, which is a straight line in TF

plane. In particular, RW peaks at (r0, θ0). That’s why many approaches for LFM

signals analysis rely on RW as well as some of its modifications. These latter, for

instance Lv’s distribution [23], are designed to achieve high cross terms suppression

and high resolution also for adjacent modes, i.e. parallel LFM in TF domain — an

example is given in Fig.3(b).

Non-linear FM MCSs have more spread representations in Radon domain, and

then detection task seems to be harder with respect to the linear case. Neverthe-

less, if signal modes do overlap in TF domain, a visual inspection of RT leads to an

easy discrimination of each mode contribution, as shown in Fig.3(c-d). This obser-

vation has been exploited in [18] in order to disclose single modes, independently of

the specific frequency modulation. More precisely, RT of spectrogram, i.e. RSD, is

considered. Single modes in Radon domain were separated by simple thresholding

and the threshold level was chosen in order to promote sparsity. Then, maxima

points on each detected region Ri was selected as a mode signature in Radon do-

main and the inverse RT has been applied only on those points. The center of mass

(u, cu), at each time u, of the resulting TF representation is the separated IF curve.

Unfortunately, as widely known, the choice of a proper threshold is a very deli-

cate operation and a wrong setting may significantly affect the final result. Fig.4

depicts a non-linear chirp processed by the method proposed in [18], where a too

large threshold value has been adopted. The final result is not acceptable since the

quadratic IF behaviour is almost completely lost (Fig.4(e)). For a threshold value

h ∈ [0,maxR], where R denotes RSD, l0-norm is defined as the cardinality of the

set {R ≥ h}, while the considered error is the pointwise absolute difference between

the reconstructed curve (u, cu) and the true IF curve (u, φ′(u)) referred to a mono-

component signal. Fig.4(f) depicts the normalized l0-norm and the corresponding

normalized mean and maximum error in the reconstruction. In Fig.4(f), the thresh-

old level is represented by a vertical dashed line; as it can be noticed, it corresponds

to high concentration (normalized l0-norm is close to zero) but also to large mean
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error. This suggests that a sufficient low threshold value should be considered in

order to obtain an accurate result. It is worth observing that in the multicomponent

framework, the interaction between modes in Radon domain should also be taken

into account. Therefore, the threshold value should allow for a trade-off between

accuracy and localization.

Assuming an optimal threshold value is available, one would exploit high concen-

tration properties of RW and process it in the same way as proposed in [18]. The

problem in this approach is that a simple threshold operation on RW does not allow

for direct components separation in Radon domain, which is necessary to achieve

IF curves detection, see Fig.5(d-f-h). In particular, it is required that the threshold

operation provides a number of connected components equal to the number of sig-

nal modes, otherwise it won’t be possible to achieve the desired decomposition by

simply inverting RT, as depicted in Figs.5(c-e-g). In addition, a trade-off between

accuracy and localization is needed.

For these reasons, in this work we propose to adopt an advanced adaptive thresh-

olding based technique for the extraction of useful content in a TF distribution [19]

directly in Radon domain; the aim is to still use method in [18] for single modes

separation. Unfortunately, the method proposed in [19], denoted byM, is based on

the assumption that components to be separated appear concentrated in continuous

energy regions, making it not suitable for RW processing. That’s why, in order to

guarantee the continuity of modes energy, a more spread distribution, namely RSD,

has been adopted in this paper. In other words, RT somehow compensates for the

lower resolution of spectrogram. The sparsity of the representation is then reached

by selecting only a subset of ”good” points in Radon domain, as it will be clearer

in the sequel.

3 Extraction of RSD informative content
As discussed in the previous section, overlapping components look discernible in

Radon domain. The question now is how efficient component separation can be

while preserving high anti-noise performance.

The following conditions are assumed:

(i) the number of modes is known and it is significantly smaller than the length

of the analysed signal; moreover, signal components are scattered in Radon

domain;

(ii) signal modes in Radon domain are concentrated around a curve (IF signature)

and they consist of continuous energy regions which emerge from the basically

flat noisy background.

It is worth observing that the assumption on the number of components can be

relaxed by adopting a counting procedure, for instance the one proposed in [36],

which is based on the analysis of the Short-term Rényi entropy and allows for

estimating the local number of components, even in the overlapping case.

Furthermore, additional conditions are assumed for RSD of overlapping modes:

(iii) signal modes in Radon domain have comparable amplitudes;

(iv) for each mode, IF signature is a subset of useful information and it is disjoint

from regions related to the other modes.
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In this scenario, a proper amplitude threshold operation provides a segmentation

of the single components composing the signal.

The novel idea in this paper is then to adopt methodM proposed in [19] to obtain

a near-to-optimal thresholding operation which is able to both extract useful infor-

mation from Radon Spectrogram distribution and achieve a signal segmentation,

exploiting Radon capability of enhancing overlapping modes resolution.

It is worth observing that assumptions (i) and (ii) make method M suitable for

RSD analysis. In addition, since M depends on some parameters setting, their

automatic tuning is proposed by taking advantage of the Minimum Description

Length (MDL) strategy.

3.1 Extraction of useful information by adaptive thresholding

This section briefly reviews method M [19]. It consists of two main steps: the

first one automatically partitions the observed distribution into K classes through

K-means algorithm; the second one distinguishes between classes corresponding

to noise and useful coefficients by applying the ICI rule. The final output is the

distribution defined as the union of classes detected as useful information.

Given a set of observations C = ρ(n,m) , n = 1, ..., N ,m = 1, ...,M and set K ∈
N, K-means algorithm provides a partition {Ck}k=1,...,K of C by minimizing the

within-cluster sum of squares, i.e.

arg min
C

K∑
k=1

∑
ρ(n,m)∈Ck

||ρ(n,m)− µk||2 (12)

where µk is the mean of subset Ck. As a result, the analysed distribution ρ is

partitioned into K classes by setting

ρk(n,m) =

ρ(n,m), if ρ(n,m) ∈ Ck
0, otherwise.

(13)

At this point, the partition {ρk}k=1,...,K itself gives no information concerning the

informative classes. Based on condition (ii), noisy classes are identified as the ones

having significantly larger supports with respect to useful classes, which conversely

are assumed to be concentrated. Assuming that, for each k, coefficients belonging

to one class ρk present equal amplitudes, the energy E(k) of the k-th amplitude

normalized class is defined as the l0-norm of the class and processed in order to

distinguish between noisy and informative classes, i.e. further partitioning C =

{Cnoise, CI}, with

Cnoise = {Ck|k = 1, .., k+} and CI = {Ck|k = k+ + 1, ..,K}. (14)

Method M determines the separation index k+ which identifies the class with the

largest index containing mainly noise, by tracking the intersection of confidence

intervals of E(k) (ICI rule) and identifies the classes ρk for k+ < k ≤ K as the

extracted useful information.
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Denoting by Ẽ(k) the ideal energy, i.e. the one corresponding to C̃I which only

contains useful information and by Ê(k, i) its estimate calculated as a weighted

average of i(k) energies E(k), the pointwise mean squared error (MSE) of Ê(k, i) is

MSE(k, i) = σ2(k, i) + ω2(k, i), (15)

where σ2(k, i) is the estimation variance and ω2(k, i) is the estimation bias and

MSE minimal value, for each k, is achieved by selecting the index i∗ providing the

best trade-off between estimation variance and bias, i.e.

i∗(k) = arg min
i(k)

MSE(k, i). (16)

ICI rule is used to get an approximation of the optimal index i∗, as explained below.

It can be proved that Ẽ belongs to the confidence interval

D(k, i) = [L(k, i), U(k, i)] = [Ê(k, i)− Γσ(k, i), Ê(k, i) + Γσ(k, i)] (17)

with probability 1 − α, α ∈ [0, 1] and Γ depends on the ratio of the upper-bound

bias to the standard deviation of the ideal i∗(k) and α. Based on this result, for

each E(k), the ICI rule calculates the confidence intervals for a growing class of

indices i(k) = 1, 2, ...,K − k + 1 and selects the larger index i+(k) such that the

intersection is non empty, i.e.

i+(k) = arg max
i(k)
{∩K−k+1

i(k)=1 D(k, i) 6= ∅}, (18)

as an approximation of the index i∗(k).

ICI criterion can be rephrased in terms of L(k, i) and U(k, i) defined in eq.(17),

by defining the smallest upper and largest lower confidence limits calculated as

U(k, i) = min{Uj , j = 1, ..., i}, (19)

L̄(k, i) = max{Lj , j = 1, ..., i}, (20)

then the index i+(k) is the largest index satisfying L̄(k, i) ≤ U(k, i).

In order to reduce the computational cost, the first class ρ1(n,m) is used as a

reference noise structure to distinguish between noise and useful information. This

choice is justified by assumptions (i) and (ii) and it preserves the quality of ICI

algorithm performance. Therefore k+ = i+(1), CI = {Ck | i(1) > k+} and the

extracted useful information is given by the sum

ρI(n,m) =

K∑
k=k++1

ρk(n,m). (21)

In this work, we set ρ(n,m) = RP (r, θ).

It is worth observing thatM depends on two parameters, i.e. the number of classes

K and Γ, whose optimal values are not known in advance. The only prior informa-

tion is about the number of components, which is assumed, as in the majority of

similar methods.
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We propose to select K and Γ as the ones providing the more concentrated use-

ful information by means of MDL. Formally, a two-dimensional minimization of a

proper MDL functional is performed, with the constraint on the number of signal

components.

3.2 Automatic threshold tuning

Adaptive thresholding methodM requires input parameters Γ and K, whose values

can be automatically determined by means of MDL principle [37].

MDL principle is a formalization of Occam’s razor and its application can provide

a solution to the problem of model selection, i.e. the choice of the best explana-

tion of data given limited observations. MDL principle states that the best model

(hypothesis) describing a given set of data is the one that compresses data the most.

In this context, model selection is turned into best coding of data and the theo-

retical concept of explanation of data is turned into its length expressed in bits.

More precisely, given H = {H1, H2, ...,HJ} a list of candidate models to describe

a set of data D, the best model H ∈ H explaining D is the one which achieves

min
H∈H

(L(H) + L(D|H)) , (22)

where L(H) is the length, in bits, of the description of the model H and L(D|H)

is the length, in bits, of the description of data when encoded by model H [37].

It is worth pointing out that the word model refers to a set of probability distribu-

tions or functions sharing the same functional form — e.g. the ”model of kth degree

polynomials”. Conversely, a point model (point hypothesis, in general) is an instan-

tiated model, i.e. a particular parameters setting for the considered model [37].

The adopted approach in this work is an instance of MDL, where the considered

data D is RSD, a model for D is one of the possible distributions given by the

adaptive thresholding algorithm M and the description of data is intended as the

l0-norm of the distribution.

According to the above notation, we use MDL to determine the best point model

for RSD, i.e. the values of input parameters Γ and K yielding the best description

of RSD through thresholding operation performed by M. Thus, by denoting the

model as H = (K,Γ), the functional to be minimized is

min
(K,Γ)∈H

(L((K,Γ)) + L(RSD|(K,Γ))) . (23)

In practice, by fixing a range for parameters Γ and K, a 2D minimization on

l0-norm of the extracted distribution is performed, constrained to the number of

modes, i.e. only parameters values giving a distribution such that number of con-

nected components is equal to the number of signal modes are considered.

3.3 Proposed signal modes separation

Given f(t) as defined in (3), the proposed method first computes spectrogram p and

the corresponding RSD Rp(r, θ), for all θ ∈ [0, π). MethodM is applied to Rp(r, θ)

with (K,Γ) ∈ Ω = {K1, ...,Kl} × {Γ1, ...,Γq}. The parameters (K̄, Γ̄) realizing

the minimum of eq.(23) are chosen as the best explanation of RSD Rp(r, θ), by
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means of MDL principle. The application of methodM instantiated by (K̄, Γ̄), i.e.

M((K̄, Γ̄)), corresponds to performing a near-to-optimal threshold operation on

RSD Rp(r, θ) at level h. The output represents the extracted useful information,

denoted by RI , and it is partitioned in connected components Ri, i = 1, ..., P ,

corresponding to original signal modes. Each connected component is processed

separately by taking the maxima points along the vertical direction. As a result, a

signature of each signal mode in Radon domain is obtained. The inversion of RT

on those points gives P TF representations IRi that need to be refocused in order

to obtain a good IF curve approximation. IRi are post-processed by selecting the

local centers of mass along the frequencies, providing IF curves separation, even in

non-separability regions.

The whole proposed procedure is illustrated by the flow-chart in Fig.6 and it can

be summarized as follows:

Step 1. compute the spectrogram p of the input signal f

Step 2. compute RT of the spectrogram, i.e. RSD Rp

Step 3. apply method M to Rp with parameters (K,Γ) ∈ Ω = {K1, ...,Kl} ×
{Γ1, ...,Γq} and compute l0-norm of the output distributions M(K,Γ)

Step 4. select (K̄, Γ̄) s.t. the MDL functional in eq.(23) is minimum and set

RI =M(K̄, Γ̄)

Step 5. determine the connected components Ri , i = 1, ..., P of distribution RI

Step 6. for each Ri

6.1 extract the signature, i.e. for each θ, set rθ = arg maxr(Ri(r, θ)) and set

Ri(r, θ) = 0 ∀ r 6= rθ

6.2 compute IRi(u, ξ) as the inverse RT of Ri according to (11)

6.3 for each u, select ξu = arg maxξ(IRi(u, ξ)) and the center of mass cu

around ξu

6.4 the curve (u, cu), for all considered u, is the separated IF curve corre-

sponding to the i-th mode.

4 Results and discussion
The proposed modes separation method has been tested on several MCS having

different frequency modulation. This section presents the most significant results

concerning linear combination of the following polynomial and hyperbolic chirps of

length L = 512:

f1(t) = cos

(
Lπ

4
t4 + 0.2Lt

)
f2(t) = cos

(
(0.38Lπ − 100)t2 − 0.76Lπt+ 0.38Lπ

)
f3(t) = cos (0.58Lπt)

f4(t) = cos

(
4.5π

0.7− t
+ 0.5Lt

)
f5(t) = cos

(
Lπ

3
(1− t)2

)
f6(t) = cos

(
0.6Lπ(t− 0.5)3 + 250t

)
f7(t) = cos

(
0.7Lπ

2
(1− t)

)
(24)
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with t ∈ { 1
L ,

2
L , ..., 1}.

Signals are embedded in AWGN with different SNR levels. STFT is computed

with a gaussian window of length s = 44 and standard deviation σ = s−1
5 ≈ 8.6.

Matlab code implementing method M proposed in [19] has been downloaded from

[38]. For each test signal, M is applied to RSD with parameter (K,Γ) varying in

Ω = {3P, ...16}×{0.20 + i 0.05, i = 0, ..., 10}, where P denotes the number of signal

modes. Range for parameter Γ is contained in the interval [0.20, 0.70], since the

value 0.5 has experimentally provided better results.

l0-norm is computed for each iteration ofM, which provides exactly P connected

components, and the parameters (K̄, Γ̄) ∈ Ω achieving MDL functional minimum

are selected as the best explanation of RSD.

Fig.7 refers to the 3-components signal f(t) = 1.5 ·f1(t)+f2(t)+1.1 ·f3(t) embed-

ded in AWGN (SNR=9dB). In this case, MDL functional minimum value is reached

at (K̄, Γ̄) = (11, 0.7). In order to visually prove the goodness of the corresponding

threshold h, in Fig.8 the representations in TF and Radon domain of the noise-

free single components f1, f2, f3 are considered. Figs.8(c) depict the behaviour of

l0-norm and reconstruction errors regarding the single RSDs in Figs.8(b), while the

threshold value increases. The vertical dashed lines indicate the threshold h corre-

sponding to (K̄, Γ̄) = (11, 0.7). As it can be observed, in the non-linear case (top),

h achieves a good trade-off between accuracy (mean error is moderate) and local-

ization (l0-norm value is low). Figs.7(c-o) show the extracted classes by methodM
with parameters (K̄, Γ̄) = (11, 0.7) applied to RSD in Fig.7(b). Finally, Fig.7(p) is

the output distribution of M, whose processing is shown in Fig.9. Specifically, dis-

tribution in Fig.7(p) is partitioned into connected components, which are depicted

in Figs.9(a). The latter are processed by taking, for each θ, the maximum along the

radial direction, which results in the signatures shown in Figs.9(b). Inverse RT of

each signature is computed resulting in a blurred TF representation (see Figs.9(c))

whose local center of mass approximates IF curve. Indeed, Figs.9(d) show three

separated curves reflecting true IF behaviour. Fig.10 shows the curve of average

MSE values for SNR levels ranging from 0 to 16 dB.

The second experimental result concerns the 2-components signal z(t) = 0.5 ·
f4(t) + 0.5 · f5(t). AWGN at SNR=12dB has been added to the signal. MDL func-

tional minimization provides parameters (K̄, Γ̄) = (6, 0.65). As shown in Figs.11(b),

method M provides a threshold which is able to capture the linear chirp in Radon

domain and also the spread distribution corresponding to the hyperbolic chirp.

The proposed procedure is able to separate signal components, as illustrated in

Figs.11(e), except for some errors at TF boundaries. The curve of average MSE

values for SNR levels ranging from 0 to 16 dB is shown in Fig.12.

Finally, Fig.13 presents the result for the 2-components signal w(t) = 2 · f5(t) +

f7(t), embedded in AWGN at SNR=14dB. In this example, modes have multiple

crossing points in TF domain as depicted by spectrogram in Fig.13(a)-Left. This

results in a more confusing RSD Fig.13(a)-Right. MDL functional minimization

gives (K̄, Γ̄) = (6, 0.6) and method M still provides a good representation, having

two connected components. The latter is processed by the proposed method which

gives two separated IF curves, as depicted in Fig.13(e). Fig.14 provides the average

MSE curve against SNR.
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4.1 Comparative studies

In order to compare the proposed procedure with some of the state of the art

methods, we considered the signal

v(t) = ei2π(21t3) + ei2π(45t−15t3) + ei2π(62t−15t3), (25)

composed of two parallel non-LFM components intersecting with a non-LFM mode.

The sampling rate is 256 Hz and the signal duration is 1 s. We compared our result

with the one obtained by the Modified Viterbi-ADTFD method [28], which combines

adaptive TF analysis and a modified version of Viterbi algorithm. Spectrogram is

shown in Fig.15(a) while Figs.15(b)-(c) respectively depict RSD and the detected

components. Fig.15(d) provides the result obtained by the proposed method and

Fig.15(e) shows the average MSE against SNR for the two methods, with SNR

levels ranging from 0 to 10 dB. As it can been observed, the two methods have quite

comparable performance for higher SNR levels. However, it is worth observing that

the proposed method is less precise in modes reconstruction at TF boundaries —

see next subsection for details. To quantify this sensitiveness, the same figure shows

MSE results provided by the proposed method when boundary points are omitted

in the evaluation of the metric (star markers).

It is also worth pointing out that, as the majority of tracking peaks-based methods,

the procedure introduced in [28] is based on a local estimate of IF that is used to

adapt the kernel of the TFD. Furthermore, Modified Viterbi-ADTFD method is a

searching technique and its performance strongly depends on the predefined set of

candidate parameters. On the contrary, the proposed method works globally on the

whole distribution, since RT is blindly computed on the spectrogram. Instead of

adapting the transform to the analysed signal, we map it into a domain where the

information concerning IF is available and compact.

4.2 Some remarks

Reconstructed IF curves presented in the experimental results show some instabil-

ities, especially at TF boundaries. This phenomenon is explained by the fact that

slopes corresponding to points at TF boundaries are less represented in the com-

pactly supported spectrogram domain, in the sense that the energy captured by RT

is lower than the one observed in the whole plane R2. As a consequence, amplitudes

regarding TF boundaries slopes are penalized in Radon domain. Furthermore, it is

well-known that a single point in Radon domain is sufficient to recover a LFM signal,

while the adopted threshold operation provides a more spread signature, which also

results in a loss of accuracy. It turns out that an in-depth study aimed at defining

a more efficient thresholding operation is needed. This should reasonably improve

method performance at TF boundaries, making it more efficient also in high noise

environment. The definition of a more advanced thresholding technique requires a

further investigation of the mathematical structure of RSD, which is one of the main

plan in our future research. As a result, condition (iii) on comparable amplitudes

could be removed by integrating the proposed method with some iterative tech-

niques, such as matching pursuit [5]. The strongest component should be extracted

first and then the procedure should be iterated on the residual distribution till all
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the modes are recovered. The assumption on the number of components could be

also removed by adopting a residual energy-based stopping criterion. This approach

could reasonably allows for the applicability of the proposed method to real-life sig-

nals, which commonly present varying amplitudes, and it will be investigated in our

future work.

Even though crossing modes represent a critical issue in modes separation problem

in TF plane, it isn’t a necessary condition to be verified for the applicability of the

proposed method. Nevertheless, two close and not intersecting components could be

recognized as a unique contribution in the Radon domain. This is the case of close

parallel components, as depicted in Fig.3(a), that can be solved by taking advantage

of the knowledge of the number of modes: if just one contribution is detected in

Radon domain, then the signatures can be obtained by extracting more than one

local maximum for each θ. The analysis of modes having overlapping supports in

Radon domain will be studied in-depth in our future work instead.

5 Conclusions
This paper has presented a novel strategy for the separation of overlapping IF

curves referred to a MCS. In particular, the main contribution of the work has been

the definition of the conditions under which the joint use of TF analysis and RT

enables modes separation in non-linearly FM MCS. It relies on the key idea that

RT maps non-separable modes in TF domain into a new domain where modes are

distinguishable. An adaptive and automatic thresholding method for the extraction

of informative content from the noisy RSD is adopted. The latter is also exploited to

obtain a partition whose connected components are processed one by one in order

to separate and recover each single IF curve.

The second main contribution of the work has been the observation that a spread

TF transform allows for higher energy enhancement of signal modes in Radon do-

main, guaranteeing their easier separation by thresholding. On the contrary, too

concentrated TF transforms result not useful for our purposes.

Experimental results performed on constant amplitude multicomponent FM sig-

nals confirm the efficiency of the proposed method in discriminating signal IF curves.

The observation that crossing IF curves in TF domain are mapped into separated

signatures in Radon domain opens the way to novel proposals for FM MCS analysis.

As future perspectives, we would like to study cases where some conditions are

relaxed, as the one requiring comparable modes energy in Radon domain, and to

quantify separability in Radon domain. The applicability to a TFD different from

the spectrogram, with higher resolution, will be a focus of our future work. Re-

constructed IF curves’ instabilities at TF boundaries and applicability to real-life

signals will be also investigated.

6 Abbreviations
TF Time-frequency

FM Frequency Modulated

LFM Linear Frequency Modulated

MCS Multicomponent Signal

IF Instantaneous Frequency

EMD Empirical Mode Decomposition

STFT Short Time Fourier Tranform

WVD Wigner Ville Distribution
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RT Radon Transform

RW Radon Wigner

RSD Radon Spectrogram Distribution

ICI Intersection of Confidence Intervals

MDL Minimun Description Length

AWGN Additive White Gaussian Noise
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28. Khan, N.A., Mohammadi, M., Djurović, I.: A modified viterbi algorithm-based if estimation algorithm for

adaptive directional time–frequency distributions. Circuits, Systems, and Signal Processing 38(5), 2227–2244

(2019)

29. Li, P., Zhang, Q.-H.: An improved viterbi algorithm for if extraction of multicomponent signals. Signal, Image

and Video Processing 12(1), 171–179 (2018)

30. Khan, N.A., Mohammadi, M., Ali, S.: Instantaneous frequency estimation of intersecting and close

multi-component signals with varying amplitudes. Signal, Image and Video Processing 13(3), 517–524 (2019)

31. Bruni, V., Tartaglione, M., Vitulano, D.: A fast and robust spectrogram reassignment method. Mathematics

MDPI 7(4), 360 (2019)

32. Bruni, V., Tartaglione, M., Vitulano, D.: An iterative spectrogram reassignment of frequency modulated

multicomponent signals. In: MASCOT2018-15th MEETING ON APPLIED SCIENTIFIC COMPUTING AND

TOOLS (2018)

33. Bruni, V., Tartaglione, M., Vitulano, D.: An iterative approach for spectrogram reassignment of frequency

modulated multicomponent signals. Mathematics and Computers in Simulation (2019)

34. Bruni, V., Tartaglione, M., Vitulano, D.: On the time-frequency reassignment of interfering modes in

multicomponent fm signals. In: 2018 26th European Signal Processing Conference (EUSIPCO), pp. 722–726

(2018). IEEE

35. Deans, S.R.: The Radon Transform and Some of Its Applications. Courier Corporation (2007)

36. Sucic, V., Saulig, N., Boashash, B.: Analysis of local time-frequency entropy features for nonstationary signal

components time supports detection. Digital Signal Processing 34, 56–66 (2014)

37. Grünwald, P.D., Grunwald, A.: The Minimum Description Length Principle. MIT press (2007)

38. Matlab Code for the Paper [19]: Http://www.riteh.uniri.hr/en/organisation/departments/department-

computer-engineering/laboratory-application-information-technologies, Accessed October, 2019

8 Figures



Bruni et al. Page 17 of 29

(a) (b)

(c) (d)

Figure 1 Separable components. (a) Spectrogram; (b) Reassigned spectrogram; (c) WVD; (d)
Ideal TF representation perfectly concentrated on IF curves.

(a) (b)

(c) (d)

Figure 2 Overlapping components. (a) Spectrogram; (b) Reassigned spectrogram. The
non-separability region is emphasized by the dashed box; (c) WVD; (d) Ideal TF representation
perfectly concentrated on IF curves.
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(a) (b)

(c) (d)

Figure 3 Representation in Radon domain by RSD and RW (a) RT of the spectrogram in
Fig.1(a); (b) RT of the WV transform in Fig.1(c); (c) RT of the spectrogram in Fig.2(a); (d) RT
of the WVD in Fig.2(c).
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(a) (b)

(c) (d)

(e) (f)

Figure 4 Threshold operation and reconstruction.(a) Spectrogram of a quadratic chirp; (b)
RSD; (c) Threshold RSD at level h = 180; (d) Signature; (e) Reconstructed IF curve; (f) l0-norm
and errors behaviour. Threshold level h = 180 is indicated by a vertical line.
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(a) (b)

(c) (v)

(e) (f)

(g) (h)

Figure 5 Modes separation in Radon domain is necessary.(a) Spectrogram of a 3-components
FM signal; (b) WVD; (c) RSD; (d) RW; (e) Threshold RSD; (f) Threshold RW; (g) Inverse RT of
(e); (h) Inverse RT of (f). If components are not properly isolated in Radon domain, IRT does not
allow for signal modes separation in TF domain.
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Figure 6 Proposed signal mode separation flow-chart. A two-components signal is considered as
illustrative example.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(l) (m) (n)

(o) (p)

Figure 7 Detected classes and extracted useful information by method M. (a) Noisy
spectrogram of signal f(t) = f1(t) + f2(t) + f3(t) in reference to eq.(24); (b) RSD (contours);
(c)-(o) classes extracted by method M; (p) Extracted useful information RI . Parameters given by
MDL functional minimization are Γ = 0.7, K = 11.
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(a) (b) (c)

Figure 8 Noise-free components and reconstruction errors. Noise-free signals f1, f2, f3 defined
in eq.(24). (a) Spectrogram; (b) RSD; (c) Normalized l0-norm and reconstruction errors versus
the threshold value. The threshold value h given by M is indicated by a vertical line.
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(a)

(b)

(c)

(d)

Figure 9 Result 1. (a) Connected components extracted by RI in Fig.7(p); (b) Signatures; (c)
IRT on signatures; (d) Separated IF curves.

Figure 10 Average MSE against SNR for signal f(t) = f1(t) + f2(t) + f3(t).
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(a)

(b)

(c)

(d)

(e)

Figure 11 Result 2. (a) Spectrogram of the signal z(t) = f4(t) + f5(t) embedded in AWGN
(left) and RSD (right); (b) Connected components obtained by applying method M with
parameters K = 6, Γ = 0.65; (c) Signatures; (c) IRT on signatures; (d) Separated IF curves.
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Figure 12 Average MSE against SNR for signal z(t) = f4(t) + f5(t).
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(a)

(b)

(c)

(d)

(e)

Figure 13 Result 3. (a) Spectrogram of the signal w(t) = f6(t) + f7(t) embedded in AWGN
(Left) and RSD (right); (b) Connected components obtained by applying method M with
parameters K = 6, Γ = 0.6; (c) Signatures; (c) IRT on signatures; (d) Separated IF curves.
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Figure 14 Average MSE against SNR for signal w(t) = f6(t) + f7(t).
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(a)

(b) (c)

(d) (e)

Figure 15 Performance comparison. (a) Spectrogram of the signal v(t) in eq.(25) embedded in
AWGN at SNR level equal to 10 dB; (b) RSD; (c) Connected components detected by method M
with parameters K = 11 and Γ = 0.65; (d) Result given by the proposed method; (e) Plot of
average MSE against SNR for signal v(t). The proposed method and the Modified
Viterbi-ADTFD method in [28] are compared.


