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Abstract

Multiple Sclerosis (MS) progresses at an unpredictable rate, but predictions on the disease

course in each patient would be extremely useful to tailor therapy to the individual needs.

We explore different machine learning (ML) approaches to predict whether a patient will

shift from the initial Relapsing-Remitting (RR) to the Secondary Progressive (SP) form of

the disease, using only “real world” data available in clinical routine. The clinical records of

1624 outpatients (207 in the SP phase) attending the MS service of Sant’Andrea hospital,

Rome, Italy, were used. Predictions at 180, 360 or 720 days from the last visit were obtained

considering either the data of the last available visit (Visit-Oriented setting), comparing four

classical ML methods (Random Forest, Support Vector Machine, K-Nearest Neighbours

and AdaBoost) or the whole clinical history of each patient (History-Oriented setting), using

a Recurrent Neural Network model, specifically designed for historical data. Missing values

were handled by removing either all clinical records presenting at least one missing parame-

ter (Feature-saving approach) or the 3 clinical parameters which contained missing values

(Record-saving approach). The performances of the classifiers were rated using common

indicators, such as Recall (or Sensitivity) and Precision (or Positive predictive value). In the

visit-oriented setting, the Record-saving approach yielded Recall values from 70% to 100%,

but low Precision (5% to 10%), which however increased to 50% when considering only pre-

dictions for which the model returned a probability above a given “confidence threshold”. For

the History-oriented setting, both indicators increased as prediction time lengthened, reach-

ing values of 67% (Recall) and 42% (Precision) at 720 days. We show how “real world” data

can be effectively used to forecast the evolution of MS, leading to high Recall values and

propose innovative approaches to improve Precision towards clinically useful values.
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Introduction

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system that typically

starts with a relapsing-remitting (RR) phase that gradually turns into a secondary progressive

(SP) form, in which disability accumulates. However, the natural course of the disease is

extremely variable, ranging from extremely mild to very aggressive forms. In particular, the

duration of the RR phase is quite variable, and relapses occur randomly [1]. Given the clinical

heterogeneity of multiple sclerosis, reliable prognostic predictors would be of great impor-

tance. Several prognostic factors of disability have been described, and some studies have pro-

posed risk scores calculated from demographic and clinical variables collected at disease onset

[2, 3]. However, the prediction of the course of MS on the basis of clinical and other supportive

data is challenging, and no validated prediction model for the clinical course is currently avail-

able. To date, several clinical and demographic features associated with long-term disease

course have been proposed. Older age at onset [4, 5] and male sex [4, 6] have been associated

with an increased risk of disability progression in the long-term. Family history of MS seems

to be a predictor of a shorter time to conversion to SPMS [7]. Environmental and modifiable

factors, such as smoke and high body mass index, contribute to impairments in walking speed,

overall disability and depression [8]. Vitamin D deficiency has been associated with worse out-

come as well [9]. Poor prognosis also correlates with high annualized relapse rate, particularly

on-treatment, short interval between disease onset and first relapse [10, 11], incomplete recov-

ery from the first relapse or polysymptomatic onset [4, 6]. Some studies have highlighted the

role of the localization of the first relapse. Motor onset and early cerebellar involvement have

been associated with faster increase in disability, while sensory onset and optic neuritis have

been described as favourable prognostic factor [4, 12]. Radiologic biomarkers of prognosis

include a high number of T2 lesions at baseline MRI, whole-brain and grey matter atrophy

observed in the earliest stages, presence of cerebellar and brainstem lesions and increased T2

lesion number or lesion volume within the first 2 years [7, 13, 14]. Some studies have suggested

that the presence of oligoclonal bands in the cerebrospinal fluid at the time of diagnosis pre-

dicts a worse prognosis with high disability impairment [15, 16].

On the other hand, several preventive disease-modifying therapies (DMTs) are available

nowadays, so that, in principle, it is possible to tailor treatments to the specific needs of each

patient. Considering that all therapies are preventive, their costs and their safety profile [17], it

would be extremely useful to have prognoses as exact as possible, to avoid under-treatment of

patients with aggressive forms of disease or over-treatment of patients with mild forms.

For support to patient counseling, prognosis, and therapy, attention has increasingly been

turned to artificial intelligence, exploiting the ability of Machine learning (ML) approaches to

extract complex relations among existing data without requiring a priori models linking input

and output variables [18].

Different problems have been addressed, such as the classification of disease phase at the

time of analysis [19–21] or evaluation of the probability of transition from Clinically Isolated

Syndrome (CIS) to definite multiple sclerosis within 1 to 3 years [22–24]. Others have

attempted to derive predictions on the course of individual patients or have investigated the

variables that best predict disease evolution in time [25–28].

Several of these works relied on imaging data, a factor likely to limit the diffuse application

of the proposed method, as algorithms might be hardly able to understand images obtained

using different devices [29]. Moreover, none of the proposed prognostic methods achieved

Specificity and Sensitivity of “clinical grade”.
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To date, the use of learning machines remains outside the clinical practice, for the above

reasons and possibly also because of the limited confidence of physicians with the technology

and the absence of collaboration between computer people and clinicians [29–31].

To address some of these possible limiting factors it is important to produce tools that are

perceived as user-friendly by clinicians. One important step is to use data that are readily avail-

able in normal clinical practice (“real-world” data), so that doctors can autonomously use the

machines once they are built, without breaking their (already hectic) working routine. Thus,

in this paper we explore the possibility of predicting whether a patient will pass from RR to SP

phase in a given time window, using a real-world dataset, built in close collaboration between

computer experts and neurologists. The database contains the results of neurological and

imaging exams routinely collected during the periodic visits. The use of routinely available

clinical data might help to spread the usage of ML among physicians, as the proposed method

can be replicated in any center where a database is available. Moreover, the use of clinical regis-

ters allows the exploitation of long term data, which is critical for a chronic, long-lasting dis-

ease such as MS [32].

Raw data are the collection of many clinical records (samples), each containing information

on a number of clinical parameters (features) and on the MS phase of the patient, either RR or

SP at the time of the visit. Since any real-world raw dataset is plagued by incomplete records,

data pre-processing represents a crucial step in such an analysis. Keeping in mind the clinical

relevance of the data, we processed raw data in two different ways, producing datasets that

contain the maximum number of either records (Record-Saving dataset, RS) or features (Fea-

ture-Saving dataset, FS). Either way, this unavoidable cleaning reduces the amount of available

data, already limited at the beginning, increasing the challenge of using ML methods on a col-

lection of “small data”, rather than on “big data”.

To predict whether a patient will pass from the RR to the SP phase within a certain time-

window (180, 360 or 720 days), we used two different approaches. The first is a “spot”

approach: predictions are based on the results of a single visit, so that a sample in the dataset

corresponds to a visit of a patient. The second, instead, considers the clinical history of the

patient up to the last available visit, namely each sample of the training dataset consists in a

sequence of consecutive visits. Hereafter, we will refer to the former approach as the Visit-Ori-
ented (VO) setting, while to the latter as History-Oriented (HO) setting.

Finally, for both the VO and the HO approach we used the RS and FS datasets to train sev-

eral machine learning algorithms to identify the most reliable and promising one(s), to under-

stand the impact of different data processing strategies on the models performance and to

define the importance of the amount and type of available data for training the machine learn-

ing models. To favour the spreading of our approach, we chose broadly available ML proce-

dures (Random Forest, Support Vector Machine, K-Nearest Neighbours, AdaBoost, Long

short-term memory neural networks), that can be easily implemented everywhere.

The time-windows chosen for the predictions are 180, 360 and 720 days. Possibly, the pre-

dictions over two years (720 days) are the most relevant from a clinical point of view. Never-

theless performance on shorter times can improve the model analysis, for instance by giving

information on the the more relevant features and/or on the reliability of the models.

To the best of authors’ knowledge, this work represents the first attempt to analyse different

approaches to prepare sets of routine clinical data, learning strategies and machine learning

models to forecast the evolution of MS course.

The analysis of the predictive confidence of the classification models appears a promising

tool to boost the performance of data-driven models. Future work will be able to exploit the

power of the HO setting to extend the analysis of larger datasets over longer time windows.
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Materials and methods

Dataset description

Data has been provided by the Multiple Sclerosis centre of Sant’Andrea University hospital in

Rome. The use of the database for research purposes was authorized by the Ethical committee

of Sapienza University (Authorization n. 42542016, November 2, 2016). All patients provided

written informed consent to have anonymous data from their medical records used in scien-

tific research. At each visit, patients underwent neurological examination. The clinical status,

laboratory and image data, when available, and the phase of the disease (RR or SP, as scored by

the attending neurologist) were entered in a database. If considered necessary, neurologists

were able to modify the recorded disease staging during subsequent visits.

The raw dataset is composed of 18 574 clinical records from visits performed between 1978

and 2018 on 1 624 patients, of whom 207 (12.7%) in SP phase, now followed at the MS Center

of Sant’Andrea University hospital, designated and certified as a MS center of excellence. The

percentage of SP patients is just below the lower end of international reference values (13.5-

32%) obtained using nationwide cohorts [33–37]. A likely explanation for the lower transition

rate is that, as a part of the peculiar routine inherent to the excellence center, patients are

treated early with second line drugs, and this approach may delay the SP transition. Further-

more, the median onset times of SPMS is 23-34 years from disease onset [33, 34], while average

disease duration in the cohort under study is 19 years, contributing to reduce the percentage

of patients with SPMS.

Each clinical record (sample) contains up to 200 fields (features) describing the status of the

patient. The number of visits for each patient varies between 1 and 56 (Table 1). The dataset

shared for analysis was anonymized, by removing all features potentially revealing patients’

identity (such as name, tax code, address).

For the purpose of the construction of our prediction models, to each sample i we added

three fields with binary outcomes (the output labels), denoted as y180
i , y360

i and y720
i , which tell

whether the patient passed to the SP phase of the disease after 180, 360 or 720 days from the

visit i, respectively. Formally, we define the outcomes as follows:

yki ¼

(
1; patient passes to the SP phase within k days after the visit i

0; otherwise

Data preprocessing

Since we are interested in predicting the transition of a patient from the RR to the SP phase,

rather than simply assigning patients to the RR or SP phase, we removed from the dataset all

the visits occurred after the transition of the patient to the SP phase. As a consequence we

obtain three datasets for the prediction of the status after 180, 360, 720 days, which may have

different number of samples.

Preprocessing was necessary to account for missing (not available, NA) data and to encode

descriptive variables in terms amenable to computer analysis. As a preliminary preprocessing

phase, we deleted those features characterized by many categorical values (e.g. city of birth),

which increase the dimension of the dataset without providing really useful information and

those features only occasionally present.

Through these procedures, the dimensionality of the dataset was reduced from more than

200 features to only 21 that can be divided into four main categories: Demographic, Clinical

data and relapses, Magnetic Resonance Imaging (MRI) and Liquor analysis, Therapeutic

treatments.
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As regard the therapeutic treatments, being there hundreds of different drugs potentially

assumed by patients, this information was organized into 6 different clusters: Relapse treat-
ment drugs; MS symptomatic treatment drugs; First line Disease Modifying Therapies (DMT),

which include Interferons, Glatiramer Acetate, Teriflunomide and Dimethyl fumarate; Second
line DMTs, such as Fingolimod, Natalizumab, Alemtuzumab, and Rituximab; Immunosuppres-
sants,including Azathyoprine, Mitoxantrone, Cyclophosphamide and Methotrexate; Other
treatments (related to concomitant pathologies). The main difference between second line

DMTs and immunosuppressant therapy is the selectivity of action. The latter are classical cyto-

toxic immunosuppressants that act by inhibiting DNA synthesis [38, 39], while second line

drugs act by suppressing or altering the immune system with more specific mechanisms [40].

The final features in our dataset are defined in Table 2.

Despite the cleaning procedure described above, more than 14 000 samples (75% of the

total) included one or more missing value, all of them corresponding to the features: Status T1

(6.632 empty fields, 35% of total), Status T2 (3.569, 19%) and Oligoclonal Banding (10.887,

57%). Such a situation is reasonable from a clinical point of view, as not all visits are accompa-

nied by Magnetic resonance imaging (features Status T1 and Status T2), nor all patients

undergo lumbar puncture (feature Oligoclonal banding).

To cope with these cases, elimination of NA fields was the only available possibility, so two

distinct NA-elimination strategies were implemented: a Feature-saving (FS) strategy, consist-

ing in eliminating all the records in which at least one NA value was present in the attempt to

exploit all the clinical information collected in each visit; a Record-saving (RS) strategy, consist-

ing in eliminating the three features where the NA values occurred, preserving all the records

and hence the full amount of visits. These two procedures yielded to two different datasets,

with 21 or 18 features, respectively. The number of records included depends on the timespan

considered for the prediction of the transition to SP phase (180, 360 or 720 days). Table 3 sum-

marises the number of entries in each of of the six datasets so obtained. Some of these features,

such as age or sex, have been already suggested to be predictors of the rate of disability progres-

sion (see Introduction). Other putative prognostic factors, such as vitamin D deficiency or

body mass index, were not considered due to lack of recorded data.

We performed a further statistical analysis based on the Pearson matrix to check for poten-

tial correlations among features and/or among each feature and the output. We used this anal-

ysis to:

• identify potentially redundant input features, discarding those that could be deduced by

other features or their combination.

Table 1. Statistics on the raw dataset.

Total Mean SD Min Max

Total # of patients 1624 - - - -

Male 490 - - - -

Female 1134 - - - -

SP patients 207 - - - -

Years of observations - 6 5 0 32

Age at onset - 29 9 8 63

Total # of visits 18574 - - - -

# of visits per patient - 11 8 1 56

#: Number; SD: Standard deviation

https://doi.org/10.1371/journal.pone.0230219.t001
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• analyse the influence of the features with respect to the output labels

As a matter of example we report in Fig 1 the Pearson Matrix for the Dataset FS at 180 days

describing the relation among input features and the transition to the SP phase. This analysis

highlighted a very mild correlation between the output label and the features that in most cases

is equal to 0 (gray squares). The features that show the most relevant correlation, which

remains very mild (absolute value of the Pearson coefficient below 0.2), with the output are:

Time from last relapse, EDSS, Relapses Frequencies, Age at onset, Oligoclonal Banding and

Status T2.

Table 2. Features used for training the machine learning models.

Type Variables

Demographic Age at onset

Gender

Age at Visit

Clinical Features EDSS

# Relapses from last visit

Pregnancy

Relapses frequency

Time from last relapse

MRI and liquor Status T1

Status T2

Spinal Cord

Supratentorial

Optic Pathway

Brainstem-Cerebellum

Oligoclonal Banding

Therapeutic treatments (drugs) Relapse treatment drugs

First line DMT

Immunosuppressant

MS symptomatic treatment drugs

Second line DMT

Other drugs

EDSS: expanded disability status scale; Status T1/T2: Presence of gadolinium-enhanced lesions in T1/T2; Spinal

Cord, Supratentorial, Optic Pathway, Brainstem-Cerebellum: Presence of lesions in the corresponding regions;

Oligoclonal banding: detection of of oligoclonal bands in liquor.

https://doi.org/10.1371/journal.pone.0230219.t002

Table 3. Composition of the Feature-saving and Record-saving datasets.

Days Strategy Features Records Patients SP patients % SP Records

180 FS 21 4330 506 36 0.8

RS 18 14923 1515 207 1.3%

360 FS 21 4202 495 37 0.8%

RS 18 14238 1449 207 1.4%

720 FS 21 3923 468 37 0.9%

RS 18 13178 1375 207 1.5%

The 6 dataset were obtained through the FS or RS NA-elimination strategies for each of the timespan considered in the classification task.

https://doi.org/10.1371/journal.pone.0230219.t003

PLOS ONE Machine learning models to predict the course of multiple sclerosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0230219 March 20, 2020 6 / 18

https://doi.org/10.1371/journal.pone.0230219.t002
https://doi.org/10.1371/journal.pone.0230219.t003
https://doi.org/10.1371/journal.pone.0230219


Given the slow course of MS and the fact that we maintained only one record per patient

after the transition to the SP phase, most records pertain to patients in the RR phase. Thus, as

shown in Table 3, the classification problem is highly imbalanced, as the number of records

relating to patients after transition to the SP phase is never higher than 1.5% of the total num-

ber of records. This issue makes the classification task significantly more complex and has

been tackled during the learning process by means of specific techniques that will be outlined

in the following section.

Data analysis

The analysis aimed to learn a function that partitions the data into two groups which in our

case were the patient either in the RR or in the SP phase. The binary classification problem was

addressed in two different settings, a Visit-Oriented setting, and an History-Oriented setting.

Fig 1. Pearson Matrix describing the relation among input features and the transition to the SP phase within 180 days.

https://doi.org/10.1371/journal.pone.0230219.g001
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The difference relies on whether the single visit or the clinical history of the patient is consid-

ered in predicting the outcome yki .
The Visit-Oriented setting. In the Visit-Oriented (VO) setting predictions were done

based on the information contained in individual clinical records, that is, gathered during a

single visit. More formally, every record is considered as an isolated point in the feature space.
The dataset for the three time windows k = 180, 360, 720 in this case are made up of pairs

ðxi; yki Þ with i = 1, . . ., #visitsk and xi 2 Rn where n = 21, 18 respectively for the FS or RS strategy

and yki 2 f0; 1g.
We trained different machine learning models and we compared the performance achieved

using standard Key Performance Indicators (KPIs) as specified below. The ML models which

have been considered are: Random Forest (RF) [41], Nonlinear Support Vector Machines

(SVM) [42], K-Nearest Neighbours (KNN) [43], AdaBoost (AB) [44]. Computations were per-

formed using the open source package SKlearn, on Python 3.7. For lack of space, these meth-

ods are not described here. A discussion about these machine learning algorithms can be

found in [45] and references therein.

Being the data highly unbalanced, a standard train-validation-test split of the datasets was

not reliable because it would yield a very low estimate of the number of patients transitioning

to the SP phase. Therefore, a problem-specific cross-validation procedure was implemented in

order to assess the overall performance of the models and give a reliable estimate of the gener-

alization capabilities of the models to out-of-sample data. Moreover, since particular features

might allow some models to uniquely identify patients (leading therefore to an algorithm capa-

ble of recognizing the patient rather than extrapolating meaningful regularities in the data), it

was necessary to avoid that records belonging to the same patient were present in both the

training and the test set. For this reason, a Leave One Group Out (LOGO) cross-validation

procedure was implemented, where the test set was iteratively defined by excluding all the vis-

its of a single patient from the training set. Given this framework, every iteration of the cross-

validation procedure would see the models testing their predictions on new unseen patients.

To tackle the unbalanced structure of the data, each model was trained by means of the

Bootstrap Aggregating (Bagging) procedure [46]. In Bagging, B different balanced subsets are

built through a subsampling of the initial dataset, then each subset is used to train a model.

The B models so obtained are then tested on the patient left out by means of the LOGO cross-

validation and the final prediction is built as an average of the predictions returned by the B
models.

Overall, the training procedure can be formalized as follows:

• Take out all the visits belonging to one patient (this will be the test fold)

• Extract B balanced sub-dataset and train B models, one for each sub-datasets (Bagging

procedure)

• Evaluate the performance of the trained models as an average of the predictions on the visits

belonging to the “validation patient”

• Repeat this procedure for all the patients in the dataset

Finally, in order to determine the best set of hyperparameters for each model, a Grid Search

was carried out, where the leading performance indicator for choosing the best set of hyper-

parameters was the Recall (see below for details on performance indicators).

History-Oriented setting. In the History-Oriented (HO) setting, each record is consid-

ered in an overall clinical history of a patient. Algorithmically, each patient is treated as a time

series representing a specific course of MS and each record is used together with all the
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previous clinical records of the same patient to determine the prediction of the model. This

approach was implemented by applying a Long Short-Term Memory (LSTM) [47–49] neural

network with 10 cells followed by a Feedforward Neural Network with a sigmoidal (logistic)

function as activation function in output. Computations were performed using the open

source package Keras, on Python 3.7. In order to improve the generalization properties of the

model, we introduced a Dropout probability equal to 0.2.

Because of the computational burden of these particular models, the LOGO procedure was

not feasible in terms of computing time and therefore a standard train-test split was performed

using the former set for training the model and the latter to check its generalization perfor-

mance. Note that training and test sets were built in such a way that the proportion of patients

passing to the SP phase was kept unchanged. For the same computational constraint reasons,

hyperparameter optimization was not carried out like in the Visit- Oriented approach but the

number of neurons was chosen through a trial and error procedure. The Bagging procedure,

instead, given its evident relevance in mitigating the unbalanced structure of the classification

problem, was implemented as for the Visit-Oriented scenario.

Metrics for comparison. In order to determine the quality of the machine learning mod-

els, different indicators were considered. The need for taking into consideration different met-

rics of evaluation is due to the fact that datasets are unbalanced and type I errors (False

positive) and type II errors (False Negative) have a different meaning [50]. In this section, we

introduce the main metrics taken into account and explain their meaning and importance in

the multiple sclerosis-specific setting. Although other metrics could be taken into consider-

ation, in this work we focused on the more relevant from a prognostic point of view.

Confusion Matrix Predictions and real occurrences are reported in an aggregated manner

through a matrix, where the rows represent the true labels and the columns the model predic-

tions, as reported below.

where TN, FN, FP, TP stand for True Negative, False Negative, False Positive, True Positive,

respectively.

The Confusion Matrix does not provide an explicit indicator for the performance of a clas-

sifier but is the basis to determine all other indicators used in the following analyses.

Accuracy Accuracy represents the percentage of correctly classified instances.

Accuracy ¼
TPþ TN

# of instances

Since the datasets are highly unbalanced, this value may represent a misleading KPI.

Recall Recall (or Sensitivity) is an indicator that specifies how often a patient that will actu-

ally pass to the SP phase is correctly classified. Formally it is defined as follows:

Recall ¼
TP

TPþ FN

This measure represents one of the most important KPIs since higher values correspond to

a classifier able to correctly detect a wider portion of the transitioning patients.

Predicted

Non-transiting Transiting

True Non-transiting TN FP

Transiting FN TP
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Precision Precision (or Positive Predictive Value) represents the fraction of times the pre-

dictor classified a patient as transitioning to the SP phase and it was correct. It is defined as:

Precision ¼
TP

TPþ FP

Basically, the indicator represents the probability of having the target condition given a pos-

itive prediction. This measure is also of interest since higher values of this KPI correspond to a

classifier less prone to classifying as transitioning a patient who in reality is not.

Specificity Specificity indicates how often a non-transitioning patient is actually correctly

classified. Formally it is defined as follows:

Specificity ¼
TN

TNþ FP

Specificity can be considered as a counterpart of the Recall. Higher values of this metric cor-

respond to a classifier able to correctly detect a wider portion of the non-transitioning patients.

This indicator may be biased towards high values by the unbalanced nature of the data.

Results

Visit-Oriented setting

The results obtained by the various classifiers at different times are reported in Table 4 and S1

Table. Overall, Random Forests, SVM and AdaBoost performed interestingly well by leading

to Recall values always higher than 75% with peaks of 100%, which means that none of the SP

transitioning patient was not detected, at the expense of having small values of Precision,

which are never higher than 10%. On the other hand, KNN seems not to be properly able to

generalize its knowledge to new patients. Among the different algorithms, RF performed par-

ticularly well with an average recall value of 88% and a maximum value of 100%.

Considering Specificity and Accuracy, these two metrics are very similar, due to the large

number of non-transitioning patients. Overall, all the models reach high values of both Accu-

racy and Specificity meaning that all the classifiers are able to correctly detect a wide portion of

the non-transitioning patients. It is interesting to compare the results obtained in the two dif-

ferent kinds of datasets (FS and RS), namely when different types of information and amount

of data are considered. First of all, the Precision values obtained with the RS dataset are higher

than those obtained with the FS dataset, meaning that having a high number of visits is more

important than having more features in order to reduce the number of FP (patients incorrectly

classified as passing to the SP phase). If instead, the Recall values are considered, it turns out

that the information brought by Status T1, Status T2 and Oligoclonal Banding are essential to

obtain very high values of Recall for predictions within 180 days, while they are not so influen-

tial for more long-term predictions.

Furthermore analysing the predictions performance when varying the time-window, it is

evident that short-term predictions are more reliable than long term predictions with better

values of both Recall and Precision. This is a rational result considering that for long-term pre-

dictions the amount of uncertainty is higher. The only exception is represented by RS 720

where the overall performance of all models is unexpectedly higher than for shorter-term

predictions.

History oriented setting

The results obtained by the LSTM model for all the 6 datasets considered are reported in

Table 5 and in S2 Table. Overall, LSTM yields Precision values higher than 42.7%, at the
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expense of values of the Recall metric, definitely lower than obtained with the VO approach.

As in the visit-oriented approach, Precision values increase when considering the datasets with

more visits, highlighting how, in order to improve the precision of these models, more data are

needed. It is interesting to underline how, differently from the other models, LSTM perfor-

mance improves when considering predictions over longer time-windows, suggesting that this

approach may be more successful for more distant predictions, which are the most useful from

a clinical point of view.

The low Recall values provided by LSTM models may be due to two different reasons. First

of all, LSTMs are defined by a much more complex model if compared to the visit-oriented

methods and so the learning phase requires a quantity of data which was not available in this

study. Furthermore, LSTM predictions might have been harmed by the specific learning pro-

cedure used. Indeed, due to computational constraints, the LOGO procedure was not imple-

mented but a train-test split was performed, reducing the number of instances available for the

training process. It is tempting to speculate that this model might become more effective if

used with many more and possibly less unbalanced data, in order to properly train these mod-

els and avoid the resource-consuming LOGO procedure.

Table 4. Results of Visit-Oriented models on Feature-saving and Record-saving datasets at different time points.

Feature-saving Record-saving

Model Accuracy Recall Precision Specificity Accuracy Recall Precision Specificity

180 days

SVM 86.4% 94.4% 5.5% 86.4% 87.2% 85.0% 8.6% 87.2%

RF 86.5% 100.0% 5.8% 86.4% 85.1% 90.8% 7.9% 85.0%

AB 86.1% 100.0% 5.6% 86.0% 85.4% 88.9% 7.9% 85.3%

KNN 72.6% 80.6% 2.4% 72.6% 85.6% 81.2% 7.4% 85.7%

360 days

SVM 85.1% 86.5% 4.9% 85.1% 86.6% 80.7% 8.2% 86.7%

RF 87.3% 89.2% 5.9% 87.3% 83.2% 88.4% 7.2% 83.1%

AB 85.5% 83.8% 4.9% 85.5% 83.6% 88.4% 7.3% 83.5%

KNN 71.2% 67.6% 2.0% 71.2% 85.0% 77.3% 7.1% 85.1%

720 days

SVM 84.8% 81.1% 4.8% 84.8% 87.8% 77.3% 9.3% 87.9%

RF 86.2% 78.4% 5.2% 86.3% 86.2% 84.1% 8.9% 86.2%

AB 86.9% 70.3% 4.9% 87.1% 85.0% 84.5% 8.3% 85.1%

KNN 75.1% 64.9% 2.4% 75.2% 85.2% 75.8% 7.6% 85.4%

SVM: Support vector machines; RF: Random Forest; AB: Ada Boost; KNN: K nearest neighbours

https://doi.org/10.1371/journal.pone.0230219.t004

Table 5. Results of History-Oriented setting on Feature-saving and Record-saving datasets at 180, 360 and 720 days.

Feature-saving Record-saving

Days Accuracy Recall Precision Specificity Accuracy Recall Precision Specificity

180 96.1% 44.4% 10.5% 96.6% 98.0% 38.5% 30.8% 98.8%

360 97.0% 40.0% 14.8% 97.6% 97.5% 50.0% 29.5% 98.2%

720 97.1% 60.0% 20.7% 97.5% 98.0% 67.3% 42.7% 98.5%

Results of Long short term memory model

https://doi.org/10.1371/journal.pone.0230219.t005
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Threshold analysis

We next examined how the performance of the various models changes when only predictions

with high certainty are considered. Indeed, for each prediction, the classifier returns a proba-

bility between 0 and 1. If the returned probability is over a certain threshold θ (set by default to

0.5), the classifier assigns the patient to the transitioning class (ŷ ¼ 1), otherwise it assigns the

patient to the non-transitioning class (ŷ ¼ 0). The probability value returned by the model

represents the level of “confidence” of the classifier in assigning a certain patient to a specific

class: values closer to 0 and 1 correspond to more certain predictions returned by the model,

while values closer to 0.5 represent those cases where the model is more uncertain on the out-

put. Since a higher confidence of the models might correspond to better performances, focus-

ing only on those predictions on which the models are more confident might improve the

prognostic performance. In order to do that, we introduced a confidence threshold defined as:

CTi ¼ jpi � 0:5j

which represents the level of confidence with which the model predicts the belonging class of a

patient. In other words, given a record i, the model returns a probability pi for the patient to

pass to the SP phase, and the confidence threshold is given by the distance between the pre-

dicted probability for that sample pi and the uncertainty value 0.5. Therefore, CT will vary

between 0 and 0.5, where 0.5 corresponds to a model 100% sure of its prediction and 0 corre-

sponds to a model completely uncertain about the class of that sample. To make it clearer, sup-

pose a model is highly confident that a patient will pass to the SP phase and returns a

probability of pj = 0.9. The corresponding confidence threshold will be CTj = 0.4. On the other

hand, if the probability returned by the model is of 0.51, CT = 0.01, indicating that the model

is uncertain about that prediction.

In order to study how confidence on predictions influences the performance of the models,

we focused on the the history-oriented approach (LSTM) and the most performing method

for the visit-oriented approach (RF), using the Record-Saving datasets. We studied the perfor-

mance trajectory of the models for different values of the confidence threshold. To be more

specific, fixed a certain CT, we only considered the predictions with a distance from the uncer-

tainty value (0.5) greater or equal to the confidence threshold. All other predictions were dis-

carded. This essentially implies considering only those visits on which the models were

sufficiently confident on the prediction. The performance metrics were then evaluated as

described in the previous sections. This procedure was iterated many times, varying the confi-

dence threshold between 0 and 0.49 and analyzing the performance of the models at each CT
value. Note that for CT = 0, the results are those reported in the previous sections.

Fig 2 represents the main KPIs and the percentage of patients belonging to class 0 and 1 for

different confidence thresholds. Accuracy values are not plotted since they are very similar to

Specificity values and, as already said, do not provide relevant insight into models

performance.

First, the graphs keep track of the fraction of positive and negative samples left in the data-

sets while varying the confidence level. In RF models the percentage of samples related to tran-

sitioning and non-transitioning patients drops at similar rate when increasing CT. Conversely,

for LSTM, the percentage of transitioning patients declines very rapidly as compared with

non-transitioning patients. In other words, this model is able to correctly classify at least 80%

of non-transitioning patients even with CT> 0.45%. It is important to consider that the num-

ber of entries (records or time series) related to transitioning patients declines as confidence

threshold increases. Thus, metrics are evaluated on a decreasing number of predictions, likely

explaining the erratic behaviours of Precision and Recall seen at threshold values approaching
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0.5. In particular, Recall and Precision are 0 when the number of TP is 0 and the metric is ill-

defined. Recall values of RF model are always greater than 0.8, and increase for high confi-

dence thresholds. This behaviour is observed at all time points. For LSTM, on the other hand,

Recall values improve when dealing with longer time-windows, independently of the threshold

chosen. At all time points, Recall values are little affected by CT, although a small increase is

Fig 2. Threshold analysis. The choice of confidence threshold has different effects on the indicated variables. Analysis was performed with Random

Forest and LSTM for Record Preserving datasets.

https://doi.org/10.1371/journal.pone.0230219.g002
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observed at 720 days when the most casual predictions (corresponding to threshold below

0.05) are removed.

Concerning the Precision, the performance of both classifiers improves for higher levels of

confidence. For low thresholds, Precision values are higher for LSTM than for RF, but values

become quite similar when confidence threshold increases. It implies that for high confidence

thresholds, the percentage of patients incorrectly classified as transitioning (FPs) decreases.

Notably, at 720 days, about 50% of the total number of entries is classified with a confidence

threshold of about 0.35 obtaining Precision values above 0.5.

Finally, both models yield high Specificity values for all the threshold levels, touching values

of 100% for very high thresholds. This means that the two models are able to correctly detect

the non-transitioning patients. However, as already said, this result may be due to the fact that

data are unbalanced and the number of non-transitioning patients is far bigger than the num-

ber of transitioning.

Overall, the graphs suggest that RF is a stable and well performing model. Its ability to

detect individuals going to transition to the SP phase (TP) is always above 0.80 and further

increases when predictions with low confidence values are neglected. Increasing the confi-

dence threshold, the number of records incorrectly classified as pertaining to transitioning

patients (FP) is reduced. This partially overcomes the problem of very low Precision values

yielded by all models used for the VO approach. By contrast, the performance of LSTM is

little affected by the values of the confidence threshold. As already mentioned, this behaviour

may be due to the lack of enough data for a proper training phase of these very complex

models.

This last analysis highlights how RFs and LSTMs have different properties and are able to

catch different aspects of the phenomenon under consideration, hence an interesting approach

could be the possibility of combining the predictions returned by the two models in order to

end up with a unique algorithm able to leverage the strengths of each model in a stacking-fash-

ion [51].

Discussion

In this paper we explored different machine learning approaches to obtain predictions on MS

course in single patients, uniquely using real world data, normally available in clinical practice.

Differently from previous works [22, 25, 27] we did not consider in this study imaging data

specifically collected or analyzed for experimental purposes, and we present extensive numeri-

cal results using different ML forecasting models, considering various prediction settings and

time horizons.

The definition of the two datasets (FS and RS) allowed to understand the role of some fea-

tures on the models performance and the importance of the amount of available data for train-

ing the ML models.

The good Recall values obtained at 180 days in the VO setting using the FS dataset, which

contains the results of liquor and MRI exams routinely rated by neuroradiologists show that

considering imaging data makes visit-oriented models capable of unequivocal identification of

patients going to transition to the SP phase within a short delay, as shown by the high/low per-

centage of TP/FN forecasts. However, for predictions farther away in time, the use of RS data-

sets (which do not include liquor and MRI results) improves Recall, suggesting that overall

clinical conditions are good indicators of a patient’s course. The main weak point of the VO

setting is the occurrence of many FP predictions, reflected into low Precision values. Although

this limits the clinical value of this approach, we show that performance can be strongly ame-

liorated by threshold analysis.
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Furthermore, from a technical point of view, the occurrence of FP predictions indicates

that training procedures were adequate to overcome the unbalanced nature of the datasets:

machines did not use “shortcuts” by predicting only “non-transitioning”.

Looking at patients’ history makes long-term predictions better than short-term ones,

strongly arguing in favour of this type of approach to obtain clinically relevant forecasts for a

disease that evolves over many years [52]. In our hands, the HO setting performed worse than

the visit-oriented in terms of Recall (that is, the ability to identify transitioning patients), but

better in terms of Precision, meaning that this method yields far less FP predictions.

It must be noted that in the history-oriented setting we had a very small sample of transi-

tioning patients, and the LOGO training procedure was computationally too demanding. Pos-

sibly, the combination of these two factors has harmed the performance of LSTM model, but

this approach might be more fruitfully used with different endpoints, that give rise to less

unbalanced databases.

Conclusion

In summary, should our models analyze the clinical data of a new patient in RR phase and pre-

dict no transition to SP phase within two years from now, they would be right (as shown by

Specificity indicator) in about 85% of the cases overall, and in almost 100% of the cases with a

confidence threshold above 0.35. If used for support to therapeutic decisions, this means that

there would be a very limited risk to under-treat patients at risk of rapid disease evolution. The

situation is more shadowed for predictions of transition to the SP phase: although almost all

the really transitioning cases would be correctly classified (Recall indicator), at least 50% of the

cases would be FP (Precision indicator), and hence there would be a significant proportion of

over-treated patients.

It must be noted that even the longest time window used in this work (2 years) might be too

short to be really useful in the clinical practice, considering the slow effect of some therapies.

However, we also show that the history-oriented setting is extremely promising for long-term

predictions, provided that suitable data are available for training of LSTM model. Thus, our

results provide clear indications that large and well maintained clinical databases can prof-

itably be used to predict the course of MS in individual patients, inciting physicians to devote

some effort to archive their data in a format compatible with computer analysis. This is a

widely hoped-for goal [30, 31] that preludes to more effective use of the models proposed in

this paper.
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