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Abstract 
 

Through the years, target localization has captured the attention of both academic and industrial worlds, 

thanks to the huge amount of applications which require the knowledge of the position information. 

Several works can be found on this topic, where the target localization has been addressed in different ways, 

depending on the type of target, the specific application and the surrounding scenario. 

The main goal of this thesis is the definition of innovative methodologies able to solve the problem of the 

localization of human targets and small objects in local area environments in any operating conditions. In 

addition to the achievement of important improvements in positioning accuracy, we are also interested in 

performing the localization for the entire observation time where the target stays in the area of interest. 

To achieve this result, in this work we decided to propose the joint use of different positioning techniques, 

based on their fusion in a unified system. The advantage of this fusion lies in the possibility of compensating 

for the intrinsic limitations of each proposed methodology, especially when complementary techniques are 

employed.  

Two different sensors are considered in this work. Both exploit the Wi-Fi transmissions, based on the IEEE 

802.11 Standard, therefore also the same receiver can be employed to receive measurements and information 

about the target present in the area of interest from multiple sensors, without increasing the complexity of the 

receiving system. Specifically, the first candidate to be used is the Passive Bistatic Radar (PBR) that exploits 

the Access Point (AP) as illuminator of opportunity. Due to the possibility to obtain the human target position 

without the necessity for the target to carry a device, this technique can be inserted into the group of the 

“Device-free localization” methodologies. It makes the WiFi-based passive radar attractive for local area 

surveillance and monitoring applications, especially where the targets cannot be assumed to be cooperative, as 

in typical security applications. With reference to the second sensor, the Passive Source Location (PSL) is 

another possible strategy to estimate the target position. In contrast to the PBR, this is a device-based technique 

that uses the device transmissions to perform the localization of the specific target. 

Considering the characteristics of the proposed strategies, it is evident that they present complementary 

aspects. We can take advantage from this complementarity in several ways. Firstly, due to the Time Division 

Multiple Access (TDMA) approach used in the Wi-Fi Standard, devices and AP cannot transmit 

simultaneously, so we can compensate for the lack of signals from one sensor with the measures estimated by 

the other one. Secondly, we can use the device-based strategy when the target is stationary, and the Passive 

Radar cannot estimate its position because of the cancellation stage performed during the processing. On the 

other hand, the Passive Radar is necessary when the target does not carry an active mobile device, or it does 

not want to be localized (surveillance and monitoring activities). Finally, we can discriminate even very closely 

spaced target (if both carry an active mobile device) thanks to the possibility to read the MAC Address written 

into the packets of their devices. 
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The first part of this thesis is dedicated to the characterization of the single sensors, based on the description 

of the measurement extraction and the evaluation of the related positioning techniques. With respect to the 

measurement extraction, the PBR provides the target position through the combination of different sets of 

measures as range/Doppler/Angle of Arrival (AoA). For the PSL, the Time Difference of Arrival (TDoA) and 

the AoA can be exploited for the same purpose. Since the properties of the PBR have been extensively defined 

by our research group in the past, in this work more attention has been dedicated to the PSL description. In 

particular, proper techniques for measurement estimation are reviewed and innovative techniques for TDoA 

estimation of the PSL sensor are proposed, which provide improved performance with respect to existing 

techniques. The accuracies achieved with different positioning techniques exploiting several combinations of 

the estimated measurements are then evaluated. The results show that in short range applications it is desirable 

to use only AoA measurements, if possible. 

After the characterization of the sensors, the localization performance of the two techniques are analyzed 

and compared. This analysis has shown both the effectiveness of the two sensors in target localization and 

their inherent limitations. In particular, we have studied the relationship between data traffic conditions and 

performance, and we have seen that it is strictly linked to the number of data available for the estimation of 

the measures of interest. In addition, the complementarity of the two methodologies has been demonstrated 

through the evaluation on experimental data acquired in appropriate measurement campaigns, in different 

network traffic conditions. In this phase, a tracking stage has not been performed. In order to improve the 

localization performance and carry out the desired sensor fusion, the second part of the thesis has been 

dedicated to the definition of innovative techniques for target tracking which exploit the characteristics of the 

employed sensors. Specifically, a new Sensor Fusion tracking filter is proposed. It uses a modified version of 

the Interacting Multiple Model (IMM) approach, where a Modified Innovation (MI) is introduced, together 

with Data Fusion techniques. In particular, in this strategy the information related to the presence or absence 

of the PBR estimates is used to help the choice between the employed filters, in order to improve the 

localization performance of human targets in the typical “stop & go” motion scenario.  

The performance of the proposed strategy has been evaluated on both simulated and experimental data. The 

performance has shown that the IMM-MI outperforms the other strategies, since it provides the best 

performance in terms of positioning accuracy, target motion recognition capability and percentage of 

acquisition time covered by this strategy. 
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Chapter 1  

Introduction 
 

1.1 Background and State of the Art 

 In the recent years, great effort has been devoted to the localization of human targets and small objects in 

local area environments. The interest on this topic is motivated by the huge amount of possible applications 

that require the knowledge of the target position: 

- for monitoring and surveillance applications in critical areas, such as ports or airports; 

- as support in rescue missions inside buildings (for example in case of fire), where the capability of 

quickly and accurately coordinating the components of rescue teams is a key element for the success 

of the rescue operation, as discussed in [1]; 

- in medical applications focused on the improvement of quality of life for disabled people (for example, 

in [2] an application for blind persons is supposed, while in [3] an extensive review is performed on 

the use of Radio Frequency (RF) sensing for healthcare applications); 

- in the offer of different kind of services (for museums, shops, hospital and universities). 

In outdoor environments, this operation is obtained through the exploitation of satellite signals, using global 

navigation satellite systems as GPS, Glonass or Galileo. As well known, these signals have strong limitations 

indoor and require targets to cooperate in order for them to be detected and localized. For this reason, an 

alternative solution is to employ other RF signals already available, for localization aims. They have a wide 

coverage also in indoor areas and can be used to detect and localize non-cooperative targets. Depending on the 

requirements of the specific application, several waveforms can be exploited as, for example, FM [4]-[6], 

DVB-T [7]-[12] and Wi-Fi signals [13]-[20]. 

Different approaches can be considered to perform localization when exploiting these signals. In particular, 

these strategies can be discriminated based on whether an active device carried by the human target is required 

or not, and on the level of cooperation of the specific target. Obviously, all the classes of localization techniques 

have inherent advantages and drawbacks. A recent comprehensive review of such techniques is presented in 

[21], which compares the relative merits and issues, while a review of the only device-free localization 

strategies is reported in [22]. 

In particular, the expansion of the Wi-Fi networks in urban environments has led to the employment of Wi-

Fi signals in several applications, thanks to the coverage that they offer in both indoor and outdoor 

environments. It is clear that this characteristic makes them especially suitable for short range localization and 

surveillance applications [16], as well as for extracting target characteristics as cross-range profiles, [23]. 
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Based on the aforementioned classification of the localization techniques, a brief description of the main 

strategies for each class is now presented. 

 

Cooperative localization 

When the target voluntarily tries to be localized, we refer to cooperative localization. Several studies can be 

found in the technical literature, related to this case; one of the most used techniques is fingerprinting. It is of 

great interest the exploitation of Wi-Fi signals, when this strategy is used. 

In many cases, the Received Signal Strength (RSS) is measured at different locations of the considered 

environment. The prints obtained in this way are stored into a dataset (offline measurements or ‘calibration 

stage’), and are used as a benchmark to evaluate target position (online measurements or ‘localization stage’). 

This stage is performed applying different strategies, e.g. K-Nearest Neighbor (K-NN), Support Vector 

Machine (SVM), etc. which are the preferred ones in this kind of studies. 

Moreover, fingerprinting is not only defined based on signal strength, but also based on channel impulse 

response, [24]. This strategy leads to better performance, and it is particularly suitable to be applied when 

channel response can be easily inferred.  

In other studies, use of Radio-Frequency Identification (RFID) technology has been proposed. This 

technology is often used in positioning systems where active cooperation from the user that needs to be 

localized can be exploited (as already mentioned in the example of rescue teams coordination, described in 

[1]). One of the main drawbacks of RFID technology is the need of a dedicated infrastructure, thus resulting 

in increased deployment costs. 

All these strategies lead to good localization results (mainly with the application of advanced probabilistic 

methods), if particular conditions occur. Specifically, due to the need of active cooperation from the target, 

these strategies cannot be applied whether the object/person to be localized does not carry a mobile device or 

the Wi-Fi connection is disables. Moreover, obtainable accuracy strongly depends on actual operating 

conditions. 

 

Partially cooperative localization 

When the target provides involuntary contribution to positioning, we refer to partially cooperative 

localization. The target can be defined as system user, since it carries an active device and its transmissions 

are exploited. It is a non-cooperative localization, but the target, by carrying a device, provides a contribution 

to the definition of its position. We refer, in this case, to passive positioning: user does nothing to be voluntarily 

located, but localization occurs just as a consequence of carrying an emitting device. Even in this case Wi-Fi 

signals can be exploited, as the communications between Access Point (AP) and device when they are 

connected. 

Specifically, detection of packets transmitted from the target (object/person) under exam is performed 

through multiple receiving antennas (typically 3 of 4, depending on the desired measurements and on the 
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capabilities provided by the receiving platform). Data collected by the antennas are processed by means of 

proper techniques to obtain an estimate of user position. 

The techniques mainly used are Time of Arrival (ToA) estimation, Angle of Arrival (AoA) estimation and 

Time Difference of Arrival (TDoA) estimation. 

These techniques allow the determination of the position of user carrying the mobile device; specifically, 

estimation is more reliable the more the target is stationary, since in this case an increased number of packets 

is available to perform the estimation. It would therefore be interesting evaluating the relationship between 

estimation reliability and number of available packets. 

They are potentially characterized by low accuracy in position estimation, mainly in indoor scenarios, due 

to the difficulty in defining the propagation model for signals in complex environments (multipath, etc.). 

Nevertheless, different studies have been carried out aiming at removing this kind of problem, in most cases 

by jointly using AoA and ToA estimations, [25]. 

Main contributions in this area are related to scenarios with user voluntarily cooperating to be located, so 

great effort is requested with respect to the possibility to exploit only the communications occurring during 

usual Wi-Fi connection activities. 

 

Non-cooperative localization 

Finally, if there is no collaboration from the target, neither voluntary nor involuntary, and it is detected only 

due to its interaction with signals present in the environment, we refer to non-cooperative localization. 

In this framework, interesting studies have been carried out by University of Utah, by exploiting Radio 

Tomographic Imaging (RTI) technique to localize a person not carrying a mobile device (this is the reason 

why this methodology is usually referred in technical literature as ‘device-free localization’). As described in 

[26], RTI is based on the principles of two different systems for the realization of images: radar systems and 

computed tomography, used for medical applications. 

Another method to perform non-cooperative localization foresees the use of passive radars exploiting Wi-

Fi signals as waveforms of opportunity. This topic has been widely addressed by our research group in the 

DIET Department at Sapienza University of Rome. The developed WiFi-based passive radar demonstrator 

performs the localization and tracking of moving targets, there including vehicles and human targets. Some 

interesting studies in this field are described in [14]-[17],[23] and [27]. 

 

1.2 Research challenges and selected approach 

The localization of human targets and small objects in local area environments is one of the most attractive 

issues of the last years. As explained before, each strategy is characterized by inherent advantages and 

drawbacks. In particular, in some cases the main problem is the impossibility for the single technique to detect 

and localize a target in particular conditions. To face this problem, we decided to propose the joint use of 

different positioning techniques. 
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In addition to the achievement of important improvements in positioning accuracy, we are also interested in 

performing the localization for the entire observation time where the target stays in the area of interest. 

To do that, two different techniques based on Wi-Fi signals have been considered in this work: firstly, the 

Passive Bistatic Radar (PBR) that exploits the AP as illuminator of opportunity is an interesting solution, 

especially for surveillance applications in local area environments, because it provides the position of non-

cooperative targets, which do not carry an active device (the so called “device-free localization”), [17]. 

Secondly, supposing that the target has the possibility to transmit Wi-Fi signals (use of mobile devices for a 

human target), the Passive Source Location (PSL) that in contrast uses the device transmissions to define the 

position of the target, is another possible strategy to reach the same goal, [21]. Their concept is depicted in 

Figure 1.1. 

 
As well known, the passive radar is very effective in detecting moving targets by using clutter cancellers. 

The extraction of stationary targets echoes is generally more complex and less effective, due to the background 

echoes cancellation stage performed during the processing. Moreover, due to the frequency bandwidth of the 

Wi-Fi waveforms, spanning from 11 to 20 MHz, the range resolution is not better than a few meters, which 

makes it difficult to discriminate closely spaced persons. In contrast, good Doppler frequency resolution is 

available, which provides good localization performance when the target is well separated in Doppler from the 

other targets and even allows to obtain cross-range profiles, [23]. 

As explained before, the use of Wi-Fi signals allows also exploiting the waveforms emitted directly by the 

device to localize them, [21]. 

The autonomous RF emissions of devices that attempt to connect to the Wi-Fi network allow us a different 

way to localize the human targets. As mentioned also in [21], to reach this purpose, many techniques have 

been investigated and applied. Largely used are position solutions based on the estimation of AoA, ToA and 

TDoA. As apparent, this only allows localizing human targets carrying an active Wi-Fi device. In addition, it 

could be potentially inaccurate for moving targets. On the other hand, it is an interesting solution for stationary 

targets localization and it allows the unambiguous association of the transmission to a specific target, based on 

the device MAC address, so that even very closely spaced persons can be discriminated. 

 

Figure 1.1. Sketch of WiFi-based PBR and PSL 

approaches. 

 

 

Transmitted 
signal

Device 
transmission

Received 
echo

TX (AP)
RX

RX



12 

 

Our purpose is to compare the relative performance of this two localization techniques based on the IEEE 

802.11 Standard, [28], and to verify their complementarity, aiming at their joint exploitation in a unified 

system, which exploits at the best the features of both the employed sensors. 

Through the years, great interest is also devoted to the target tracking. This topic has still several open issues. 

In particular, one of the most interesting problems is the tracking of move-stop-move targets. In fact, despite 

the low complexity of the single motions, its management is very hard in practical applications. First of all, 

the detection of stationary targets is still a problem when the passive radar is exploited. Secondly, the similarity 

between the two types of motion could generate important ambiguities when particular techniques are 

employed. 

The aforementioned problems increase when the examined target frequently and rapidly changes its motion 

status. This is the case, for example, of the smallest targets which can be found in local area environments, as 

persons or drones. In this case, the Kalman Filter (KF) and the classical Interacting Multiple Model (IMM) are 

not effective to reach this purpose. 

In order to find a solution to this problem, in this thesis two novelties in common tracking strategies have 

been introduced:  

1) Data Fusion techniques are applied in order to exploit the advantages of the two employed sensors and 

extend the time in which the examined target is localized. 

2) A modified version of the IMM, that we called Interacting Multiple Model - Modified Innovation 

(IMM-MI) is devised with the purpose of compensating for the limitation of the existing techniques. 

Even this time the knowledge of the characteristics of the single sensors is exploited, in order to help 

the decision on the motion model that has to be used. 

The research approach followed in this thesis to obtain these results is represented in Figure 1.2. 

 
Figure 1.2. Research approach followed in this thesis 
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The first step is the characterization of the two sensors. In this phase, we focused on the analysis of the 

measurements that the specific sensor can exploit to estimate the target position and the derivation of the 

related positioning techniques. In particular, since the PBR has been extensively studied by our research group, 

greater attention was devoted to the characterization of the device-based sensor, for which innovative 

techniques for the estimation of the TDoA are also presented. 

After the sensor descriptions, their performance is analyzed and compared. The inherent features of the two 

strategies and the results obtained from their comparison on experimental data have shown an interesting 

complementarity between them. This result opens the way to the development of appropriate sensor fusion 

techniques, which characterizes the final part of this thesis. The proposed strategy is then evaluated on both 

simulated and experimental data on a move-stop-move target, and its performance is compared with existing 

techniques (KF and IMM). Even the employment of sensor fusion techniques on classical tracker is tested. The 

results show that the use of more sensors provide better performance with respect to the use of single sensor 

versions. However, some problems still appear when the target changes its motion. The IMM-MI is a possible 

solution to these problems. In fact, it outperforms the other strategies, since it provides the best performance 

in terms of positioning accuracy, target motion recognition capability and percentage of acquisition time 

covered by this strategy. 

 

1.3 Outline of the Thesis 

With reference to the scheme presented in Figure 1.2 this thesis has been organized as follows. 

Chapter 2. The two PBR and PSL sensors and the related localization strategies are described in detail. For 

each sensor, the analysis has been divided in three main parts. Firstly, different techniques for the measurement 

extraction have been studied. In particular, a deepened analysis has been carried out for the TDoA estimation, 

for which innovative techniques are also proposed. Secondly, based on the measures studied in the first part of 

this Chapter, the relative positioning strategies are derived and compared in terms of localization accuracies. 

Finally, the processing schemes of the two sensors are presented and the main blocks are described. 

Since the PBR has been extensively analyzed by our research group in the past, in Chapter 2 the main 

features of the passive radar are briefly summarized, giving more importance to the enhancement with respect 

to the previous system, while larger space has been dedicated to the PSL description. 

Chapter 3. As the deepened knowledge of the two sensors is now available, the performance of the PBR 

and PSL sensors in terms of localization accuracy is faced in this Chapter. In particular, the relationship 

between data traffic conditions and performance for the two strategies, and their performance comparison are 

evaluated on experimental data. Specifically, the comparison of the two localization strategies has been 

performed on two different data sets characterized by different network conditions. 
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Chapter 4. After the target localization, the tracking stage can be applied in order to improve the positioning 

performance. Therefore, the main existing tracking algorithms, namely the KF and the IMM, are briefly 

presented, and the relative advantages and limitations are recalled. 

Chapter 5. A new methodology for target tracking is proposed, which exploits the inherent differences 

between the PSL and the PBR sensors, in order to develop a consistent and effective method for small target 

localization and tracking, especially for move-stop-move targets. The proposed strategy uses a modified 

version of the IMM approach together with Data Fusion techniques, that take into account the differences 

between the measurement’s accuracies of the employed sensors. In the modified version of the IMM method, 

the information related to the presence or absence of the PBR estimates is used to help the choice between the 

employed filters, through the modification of the Innovation. 

Chapter 6. The proposed strategy is then compared with the KF and the IMM methods over a simulated 

target. Specifically, the stop & go motion has been simulated, aiming at showing the capability of the proposed 

strategy to follow the target behavior, thanks to the possibility to exploit the knowledge of the characteristic 

of the employed sensors. In this analysis, for the KF and the IMM, both the single sensor and the sensor fusion 

versions are considered, in order to highlight the advantages of the joint use of two different sensors. Two 

analysis have been performed: 1) the evaluation of the Root Mean Square Error (RMSE) as a function of the 

simulation time, and 2) the evaluation of the RMSE as a function of the Detection Probability for the Passive 

Radar. 

Chapter 7. The evaluation of the performance for the aforementioned techniques has finally been carried 

out on experimental data, through the design of appropriate acquisition campaigns. 

Chapter 8. In the last Chapter the conclusions are drawn. 

  



15 

 

 

Chapter 2  

Sensors description 
 

Before starting with the detailed description of the two proposed sensors, it is convenient to briefly describe 

the main characteristics of the employed Wi-Fi signals. 

 

2.1 IEEE 802.11 Standard and WiFi packets features 

The IEEE 802.11 Standard, [28], defines the main characteristics of Wireless Local Area Networks 

(WLANs). It presents one Medium Access Control (MAC) and several Physical (PHY) layer specifications. 

In the last years, different versions of this standard have been developed. In particular, the IEEE 802.11a 

Standard uses the 5 GHz band, while 802.11b/g/n operate in the 2.4 GHz band. Different data rates can be 

used, thanks to the employment of different modulation and coding schemes. 

In the 2.4 GHz band the spectrum is divided into 14 channels, spaced 5 MHz each other. Due to the Wi-Fi 

bandwidth, spanning from 11 to 20 MHz (or higher values in some cases), depending on the specific Standard 

version or modulation type, it is evident that the Wi-Fi channels are partially overlapped and so it is possible 

to have interference among transmissions occurred in consecutive channels. Moreover, multiple users can 

share the same channel, therefore they have to alternate the medium occupation (TDMA approach) in order to 

avoid contemporary transmissions. To reduce the risk of collisions, the Carrier Sense Multiple Access with 

Collision Avoidance (CDMA/CA) access mechanism is adopted. 

As well known, the Wi-Fi communications use the packet switching approach to exchange information. The 

function of a specific packet is defined by the type/subtype field. There are three different packet types 

(management, control and data), and several subtypes for each of them, e.g. beacon, association request, 

authentication, etc.  

To establish the connection between APs and devices, which is the primary operation before any 

communication activity, management packets are transmitted. There are two ways to perform the searching of 

stations in a given area: the passive and the active scanning techniques. In the first case, the AP periodically 

sends beacons in broadcast mode to announce its presence. The transmission rate and the operating channel 

are set previously. The latter foresee that a mobile station sends probe requests in broadcast mode on a single 

channel and waits for answers from the APs in proximity. If it does not receive any probe response, it switches 

to another channel and it repeats the same operation.  

After that, the mobile station sends the authentication frame to the desired AP, after the reception of the AP 

answer, it transmits the association request and, when the association stage is completed, the data transfer 
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between AP and device can start. Even very short communications are therefore characterized by the exchange 

of many packets of different types, which have different features and frame formats. It is also important to 

notice that the packet length varies according to its subtype. This is related to the differences among the frame 

formats of different packets. In addition, it also depends on the dimension of the payload in data packets. 

These considerations confirm that the exploitation of the huge amount of Wi-Fi signals exchanged during 

common connection or communication activities represents an attractive solution for localization applications. 

 

2.2 Passive Bistatic Radar (PBR) 

The Passive Radar is one of the most attractive solution for the localization of different types of target. 

It works as a common radar, but its main feature is the bistatic form. In fact, the Passive Radar exploits the 

signals emitted by transmitters of opportunity, namely it does not use its own waveform, but pre-existent 

transmissions devised for other communication purposes. This means that receiver and transmitter are located 

in different places.  

Among the advantages of this technique, we can mention the low costs of realization and maintenance (due 

to the lack of the transmitter), the possibility to avoid electromagnetic disturbances, the low impact on the 

environment, and so on. On the other hand, the impossibility to properly design and control the transmitted 

waveform makes the processing much more complicated (reference reconstruction, etc.) and the performance 

can decrease if proper techniques are not employed. 

In particular, as explained in the Introduction, for short-range applications Wi-Fi signals are particularly 

suitable, thanks to the coverage that they have reached in recent years in local area environments. For this 

reason, in this thesis we focus on this typology of signals. The specific transmitter of opportunity is the Access 

Point, whose signals emitted for communication purposes in this case are used for the localization of human 

targets and small objects. As explained above, the Wi-Fi Standard established that the information is not 

transmitted with a continuous wave, but it is divided in packets. This means that a pulsed shape characterizes 

the transmissions exploited by the PBR. Following this consideration, in this work the terms pulse and packet 

are used as synonyms. In particular, the specific packets (beacons) that the AP periodically sends in broadcast 

mode to announce its presence in a specific area, represent an interesting choice for the design of the described 

passive radar: the possibility to exploit a constant Pulse Repetition Time (PRT), due to the definition of a 

constant Beacon Interval (BI), which is defined as the time spacing between consecutive beacons, encourages 

the use of these signals. Typical beacon transmissions are shown in Figure 2.1. 
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In the next sections, the main parameters measurable by the Passive Radar are presented together with their 

combination to perform the positioning in the XY-plane. 

 

2.2.1 Measurement extraction 

The PBR sensor can provide different measurements. Each measure is estimated on the specific target 

detection, namely after the applications of all the operations summarized in the processing scheme that will be 

described in detail in Section 2.2.3. 

A single surveillance antenna can estimate both the bistatic range and the bistatic Doppler frequency (which 

is directly connected to the bistatic velocity) of a target. With a couple of closely spaced antennas, it is possible 

to estimate even the Angle of Arrival (AoA) of the received target echo. A sketch of the considered geometry 

with the relevant parameters in shown in Figure 2.2, where the line defined by the AoA, and the ellipse defined 

by the bistatic range are displayed. 

 

 

Figure 2.1. Example of a sequence of Wi-Fi packets.  

Figure 2.2. Sketch of the considered geometry with the relevant parameters.  
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Specifically, the bistatic velocity of the target is obtained from the Doppler frequency, 𝑓𝐷, measured on the 

received target echo. As it is well known, the relationship between Doppler frequency and velocity is the 

following 

where 𝜆 is the wavelength related to the Wi-Fi channel where the transmitter, in our case the Access Point, is 

transmitting. 

The bistatic range is defined as the sum of two contributions: i) the distance between transmitter (AP) and 

target and ii) the distance between target and receiver 

where 𝑅𝑇𝑋,𝑡𝑎𝑟𝑔𝑒𝑡 and 𝑅𝑡𝑎𝑟𝑔𝑒𝑡,𝑅𝑋 are the two contributions described above. 

Therefore, we obtain 

where (𝑥𝑇𝑋, 𝑦𝑇𝑋) are the coordinates of the transmitter, (𝑥𝑅𝑋, 𝑦𝑅𝑋) are the coordinates of the receiver, while 

(𝑥𝑢, 𝑦𝑢) are the coordinates of the target, which have to be estimated. 

In particular, the bistatic range is directly connected to time of arrival, 𝜏, through the following relation 

where 𝑐 is the speed of light. 

Combining the equations (2.3) and (2.4), we obtain 

As it is clear from (2.5), in this way we have only one equation in two unknowns (𝑥𝑢 and 𝑦𝑢). 

For the localization in the XY-plane, it is therefore necessary to add a further equation that is provided by 

the employment of an additional receiver. 

As mentioned above, if the second receiver is very close to the first one, it is possible to estimate also the 

AoA, 𝜃. As shown in Figure 2.3, this angle is linked to the phase difference between the signals received by 

the two surveillance antennas, 𝛥𝜑̂, through the relation  

where 𝜆 represents the wavelength related to the Wi-Fi channel on which the device is transmitting, while 𝑑 is 

the distance between the antenna elements, as defined above. 

𝑣𝑏𝑖𝑠 = 𝑓𝐷 · 𝜆 (2.1) 

𝑅𝑏𝑖𝑠 = 𝑅𝑇𝑋,𝑡𝑎𝑟𝑔𝑒𝑡 + 𝑅𝑡𝑎𝑟𝑔𝑒𝑡,𝑅𝑋 (2.2) 

𝑅𝑏𝑖𝑠 = √(x𝑇𝑋 − xu)
2 + (y𝑇𝑋 − yu)

2 +√(x𝑅𝑋 − xu)
2 + (y𝑅𝑋 − yu)

2 (2.3) 

𝑅𝑏𝑖𝑠 = 𝑐 · 𝜏 (2.4) 

√(x𝑇𝑋 − xu)
2 + (y𝑇𝑋 − yu)

2 +√(x𝑅𝑋 − xu)
2 + (y𝑅𝑋 − yu)

2 = 𝑐 · 𝜏 (2.5) 

𝛥𝜑̂ =
2𝜋𝑑

𝜆
sin𝜃 (2.6) 
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From (2.6), it can be easily derived  

All parameters in the equation (2.7) are known, except for the phase difference which, instead, has to be 

estimated from the received target echoes. In this case, the following expression applies 

where 𝑥1 and 𝑥2 are the samples in the bi-dimensional Cross-Correlation Functions (2D-CCF) corresponding 

to the location of the specific target detection, for the two receivers exploited for the angle estimation. 

 

2.2.2 Positioning techniques 

After the definition of the measures that can be used for the PBR sensor, it is important to have an idea of the 

possible strategies to obtain the target localization in the XY plane. 

The positioning can be performed in different ways, also depending on the number of receiving nodes 

available and the number of antennas contained in each node. 

As explained in the previous section, for the Passive Bistatic Radar, the bistatic range and the angle of arrival 

can be exploited for the target localization. 

The considered combinations of bistatic range and AoA for target localization are summarized in Table 1. 

 

𝜃 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝜆 ⋅ 𝛥𝜑̂

2𝜋𝑑
) (2.7) 

𝛥𝜑̂ = arg⁡ (
𝑥2
𝑥1
) (2.8) 

Figure 2.3. Direction of Arrival estimation. 
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Table 1. Measurement combinations for target localization with the PBR sensor. 

Number of nodes PBR sensor 

1 

Receiving Node 

(2 Antennas) 

1 Range + 1 AoA 

2 

Receiving Nodes 

(max 4 Antennas) 

2 Ranges 

1 AoA + 2 Ranges 

 

In this table, when two measures of angle are used, four surveillance antennas are employed to acquire the 

echoes scattered by the target. 

The positioning techniques for the PBR sensor are extensively discussed in [17]. In particular, the treatment 

is divided into two blocks: 

1) The target localization using the minimum number of measures. 

2) The target localization using multiple measurements. 

The following combinations were analyzed for the first case. 

A) Two bistatic range measurements provided by two receiving nodes after the detection stage. 

B) Two bistatic range measurements obtained from two receiving nodes after a range/Doppler tracking 

stage. 

C) A range measurement and an AoA measurement provided by a single receiving node. 

Instead, for the second case, two bistatic range measurements and one AoA measurement estimated by two 

nodes were exploited. Each of the three measurements defined a specific equation where the unknowns were 

the coordinates of the target in the XY-plane, i.e. (𝑥𝑢, 𝑦𝑢). This means that the system was overdetermined, 

therefore the Least Square (LS) solution and the Maximum Likelihood (ML) solution were used for the 2D 

localization of the target. 

In the following, we briefly summarize the main results reported in [17], where this study has been extensively 

discussed. 

The system of equations when two measurements of range and one of AoA are exploited is the following 

where (𝑥𝑇𝑋, 𝑦𝑇𝑋) are the coordinates of the transmitter, (𝑥𝑅𝑋, 𝑦𝑅𝑋) are the coordinates of the receiver, (𝑥𝑢, 𝑦𝑢) 

are the coordinates of the target, which have to be estimated, 𝑅̂𝑏𝑖𝑠1 and 𝑅̂𝑏𝑖𝑠2 are the bistatic ranges measured 

{
  
 

  
 𝑅̂𝑏𝑖𝑠1 = √(x𝑇𝑋 − xu)

2 + (y𝑇𝑋 − yu)
2 +√(x𝑅𝑋1 − xu)

2
+ (y𝑅𝑋1 − yu)

2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑅̂𝑏𝑖𝑠2 = √(x𝑇𝑋 − xu)
2 + (y𝑇𝑋 − yu)

2 +√(x𝑅𝑋2 − xu)
2
+ (y𝑅𝑋2 − yu)

2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝜃 = tan−1 (
xu
yu
)

 (2.9) 
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by the two nodes, while 𝜃 is the angle of arrival estimated by the receiver containing two closely spaced 

antennas. 

The LS solution of the system in (2.9) is  

where 𝐮 is the vector containing the target coordinates, 𝐮0 is the target tentative position used for the first-

order Taylor series approximation, 𝐇 is the matrix of the direction cosines, 𝐦 is the representation with the 

matrix notation of the known terms 𝑅̂𝑏𝑖𝑠1, 𝑅̂𝑏𝑖𝑠2 and 𝜃, namely 

and 𝐦0 is its expression calculated in 𝐮0. 

The corresponding positioning error over the XY-plane is given by 

where 𝚺𝐌 indicates the covariance matrix of the measurement errors defined as 

and 𝜎𝑅1
2 , 𝜎𝑅2

2  and 𝜎𝜃
2 are the variances of the errors on 𝑅𝑏𝑖𝑠1, 𝑅𝑏𝑖𝑠2 and⁡𝜃, respectively. 

For the ML solution, the target position can be expressed as 

The results reported in [17] have shown that the ML produced better results with respect to LS approach, 

since the ML provides the possibility to weigh the measurements according to their accuracy, therefore it relies 

mainly on the angular information. 

The comparison of all the methodologies has shown that the localization can be performed by using only 

range measurements, but before the localization a tracking stage in the bistatic range/Doppler plane has to be 

applied. In addition, it has been demonstrated that the use of the angular information provides an improvement 

in performance. 

According to the aforementioned results, in the next analysis we will use one bistatic range measurement and 

one AoA measurement to perform the target localization in the XY-plane. This choice allows i) increasing the 

achievable positioning accuracy with respect to the use of only range measurements, thanks to the exploitation 

of an additional measurement of AoA, and ii) reducing the processing time avoiding the employment of iterative 

methods. 

 

𝐮 = (𝐇T𝐇)
−1
𝐇T(𝐦−𝐦0) + 𝐮0 (2.10) 

𝐦 = [𝑅̂𝑏𝑖𝑠1 𝑅̂𝑏𝑖𝑠2 𝜃]
𝑇

 (2.11) 

𝚺𝒖
𝐿𝑆 = (𝐇T𝐇)−1𝐇T𝚺𝐌H(H

TH)−1 (2.12) 

𝚺𝑴 = [

𝜎𝑅1
2 0 0

0 𝜎𝑅2
2 0

0 0 𝜎𝜃
2

] (2.13) 

𝐮 = (𝐇T𝚺𝐌
⁡−1𝐇)

−1
𝐇T𝚺𝐌

⁡−1(𝐦−𝐦0) + 𝐮0 (2.14) 
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2.2.3 Processing scheme 

The passive radar demonstrator developed at Sapienza University of Rome ([16]-[17]) has been applied. The 

generic processing scheme is sketched in Figure 2.4. 

 

After the acquisition of the Wi-Fi signals through the available surveillance antennas, the first step is the 

packet extraction and their subsequent identification based on the source MAC address written in each packet. 

In this way the signals emitted by the AP can be discriminated and used as transmissions of opportunity for the 

Passive Radar. 

The processing scheme presented in Figure 2.4 is the most generic representation when a quad-channels 

receiver is employed. However, a basic distinction can be made with respect to the number of channels actually 

dedicated to the acquisition of surveillance signals. 

In particular, we are interested in considering two different situations, namely 

1) The exploitation of the minimum number of receiving channels; 

2) The exploitation of all the four receiving channels. 

With reference to the first point, we can exploit three receiving channels for the acquisition of the signals of 

interest. In particular, two channels are occupied by the two surveillance antennas, while the third one can be 

dedicated to the acquisition of a clean copy of the reference signal, directly extracted by the Access Point. This 

choice provides the advantage to know exactly the signals emitted by the transmitter of opportunity, producing 

an improvement in performance. For this reason, the Reference reconstruction block in Figure 2.4 can be 

discarded and the subsequent operation can be performed exploiting the real reference signal. 

For the second case, all the receiving channels are connected to the surveillance antennas. This provides on 

one hand the possibility to exploit more information, through the estimation of additional measurements (for 

example two AoA measurements) but, on the other hand, it disables the reference signal acquisition. This means 

Figure 2.4. Processing scheme of the Passive Bistatic Radar exploiting four receiving channels and the reference reconstruction. 
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that such signal must be reconstructed with further post-processing operations, since this is necessary to perform 

the target localization with the passive radar system. 

After these preliminary steps, the processing continues with the evaluation of the 2D-CCF, obtained by cross-

correlating the surveillance signals with the reference signal (real or reconstructed) on a pulse by pulse basis. 

Thereafter, the obtained results are coherently integrated over a set of consecutive pulses. This requires to be 

repeated for all Doppler frequencies of interest, thus providing the 2D output as a function of both bistatic range 

and bistatic Doppler frequency. 

As shown in [29], the Ambiguity Function (AF) of the Wi-Fi signals is characterized by high sidelobes in 

both range and Doppler dimensions. Therefore, proper techniques for the Range and Doppler sidelobes control 

are applied. In particular, the knowledge of the modulation of the beacons periodically transmitted by the AP 

(DSSS) allowed to devise suitable weighting networks. For the range sidelobes control, the two weighting 

networks proposed in [30] are used. The first one is called Barker Weighting Network (BWN) and is necessary 

to reduce the sidelobes within time delays of 1μs that are due to the 11-chip Barker code which characterized 

this signal. The second one is used to control the sidelobes due to the cyclical repetition of the Barker code. The 

doppler sidelobes reduction has been devised in [31] and uses well-known linear programming algorithms. 

The processing scheme includes the clutter/multipath cancellation stage for the disturbance removal. In 

particular, the Sliding Extensive Cancellation Algorithm (ECA-S) is used, [32].  

After that, the range/Doppler maps are evaluated and the CFAR threshold is applied; when the two-out-of-

two criterion is exploited, target detection is declared only for the targets that exceed the threshold on both the 

receiving channels. Thereafter, the tracking of the detected targets is performed on the Range/Doppler plane. 

As demonstrated in [17], this tracking stage increases the positioning accuracy when the localization in the XY-

plane is performed.  

For the plots of the selected tracks, both the filtered bistatic range and the angle of arrival are estimated. 

 

2.3 Passive Source Location (PSL) 

The PSL sensor can estimate the target position through the combination of Time Difference of Arrival 

(TDoA) and AoA measurements. Specifically, the localization can be performed by exploiting only AoA 

measurements, only TDoA measurements or their combination. In Figure 2.5, a sketch of the above-mentioned 

measurements is shown with reference to a typical geometry with two receiving nodes. In the case shown in 

Figure 2.5(a), only three antennas are necessary to perform the target localization in the XY-plane, while when 

two measurements of AoA are considered, each node needs at least two antennas, as displayed in Figure 2.5(b). 
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2.3.1 Measurement extraction 

2.3.1.1 Techniques for Time Difference of Arrival (TDoA) estimation 

The TDoA between two signals received by two different surveillance antennas provides a measurement 

related to the target position. In particular, it defines the hyperbola on which the target is located. 

As mentioned above, to achieve a more accurate localization of a target, it is necessary to choose 

conveniently the technique for TDoA estimation that yields better performance in terms of positioning 

accuracy and processing time. To this purpose, different strategies have been investigated.  

Before starting to describe the approach followed for this study and the proposed techniques, it is necessary 

to introduce the main strategies that can be applied when the TDoA measure has to be estimated. There are 

two ways to define the TDoA, through the exploitation of two separated antennas: 

• By neglecting the typology of the signal; 

• By exploiting the a priori knowledge of the signal available, namely its modulation format (we will 

use the Wi-Fi emissions of the target (mobile device or drone), that can be modulated in different ways 

defined into the IEEE 802.11 standard, [28]). 
 

In the first case, we would use the data received by two antennas, made available to a “Master” sensor (e.g. 

‘RX2/3’ node in Figure 2.5(a)) that will be able to realize the operations necessary for the TDoA estimation 

on the two received signals. As apparent, this implies the need to transfer data at the original data rate, from a 

sensor (e.g. ‘RX1’ node in Figure 2.5(a)) to the “Master” sensor, therefore a dedicated infrastructure must be 

realized. 

In contrast, in the second case, the a priori knowledge of the modulation format of the received signal allows 

the exploitation of its known parts (usually the preamble) for the comparison of the signal received by the 

 

(a) (b) 

Figure 2.5. Typical geometry with two receiving nodes: AoA + TDoA (a), AoA + AoA (b). 
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antenna and a clean copy of this known portion of signal, pre-recorded in the receiving nodes. In this way, 

each receiving node estimates the delay of the signal in input with respect to the reference one (Time of Arrival) 

and then transmits only the estimated value, and the difference of these values (TDoA) can be defined later. 

As mentioned above, both these strategies have inherent advantages and drawbacks. Firstly, the second 

approach is interesting because it provides the possibility to avoid the transfer of the entire signal to obtain the 

estimation of the measure of interest; in addition, the reduction of the used packets dimensions (limitation to a 

shorter portion of the signal containing the preamble) allows to reduce the elaboration time but, on the other 

hand, it could introduce a deterioration of the estimation accuracy, due to the exploitation of less samples. 

However, this strategy needs additional pre-processing operations, which provide the information about the 

typology of the received signal, in order to compare it with the correct preamble associated to that specific 

standard. 

In this first part of the study, we decided to totally free ourselves from the necessity to know the 

characteristics of the received signals (if we exclude the information of the bandwidth and the carrier 

frequency), and so we examine in depth the first strategy, but it is important to highlight that the same 

techniques can be extended also to the other case. 

In particular, the analysis has been performed on real data, namely signals actually transmitted by a Wi-Fi 

transmitter, but in favorable conditions, that is: 

• The estimation is performed on the Reference signal, namely the packets directly acquired from the 

Access Point (AP), therefore the signal is clean (high Signal-to-Noise Ratio, SNR). 

• A fixed length (1500 samples) is considered for the employed packets. 

• We deliberately inject white Gaussian noise to the Reference signal to degrade the SNR, in order to 

emulate the signal received by the antennas.  

• In order to simulate the signal received by the second surveillance antenna, the Reference signal is 

duplicated and additive noise is injected even to it; a delay of a fraction of sample is generated and 

applied to this Reference copy, so that a cleaner performance evaluation can be obtained.  

• It is important to understand that the noise realizations applied to the two “surveillance” signals are 

independent one another and they are generated with respect to a specific noise power, defined by the 

desired SNR. In particular, we analyze 9 different values of SNR (from -5 dBs to 35 dBs, with steps 

of 5 dBs). 

Different strategies have been proposed in literature, [33]-[40]. In the following Sections, the considered 

techniques for TDoA estimation are described. The basic idea is briefly explained and the principal formulas 

are derived. In addition, we present the evaluation of the performance in terms of accuracy. The whole 

discussion is faced taking also into account the possibility to reduce the elaboration time. 
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2.3.1.1.1 Cross-Correlation and Oversampling Method (CCF-OVS) 

The first technique that we analyze exploits the simple cross-correlation between the signals of which we 

want to evaluate the time difference of arrival. Without further modifications, this strategy allows to estimate 

the TDoA with a resolution defined by the sampling time, and so fractional delay cannot be estimated. To do 

that, it is therefore necessary to oversample the curve obtained through the cross-correlation operation, by 

using an oversampling factor that allows to reach the desired resolution. 

The main steps of this method are the following: 

1) Calculation of the Cross-Correlation (over single packets) between the signals received by the two 

antennas, that is 

𝑅𝑠1𝑠2(𝜏) =
1

𝑁
∑𝑠1(𝑘𝑇) ∙ 𝑠2(𝑘𝑇 + 𝜏)

𝑁

𝑘=1

 (2.15) 

where T represents the sampling time, whereas 𝑠1 and 𝑠2 are the signals received by the two antennas. 

2) Coarse estimation of the Cross-Correlation peak, through the following expression 

3) Oversampling of a small portion of this correlation (10 samples) around its peak. 

4) Determination of the time difference of arrival after oversampling (fine estimation), applying again 

the equation (2.16) on the new curve. 

In Figure 2.6, the performance of the Cross-Correlation and Oversampling (CCF-OVS) method in terms of 

accuracy has been shown. In particular, we reported the Root Mean Square Error (RMSE) on the distance 

resulting from the TDoA estimation with respect to the Signal-to-Noise Ratio (SNR), for different 

oversampling factors. 

For each oversampling factor, we have considered two different relative delays between the signals received 

by the surveillance antennas: the best case (solid line in the figure), when the delay corresponds to the new 

sample after oversampling (in fact, in this case, there are not errors due to the available resolution), and the 

worst case (indicated with stars in the same plot), that is when the delay is exactly in the mid-point of two 

consecutive samples of the signals (in this second case, the CCF-OVS method estimates a value of TDoA that 

corresponds to one of the two adjacent samples, defining an error equal to half sample of the oversampled 

signal). This behavior is evident in Figure 2.6 (where Q represents the oversampling factor, whereas Delay 

indicates the actual delay in samples between the two signals) and specifically by observing the limit value 

reached in the cases [Q=1, Delay=1/2] and [Q=2, Delay=1/4], that is exactly the distance related to half sample 

and 1/4 of sample, respectively, regardless the SNR. On the other hand, for the best cases (solid lines) the 

errors decrease rapidly to zero, even with low values of SNR. 

𝛥𝜏̂ = argmax
𝛥𝜏

 {𝑅𝑠1𝑠2} (2.16) 
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In addition, it is possible to notice that, as expected, the performance increases when the oversampling factor 

increases. 

In order to see in detail the behavior of the curves, we have reported in Figure 2.7 the same results shown in 

Figure 2.6, but in semilogarithmic scale. In particular, in the figure on the right we have reported only the 

worst cases. 

 

This technique leads to good results, especially when higher oversampling factors are used, because they 

allow to reach higher accuracy. Nevertheless, even the computational cost increases when the oversampling 

factor increases, therefore it is necessary to find a tradeoff between these two components. 

Alternatively, it is possible to study other strategies characterized by a lower computational cost. 

 

Figure 2.6. Performance of the CCF-OVS method for different oversampling 

factors and delays. 

Figure 2.7. Performance of the CCF-OVS method for different oversampling factors and delays (semilog scale). 
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2.3.1.1.2 Cross-Correlation and Fast Parabolic Interpolation Method (CCF-FPI) 

A possible solution that allows to reduce the computational cost is the implementation of the Fast Parabolic 

Interpolation (FPI), as described in [33]. 

This technique is based on the assumption that the main lobe of the cross-correlation, containing the peak, 

can be approximated with a parabola; therefore, the research of the peak corresponding to the TDoA can be 

easily and accurately performed by searching the apex of this parabola, avoiding in this way the increasing of 

the elaboration time due to the oversampling operation (especially if a high factor is used) of the previous 

strategy. 

In particular, the following steps are used: 

1) Calculation of the Cross-Correlation (over single packet) between the signals received by the two 

surveillance antennas, as in (2.15). 

2) Search of the peak of the Cross-Correlation (coarse estimation) through the formula (2.16). 

3) Extraction of three samples around the peak, namely the sample related to the peak, the sample before 

it, and the sample after the peak 

where 𝜏𝑃 is the instant related to the peak of the correlation, T is the sampling time and Q is the 

oversampling factor. 

4) Definition of the parabola passing for the three points 

finding the coefficients a, b, c through the resolution of the system of equations consisting of the three 

parabolas determined by the points defined in (2.17), from which we obtain: 

5) Calculation of the apex of the parabola (fine estimation) defined in (2.18), after having replaced the 

values in (2.19), (2.20) and (2.21), by using the known formula: 

𝑥 = 𝑅𝑠1𝑠2(𝜏𝑃 −
𝑇

𝑄
),     ⁡𝑦 = 𝑅𝑠1𝑠2(𝜏𝑃 +

𝑇

𝑄
),     ⁡𝑧 = 𝑅𝑠1𝑠2(𝜏𝑃) (2.17) 

𝑔(𝜏) = 𝑎𝜏2 + 𝑏𝜏 + 𝑐 (2.18) 

𝑎 =
𝑥 + 𝑦 − 2𝑧

2
∙
𝑄2

𝑇2
 (2.19) 

𝑏 = −(𝑥 + 𝑦 − 2𝑧) ∙
𝑄2

𝑇2
∙ 𝜏𝑃 +

(𝑦 − 𝑥)

2
∙
𝑄

𝑇
 (2.20) 

𝑐 = 𝑧 +
𝑥 + 𝑦 − 2𝑧

2
∙
𝑄2

𝑇2
∙ 𝜏𝑃

2 −
(𝑦 − 𝑥)

2
∙
𝑄

𝑇
∙ 𝜏𝑃 (2.21) 
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𝛥𝜏̂ = −
𝑏

2𝑎
 (2.22) 

It is also possible, before point 3), to add an oversampling with a factor Q=2, that increase the estimation 

accuracy. 

It is evident that the simple calculation of the numerical values necessary for the determination of the vertex 

of the parabola requires less elaboration efforts with respect to an oversampling characterized by a high Q. 

In Figure 2.8, we have reported the results obtained with the CCF-FPI method. We perform the same analysis 

carried out for the CCF-OVS method, namely the observation of the effect on the best and the worst cases for 

the delay, when a low oversampling (Q=2) is used or not (Q=1). 

In this case, it can be noticed a general improvement of the performance in terms of estimation accuracy, as 

well as processing times. 

 

2.3.1.1.3 Average Square Difference Function and FPI Method (ASDF-FPI) 

In spite of performance improvement, the main problem for the processing times is determined by the 

calculation of the cross-correlation function. 

Therefore, in [33], another type of strategy has been defined, with the purpose of avoiding the evaluation of 

the cross-correlation. This methodology, instead of evaluating the product and sum which defines the cross-

correlation, is based on the calculation of the sum of the differences of the values of the two signals. Therefore, 

replacing the product with the difference, even the computational cost should improve. This time it is the 

minimum of this function that has to be found, because it represents the point where the two signals are aligned, 

and so the TDoA to be found. After this operation, the FPI is applied also this time, in order to perform the 

“fine estimation” of the delay.  

Figure 2.8. Performance of the CCF-FPI method for different oversampling factors 

and delays. 
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The main steps are the following: 

1) Calculation of the Average Square Difference Function (ASDF), over single packet, between the 

signals received by the two surveillance antennas, that is  

𝑅𝑠1𝑠2(𝜏) =
1

𝑁
∑ |𝑠1(𝑘𝑇)−𝑠2(𝑘𝑇 + 𝜏)|

2

𝑁

𝑘=1

 (2.23) 

2) Search of the minimum of the ASDF of the signals (coarse estimation), as 

𝛥𝜏̂ = argmin
𝛥𝜏

 {𝑅𝑠1𝑠2} (2.24) 

At this point, we can apply the steps and the formulas for the FPI. 

3) Extraction of three samples around the minimum, (2.17). 

4) Definition of the parabola passing through the three points, by the formulas (2.18), (2.19), (2.20) and 

(2.21). 

5) Calculation of the apex of the parabola, (2.22). 

Even this time, before the point 3), it is possible to add an oversampling with Q=2, that improve the 

estimation accuracy. 

In Figure 2.9, we show the results for the ASDF-FPI method, for the same cases analyzed with the CCF-FPI 

method. 

 

Figure 2.9. Performance of the ASDF-FPI method for different oversampling 

factors and delays. 
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It can be noticed that these results are comparable with those shown in Figure 2.8 for the CCF-FPI. In fact, 

the accuracy seams to depend principally on the way that is used to find the peak of the curve.  

 

2.3.1.1.4 CCF + Slope-based Method 

The slope-based method exploits the phase variation generated by a delay in the signal. In fact, a delay in 

time corresponds to a phase shift in frequency domain: 

𝑥(𝑡 − 𝜏) ⁡
𝐹
→ ⁡𝑋(𝑓) ∙ 𝑒−𝑗2𝜋𝑓𝜏 (2.25) 

As apparent, this phase shift is linear in frequency and the line that describes its trend has slope equal to 2πτ. 

In particular, instead of estimating the ToA of each single signal through the comparison with a reference 

signal (as reported in literature, [34]-[35]), in this case it is directly estimated the Time Difference of Arrival 

(TDoA) between two surveillance signals. Moreover, in contrast to the strategies adopted in [34] and [35], in 

our approach the features of the OFDM signal were not directly exploited; in this way, these techniques can 

be applied over a generic signal, regardless the modulation format. In detail, the strategy to obtain this 

measurement is based on the estimation of the ratio of the spectra of the received signals (or equivalently, on 

the product of a spectrum and the complex conjugate of the other one), whose phase is represented by the 

difference of the phases of the two signals. As can be easily understood from (2.25), the slope of this new 

phase is linked to the relative delay between the two signals, namely 𝛥𝜏, which represents the TDoA we are 

looking for, thanks to the equation 

𝛥𝜏 = −
𝛥𝛷

2𝜋 ∙ 𝛥𝑓
 (2.26) 

where the “slope” is 𝛥𝛷/𝛥𝑓 (or -2π𝛥𝜏, as explained before). 

This method has been applied on both OFDM and DSSS signals. In the first case, simulated signals have 

been used. These signals have been generated by a generator of Wi-Fi “HT Format” signals, which uses OFDM 

modulation. In the second case, real data have been used. In particular, we have used the clean signal 

transmitted by the Access Point (AP). 

In both cases, we applied additive noise and a delay (fraction of a sample) in order to emulate the signal 

received by a surveillance antenna. In order to make the performance analysis simpler, one signal has been 

delayed, while to the other one a null delay has been applied. In addition, before performing the ratio of the 

spectra, for both the typologies of signal, the frequency bands where the spectrum has too low values (lateral 

bands for DSSS and lateral + central bands for OFDM), have been eliminated. 

In the following sections, we reported only the results obtained on DSSS signals, because it is more useful 

for the comparison with the other techniques that we have studied. 
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During the study, different issues related to the slope-based method arose. Some problems are already known 

and faced in literature, while other issues are due to the operating conditions where we worked, as for example, 

the additive noise level applied to the signals and the choice of the relative delay between the received signals.  

In particular, two are the criticalities found during the analysis. The proposed solutions are then presented.  

 

1) Non oversampled CCF before slope-based method (CCF-slope method) 

 

First of all, we have to keep in mind that in the calculation of the phase of the ratio of the spectra, the use of 

the Matlab 'unwrap' function causes problems for low values of SNR: in fact, for values of SNR lower than 

about 20 dB, the phase has jumps of 2π, if calculated in this way. Nevertheless, this function is necessary if 

the relative delay between the two signals is greater than one sample. 

This situation has also been highlighted in [34], where hypothetical solutions have also been described. 

In our work, however, we have decided to address the problem in a different way. 

In fact, to overcome this problem, a first step of cross-correlation between the two signals (CCF) was applied 

in the initial phase of the estimation. Since no oversampling has been carried out for the estimation of this 

time, this methodology allows to estimate integer samples of delay between the two signals, as discussed in 

Section 2.1. This will then be compensated in frequency in the relative signal. In this way, the residual delay 

to be estimated with the slope method will always be a fraction of the sample. Consequently, there will be no 

more problems in estimating the phase as the use of unwraps is no longer necessary. 

2) Iterative Slope-based Method  

 

At this point it is sufficient to analyze the performance of the slope-based method for delays less than a 

sample, leaving to the CCF method to compensate for delays that are multiple of a sample. The analyses were 

conducted on a limited number of samples of the starting signals; in this case 1500 samples were used. 

In Figure 2.10, we reported the Root Mean Square Error (RMSE) as a function of the signal-to-noise ratio 

(SNR). This figure shows that the trend of the obtained curves seems to be dependent on the relative delay 

between the two signals. 
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This behavior is not acceptable for our purposes and it is also interesting and necessary to understand the 

reason for this phenomenon. To do this, the phase of the ratio of the spectra of the starting signals has been 

analyzed in detail, each time obtained for a different SNR and for a different delay. As a consequence, being 

for us useful only the information related to the average slope of the phase, the latter has been approximated 

with a straight line (linear fitting) defined by the relative slope (angular coefficient), and its evolution has been 

observed as the noise increases. 

To simplify the analysis, the phases (in blue) and the straight lines defined by the relative slopes (in red) are 

reported here (Figure 2.11) for only two cases which could be interesting for our study, i.e. the extreme cases 

of relative delay equal to half a sample and one fiftieth of a sample. 

Figure 2.10. Rmse vs SNR of the slope-based method for different values of delay to 

be estimated. 
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Delay = 1/50, No Additive Noise Delay = 1/2, No Additive Noise 

Delay = 1/50, SNR = 35 dB Delay = 1/2, SNR = 35 dB 

Delay = 1/50, SNR = 10 dB Delay = 1/2, SNR = 10 dB 

Delay = 1/50, SNR = -5 dB Delay = 1/2, SNR = -5 dB 

Figure 2.11. Phases and linear fitting for different SNR, for Delay = 1/2 and Delay = 1/50. 
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In fact, it can be noticed from these images reported in Figure 2.11 that as noise increases, and therefore as 

the SNR decreases, the phase becomes more disturbed, presenting peaks especially at the lateral frequencies, 

which, in some cases, cause phase wrappings, i.e. what exceeds the upper limit of π (remember that the phase 

is defined between - π and + π), is displayed at the opposite extreme (i.e., -2π far from this). Consequently, the 

trend of the line that approximates the phase will differ from the exact one. This event is more evident for 

higher values of the slope, since a lower noise value will be enough to raise the phase, at the lateral frequencies, 

above the value of π. Moreover, the wrapping of the phase, defining phase values in the opposite half-plane 

with respect to the correct one, will generate a drop of the slope, to a value close to zero in the case of very 

noisy environment. It is clear that in the definition of the RMSE, this phenomenon will affect performance 

more in those cases where the delay generates a slope very different from zero. This justifies the results 

reported in Figure 2.11. 

Obviously, as mentioned above, this behavior is not acceptable for our purposes. Therefore, it is necessary 

to find a possible strategy that solves this problem, or at least limits its effects, especially for SNR of practical 

interest. 

For this purpose, it was decided to implement the iterative version of the slope-based method. 

 

2.3.1.1.5 Iterative Slope-based Method 

The idea behind this methodology is to make a first rough estimate of the delay, then compensate it in the 

ratio of spectra and then apply again the method for estimating the slope in an iterative manner, until you reach 

a predetermined stopping criterion. This allows a more accurate estimation of the delay. 

The iterative procedure is schematically presented in Figure 2.12. 

 
  

Figure 2.12. Block diagram of the iterative slope-based method. 
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- Estimation update: 

From the initial formulas ((2.25) and (2.26)) and from what is shown in the previous diagram in Figure 2.12, 

it is possible to describe the ratio of the spectra through the following expression: 

𝑅(𝑓) ∙ 𝑒−𝑗2𝜋𝑓𝛥𝜏 (2.27) 

where Δτ represents the real value. 

We indicate with Δτ̂ the value estimated through the slope-based method, which will then be compensated 

before the next iteration, in the following way: 

𝑅(𝑓) ∙ 𝑒−𝑗2𝜋𝑓𝛥𝜏 ∙ 𝑒𝑗2𝜋𝑓Δτ̂⁡= 𝑅(𝑓) ∙ 𝑒−𝑗2𝜋𝑓(𝛥𝜏−Δτ̂) (2.28) 

where (𝛥𝜏 − Δτ̂) represents the residue due to the difference between the real delay and the estimated delay 

(difference caused by noise, among other things) which, after compensation, determines the new slope of the 

input signal at the next iteration. Obviously, without noise and other disturbances, the two values coincide and 

the slope of the line describing the phase difference is zero. 

At the next iteration we have: 

𝑅(𝑓) ∙ 𝑒−𝑗2𝜋𝑓(𝛥𝜏−Δτ̂) ∙ 𝑒𝑗2𝜋𝑓Δτ2̂ = 𝑅(𝑓) ∙ 𝑒−𝑗2𝜋𝑓(𝛥𝜏−Δτ̂−Δτ2̂) (2.29) 

As it is defined, Δτ2̂ is an estimate of 𝛥𝜏 − Δτ̂, therefore 

Δτ2̂ = ⁡𝛥𝜏 − Δτ̂  (2.30) 

And so 

𝛥𝜏 = Δτ̂ + Δτ2̂  (2.31) 

For the same reason, after the third iteration we will have 

𝛥𝜏 = Δτ̂ + Δτ2̂ + Δτ3̂ (2.32) 

In general, the correction will be performed by adding the estimates of the delay obtained at each iteration 

and then the total delay will be estimated as 

𝛥𝜏 =∑Δτ̂𝑘
𝑘

 (2.33) 

- Stopping criterion: 

The stopping criterion has been established empirically, i.e. by noting that on the results reported in Figure 

2.10, the curves are almost similar for delays of less than 1/40 of sample, while they start to deviate from the 

previous trend for delays of more than 1/20 of sample. Therefore, it may make sense to enter the procedure 

only if the estimated TDoA exceeds the time corresponding to the delay of 1/40 of sample. This choice later 
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proved appropriate, after examining the effects of iterations on small delays (see next section, where iterative 

procedure produces improvements for large delays but worsens performance for small delays). 

In summary, a threshold must be found that meets the following condition: 

𝛥𝜏1/40 ≤ 𝑇ℎ ≤ 𝛥𝜏1/20 (2.34) 

where 𝑇ℎ represents the threshold, while 𝛥𝜏1/40 and 𝛥𝜏1/20 are the theoretical delays expressed in time, 

generated by the delay in samples corresponding, respectively, to 1/20 and 1/20 of sample, namely 

𝛥𝜏1/40 =
1

𝑓𝑠
∙
1

40
= 1.13 ∙ 10−9⁡(𝑓𝑜𝑟⁡𝑓𝑠 = 22⁡𝑀𝐻𝑧)⁡ (2.35) 

𝛥𝜏1/20 =
1

𝑓𝑠
∙
1

20
= 2.27 ∙ 10−9⁡(𝑓𝑜𝑟⁡𝑓𝑠 = 22⁡𝑀𝐻𝑧) (2.36) 

where 𝑓𝑠 is the sampling frequency and, as a consequence, 1/𝑓𝑠 is the time related to a sample. 

Therefore, the stopping criterion will be defined as 

Δτ̂𝑘 < 𝑇ℎ (2.37) 

And the threshold can be set initially to 𝟏. 𝟓 ∙ 𝟏𝟎−𝟗, which meets with the condition (2.34). In particular, 

this choice is good also for 𝑓𝑠 = 20⁡𝑀𝐻𝑧. 

It is interesting to compare at first the performance achievable with the two slope-based methods in order to 

understand the actual usefulness of an iterative approach, intrinsically more expensive in terms of 

computational cost than the non-iterative version. 

Even in this case, we analyze the curves of the RMSE as a function of the SNR, for different delays. 

Estimates are made through Monte Carlo simulation on 20 different packets for 100 different noise realizations 

for each of them. Even this time, the evaluations were carried out on 1500 samples for each packet used. 

The typical trend (small changes can occur for different noise realizations) of the RMSE when the non-

iterative method is applied is the one already reported in Figure 2.10. In Figure 2.13, instead, the results 

obtained with the iterative method are reported.  
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As can be easily guessed, the iterative method is strongly linked to the choice of the threshold that determines 

the stopping criterion (and, at the same time, the input criterion to the iterative procedure). In fact, a higher 

threshold reduces the probability of entry into the iterative part, thus producing results identical to the basic 

(c) 

Threshold = 1.5 ∙ 10−9 (Ratio) Threshold = 1.5 ∙ 10−8 (Ratio) 
 

Threshold = 1.5 ∙ 10−9 (Product) Threshold = 1.5 ∙ 10−8 (Product) 

Threshold = 6.5 ∙ 10−9 (Ratio) Threshold = 4 ∙ 10−9 (Ratio) 

(a) (b) 

(d) 

(e) (f) 

Figure 2.13. RMSE vs SNR for the iterative slope-based method. 
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case; on the other hand, a lower threshold favors the use of the iterative procedure, introducing a greater 

difference between the two results. 

For this reason, in Figure 2.13 we reported the results for two (potentially) limit cases, i.e. a threshold of 

1.5 ∙ 10−9 and 1.5 ∙ 10−8. In addition, after an initial analysis of the curves obtained, two intermediate 

situations were also included (thresholds equal to 6.5 ∙ 10−9 and 4 ∙ 10−9, respectively), to better understand 

the impact of using the iterative process. Moreover, to remove any doubt on the correct implementation of the 

entire method, both the slopes obtained from the ratio of the spectra and those obtained from the product of 

one spectrum for the conjugate of the other have been observed. 

From these results it can be seen that:  

- as we would have expected, there is no difference between determining the difference of phases of the 

two spectra through the ratio or the product of these (compare Figure 2.13(a)-(b), with Figure 2.13(c)-

(d)). 

- Observing the first two images in Figure 2.13, it is clear that: 

a. a higher threshold (𝟏. 𝟓 ∙ 𝟏𝟎−𝟖, Figure 2.13(b)) allows the entry into the iterative procedure only 

in those cases in which the relative delay between the two signals is quite high (half sample, in 

the specific case of the threshold just analyzed) while, with the same threshold, for other delays 

the curves are comparable with those of Figure 2.10 (this result is linked to the definition of the 

stop criterion and not only to the threshold chosen for it). In particular, with this threshold, for the 

delay of half a sample, we can observe how the iterative procedure improves the performance for 

higher SNR: very good results are obtained for SNR greater than 10 dBs, but slight improvements 

are also observed for SNR equal to 5 dBs. 

b. a lower threshold (𝟏. 𝟓 ∙ 𝟏𝟎−𝟗, Figure 2.13(a)) allows: i) the execution of at least one iteration, 

for any delay, and ii) the repetition of a higher number of iterations, especially for large delays. It 

is evident that in this case the results obtained are very different from those obtained with a non-

iterative procedure (see Figure 2.10). Furthermore, the curves are more compact, i.e. there is less 

dependence of the curves on the relative delay between the signals. It is possible to notice that 

also in this case two different zones can be distinguished: for SNR ≥ 10 dB very good results are 

obtained regardless of the delay, while for SNR ≤ 5 dB the curves show a substantial improvement 

in performance for high delays (greater than 1/5 or 1/10 of sample) and a worsening for lower 

delays. 

- looking at the last two images in Figure 2.13, where the curves resulting from the application of two 

intermediate thresholds have been reported, it can be noted that also the performances are intermediate 

with respect to the two previously described. In particular, for a threshold equal to 𝟔. 𝟓 ∙ 𝟏𝟎−𝟗 (Figure 

2.13(e)), the iterative procedure involves only the first two or three delays under examination, 

generating for these delays an improvement in performance. For the other threshold (𝟒 ∙ 𝟏𝟎−𝟗, Figure 
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2.13(f)), however, the entry seems guaranteed for all delays, with the related consequences described 

in point b, namely for lower threshold, although with less evident effects. 

In order to conclude this first analysis, a possible choice of threshold according to the SNR could also be 

considered. 

 

2.3.1.1.6 Comparison of TDoA estimation methods  

The various techniques for estimating TDoA have been presented. It is now interesting to make a final 

comparison of the relative performance. Since we have a fairly large number of curves, only two signal delays 

will be examined, and the curves obtained for them compared in two separate graphs to simplify the 

visualization of the results. 

In Figure 2.14, we show the comparisons for delay of one fiftieth of sample (left column) and delay of half 

sample (right column). Zooms were also displayed for low SNR and high SNR. 

As expected, for high values of SNR the best performance in terms of accuracy (low error) is obtained by 

using a high oversampling factor in the CCF-OVS method. However, this results in a higher computational 

cost. In contrast, for lower values of SNR, this technique may have some problems in estimating small delays 

due to higher sensitivity to noise. 

Very good performance is obtained also with the methods that use the parabolic interpolation, namely the 

CCF-FPI and the ASDF-FPI, which, besides showing excellent results, are characterized by a remarkable 

reduction of the computational cost. 

Finally, the slope-based method is characterized by an excellent computational cost and provides good 

results when compared with some of the techniques proposed, although there is still a need for some 

improvements. Moreover, in the comparison between slope-based and iterative slope-based the considerations 

made in the previous section are evident also in this case. 
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(c) 

(e) 

(a) (b) 

(d) 

(f) 

Delay=1/50 Delay=1/2 

Figure 2.14. Comparison of the method for the TDoA estimation for: (a) Delay=1/50, (b) Delay=1/2, (c) Delay=1/50, zoom for low 

SNR, (d) Delay=1/2, zoom for low SNR, (e) Delay=1/50, zoom for high SNR, (f) Delay=1/2, zoom for high SNR. 

Delay=1/50 
Delay=1/2 

Delay=1/2 Delay=1/50 
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2.3.1.2 Techniques for Angle of Arrival (AoA) estimation 

The Angle of Arrival (AoA) estimated over the signals emitted by a device which exploits Wi-Fi 

transmissions (drones, smartphones, tablet, and so on), provides an information on the position of the target 

that transmits them. In particular, the geometric place of points that the angle defines is a line. Specifically, 

the AoA represents the slope of this line. 

In contrast with the TDoA estimation (see Section 2.3.1.1), for which it is necessary to have a higher distance 

between the antennas involved in the measurement operation, for the AoA estimation the distance between the 

receiving antennas has to be lower, aiming at reducing angle ambiguities. 

Therefore, in order to estimate the angle of arrival, each receiving node must be composed by at least two 

antennas. This means that in this case one node is sufficient to estimate the AoA. 

As it is obvious, it is necessary to choose conveniently both the number of elements of the antenna and their 

configuration within the node. 

We have focused on two different solutions: 

1) Circular systems with a limited number of elements; 

2) Systems with a minimum number of antennas, i.e. two. 

The first case allows us to perform a theoretical treatment independent of the pointing of the employed 

antennas. 

In the second case, instead, this configuration allowed to study simple practical cases of greater interest. In 

fact, for the experimental tests we have employed arrays with only two antennas, properly configured. 

With reference to the specific techniques for the AoA estimation, one of the most accredited and suitable 

solutions for our purpose is the use of the interferometric approach, which determines the angle of arrival by 

estimating the phase difference between the signals received from the antennas present in the receiving node. 

Depending on the typology of receiving node, different considerations about the characteristics of the generic 

antenna system should be further discussed, so a detailed description will be reported when necessary. 

Suppose to have NRx receiving nodes, each containing at least two antenna elements. 

The detailed description of the system with the minimum number of elements is proposed here, since its 

mathematical characterization is also useful for the next experimental analysis, where this system has been 

actually used. On the other hand, the extensive characterization of the circular system is not important for the 

purposes of this thesis, therefore the related description is not presented. 

As well known, the difference in the paths that the incident signal must cover in order to reach the different 

antenna elements results in a relative phase shift between the received signals. In Figure 2.15 is reminded the 

case of linear array with the minimum number of elements (two) for the estimation of the direction of arrival. 
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In this figure, 𝜃 indicates the incidence angle with respect to the line perpendicular to the axis of the array, 

while 𝑑 represents the distance between the two elements. 

The phase difference between the signals received by the two antennas is determined by the following 

expression:  

Therefore, it can be easily derived  

where 𝜆 represents the wavelength related to the Wi-Fi channel on which the device is transmitting, while 𝑑 is 

the distance between the elements, as defined above. This last quantity must be chosen in such a way as to 

reduce as much as possible the area in which the angle is ambiguous, so as to avoid any positioning errors. 

These considerations can be easily extended, with the appropriate modifications, even for the case where a 

different number of antennas is employed. 

All parameters in the equation (2.39) are known, except for the phase difference which, instead, has to be 

estimated from the received signals. In order to obtain a reliable evaluation of this parameter, 𝛥𝜑̂, a Maximum 

Likelihood (ML) estimation has been performed which leads to the following expression: 

where 𝒔1 and 𝒔2 are the signals received by the two antennas contained in the receiving node. 

By construction, this estimation is made directly by the single receiving node, since co-located antennas are 

used. Therefore, it is clear that in this case, unlike what happens for the estimate of TDoA, it is not necessary 

to create a dedicated infrastructure for the transfer of the entire data flow from one sensor to another. At the 

𝛥𝜑̂ =
2𝜋𝑑

𝜆
sin𝜃 (2.38) 

𝜃 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝜆 ⋅ 𝛥𝜑̂

2𝜋𝑑
) (2.39) 

𝛥𝜑̂ = ∠𝒔1
𝐻𝒔2 (2.40) 

Figure 2.15. Direction of Arrival estimation. 
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same time, it is not even necessary to have a prior knowledge of the waveform transmitted by the mobile 

device, namely the modulation format of the Wi-Fi signal, as no known part of the signal is used. 

From this point of view, the positioning based on only angle measurements appears to be more advantageous 

than when using TDoA measurements. Actually, the performance of both are also dependent on the geometry 

of the system and especially on the actual position of the target with respect to the different receiving nodes, 

as will be seen in the next sections. 

 

2.3.2 Positioning techniques 

After the definition of the measures that can be used for the PSL sensor, and the characterization of the 

techniques for the measurement extraction, it is interesting to analyze the possible strategies to obtain the target 

localization in the XY plane. 

The positioning can be performed in different ways, also depending on the number of receiving nodes 

available and the number of antennas contained in each node. 

Considering the measures described in Section 2.3.1, namely TDoA and AoA, their possible combination 

for target localization are summarized in Table 2. 
 

Table 2. Measurement combinations for target localization with the PSL sensor. 

 PSL sensor 

2 

Receiving Nodes 

(3 or 4 Antennas) 

1 AoA + 1 TDoA 

2 AoA 

2 AoA + 1 TDoA 

3 

Receiving Nodes 

(max 6 Antennas) 

3 AoA 

2 TDoA 

3 AoA + 2 TDoA 

3 AoA + 1 TDoA 

2 AoA + 2 TDoA 

1 AoA + 2 TDoA 

 

In this table, we made a distinction between the case where two receiving nodes are available and the case 

where three nodes can be used. Obviously, the number of combinations increases if a higher number of 

antennas can be exploited. Moreover, it is possible to notice that there are three main possibility for the 

localization: 
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1) Exploitation of only TDoA measures. 

2) Exploitation of only AoA measures. 

3) Hybrid solution with both AoA and TDoA measures. 

In the next sub-sections, we reported only the detailed description of the combination of measures that could 

be interesting for the purposes of this thesis.  

In particular, the analysis of the cases where only one type of measure is exploited is useful to compare the 

accuracy achievable with the different measures. In order to perform an effective comparison, three receiving 

nodes are considered for this first study, since this is the condition to obtain the target localization with only 

TDoA measures.  

In a second phase of this preliminary evaluation, we focused on the combinations provided by two nodes, 

which is the situation that we find in our experimental tests. Therefore, the use of hybrid solutions is evaluated 

only in this part of the study. A further explanation of this choice is also mentioned after the discussion on the 

first results. 

 

2.3.2.1 Positioning techniques based on TDoA measurements 

As affirmed in the previous sections, it is possible to estimate the position of the target through the Time 

Difference of Arrival (TDoA) measurements obtained from the signals transmitted by its mobile device. We 

have to remind that the measurement can be obtained i) through the direct estimation of TDoA between the 

two signals received from two distinct surveillance antennas, or ii) through the separate estimation of the times 

of arrival of the signals to the single receivers and the subsequent difference of these between pairs of receivers. 

In this section we analyze the second situation, therefore the measurement errors will be attributed separately 

to the measurements obtained by the individual receivers. This choice is guided by two main reasons.  

Firstly, this situation is more representative of real cases, where noise is independent between the two 

receiving antennas. Secondly, this is a sort of "Worst Case", as the combination of the two errors in principle 

produces a higher error than the other case. This does not cause a problem with previous analyses because, as 

already discussed in Section 2.3.1.1, the studied techniques for TDoA estimation can be easily applied also to 

this situation. 

After this first consideration, we can proceed with the treatment considering that to each TDoA corresponds 

(except for a scale factor equal to the speed of propagation of the signal) a difference between distances that 

defines a geometric place of points corresponding to a hyperbola. Thus, we obtain N-1 hyperboles, at the 

intersection of which the target is located. 

Suppose to have NRx receiving nodes located in the generic point 𝐩i = (xi, yi) of a local Cartesian system. 

From the previous considerations, we need to have at least three receiving nodes to localize a target by using 

only TDoA measures. 

Let 𝐮 be the vector containing the target coordinates defined over the same Cartesian reference system of 

the receiving nodes.  
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The distance between the target and the i-th receiver Rxi can be calculated as  

From this value it is possible to measure the time of arrival ti of the signal transmitted by the target at the i-

th receiver. 

Since the target transmits a signal at an unknown time tTx, we can use one of the receiving nodes as a 

reference (for instance Rx0) and calculate NRx − 1 time differences of arrival. 

where t0 is the reception time of the reference node.  

Therefore, it is possible to write 

where c is the speed of light and Ri − R0 can be defined as 

For a certain c∆ti, the relation (2.43) identify the geometric place of points such that the difference between 

the distance of the generic point and the i-th receiver is constant ad equal to c∆ti. This place of points is a 

hyperbola, whose foci are the generic receiver Ri and the reference receiver R0. 

In this way, it is obtained a system of NRx − 1 different equations, which identify the same number of 

hyperboles in the two unknows (xu, yu). By solving this system, we obtain the intersection of these 

hyperboles, which provides the target position 

It can be observed that this system is non-linear, therefore it is necessary a linearization procedure to solve 

it. 

Let 𝐮̂ = (x̂u, ŷu) be the estimated coordinates of the target. A first order Taylor series expansion around 𝐮̂ 

can be operated over each single equation. 

Then, we define 

Ri = |𝐩i − 𝐮| (2.41) 

∆ti = ti − t0, ∀⁡i = 1,… , NRx − 1 (2.42) 

Ri − R0 = ⁡c∆ti (2.43) 

Ri − R0 = √(xi − xu)
2 + (yi − yu)

2 −√(x0 − xu)
2 + (y0 − yu)

2 (2.44) 

{

R1 − R0 = cΔt1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
R2 − R0 = cΔt2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

⋯⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
RNRx−1 − R0 = cΔtNRx−1

 (2.45) 

(Ri − R0)|u=û + [
∂(Ri − R0)

∂xu
|
u=û

∂(Ri − R0)

∂yu
|
u=û

] ∙ [
∆xu
∆yu

] = ⁡c∆ti (2.46) 

(Ri − R0)|u=û = R̂i − R̂0 (2.47) 
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where αxi, αyi are the i-th direction cosines along x-axis and y-axis, respectively.  

Therefore, it is obtained 

which leads to 

where ∆Ri = R̂i − R̂0 − ⁡c∆ti. 

After the application of these procedure over all the equation of the system in (2.45) and defining 

The following general relation can be derived 

where 𝐇 is the matrix of the system and ∆𝐑 is defined as follows 

∆𝐮 is obtained by inverting the system in (2.53). It represents the correction to be applied to 𝐮̂ to refine the 

estimate: 

where k is the index of the current iteration, 𝐮̂(k − 1) is the target position estimated at the previous iteration, 

while 𝐮̂(k) is the new position estimate. 

More accurate target positions can be obtained by iterating this procedure. Two types of stopping criterion 

can be defined: 1) when the absolute value of the correction ∆𝐮 reaches an established value, and/or 2) when 

the maximum number of iterations has be reached. 

As apparent, the same procedure can be applied also in the 3D case, where the z-axis has to be 

considered in the definition of the equations. 

∆𝐮 = [
∆xu
∆yu

] (2.48) 

∂Ri
∂yu

= −
yi − yu
‖𝐩i − 𝐩û‖

= −αyi, ∀i = 0,… , NRx (2.49) 

[−αxi + αx0 −αyi + αy0] ∙ ∆u = −(R̂i − R̂0 − ⁡c∆ti) (2.50) 

[αxi − αx0 αyi − αy0] ∙ ∆u = ∆Ri (2.51) 

𝐇 =⁡ [

αx1 − αx0 αy1 − αy0
αx2 − αx0 αy2 − αy0

⋮ ⋮
αxNRx−1 − αx0 αyNRx−1 − αy0

] (2.52) 

𝐇∆𝐮 = ∆𝐑 (2.53) 

∆𝐑 = [

∆R1
∆R2
⋮

∆RNRx−1

] (2.54) 

𝐮̂(k) = ⁡ 𝐮̂(k − 1)⁡+ ∆𝐮(k) (2.55) 
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2.3.2.1.1 Measurement and positioning errors  

In the ideal case where ∆𝐑 is not affected by errors, the only contribution of error will be the linearization 

error, which can be reduced making an appropriate number of iterations. 

In the case where an error in the distance measure is present, it is necessary to evaluate its i nfluence 

on the positioning error, described by the covariance matrix 𝜮𝒖. 

The evaluation of this error is made by the following steps: 

1) Evaluation of the covariance matrix 𝜮𝑹 of the distance measure. 

2) Application of techniques for system solution (Least Square or Maximum Likelihood). 

3) Calculation of the covariance matrix 𝜮𝒖 as a function of 𝜮𝑹 and of the geometry (described by 𝑯). 

These steps are valid for both the 2D and 3D cases. 

 

Evaluation of the covariance matrix 𝜮𝑹 

With measure errors, the distance Ri between the i-th receiving node and the target is  

where ∂Ri is a Gaussian random variable with zero mean and variance c2σi
2, and where σi

2 is the variance of 

the error referred to the i-th TDoA. 

Therefore, the difference between the distance to the generic receiving node Ri and the distance to the 

reference node R0 can be written as follows. 

The covariance matrix 𝚺𝐑 of the distance measurement error, ∆𝐑, can be calculated through the following 

generic relation. 

where Σhk
R  is the generic element of the covariance matrix. 

For the two-dimensional case, with the minimum number of receiver (i.e. three), we obtain 

where ∂ti represents the time of arrival error related to the specific receiving node, whereas σ0
2, σ1

2, σ2
2 are 

the variances of the time measures of the three receiving nodes. 

Ri →⁡Ri + ∂Ri 
(2.56) 

∆Ri0 = Ri − R0 → (Ri + ∂Ri) − (R0 − ∂R0) = (Ri −⁡R0) + (∂Ri − ∂R0) = ∆Ri0 + ∂∆Ri0 (2.57) 

Σhk
R = E{(∂Rh − ∂R0) ∙ (∂Rk − ∂R0)} = c

2E{(∂th − ∂t0) ∙ (∂tk − ∂t0)} 
(2.58) 

Σ11
R = c2E{(∂t1 − ∂t0) ∙ (∂t1 − ∂t0)} = c

2(σ0
2 + σ1

2) 
 

Σ22
R = c2E{(∂t2 − ∂t0) ∙ (∂t2 − ∂t0)} = c

2(σ0
2 + σ2

2) 
 

Σ12
R = Σ21

R = c2E{(∂t1 − ∂t0) ∙ (∂t2 − ∂t0)} = ⁡ c
2σ0

2 

(2.59) 



49 

 

Therefore, 

 

Techniques for system solution 

As explained before, when measurement errors are present, the system is characterized by the 

following error 

This means that, in order to solve the problem, the following objective function has to be minimized  

where 𝐊 is a suitable matrix which is used to limit the contribution of the equations with the higher variance. 

1) Least Square (LS) solution 

For the Least Square solution (LS), we have 𝐊 = 𝐈, where 𝐈 is the identity matrix. 

The objective function becomes 

The minimization of the (2.63) produces the following result 

where the pseudoinverse (𝐇T𝐇)−1𝐇T is used to invert the system in (2.53). 

2) Maximum Likelihood (ML) solution 

For the Maximum Likelihood solution (ML), we have 𝐊 = 𝚺𝐑
−1, where 𝚺𝐑

−1 is the inverse of the 

covariance matrix of the measurement errors. 

The objective function becomes 

The minimization of the (2.63) produces the following result 

where the system in (2.53) is solved through the use of the weighted pseudoinverse (𝐇T𝚺𝐑
−1𝐇)−1𝐇T𝚺𝐑

−1. 

 

 

ΣR = c2 [
σ0
2 + σ1

2 σ0
2

σ0
2 σ0

2 + σ2
2] 

(2.60) 

𝛜 = ⁡∆𝐑 − 𝐇∆𝐮 (2.61) 

𝑓:⁡𝐸{𝛜T𝐊𝛜} = 𝐸{(∆𝐑 − 𝐇 ∙ ∆𝐮)T𝐊(∆𝐑 − 𝐇 ∙ ∆𝐮)} (2.62) 

𝑓:⁡𝐸{𝛜T𝛜} = 𝐸{(∆𝐑 − 𝐇 ∙ ∆𝐮)T(∆𝐑− 𝐇 ∙ ∆𝐮)} (2.63) 

∆𝐮 = (𝐇T𝐇)−1𝐇T∆𝐑 (2.64) 

𝑓:⁡𝐸{𝛜T𝚺𝐑
−1𝛜} = 𝐸{(∆𝐑 − 𝐇 ∙ ∆𝐮)T𝚺𝐑

−1(∆𝐑 − 𝐇 ∙ ∆𝐮)} (2.65) 

∆𝐮 = (𝐇T𝚺𝐑
−1𝐇)−1𝐇T𝚺𝐑

−1∆𝐑 (2.66) 
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Evaluation of the covariance matrix 𝜮𝒖 

The parameter that we use for the evaluation of the accuracy is the variance σu
2. Therefore, defining ∂𝐮 as 

the positioning error of the target position estimate 𝐮 and considering the generic relation 

It is possible to write 

The covariance matrix of the positioning errors is defined as follows 

Through the equations (2.68)-(2.69) the generic form of the covariance matrix can be defined as 

For the LS solution (𝐊 = 𝐈), the specific expression becomes 

For the ML solution (𝐊 = 𝚺𝐑
−1), the specific expression becomes 

Therefore, for the standard deviation of the positioning errors we have 

Finally, when the measurement errors are non-homogeneous, the following relationship applies 

 

2.3.2.1.2 Theoretical performance evaluation  

For the theoretical evaluation, we suppose to have three receiving nodes. According to the analytical study 

reported in the previous sections, one of these nodes will be used as reference. Therefore, two measures of 

TDoA will be available, both obtained by the estimation of the time differences of the remaining two receiver 

with respect to the reference one. 

∆𝐮 = (𝐇T𝐊𝐇)−1𝐇T𝐊∆𝐑 (2.67) 

∂𝐮 = (𝐇T𝐊𝐇)−1𝐇T𝐊∂𝐑 (2.68) 

𝚺𝑢 ⁡= E{∂𝐮𝑻 ∂𝐮} (2.69) 

𝚺𝒖 = (𝐇
𝑻𝐊𝑻𝐇)−𝟏𝐇𝑻𝐊𝑻𝚺𝑹KH(H

TKH)−1 (2.70) 

𝚺𝒖
𝐿𝑆 = (𝐇T𝐇)−1𝐇T𝚺𝐑H(H

TH)−1 (2.71) 

𝚺𝒖
𝑀𝐿 = (𝐇TΣR

−1𝐇)−1𝐇TΣR
−1H(HTΣR

−1H)−1 (2.72) 

σ𝒖
𝐿𝑆 = √𝑇𝑟{𝚺𝒖

𝐿𝑆} (2.73) 

σ𝒖
𝑀𝐿 = √𝑇𝑟{𝚺𝒖𝑀𝐿} 

(2.74) 

σ𝒖
𝐿𝑆 > σ𝒖

𝑀𝐿 (2.75) 
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In this phase of the study, we use the same value of the variance for each point of the area of interest. In 

other words, we do not take into account the dependence of the measurement accuracy by the SNR, and 

consequently to the distance between target and receiver. 

The following analysis have been performed for the two-dimensional case. 

The specific geometry consists in three receivers positioned along a circumference with a radius of 500 

meters and an angle of 120° between them. 

Therefore, the positions of the three receiving nodes are: 

• 𝐩𝟏 = (500, 0) 

• 𝐩𝟐 = (500 cos(120) , 500⁡sin(120)) 

• 𝐩𝟑 = (500 cos(240) , 500⁡sin(240)) 

Two different situations have been considered: 

1) All the standard deviations have the same value (uniform):   𝑐𝜎0 = 𝑐𝜎1 = 𝑐𝜎2 = 1.5⁡[𝑚] 

2) All the standard deviations have different values:   𝑐𝜎0 = 1.5⁡[𝑚], 𝑐𝜎1 = 2.5⁡[𝑚],⁡⁡⁡𝑐𝜎2 = 3.5⁡[𝑚] 

For this analysis, a square area with the side length of 1200 m has been considered. The matrix H has been 

calculated for each point of this area, then 𝜎𝑢
𝐿𝑆 and 𝜎𝑢

𝑀𝐿 can be derived from (2.71)-(2.73) and (2.72)-(2.74), 

respectively, since the matrix 𝜮𝑹 is known. 

 

Case 1:  𝒄𝝈𝟎 = 𝒄𝝈𝟏 = 𝒄𝝈𝟐 = 𝟏. 𝟓⁡[𝒎] 

The standard deviation of 1.5 m represents the case where the measurements of time/distance are rather 

noisy. In fact, this is on average what happens for low values of SNR for the techniques analyzed in Section 

2.3.1.1. Obviously, as shown during the evaluation of the presented techniques, when the SNR is low, there 

are situations (related to the specific technique, to the oversampling factor and/or to the relative delay between 

the signals) for which the errors can be lower or higher than this quantity. We will study these situations when 

different values of variance are used. 

The performance related to the Case 1 are reported in Figure 2.16, where each point of the positioning 

accuracy map identifies a x and y coordinate of the hypothetical target position. 
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(a) (b) 

Figure 2.16. Standard deviation of the theoretical positioning errors for uniform standard deviations of the distance errors equal 

to 1.5 m for: (a) LS method and (b) ML method, for 2 TDoA. 

 

 

It is possible to notice that in this case the two methods lead to the same performance.  In fact, the LS 

solution corresponds to the ML solution when the standard deviations of the measures are identical for 

all the receivers. 

In addition, it is evident that the positioning error is lower within the triangle drawn by the three nodes, 

where it is below 5-10 m. 

 

Case 2:  𝒄𝝈𝟎 = 𝟏. 𝟓⁡[𝒎], 𝒄𝝈𝟏 = 𝟐.𝟓⁡[𝒎],⁡⁡⁡𝒄𝝈𝟐 = 𝟑. 𝟓⁡[𝒎] 

In this case, the standard deviations are different for the times/distances measured by the three receivers. 

This situation is more representative of real cases as the three employed receivers are inherently different from 

each other. Moreover, also in relation to the chosen technique, in all those cases in which the performances are 

somehow linked to the delay of the signals and so to the relative time difference of arrival, this choice is 

particularly illustrative, as the signals will arrive to the different receivers with a different delay, which is a 

function of the position of the target with respect to them. 

The use of higher standard deviations (2.5 m and 3.5 m) represents both the situation described above and 

the possible deterioration in performance when applying these techniques to real data. 

The results are shown in Figure 2.17, where it is possible to observe that the position error is greater than 

that shown in Figure 2.16, even in the area enclosed by the three receivers, where it remains below 10-15 m. 

This is obviously due to the fact that the chosen standard deviations have higher values than in the previous 

case. 
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(a) (b) 

Figure 2.17. Standard deviation of the theoretical positioning errors for non-uniform standard deviations of the distance errors 

equal to 1.5 m, 2.5 m and 3.5 m for: (a) LS method and (b) ML method, for 2 TDoA. 

 

 

Even this time, the two solutions provide the same results because the minimum number of receivers has 

been used. 

Moreover, since the standard deviations of the TDoA errors are different for each receiver, the positioning 

error increases in a non-uniform way along the lines passing through the origin of the Cartesian reference 

system and the three nodes. This is in contrast with the results shown in Figure 2.16. 

A further consideration can also be drawn from the above figures. If we draw three lines passing through 

the various pairs of receivers, so as to form the triangle mentioned above, along the six straight lines outside 

this triangle, whit origin in the respective receivers, it is possible to notice that the error increases considerably. 

This can be explained mathematically. In fact, we can write the equation of the straight line passing through 

any pair of receivers. Considering that the target is in a point of this line and replacing the obtained result 

within the matrix H, we achieve the following expression for matrix H. 

where it is evident that in these points the matrix H becomes singular. In fact, since it has a row whose elements 

are all zeros, it will not be possible to inverts the initial system, resulting in the generation of very high 

errors. Consequently, the correction term ∆𝒖 will tend to infinity and the system will not converge to the 

desired solution. 

 

2.3.2.1.3 Closed-form solution   

In the 2D case, with three receivers, it is possible to solve the system in (2.53) avoiding the use of the 

iterative method described above. In fact, we can write the system containing the equations of the two 

hyperboles, which define the TDoA measures, as a function of the unknowns xu and yu: 

𝑯 =⁡ [
αx1 − αx0 αy1 − αy0

0 0
] (2.76) 
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where (xi, yi) represents the coordinates of the i-th receiving nodes. 

This type of solution is convenient because it significantly reduces the calculation time since the 

process is direct and not iterative. Furthermore, it leads directly to the exact solution (no convergence 

problems). On the other hand, however, the closed-form solution introduces ambiguous solutions, which 

in most cases can be eliminated by following small expedients. 

 

2.3.2.2 Positioning techniques based on AoA measurements 

Once the angle of arrival has been estimated, it will be possible to proceed with the determination of the line 

defined by it. 

Since the intersection of two lines uniquely defines a single point on the plane, at least two angle 

measurements are required to unambiguously estimate the position of the target on the XY plane. This means 

that if we only want to use AoA measurements to determine the target position, at least two receiving nodes 

are necessary, each one consisting of at least two antenna elements (for the reasons described in the previous 

section); in other words, you need to have at least 4 antennas in total. 

Obviously, more information could provide an improvement in system performance in terms of positioning 

accuracy. Firstly, the employment of more antennas, for example, would produce two main advantages: 1) the 

possibility of using more measurements to refine the position estimate; 2) the possibility of making the system 

more robust in case of faults. Secondly, the increase in information can also be represented by the hybrid 

solution AoA/TDoA, which will be discussed in Section 2.3.2.2.3. 

As defined in Section 2.3.2.1, assume to have NRx receiving nodes located in the generic point 𝐩i = (xi, yi) 

of a local Cartesian system. Each node must contain at least two elements of antenna, in order to estimate the 

angle θi related to the specific signal transmitted by the target and received by the i-th receiver. With u = 

(xu, yu) it is indicated the vector containing the target coordinates defined over the same Cartesian reference 

system of the receiving nodes.  

The angle estimated by the i-th receiver can be calculated as  

where (xu, yu) are the target coordinates, while (xi, yi) are the coordinates of the i-th receiver.  

As already mentioned above, the geometric place of points defined by θi is a line passing through u and⁡𝐩i. 

In this way, it is obtained a system of NRx different equations, which identify the same number of lines in 

the two unknows (xu, yu). By solving this system, we obtain the intersection of these lines, which provides 

the target position 

{
√(x1 − xu)

2 + (y1 − yu)
2 −√(x0 − xu)

2 + (y0 − yu)
2 = ⁡c∆t1

√(x2 − xu)
2 + (y2 − yu)

2 −√(x0 − xu)
2 + (y0 − yu)

2 = ⁡c∆t2
 (2.77) 

θi ⁡= ⁡ tan
−1
(xu − xi)

(yu − yi)
 (2.78) 
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The first step is the linearization of this system. 

With this purpose, it is defined 𝐮̂ = (x̂u, ŷu) as the estimated target position. A first order Taylor series 

expansion around 𝐮̂ can be operated over each single equation. 

Then, we define 

where αxi, αyi are the i-th direction cosines along x-axis and y-axis, respectively.  

Therefore, it is obtained 

where we have indicated (θi)|u=û =⁡ θ̂. 

The equation (2.84) leads to 

where ∆θi = θi − θ̂i. 

After the application of these procedure over all the equation of the system in (2.79), the following 

general relation can be derived 

{
 
 
 
 
 

 
 
 
 
 θ1 ⁡= tan−1

(xu − x1)

(yu − y1)

θ2 ⁡= tan−1
(xu − x2)

(yu − y2)

⋯

θNRx ⁡= tan−1
(xu − xNRx)

(yu − yNRx)

 (2.79) 

(θi)|u=û + [
∂(θi)

∂xu
|
u=û

∂(θi)

∂yu
|
u=û

] ∙ [
∆xu
∆yu

] = ⁡θi 
(2.80) 

∂θi
∂xu

=
1

⁡1 + (
xu − xi
yu − yi

⁡)2
⁡ ∗ ⁡

(yu − yi)

(yu − yi)
2
= αxi⁡⁡⁡, ∀i = 1,… , NRx (2.81) 

∂θi
∂yu

=
1

⁡1 + (
xu − xi
yu − yi

⁡)2
⁡ ∗ ⁡−⁡

(xu − xi)

(yu − yi)
2
= −⁡αyi⁡⁡⁡, ∀i = 1,… , NRx (2.82) 

∆𝐮 = [
∆xu
∆yu

] (2.83) 

θi − θ̂i = [αxi −αyi] ∙ ∆𝐮 (2.84) 

[αxi −αyi] ∙ ∆𝐮 = ∆θi 
(2.85) 
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where 𝐇 is the matrix containing the direction cosines 

and ∆𝛉 is defined as follows 

∆𝐮 is obtained by inverting the system in (2.86). It represents the correction to be applied to 𝐮̂ to refine the 

estimate: 

where k is the index of the current iteration, 𝐮̂(k − 1) is the target position estimated at the previous iteration, 

while 𝐮̂(k) is the new position estimate. 

More accurate target positions can be obtained by iterating this procedure. The two types of stopping 

criterion presented in Section 2.3.2.1 can be applied also in this case. 

 

2.3.2.2.1 Measurement and positioning errors  

Suppose to have a number of receiver higher than two, that is the minimum number required to perform 

the localization by using only AoA measures. 

In this case, we have a system of NRx > 2 nonlinear equations in two unknowns: the system is therefore 

overdetermined. In order to obtain a solution, the two methods described above can be applied even in 

this case, namely the Least Square (LS) method and the Maximum Likelihood (ML) method, but not the 

closed-form solution, unless we decide to discard some measures. 

In the case where an error in the angle measure is present, it is necessary to evaluate its influence on 

the positioning error, described by the covariance matrix 𝜮𝒖. 

The evaluation of this error is made by the following steps: 

1) Evaluation of the covariance matrix 𝜮𝜽 of the angle measure errors. 

2) Application of techniques for system solution (Least Square or Maximum Likelihood). 

3) Calculation of the covariance matrix 𝜮𝒖 as a function of 𝜮𝜽 and of the geometry (described by 𝑯). 

 

𝐇 ∙ ∆𝐮 = ∆𝛉 (2.86) 

𝐇 =⁡ [

αx1 αy1
αx2 αy2
⋮ ⋮

αx,NRx αy,NRx

] (2.87) 

∆𝛉 = [

∆θ1
∆θ2
⋮

∆θNRx

] (2.88) 

𝐮̂(k) = ⁡ 𝐮̂(k − 1)⁡+ ∆𝐮(k) (2.89) 
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Evaluation of the covariance matrix 𝜮𝜽 

Consider the case where angle measure errors are present: 

where 𝜕θ𝑖 is a Gaussian random variable with zero mean and variance 𝜎𝜃𝑖
2 . 

The covariance matrix 𝚺θ of the angle measurement error, ∆𝛉, can be calculated through the following 

generic relation, where the generic element of the covariance matrix can be written as  

With three receivers, we obtain 

where 𝜎𝜃1
2 , 𝜎𝜃2

2 , 𝜎𝜃3
2  are the variances of the angle measures of the three receiving nodes. 

As apparent, this is a diagonal matrix, as the measures of angle are independent among the different 

receivers. 

 

Techniques for system solution 

As explained before, when measurement errors occur, the system is characterized by the following 

error 

This means that, in order to solve the problem, the following objective function has to be minimized 

where 𝐊 is a suitable matrix which is used to limit the contribution of the equations with the higher variance. 

1) Least Square (LS) solution 

For the Least Square solution (LS), we have 𝐊 = 𝐈, where 𝐈 is the identity matrix. 

The objective function becomes 

The minimization of the (2.95) produces the following result 

where the pseudoinverse (𝐇T𝐇)−1𝐇T is used to invert the system in (2.86). 

θi →⁡θi + 𝜕θ𝑖  (2.90) 

Σij
θ = 𝐸{𝜕θ𝑖 ∙ 𝜕θ𝑗} (2.91) 

Σ𝜃 = [

𝜎𝜃1
2 0 0

0 𝜎𝜃2
2 0

0 0 𝜎𝜃3
2

] (2.92) 

𝛜 = ⁡∆𝛉 − 𝐇 ∙ ∆𝐮 (2.93) 

𝑓:⁡𝐸{𝝐𝑇𝐊𝝐} = 𝐸{(∆𝛉 − 𝐇 ∙ ∆𝐮)𝑇𝐊(∆𝛉 − 𝐇 ∙ ∆𝐮)} (2.94) 

𝑓:⁡𝐸{𝛜T𝛜} = 𝐸{(∆𝛉 − 𝐇 ∙ ∆𝐮)T(∆𝛉 − 𝐇 ∙ ∆𝐮)} (2.95) 

∆𝐮 = (𝐇T𝐇)−1𝐇T∆𝛉 (2.96) 
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2) Maximum Likelihood (ML) solution 

For the Maximum Likelihood solution (ML), we have 𝐊 = 𝚺𝛉
−1, where 𝚺𝛉

−1 is the inverse of the 

covariance matrix of the measurement errors. 

The objective function becomes 

The minimization of the (2.97) produces the following result 

where the system in (2.86) is solved through the use of the weighted pseudoinverse (𝐇T𝚺𝛉
−1𝐇)−1𝐇T𝚺𝛉

−1. 

 

Evaluation of the covariance matrix 𝜮𝒖 

The parameter that we use for the evaluation of the accuracy is the variance σu
2. Therefore, defining ∂𝐮 as 

the positioning error of the target position estimate 𝐮 and considering the generic relation 

It is possible to write 

The covariance matrix of the positioning errors is defined as follows 

Through the equations (2.100)-(2.101) the generic form of the covariance matrix can be defined as 

For the LS solution (𝐊 = 𝐈), the specific expression becomes 

For the ML solution (𝐊 = 𝚺𝛉
−1), the specific expression becomes 

Therefore, for the standard deviation of the positioning errors we have 

𝑓:⁡𝐸{𝛜T𝚺𝛉
−1𝛜} = 𝐸{(∆𝛉 − 𝐇 ∙ ∆𝐮)T𝚺𝛉

−1(∆𝛉 − 𝐇 ∙ ∆𝐮)} (2.97) 

∆𝐮 = (𝐇T𝚺𝛉
−1𝐇)−1𝐇T𝚺𝛉

−1∆𝛉 (2.98) 

∆𝐮 = (𝐇T𝐊𝐇)−1𝐇T𝐊∆𝛉 (2.99) 

∂𝐮 = (𝐇T𝐊𝐇)−1𝐇T𝐊∂𝛉 (2.100) 

𝚺𝑢 ⁡= E{∂𝐮𝑻 ∂𝐮} (2.101) 

𝚺𝒖 = (𝐇𝑻𝐊𝑻𝐇)−𝟏𝐇𝑻𝐊𝑻𝚺𝛉KH(H
TKH)−1 (2.102) 

𝚺𝒖
𝐿𝑆 = (𝐇T𝐇)−1𝐇T𝚺𝛉H(H

TH)−1 (2.103) 

𝚺𝒖
𝑀𝐿 = (𝐇TΣ𝛉

−1𝐇)
−1
𝐇TΣ𝛉

−1H(HTΣ𝛉
−1H)

−1
 (2.104) 

σ𝒖
𝐿𝑆 = √𝑇𝑟{𝚺𝒖

𝐿𝑆} (2.105) 

σ𝒖
𝑀𝐿 = √𝑇𝑟{𝚺𝒖𝑀𝐿} 

(2.106) 
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Finally, when the measurement errors are non-homogeneous, the following relationship applies 

 

2.3.2.2.2 Theoretical performance evaluation  

For the theoretical evaluation, we suppose to have three receiving nodes.  

As described in Section 2.3.1.2, se employed receiving systems with a circular symmetry, with at least two 

antenna elements. Therefore, in the next discussion any condition on their pointing has been considered. 

The specific geometry is the same presented in Section 2.3.2.1.2. 

Even this time, two different situations have been considered: 

1) All the standard deviations have the same value (uniform):   𝜎𝜃1 = 𝜎𝜃2 = 𝜎𝜃3 = 0.3⁡[𝑑𝑒𝑔] 

2) All the standard deviations have different values:   𝜎𝜃1 = 5⁡[𝑑𝑒𝑔], 𝜎𝜃2 = 0.3⁡[𝑑𝑒𝑔],⁡⁡⁡𝜎𝜃3 = 1⁡[𝑑𝑒𝑔] 

For this analysis, a square area with the side length of 1200 m has been considered. The matrix H has been 

calculated for each point of this area, then 𝜎𝑢
𝐿𝑆 and 𝜎𝑢

𝑀𝐿 can be derived from (2.103)-(2.105) and (2.104)-

(2.106), respectively, since the matrix 𝜮𝑹 is known. 

 

Case 1:  𝝈𝜽𝟏 = 𝝈𝜽𝟐 = 𝝈𝜽𝟑 = 𝟎. 𝟑⁡[𝒅𝒆𝒈] 

For brevity, we indicate 𝜎𝜃 = 𝜎𝜃1 = 𝜎𝜃2 = 𝜎𝜃3, since in this case the value of the standard deviation is 

identical for all the receivers. 

The performance related to the Case 1 are reported in Figure 2.18, where each point of the positioning 

accuracy map identifies a x and y coordinate of the hypothetical target position. 

  

(a) (b) 

Figure 2.18. Standard deviation of the theoretical positioning errors for uniform standard deviations of the angle errors equal 

to 0.3° for: (a) LS method and (b) ML method, for 2 AoA. 

 

 

σ𝒖
𝐿𝑆 > σ𝒖

𝑀𝐿 (2.107) 
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As expected, in this case the two methods lead to the same performance. This is due to the fact that 

the LS solution corresponds to the ML solution when the standard deviations of the measures are identical  

for all the receivers. 

In addition, it is evident that the positioning error is lower than 5 m for the entire examined area. 

Comparing these results with the images in Figure 2.16, we can notice that the employment of only AoA 

measurements avoids the increase of the error when the target lies on the six lines outside the area covered by 

the nodes, mentioned in Section 2.3.2.1.2. This provides the possibility to estimate fairly accurate positions 

regardless the specific target positions. However, there is a slight decrease of the accuracy when the target is 

on the straight lines connecting the receivers. This is due to the parallelism of two out of three lines defined by 

the angles. In fact, without a third receiver it is impossible to determine the target position when it lies on the 

mentioned lines. 

 

Case 2:  𝝈𝜽𝟏 = 𝟓⁡[𝒅𝒆𝒈], 𝝈𝜽𝟐 = 𝟎. 𝟑⁡[𝒅𝒆𝒈],⁡⁡⁡𝝈𝜽𝟑 = 𝟏⁡[𝒅𝒆𝒈] 

In this case, the standard deviations are different for the angles measured by the three receivers. This 

situation is more representative of real cases as the three employed receivers are inherently different from each 

other.  

The use of higher standard deviations (1° and 5°) represents the possible deterioration in performance when 

applying these techniques to real data. 

The results are shown in Figure 2.19, where it is possible to observe that the position error is greater than 

that shown in Figure 2.18, therefore we also increased the scale to provide an easier visualization. This is 

obviously due to the fact that the chosen standard deviations have higher values than in the previous case. 

  

(a) (b) 

Figure 2.19. Standard deviation of the theoretical positioning errors for non-uniform standard deviations of the angle errors 

equal to 5°, 0.3° and 1° for: (a) LS method and (b) ML method, for 2 AoA. 

 

 

In contrast with the results shown in Figure 2.18, in this case, since the standard deviations of the AoA errors 

are different for each receiver, the positioning error increases in a non-uniform way. 

Moreover, as already explained, if the target lies on the line which connects two receivers, it is practically 

impossible to determine its position, without the help of a third receiver. 
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Observing Figure 2.19(a), we can see that, as expected, 𝜎𝑢
𝐿𝑆 near the line that connects the two receivers on 

the left side of the image is much larger than the remaining two lines; this happens because, in these points, 

the determination of the target position depends mainly on the third receiver (on the right) which is the receiver 

with the higher value of 𝜎𝜃𝑖. 

This time, the two solutions (LS and ML) provide different results. In detail, the ML solution is characterized 

by the lowest errors, since it chooses and then 'weights' the estimated position according to the measurements 

it considers most reliable. In general, therefore, even in cases where we have non-homogeneous measurements 

(hybrid techniques AoA/TDoA) it is preferable to use the ML method. 

 

2.3.2.2.3 Solution for the minimum number of receiving nodes 

As explained before, the minimum number of nodes for the position estimation based on only AoA 

measurements is two. In fact, each receiving node estimates an angle, which in turn defines a particular line in 

the plane. In total, there are two lines, at the intersection of which the target can be found. Mathematically, the 

intersection point is determined by solving the following linear system of two equations (the two lines) in two 

unknowns (the coordinates of the target): 

where (𝑥𝑢, 𝑦𝑢) are the coordinates of the target in the chosen Cartesian reference system, m1 and m2 are the 

angular coefficients related to the lines passing through the target position and the receivers RX1 and 

RX2, respectively, while q1⁡  and q2 represent the values of the intercept of the same lines. 

This system admits a closed-form solution, without the use of iterative algorithm (sub-optimal methods). 

If this analysis produces satisfactory results, it represents a good alternative to the aforementioned methods, 

especially if we desire to reduce the costs (economical and computational). 

Suppose to have only two receivers with the same values for the standard deviations. In Figure 2.20, we 

reported the performance for 𝜎𝜃1 = 𝜎𝜃2 = 0.3°. 

{

⁡⁡yu = m1xu + q1⁡
⁡

yu = m2xu + q2

 (2.108) 
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It can be noticed that the considerations expressed for the LS and ML cases apply even this time. In fact, the 

error is much higher in the points adjacent to the line that connects the two receivers. This is due to the fact 

that on these points the two lines are almost parallel, therefore it is very difficult to determine the position of 

the target univocally. 

Moreover, comparing with the results reported in Figure 2.18(a), the position error that occurs on this line 

is greater in this case, since in the case previously analyzed, the third receiver allows in any case to eliminate 

the ambiguity in the positioning, contributing to a significant reduction of the error. 

 

2.3.2.3 Positioning techniques based on AoA/TDoA measurements 

As introduced in Section 2.3.2, we analyze the hybrid solutions only when two receiving nodes are 

employed. 

Therefore, considering the combinations reported in Table 2, we focus on the following two cases: 

1) 1 AoA + 1 TDoA 

2) 2 AoA + 1 TDoA 

as the case where 2 AoA are exploited has been already discussed in Section 2.3.2.2.3. 

 

Case 1:  1 AoA + 1 TDoA 

For the first case, three antennas are enough for the localization in the XY plane, namely one receiving node 

can also be composed by only one antenna.  

As we have already said, the AoA defines a geometric place of points corresponding to a line passing through 

the receiver and the target, while the TDoA corresponds (less than a scale factor equal to the speed of 

Figure 2.20. Standard deviation of the theoretical positioning errors for uniform 

standard deviations of the angle errors equal to 0.3°, for 2 AoA. 



63 

 

propagation of the signal) to a difference between distances that defines a geometric place of points 

corresponding to a hyperbola. 

In this case, it is possible to find the closed-form solution by solving the following system, which represents 

the intersection of a line (AoA) and a hyperbola (TDoA). 

where (⁡𝑥𝑢̂, ⁡𝑦𝑢̂) are the estimated coordinates of the target in the chosen Cartesian reference system, (𝑥1, 𝑦1) 

are the coordinates of the receiving node containing only one antenna in the same reference system, , (𝑥0, 𝑦0) 

are the coordinates of the receiving node considered as reference, c is the speed of light,⁡𝛥𝜏̂ is the estimated 

TDoA, 𝑚̂ is the slope of the line defined by the AoA, while q2 represents the value of the intercept of 

the same line. 

In Figure 2.21, we reported the performance for 𝜎𝜃 = 0.3° and 𝜎𝑅 = 1.5 m. 

 
When only one AoA and one TDoA are used, the error increases more rapidly with respect to the cases 

analyzed previously, as the distance between the target and the receiving nodes increases. This is due to 

i) the elimination of one receiver, which provides the reduction of the information available for the target 

position estimation, and ii) compared with the results obtained with 2 AoA, the replacement of the AoA 

with the TDoA measure, which is characterized by lower accuracies. 

 

Case 2:  2 AoA + 1 TDoA 

If two receivers, each one with at least two elements, are available, it is theoretically possible to carry out 

three different measurements: two of AoA and one of TDoA. 

{
√(x1 − xu)

2 + (y1 − yu)
2 −√(x0 − xu)

2 + (y0 − yu)
2 = 𝛥𝜏̂ ∙ c

⁡
yu = m2xu + q2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

 (2.109) 

Figure 2.21. Standard deviation of the theoretical positioning errors for 𝜎𝜃 =
0.3° and 𝜎𝑅 = 1.5 m, for 1 AoA + 1 TDoA. 
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Even this time, the system is overdetermined, and it is not possible to solve directly the system. Therefore, 

we must rely on the sub-optimal solution described before. The basic steps are the same seen for the previous 

cases, the only thing that changes is the definition of the matrix 𝐇. 

We can indicate with 𝐇AoA the matrix containing the direction cosines related to the AoA measures as 

defined in the equation (2.87), and with 𝐇TDoA the matrix containing the direction cosines related to the TDoA 

measures as defined in the equation (2.52). 

Therefore, the matrices 𝐇AoA and 𝐇TDoA have a number of row equal to two, because we operate in the XY-

plane, and a number of columns equal to NAoA and NTDoA, respectively, namely to the number of receivers 

that are able to measure an angle and to the number of pairs of receiver that can discriminate a time difference 

of arrival. 

The generic form of the matrix 𝐇 is therefore defined as follows 

of dimensions (𝑁𝐴𝑜𝐴 + 𝑁𝑇𝐷𝑜𝐴) x 2, that in this case is 3 x 2. 

As asserted before, when we have non-homogeneous measurements (hybrid techniques AoA/TDoA) it is 

preferable to use the ML method, therefore we analyzed the results only for this solution. 

In Figure 2.22, we reported the performance for 𝜎𝜃1 = 𝜎𝜃2 = 0.3° and 𝜎𝜃 = 1.5 m. 

 
Comparing this figure with Figure 2.20, we can notice that the accuracies achieved with 2 AoA and the 

hybrid solution (2 AoA + 1 TDoA) are almost similar in the area of interest. The main advantage produced by 

the introduction of one measure of TDoA is the elimination of the ambiguity in the definition of the target 

position when it lies in the line which connects the two nodes. 

𝐇 = [𝐇𝐴𝑜𝐴⁡⁡⁡𝐇𝑇𝐷𝑜𝐴]
𝑇 (2.110) 

Figure 2.22. Standard deviation of the theoretical positioning errors for 𝜎𝜃1 =

𝜎𝜃2 = 0.3° and 𝜎𝜃 = 1.5 m, for 2 AoA + 1 TDoA. 
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Since in our tests we usually operate far from the receivers, the increase in complexity generated by the use 

of TDoA measurements when 2 measures of angles are already available is not useful for our purposes. 

In conclusion, in the following analysis, we will use 1 AoA + 1 TDoA when only three antennas are available 

for the acquisition of the measures of interest, whereas we will use only 2 AoA when four surveillance antennas 

can be exploited. 

 

2.3.3 Processing scheme 

The processing scheme of the Passive Source Location system is presented in Figure 2.23.  

 
This is the most general representation of the processing scheme for a PSL system. In fact, all the possible 

measurements that can be estimated with two receiving nodes are shown in this figure, namely two measures 

of AoA and one measure of TDoA. Since we use the same receiving channels for both the PBR and the PSL, 

if the reference signal for the passive radar is directly acquired from the AP, we can use only three surveillance 

antennas, and so the localization with the PSL can be performed only by combining one measure of AoA and 

one of TDoA, and the related processing scheme is obtained from Figure 2.23 by eliminating the additional 

measure of AoA. The other combination presented in Table 2 can be derived similarly. 

In this scheme, as an example, we have explicitly written an expression for the TDoA estimation. Obviously, 

this can be changed according to the specific technique chosen in each particular case. 

Comparing Figure 2.23 with the scheme of the PBR in Figure 2.4, it is evident that the device-based strategy 

is characterized by a lower complexity, and in turn the final localization is obtained with a lower computational 

cost. In fact, the higher SNR conditions of the direct signals transmitted by the device provide the possibility 

to avoid all the steps required for the PBR for the extraction of the target echoes, since the target position can 

be estimated directly on the received signals. 

Therefore, after the acquisition of the signals present in the selected Wi-Fi channels, the packet extraction 

and the next classification of all the found packets based on their source address, the device transmissions are 

separately processed for the extraction of the measures of interest (TDoA/AoA). Finally, the localization in 

the XY-plane can be performed by using the desired positioning techniques. 

Figure 2.23. Processing scheme of the Passive Source Location. 
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Chapter 3  

Comparative analysis of PBR and PSL 
 

In Chapter 2, the PBR and PSL have been characterized in detail. At this point, it is interesting to analyze 

their capability to localize a target. 

Therefore, in this Chapter, localization performance and characteristics of the two localization techniques 

are analyzed and compared, aiming at their joint exploitation inside sensor fusion systems. With two receiving 

nodes, the Passive Source Location can combine two measures of Angle of Arrival (AoA) or the AoA and the 

Time Difference of Arrival (TDoA) measures of the device transmissions to achieve the target position. The 

Passive Bistatic Radar, instead, exploits the AoA and the bistatic range measures of the target echoes. This 

means that for the PBR one node is sufficient to provide the target position estimates. 

The results obtained on experimental data show that the Wi-Fi emission-based strategy is always effective 

for the positioning of human targets holding a Wi-Fi device, but it has a poor localization accuracy and the 

number of measured positions largely depends on the device activity. In contrast, the passive radar is only 

effective for moving targets and has limited spatial resolution, but it provides better accuracy performance, 

thanks to the possibility to integrate a higher number of received signals. These results also demonstrate a 

significant complementarity of these techniques, through a suitable experimental test, which opens the way to 

the development of appropriate sensor fusion techniques. 

As mentioned above, the analysis is performed through the evaluation of the results obtained on 

experimental data. For this reason, the equipment and the experimental setup will be presented in Section 3.1, 

while the performance analysis will be discussed in the last two sections, where the relationship between data 

traffic conditions and performance is analyzed in Section 3.2.2 and the performance comparison of the 

proposed techniques is presented in Sections 3.2.3 and 3.3.2. 

 

3.1 Experimental setup and equipment description 
 

3.1.1 Acquisition site and geometry 

The acquisition campaigns described in this thesis have been performed in an outdoor environment, 

specifically in a parking area located in the proximities of POMOS (Polo per la Mobilità Sostenibile) building 

in Cisterna di Latina, Italy. 

During the acquisition measurements, we built on the ground a square grid of nine points, spaced 15 meters 

each other in both directions, as sketched in Figure 3.1.  
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These points have been used for the calibration stage and for comparing the estimated positions with the 

ground truth, as reported in Figure 3.15 and Figure 3.31.  

As shown in Figure 3.1, two nodes, each one containing two antennas, have been dislocated to cover an area 

of interest. The antennas can be either receiving or transmitting, depending on the desired configuration of the 

antennas. 

The node indicated with the label ‘NODE 2’ in Figure 3.1 has been placed at a distance of 40 meters with 

respect to the central element of the third row of the grid (P8). A second node, indicated as ‘NODE 1’ in Figure 

3.1, has been located at a distance of 25 m from ‘NODE 2’. 

The position of the antenna pair which composes the second node has been also assumed as the origin of the 

local X-Y system of coordinates used to represent the obtained localization measures on the plane; specifically, 

Y-axis is oriented along the line connecting the two antennas which compose the ‘NODE 2’ with the central 

row (in vertical) of the grid. X-axis is oriented towards right in the represented scenario. As an example, the 

grid elements horizontally displaced in the closest row with respect to the ‘NODE 2’ are identified, from left 

point to right point, with the following coordinates in the described reference system: (-15,40) m, (0,40) m and 

(15,40) m. The coordinates of the remaining 6 points of the grid can be derived similarly. 

With reference to the pointing of these two nodes, the antennas of the ‘NODE 2’ are oriented so as to point 

towards Y-axis, while those of ‘NODE 1’ have a misalignment of about -20° with respect to Y-axis pointing 

(so as to be pointed towards the grid, as easily perceivable by the geometry sketched in Figure 3.1). 

The antennas of the two nodes are not aligned along X-axis. 

Figure 3.1. Acquisition grid and distances between the 

different elements. 
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For the calibration stage, we put an Access Point on each different point of the grid, and we recorded few 

seconds of transmission. 

The AoA and the TDoA have been evaluated for each point and then they have been compared with the 

ground truth. The Minimum Mean Square Error (MMSE) approach has been used to estimate the errors to be 

compensated for. As it is apparent, the correction of the angle error can be applied to both the techniques, while 

the TDoA offset is related to the length of the used cables. 

In the following sub-sections the main features of the used devices are described.  

 

3.1.2 Access Point 

A commercial Access Point (AP), DAP-1160 by D-LINK, has been used as cooperative source of Wi-Fi 

signals, Figure 3.2.  

 

It is based on the IEEE 802.11 Standard, [28], it is compliant with IEEE 802.11g standard and can operate 

both as router and access point. The DAP-1160 is equipped with a 2dBi Gain detachable omnidirectional 

antenna with RP-SMA connector. Thanks to its easy-to-use web-based management interface, it is possible to 

configure the AP main parameters, according to the different tests to be performed. For example, it is possible 

to set the transmit output power, in percentage with respect to the maximum value (100%, 14dBm typical for 

802.11g mode): allowed percentages are 50%, 25% and 12.5%. It is also possible to set the transmitting channel 

in the 2.4GHz band (from 1 to 13); this option is especially useful during experimental tests performed in 

different scenario, since it allows to select a transmission channel with no or reduced interference level from 

already existing Wi-Fi transmissions. Moreover, it is possible to configure the transmission modulation, for 

example DSSS, OFDM and so on, and other parameters such as beacon interval and beacon duration. 

  

Figure 3.2. D-LINK DAP-1160 Access Point. 
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3.1.3 Receiving system 

In this sub-section, the main elements of the used receiving system are described. Specifically, 

• Wi-Fi antennas 

• multi-channel receiver: NI USRP-2955 

 

3.1.3.1 Wi-Fi antennas 

Commercial Wi-Fi antennas have been used to acquire data transmitted by devices and AP during the 

performed tests. Specifically, two different antenna models have been tested: 

- D-LINK ANT24-1200 

- TP-LINK TL-ANT2409A 

 

3.1.3.1.1 D-LINK ANT24-1200 

The first considered antenna model is ANT24-1200, by D-LINK; it is a rectangular panel antenna, very 

light (190 g) and small sized (33 x 9.3 cm), see Figure 3.3. 

 

The main features of this antenna are summarized in the following, while Figure 3.4 shows the radiation 

diagrams provided by the manufacturer, horizontal and vertical, respectively in Figure 3.4(a) and Figure 3.4(b). 

Finally, Figure 3.5 shows the configuration of one couple of antennas, as previously described (specifically, 

the photo is referred to the couple identified as ‘NODE 1’, but the same configuration has been used for the 

‘NODE 2’). The two antennas are horizontally displaced, with a distance of 12 cm between the respective 

phase centers, aiming at reducing angle ambiguities. 

  

Figure 3.3. Wi-Fi antennas: D-LINK ANT24-1200. 
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ANT24-1200 main features: 

• frequency range: 2.4-2.5GHz 

• impedance: 50  

• gain: 12dB 

• horizontal half power beamwidth: 80° 

• vertical half power beamwidth: 23° 

• front-to-back ratio: 15dB 

• admitted power (max): 20 W 

• connector: SMA (female) 

 

 

Figure 3.4. D-LINK ANT24-1200: radiation pattern, horizontal and vertical. 
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3.1.3.1.2 TP-LINK TL-ANT2409A 

The second considered antenna model is TL-ANT2409A, by TP-LINK; it is a square antenna, small sized 

(about 12 x 12 cm), see Figure 3.6. 

 

The main features of this antenna are summarized in the following, while in Figure 3.7 the radiation diagrams 

are reported as provided by the manufacturer, horizontal and vertical, respectively in Figure 3.7(a) and Figure 

3.7(b). Finally, Figure 3.8 shows the configuration of one couple of antennas, as previously described 

(specifically, the photo is referred to the couple identified as ‘NODE 1’, but the same configuration has been 

used for the ‘NODE 2’). The two antennas are horizontally displaced, with a distance of 14 cm between the 

respective phase centers, aiming at reducing angle ambiguities. 

Figure 3.5. ANT24-1200: displaced configuration for a couple of antennas (‘NODE 1’). 

Figure 3.6. Wi-Fi antennas: TP-LINK TL-ANT2409A. 
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TL-ANT2409A main features: 

• frequency range: 2.4-2.5GHz 

• impedance: 50  

• gain: 9dB 

• horizontal half power beamwidth: 60° 

• vertical half power beamwidth: 76° 

• Return Loss: -10dB max 

• admitted power (max): 1 W 

• connector: RP-SMA (male) 

 

 

 

Figure 3.7. TP-LINK TL-ANT2409A: radiation pattern, horizontal (a) and vertical (b). 

Figure 3.8. TL-ANT2409A: displaced configuration for a couple of antennas (‘NODE 1’). 
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3.1.3.2 Multi-channel receiver: NI USRP-2955 

The receiver used to collect and store data received with the four Wi-Fi antennas is a Software Defined 

Radio (SDR) platform providing an integrated hardware-software solution for demonstrators or prototypal 

systems. Specifically, the device is the NI USRP-2955, by National Instruments (Figure 3.9). It is a 4-channel 

tunable receiver, able to collect and simultaneously sample signals (up to a maximum rate of 100 MS/s) in the 

frequency range 10 MHz – 6 GHz. 

 

The receiver is also equipped with a GPS-disciplined oscillator (GPSDO) that allows to lock the device 

internal clock to a GPS reference signal, so as to synchronize the receiving channels using the timing 

information provided by GPS. It is also possible to set via software the gain of each receiving channel, 

independently by other three channels, in the range 0-95dB, with 1dB step. 

The main features of the receiver are summarized in the following: 

• number of channels: 4 

• frequency range: 10 MHz to 6 GHz 

• frequency step: < 1 KHz 

• gain range: 0 dB to 95 dB, in 1 dB steps 

• maximum input power (Pin): +10 dBm 

• frequency accuracy: 2.5 ppm 

• maximum instantaneous real-time bandwidth: 80 MHz 

• maximum I/Q sample rate: 100 MS/s 

• analog-to-digital converter (ADC) resolution: 14 bit 

• ADC spurious free dynamic range (SFDR): 88 dB 

• Noise Figure (NF):  

o < 5 dB, 10 MHz to 3 GHz 

Figure 3.9. NI USRP-2955. 
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o < 4 dB, 3 GHz to 5 GHz 

o < 8 dB, 5 GHz to 6 GHz 

 

Figure 3.10 shows a typical configuration for this kind of receiving systems, with the interface (MXIe 

adapter) between the USRP and the host PC. 

 

The USRP is programmed and controlled via LabVIEW (Laboratory Virtual Instrument Engineering 

Workbench) software, developed by National Instruments. LabVIEW is system-design platform and 

development environment for a visual programming language. It runs on the host PC, which also provides the 

storage environment for acquired data.  

As an example, Figure 3.11 and Figure 3.12 show two user interfaces (front panels) of codes for the test of 

signal levels and for data acquisition, respectively. 

In particular, during the acquisition campaign the first step is to use the interface presented in Figure 3.11 to 

check the signal levels, in order to understand the possible presence of errors in the receiving chain (if some 

signal is not shown in the relative plot window) and conveniently set the different gains of each receiving 

channel. 

After this preliminary operation, the second interface is used to acquire the signals in the selected Wi-Fi 

band. 

Figure 3.10. NI USRP-2955: URSP RIO system components. 
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As is apparent, during configuration stage the main acquisition parameters are specified via software, for 

example the number of receiving channels to be acquired, the center frequency of each channel, the desired 

sampling frequency, the gain for each channel. Data from the sampling of each channel are stored as binary 

files (.bin extension) on the memory of the host PC, and are ready for the post-processing, performed off-line 

with Matlab®. 

 

Figure 3.11. NI USRP-2955: LabVIEW interface for signal test. 

Figure 3.12. NI USRP-2955: LabVIEW interface for data acquisition. 
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3.1.4 Antenna configurations 

With respect to the antennas, we have used two different configurations based on the number of antennas 

available for the specific purpose. In fact, as explained in the USRP description, we have the possibility to 

exploit four receiving channels, and so we can use up to four receiving antennas. This number is reduced if 

one of the four channels of the USRP is dedicated to the acquisition of the reference signal. 

In particular, the first configuration used in our tests exploits three surveillance antennas and the reference 

signal is spilled directly from the Access Point used as transmitter of opportunity, as displayed in Figure 3.13. 

 
In particular, as can be seen in Figure 3.13(a), two receiving antennas were located very close to each other, 

whereas the third one was positioned 25 m far from them, near a transmitting directive antenna connected to 

the AP through a directional coupler. The second output of the coupler was linked to the fourth channel of the 

USRP, as explained before and displayed in Figure 3.13(b). Therefore, the second antenna contained in ‘NODE 

1’ in Figure 3.1 is a transmitter and not a receiving antenna.  

With these three antennas, a human target (carrying an active mobile device) moving in the observed area 

can be located in 2D by exploiting the signals emitted by their devices (PSL sensor). Specifically, the two 

closely spaced antennas (RX2 and RX3) can be used in interferometric mode to estimate the signal AoA, 

whereas the TDoA between the signals collected at antenna RX1 and RX2 provide the hyperbola that contains 

the target location. As apparent, using together the two measurements, two equation can be written in the two 

spatial unknowns (target x and y coordinates) so that the 2D target position can be obtained. 

However, this setup also allows exploiting the signals emitted by the Wi-Fi AP that are scattered by the 

human targets and reach the two closely spaced antennas (RX2 and RX3). In this case, the AP acts as the 

Figure 3.13. Experimental setup (3 surveillance antennas): (a) scenario and antenna configurations, (b) 

receiving channel configuration. 

(a) (b) 
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illuminator of opportunity of a WiFi-based PBR; moreover, the human target localization does not depend on 

carrying a Wi-Fi device, since they are not required to emit their own signals to be localized.  

In detail, the passive radar can estimate the target position through the measure of the Angle of Arrival 

(AoA) and the bistatic range, both estimated by the closest antennas (RX2 and RX3 in Figure 3.13). In this 

case, the fourth channel is used to collect a reference copy of the transmitted signal that allows measuring the 

bistatic range.  

With both the device-based system and the passive radar system, three receiving channels are exploited to 

obtain two measurements (respectively AoA and TDoA, and AoA and bistatic range), which are finally used 

to solve the 2D localization system. The two types of received packets can be easily discriminated by decoding 

their bits, where we can find both source and destination addresses, so that they are exploited in the correct 

way. 

In the second configuration, the four receiving channels of the USRP are completely occupied by the 

surveillance antennas. This means that a higher number of measures can be estimated, but at the same time, 

the possibility to acquire a copy of the reference signals is lost. 

Therefore, four receiving antennas, divided in two couples, have been considered in the described acquisition 

campaigns, as can be seen in Figure 3.14. 

 

Two out of the four antennas, indicated in Figure 3.14 as ‘RX2/RX3’, have been placed very close one 

another, in the place occupied by the ‘NODE 2’ in Figure 3.1. As shown in the figure, a second couple of 

receiving antennas is present: these two antennas are identified as ‘RX0/RX1’, located at a distance of 25 m 

from antennas ‘RX2/RX3’ and not aligned along X-axis. ‘RX2/RX3’ are oriented so as to point towards Y-

axis, while ‘RX0/RX1’ antennas have a misalignment of about -20° with respect to Y-axis pointing (so as to 

be pointed towards the grid, as easily perceivable by the geometry sketched in Figure 3.14). 

Figure 3.14. Experimental setup (4 surveillance antennas): (a) scenario and antenna configurations, (b) receiving 

channel configuration. 
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In this configuration, the transmitter is the AP omnidirectional antenna (a directive antenna has not been 

used), and the reference signal has not been acquired. This means that the signals emitted by the AP must be 

reconstructed from a surveillance antenna in post-processing operations. 

 

3.2 Low data traffic for PSL sensor 

The results presented in this Section are discussed in [41]-[43]. 

 

3.2.1 Acquisition campaign description 

The illuminator of opportunity of the passive radar system was the commercial wireless Access Point 

presented in Section 3.1.2, which was connected to a transmitting directive antenna. Its transmissions were 

also used to establish the communication between AP and mobile devices. The AP was configured to transmit 

in channel 4 of the Wi-Fi band (carrier frequency equal to 2.427 GHz). The beacon interval was set to 3 

milliseconds, that defines the Pulse Repetition Time (PRT) of the passive radar. Under these conditions, the 3 

ms beacon rate provides a very high number of packets that can be exploited to locate the target. Moreover, 

the AP was set with a transmission rate of 1 Mbps (namely modulation and coding schemes are respectively 

DBPSK and 11-chip Barker sequence). 

For this experimental campaign, the acquisition system was characterized by three receiving channels, 

connected to three surveillance antennas (D-Link ANT24-1200) used to acquire the signals emitted by both 

AP and Wi-Fi devices carried by the human targets. In addition, we set an additional gain for each USRP 

receiving channel in order to have a comparable signal level. The gains are set to compensate the attenuations 

due to the employment of different length cables. In fact, as displayed in Figure 3.15, two receiving antennas 

were located very close one another (with spacing of 12 cm between them), near the receiving system, and 40 

m from the side of the square grid, whereas the third one was positioned 25 m far from them, close to the 

transmitting antenna. 

As shown in Figure 3.15, Cartesian reference system is considered with origin in the midpoint of RX2-RX3 

and axes aligned with the sides of the grid. 



79 

 

 
The acquired signal was sampled with a sampling frequency of 22 MHz, then it was stored and processed 

off-line. The first processing operation is the classification of the acquired packets, based on the possible 

transmitting source, to perform the association between packet and target (or AP). 

We carried out a test that could be interesting for both the techniques described before and could show the 

analogies and the complementarity between them. In this test, as shown in Figure 3.15, a target with an active 

mobile device (Asus Zenfone 2) moves from the central point of the grid, namely the point A in the figure, and 

arrives to the point B. The acquisition duration is about 28s. The target takes 20s to reach point B, and then he 

stops there for about 8s. It is worth mentioning that the path sketched in Figure 3.15 along the grid is purely 

nominal. 

During the whole 28 seconds, the user attempts connecting to the Wi-Fi router used as illuminator multiple 

times, but there is not an ongoing continuous data upload, therefore the device-emitted waveforms occupy the 

medium for a short time and only a few packets sent by the mobile device are collected by the three receive 

antennas.  

While a continuous upload would increase the emissions from the device, this condition appears to be largely 

more representative of a typical practical case, where a specific device is not strongly loading the network and 

the router is able to accept many connections. 

 

3.2.2 Relationship between data traffic conditions and performance 

The aim of this section is to investigate the relationship between data traffic condition and performance of 

the proposed localization techniques based on Wi-Fi signals. In fact, the performance of both systems is closely 

linked to the signal-to-noise ratio (SNR) of the data used for the estimation, and accordingly, to the signal 

energy and the number of samples available. As it is apparent, the higher the signal energy and the number of 

signal samples, the better the performance. In detail, the number of samples depends on i) the Wi-Fi packet 

length, and ii) the number of packets occurred in a specific time interval, so that a time integration operation 

might be potentially performed. This means that the best possible situation is to have a big number of long 

packets for the estimation of the parameters of interest.  

 

Figure 3.15. Target localization and tracking experiment (Test 1). 
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Nevertheless, these characteristics are related to the actual communication activity between AP and devices. 

In fact, as defined in the IEEE 802.11 Standard, [28], the packets length changes according to the packet type 

(beacon, probe request, authentication, etc.), therefore it is possible to have available even very short signals. 

In addition, in a normal communication system, multiple users, e.g. APs and devices, could share the same 

channel. Therefore, they cannot transmit simultaneously, and the number of Wi-Fi packets transmitted by each 

of them depends on the specific case. It is evident that when the device uploads data, the transmission rate of 

the AP decreases and the performance of the passive radar worsens, while the device-based technique performs 

better. In contrast, during download activities, the AP transmits more packets, thus the passive radar provides 

the best performance. These considerations provide a first proof of the complementarity between the described 

approaches, that makes them suitable for a possible fusion in an integrated system, which provides the position 

estimation of targets during the whole observation time, regardless the traffic conditions. 

In this specific case, the two techniques are characterized by different transmission rates of the employed 

signals, as shown in Figure 3.16. In fact, while the passive radar can exploit the periodical beacon transmission 

of the AP (approximately each 3 milliseconds), the device-based approach has available only the signals sent 

during the device upload activities. In particular, in this work, we only analyzed connection activities between 

the AP and the mobile device, so that there is a very limited upload activity from the device, which affects the 

performance of device-based techniques. 

 
In order to understand the characteristics of these strategies, we investigate the relationship between AoA 

estimation accuracy and energy features of the exploited signals. The analysis has been carried out on 

experimental data, acquired during appropriate measurement campaigns. 

In particular, for the device-based localization, the study has been performed through the estimation of the 

parameters of interest using different packet lengths. The basic idea is to emulate the decrease of the SNR, in 

order to observe its influence on the localization accuracy. 

For the passive radar, in addition to the employment of less samples, as for the device-based localization, 

the effect of the reduction of the Pulse Repetition Frequency (PRF) has been investigated. In fact, it is typical 

that a big number of echo packets can be integrated, so that a reasonable power can be collected from the 

target, which in turn provides an accurate position measurement. The number of pulses available depends on 

the Beacon Interval (BI) that is defined as the time spacing from consecutive beacons, which are packets 

periodically sent by the Access Point (AP). However, when the BI decreases, the nice performance of the PBR 

Figure 3.16. Data traffic conditions for the proposed test. 
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tends to degrade. This situation is typical of loaded networks, where the AP has to share the medium with other 

stations, which might also transmit with a high transmission rate. In this work, we show the result of controlled 

localization experiments that allow us to analyze this degradation. An analysis of some important effects of 

this type was already provided in [18]. In this work, we analyze the impact of the longer BI not only on the 

target detection, but also on the accuracy of the measurements and finally on the 2D localization. In this case, 

limit values are suggested for practical applications. 

 

3.2.2.1 Accuracy of device-based AoA measurements 

Both device-based and passive radar target positioning techniques exploit the AoA measurement, obtained 

by the phase difference between the closely spaced antennas RX2 and RX3 in Figure 3.15. The former extracts 

the AoA of the signals emitted by the Wi-Fi devices, the latter the AoA of the AP signal scattered by the human 

targets towards the two closely spaced antennas. 

Therefore, it is of high interest to compare the accuracy obtained by the two techniques. Unlike in the FM-

passive radar case, it is not useful to attempt using multiple frequencies to increase the performance, [44]. In 

contrast, it is quite interesting to investigate the relationship between received signal energy and the AoA 

measurement accuracy. While a direct monotonic relationship is expected under ideal conditions (disturbance 

consisting of only constant level white Gaussian thermal noise), the practical accuracy also depends on packet 

distortion due to channel conflicts, interferences, etc… If the performance only depends on signal energy, it is 

quite essential to understand the relative number of packets available for the Wi-Fi device-based technique and 

for the Wi-Fi passive radar. Similarly, also the number of samples present inside the single packet is quite 

essential to obtain a global energy measure. 
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We first analyze the estimate of the AoA obtained by the device-based technique. The estimates obtained 

using the individual packets are reported in Figure 3.17 (red crosses), together with the ground truth (blue solid 

line). The latter is obtained by assuming that the target was moving with a uniform linear motion along the 

assigned path (see Figure 3.15). To assess the relationship between accuracy and signal energy, subplots (a), 

(b), (c) and (d) are obtained by using only the first L samples of each received packet, being respectively L = 

1, 8, 23 and 375.  

In the lower subplot, also the corresponding energy level 𝐸 = ∑ |𝑠𝑙|
2𝐿

𝑙=1  is reported, for comparison, being 

𝑠𝑙 the l-th sample.  

For direct comparison, Figure 3.18 shows the AoA estimation error as a function of the time instant tk, 

𝑒(𝑡𝑘) = 𝜃(𝑡𝑘) − 𝜃(𝑡𝑘), where 𝜃(𝑡𝑘) is the estimated angle of arrival, whereas 𝜃(𝑡𝑘) represents the ground 

truth at the same time. As in Figure 3.17, we report below the corresponding energy level for the single 

estimation. 

We can see that, as expected, the accuracy increases when the number of samples, and consequently the 

energy level of the employed signal, increases. In addition, since we are in high SNR condition, the estimation 

provides good performance with just L=8 samples. 

Figure 3.17. Comparison between estimated AoA and the ground truth for: (a) 1, (b) 8, (c) 23 and (d) 375 samples, for 

the device-based technique. 
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From the figures above, it is clear that the signal energy is high and the estimation errors are limited even 

using a few samples per packet. It is interesting to analyze the impact of the degradation of the Signal to Noise 

Ratio (SNR) on the performance. To this purpose, we deliberately inject white Gaussian noise to degrade the 

SNR by 10 dB and 20 dB. In order to perform a quantitative comparison of the performance obtained in 

different case studies we report in Table 3 the Root Mean Square Error (RMSE) evaluated along the whole 

target path, 𝑟𝑚𝑠𝑒 = √
1

𝑁
∑ |𝑒(𝑡𝑘)|

2𝑁
𝑘=1 ⁡ , based on all the available packets N. In this case also longer packet 

fragments are considered, with L=1, 2, 8, 23, 94, 375, 1500, 6000 and 9000 samples.  

Figure 3.18. Difference between the estimated AoA and the ground truth for: (a) 1, (b) 8, (c) 23 and (d) 375 samples, for 

the device-based technique. 
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Table 3. Root mean square errors achieved without additive noise, with 10dBs of additive noise 

and with 20dBs of additive noise, for the device-based technique. 

Number of samples No noise +10 dB noise +20 dB noise 

1 8.5947 13.4757 21.1637 

2 5.2420 8.9204 17.0615 

8 1.3111 7.0607 10.3149 

23 1.1745 1.6963 7.6186 

94 1.1802 1.1947 4.8639 

375 1.1764 1.1795 2.8863 

1500 1.1784 1.1787 1.2412 

6000 7.7847 7.7931 7.8306 

9000 6.8102 6.8096 6.8132 
 

 

Figure 3.19 shows the values of Table 3, making it evident that the RMSE decreases as the  number of 

samples L increases up to the value of L=1500. After this value, a performance degradation is experienced, 

which has been verified to be caused by the possible presence of collisions between AP and device packets. In 

fact, notice that such RMSE increase start at the same value of L, independently of the SNR condition. This 

analysis suggests exploiting only the first short portion of each emitted packet in order to limit the probability 

of collision. However, we also observe that, when operating against a noisier environment, a larger number of 

samples L is required to achieve the lowest RMSE value, namely L=94 and L=1500 for SNR degraded  

respectively by 10 and 20 dB, instead of  L=8 samples of the experiment conditions.  

 

Figure 3.19. Comparison between the rmse values achieved without additive 

noise, with 10dBs of additive noise and with 20dBs of additive noise. 
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3.2.2.2 Accuracy of passive radar AoA measurements 

A similar analysis is performed for the estimate of the AoA obtained by the passive radar technique.  In this 

case, the AoA estimation is based on a train of coherently integrated packet echoes; therefore, the available 

signal energy depends both on the packet length and on the Packet Repetition Time (PRT).  

The first study consists in the replication of the analysis presented for the PSL, namely the limitation of the 

number of samples exploited for each packet within the coherent integration time of 0.5 s. The results are 

reported in Figure 3.20 for 9000, 6000 and 375 samples. Table 4 compares the RMSE for the entire packet to 

the RMSE obtained using the first L= 9000, 6000, 1500 and 375 samples. 

 

It is evident that with 375 samples the AoA estimation is less accurate than for longer packet fragments due 

to the reduced SNR. However, Table 4 shows that the estimation accuracy is sufficiently robust to a reduction 

of the packet length until the number of samples L falls below 6000 and even in this case it outperforms the 

device-based technique, except for static targets.  

(a)

(b)

(c)

Figure 3.20. Comparison between estimated AoA and the ground truth for: (a) 9000, (b) 

6000 and (c) 375 samples, for the passive radar technique. 
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Table 4. Root mean square errors obtained for the passive radar technique and different number of samples. 

Number of samples 375 1500 6000 9000 Entire beacon 

RMSE 0.9429 1.0011 0.7619 0.7591 0.7493 
 

While this analysis has been performed using beacon transmissions by the AP, it shows that the passive 

radar technique can be effectively exploited against moving targets even in the presence of short data packets 

or using few collected samples to reduce processing hardware and costs. 

An alternative way to degrade the available SNR is to increase the BI of the transmitted beacon. In this 

analysis, this behavior is emulated by discarding packets in the specific experimental dataset (where PRT was 

equal to 3 ms) in order to increase the average PRT to 12 ms, 24 ms and 48 ms. 

The resulting AoA estimates (red dots), and their comparison with the ground truth (solid blue line), are shown 

in Figure 3.21. In addition, the overall processed energy of the received signal is presented in the lower plot.  

In particular, when exploiting all the available packets within a 0.5 s coherent integration time, we obtain 

the results shown in Figure 3.21(a). 

 

Figure 3.21. Comparison between estimated AoA and the ground truth for: (a) BI = 3ms, (b) BI = 12ms, (c) BI = 24ms and 

(d) BI = 48ms, for the passive radar technique. 
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Compared to the case of the device-based AoA approach, when BI = 3 ms, the measurements show a high 

continuity thanks to the high packet transmission rate of the Wi-Fi AP. It has to be noted that in the passive 

radar case a much stronger signal attenuation is present due to the two-way propagation loss. Moreover, since 

the AP-emitted signals are scattered by all fixed object in the scene, appropriate cancellation filters are 

employed to remove all echoes from stationary objects. This allows an effective extraction and detection of 

the moving targets, while makes it impossible to detect and localize static persons, thus the track is lost when 

the target stops. 

The long (0.5 s) coherent integration time clearly allows to gather enough energy to provide a remarkable 

estimation accuracy, as well as to separate the moving target echoes from those scattered by the stationary 

scene. 

In fact, the coherent integration time depends on the number of beacon transmissions occurred in that 

particular time interval. In detail, with a BI of 3 ms (Figure 3.20(a)) and an integration time equal to 0.5 s, it 

is possible to integrate about 167 packets, while when the BI reaches 48 ms (Figure 3.20(d)), this number 

decreases to about 10. In this figure, the results show that the main problem of increasing the BI is the loss of 

detections, and accordingly, of the AoA estimates, due to the corresponding SNR degradation. Moreover, it is 

possible to notice that also the accuracy is affected by the integration of less beacons, due to the degradation 

of the Signal-to-Noise Ratio (SNR) of the employed signals. 

With respect to the loss of detections, Figure 3.22 highlights this behavior. In particular, it shows the target 

detections in the bistatic Range-Doppler plane, for our case study. 
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It is apparent that when the BI increases (i.e. the PRT increases), the number of detections decreases and the 

non-ambiguous Doppler region is strongly reduced, being this parameter related to the inverse of the PRT. 

This causes a partial overlap of moving target echoes with the echoes from the stationary scene that are 

removed, as clearly displayed in Figure 3.22(c)-(d). In particular, while for BI=3, 12 ms Figure 3.22(a)-(b) 

shows many detections and a tracker is required to select the true target plots from false alarms and can be 

used to smooth their Doppler-range behavior, for BI=24, 48 ms many target plots are lost, so that the target 

tracking is required to fill the gaps and ensure continuity. 

To understand better the accuracy, instead, in Figure 3.23 we show the AoA estimation error as a function 

of the time instant tk, 𝑒(𝑡𝑘) = 𝜃(𝑡𝑘) − 𝜃(𝑡𝑘), where 𝜃(𝑡𝑘) is the estimated angle of arrival, whereas 𝜃(𝑡𝑘) 

represents the ground truth.  

Figure 3.22. Target detection in the bistatic Doppler-Range plane for: (a) BI =3 ms, (b) BI = 12 ms, (c) BI = 24 ms, (d) 

BI = 48 ms. 
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It is apparent that the time slot where estimates are available is reduced, continuity is lost and in some cases 

(Figure 3.23(c)) even some bias can appear. 

By combining the two measures of AoA and bistatic range, the position estimation is easily obtained in the 

XY-plane, as shown in Figure 3.24, where the blue circles indicate the nine points of the grid created on the 

ground.  

Figure 3.23. Target AoA error vs. time for: (a) BI =3 ms, (b) BI = 12 ms, (c) BI = 24 ms, (d) BI = 48 ms. 
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It can be noticed that the path of the target is correctly identified if compared to the theoretical behavior (see 

red line in Figure 3.15), especially when a small BI is used. According to the previous considerations, it is 

evident that increasing the BI, some position estimates are missing. This behavior is negligible when we pass 

from 3 ms to 12 ms, but becomes relevant for higher values of BI. In particular, for BI = 48ms, we lose the 

entire first part of the target motion, so we cannot find continuously the target position. 

In order to have a quantitative idea of this results, we reported in Table 5 the values of RMSE and number of 

detections for each analyzed case. 

Table 5. Root mean square errors obtained for the passive radar technique and different PRT. 

Number of samples 375 1500 6000 9000 Entire beacon 

RMSE 0.9429 1.0011 0.7619 0.7591 0.7493 

Number of detections 215 171 71 24 16 
 

The RMSE reported in Table 5 shows a progressive decrease of angular accuracy up to PRT=24 ms. For 

higher values of PRT, the number of target detections is extremely reduced so that it does not allow a 

statistically significant result.  

Figure 3.24. Target detection in the X-Y plane for: (a) BI =3 ms, (b) BI = 12 ms, (c) BI = 24 

ms, (d) BI = 48 ms. 
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3.2.3 Performance comparison of the two techniques 

3.2.3.1 Passive Source Location performance 

Based on the receiver configuration presented in Section 3.1, the device-based localization can be obtained 

by measuring the AoA and the TDoA of the Wi-Fi signals transmitted by the mobile device and received by 

the multiple receiving antennas. In practice, three receiving antennas are used to measure the device AoA and 

TDoA. In particular, the phase difference, 𝛥𝜑̂, between the signals collected from each of the two closest 

antennas (RX2 and RX3 in Figure 3.15) is used to estimate the angle of arrival, 𝜃, of the target, as  

where 𝜆 is the wavelength related to the selected Wi-Fi channel, and 𝑑 is the distance between RX2 and RX3. 

As explained in Section 2.3.1.2, to obtain a reliable estimate of the phase difference, 𝛥𝜑̂, a Maximum Likelihood 

estimation technique is used, which leads to the following expression 

where 𝒔2 and 𝒔3 are the vectors containing the samples of the packets received by antennas RX2 and RX3, 

respectively. 

The displaced antenna (RX1), which is located close to the TX in our experiment, is necessary to measure 

the TDoA.  

According to the analysis reported in Section 2.3.2.3, from these two measures, we can perform the XY-

localization through the intersection of a line (AoA) and a hyperbola (TDoA). In particular, we found: 

where ⁡𝑥𝑡̂ and ⁡𝑦𝑡̂ are the estimated coordinates of the target in the Cartesian reference system centred in 

RX2/RX3, 𝑥1 and 𝑦1 are the coordinates of RX1 in the same system, 𝑐 is the speed of light, and 𝑚̂ = 𝑚̂(𝜃) is 

the estimated slope of the line defined by the AoA. 

The above device-based target localization technique has been applied to the experimental data collected 

during the acquisition campaign described in Section 3.2.1 and the resulting performance is presented in Figure 

3.25. The resulting AoA and the TDoA estimates for the target-device transmissions are shown in Figure 

3.25(a) and Figure 3.25(b), respectively (red crosses). Each point is the result of the coherent time integration 

𝜃 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝜆 ⋅ 𝛥𝜑̂

2𝜋𝑑
) (3.1) 

𝛥𝜑̂ = ∠𝒔2
𝐻𝒔3 (3.2) 
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(3.3) 



92 

 

of packets, and it depends on the number of device transmissions occurred in that particular time interval. The 

integration time was set to 0.5s.  

For comparison, also the ground truth is reported in the same plots (solid blue lines). It is obtained by 

assuming that the target was moving with a uniform linear motion along the assigned path (see Figure 3.15). 

 
The results show that the main problem of this technique is the limited number of device transmissions 

available for the estimation that allows us to reach a poor Signal-to-Noise Ratio (SNR) after the integration in 

the 0.5s. This is quite apparent by considering the interval between 13 and 20s in Figure 3.25, where there are 

no transmitted packets by the device under examination, so that both AoA and TDoA measurements are 

missing. 

 

Figure 3.26 shows the results obtained when the AoA and the TDoA values are combined to get the estimates 

in the XY-plane. In this figure, the black circles indicate the nine points of the grid created on the ground, 

whereas the red triangles represent the positions of the receiving antennas. The position estimates are shown 

  

(a) (b) 

Figure 3.25. Performance evaluation of device transmissions: (a) AoA estimation, (b) TDoA estimation. 

  

 

Figure 3.26. XY-localization of the human target with 

device transmissions-based technique. 

 

Stationary Target

RX2/RX3

TX/RX1
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using blue crosses during the first 20s. The blue crosses are changed to green circles for the final 8s, to represent 

the estimates of the target position that is known to be stationary in this last part of the experiment.  It can be 

noticed that the path of the target is correctly identified, but the estimates are quite variable when compared to 

the theoretical behavior (see red line in Figure 3.15). This makes this technique effective but not very accurate. 

As explained before, this depends principally on the small number of packets available for the device, during 

the common connection activity. 

 

3.2.3.2 Passive Bistatic Radar performance 

The passive radar localization experiment was carried out at the same time of the device-based one, so that 

the same configuration of the antennas and the same target motion are present. Therefore, it is possible to 

evaluate the position, for example, through the measure of the bistatic range and the AoA of the received target 

echoes, as explained in [17] and summarized in Section 2.2.2. This time, we have used the two closest antennas 

(RX2 and RX3) for the measure of both the bistatic range and the AoA, whereas the third receiving channel 

has been exploited to acquire a copy of the reference signal. To simplify the comparison of the results, as for 

the Wi-Fi emission-based localization technique, the coherent integration time is set to 0.5s. 

The estimated measurements allow to obtain the position of the target on the XY-plane, by intersecting a 

bistatic ellipse (range) and a line (AoA), which provides the following solution: 

where ⁡𝑥𝑡̂, ⁡𝑦𝑡̂ and 𝑚̂ = 𝑚̂(𝜃) are defined as in (3.3)), whereas (𝑥𝑇𝑋 , 𝑦𝑇𝑋) are the coordinates of the transmitter 

and 𝑅̂𝑏𝑖𝑠 is the estimated bistatic range. 

In detail, the AoA is obtained using the same approach of the Wi-Fi emission-based technique, namely 

through the estimation of the phase difference between the signals received at RX2 and RX3. In this case, the 

specific locations of the 2D-CCF, where the target has been detected, provide the estimate of the bistatic target 

range. Moreover, the phase difference is estimated as the phase difference of specific locations of the 2D-CCFs 

available for the two surveillance antennas, where the target has been detected.  

As mentioned above, the calibration for the angle estimation is the same for the PBR and for the PSL 

technique. The results obtained for the AoA (red crosses) and the bistatic range (solid red line) estimation, and 

their comparison with the ground truth (solid blue line), are shown in Figure 3.27(a) and Figure 3.27(b), 

respectively. For the bistatic range, a conventional Kalman tracking algorithm has been applied, which 

provides filtered range values [17]. It is interesting to see that both the estimates of AoA and bistatic range 

follow the theoretical behavior for all the time that the target is moving, namely until it arrives at point B (from 
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seconds 0 to 20 of the acquisition). After that time, it is impossible to detect the target and in consequence 

measure angles and ranges. This is due to the cancellation stage employed by the passive radar processing 

chain that cancels all the echoes from static objects in the field of view, and therefore also the echoes of a static 

human target. In consequence, during the last 8 seconds the target disappears from the passive radar results. 

  

(a) (b) 

Figure 3.27. Performance evaluation of passive radar technique: (a) AoA estimation, (b) bistatic range estimation. 

 

By combining the two measures of AoA and bistatic range, during the first 20s, the position estimation is 

easily obtained in the XY-plane and displayed in Figure 3.28. 

 

It is apparent that the passive radar technique provides a fairly accurate estimate of the human target’s 

position. 

  

Figure 3.28. XY-localization of the human target with 

passive radar technique. 
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3.2.3.3 Techniques comparison and complementarity 
 

It is interesting to compare these two methodologies to understand relative merits and the relationship 

between them. 

Firstly, we compare the AoA measurements, since they are available for both sensors.  

 

As shown in Figure 3.29, during the first 20 seconds of the acquisition, the two strategies lead to comparable 

results. However, it is apparent that the passive radar has a higher number of angle estimates, which provides 

an almost continuous set of measurements. In contrast, the device-based approach provides a reliable estimate 

only when bursts of packets are emitted. In our case, this provides a rather discontinuous set of measurements 

that is not quite desirable when the target is moving, since its AoA changes with time. As expected and 

discussed above, the PSL technique has a key role when the target is stationary (from 20 to 28 seconds) since 

the passive radar system cannot detect it. 

In Figure 3.30, we present the comparison of the results obtained for the positions in the XY-plane. 

 

 

Figure 3.29. Comparison between the AoA estimation with the 

passive radar technique and the WiFi emission-based technique. 

 

 

RX2/RX3

TX/RX1

Figure 3.30. Comparison of the WiFi emission-based and 

the passive radar localization on the XY-plane. 
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As apparent from the dispersion of the measurements, we can assert that the WiFi-based PBR localization 

(red dots) provides better performance with respect to the device-based technique (blue crosses). This is due 

to the possibility to exploit a higher number of packets for the estimation of the measures of interest. In fact, 

we have to remind that the temporal distance between consecutive beacons is equal to 3 milliseconds, whereas 

the device transmits only when a communication with the AP occurs. In this particular experimental test, the 

device sends packets only to establish the connection with the AP.  

The following additional considerations apply: 

i. the range resolution of the passive radar is limited due to the limited frequency bandwidth of the Wi-

Fi signals. This makes it difficult to discriminate closely positioned targets; 

ii. the device-based technique can exploit the device code to discriminate between multiple closely 

spaced targets; in fact the acquired device signals can be associated to the related target, thanks to the 

classification stage, based on the reading of the MAC Address written in the packets, which is 

performed before the localization operations; 

iii. the better performance of the passive radar is paid in terms of a higher computational cost with respect 

to the emission-based technique. 

Summarizing the previous considerations, it is evident that these techniques present complementary aspects, 

which makes them suitable for a possible joint use. Firstly, the passive radar can help when the target has no 

active devices, so that the emission-based localization cannot be used. On the other hand, only the device-

based technique can estimate the position when the target is stationary.  

In addition, the passive radar can exploit a considerable number of data for the estimation of the parameters 

of interest, thanks to the high transmission rate of the AP, whereas the emission-based technique uses only the 

signals transmitted by the mobile device during the connection with the AP.  

Under different conditions, the relative performance of the two can be somewhat different. In particular, if 

the target increases its device transmissions, for example in upload activities, the number of AP emissions 

(especially in terms of emitted beacons) decreases. In this case, the PSL would provide much more position 

estimates, whereas the signals available for the passive radar measurements would be reduced. Due to the 

impossibility to have simultaneous transmissions of AP and devices, it is clear that the joint use of both the 

techniques might compensate for the lack of data for one of them in a real scenario. 

The considerations above provide a sound technical basis for a sensor fusion technique. This is expected to 

exploit at the best both the signals emitted by the AP and those emitted by the devices to provide a continuous 

tracking of  the human targets carrying an active Wi-Fi device, while only resorting to the passive radar for 

human targets that do not carry any device. 
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3.3 High data traffic for PSL sensor 

3.3.1 Acquisition campaign description 

In order to test the behavior of the systems in different network conditions, we tried to analyze the effect of 

a real upload activity of the mobile device carried by the human target. Due to the environmental conditions, 

the AP did not provide the possibility to surf the Internet; therefore, it was necessary the exploitation of another 

device used as Hotspot. For this reason, the target connected its mobile device to that Hotspot and uploaded a 

video on a server. As apparent, this operation produced an increase of device transmissions with respect to the 

previous test. 

Nevertheless, for the passive radar system, we used, as illuminator of opportunity, the same AP exploited in 

in the first test. This time, the omnidirectional antenna of the AP was used in transmission, instead of the 

directive antenna of the previous test. This choice provides an enhancement with respect to previous studies, 

because it allows the evaluation of the potential of this system in real scenarios. 

The AP was configured to transmit in channel 5 of the Wi-Fi band (carrier frequency equal to 2.432 GHz). 

The beacon interval was set to 3 milliseconds, that defines the Pulse Repetition Time (PRT) of the passive 

radar. 

The Hotspot, instead, occupied channel 1 of the Wi-Fi band (carrier frequency equal to 2.412 GHz). The use 

of different channels for the two systems has a double function: 1) it provides the possibility to avoid collisions 

between AP and device when both are characterized by high data rate, that is important in this first phase of 

system evaluation; 2) it provides the possibility to analyze a higher range of possible practical situations, as 

for instance the case where the device tries to connect to an AP different from that used for the PBR. As it is 

clear, this event needs a more complex processing, due to the necessity to manage a larger band in both data 

acquisition and post-processing (packet extraction) stages. 

For this reason, the acquired signal was sampled with a sampling frequency of 40 MHz, then it was stored 

and processed off-line. In particular, the first processing operation is the filtering of the two specific frequency 

bands around the carrier frequencies of the exploited channels, the packet extraction from the two filtered 

signals and the classification of the acquired packets, based on the transmitting source, to perform the 

association between packet and target (or AP). 

For this second test, the acquisition system was made of four receiving channels, connected to four 

surveillance antennas (TP-LINK TL-ANT2409A). Even in this case, we set an additional gain for each USRP 

receiving channel in order to have a comparable signal level. The four antennas were combined in two nodes: 

two receiving antennas (RX2-RX3) were located one beside the other, with spacing of 14 cm between them, 

near the receiving system, whereas the other two antennas (RX0-RX1)  were placed one beside the other, with 

spacing of 14 cm, 25 m far from RX2-RX3, as displayed in Figure 3.31. The AP was placed in the midpoint 

of the line that links the two receiving nodes, namely the point (11.4 m, 5.25 m) in our Cartesian reference 

system. 



98 

 

 
The employment of four surveillance antennas on one hand enables the exploitation of different combination 

of measurements (for example, two AoA measures for the PSL), but on the other hand it does not allow to 

acquire the reference signal from the AP, therefore a further operation of reference reconstruction is necessary. 

In order to understand the potential of the proposed techniques, we decided to stress them through the 

definition of a more complicated trajectory. The test we carried out is sketched in Figure 3.31. In this test, a 

target with an active mobile device moves from point A (-15 m, 40 m) in the figure, and arrives to point B (15 

m, 70 m). The target takes 19s to reach point B, and then it stops there for about 8s. Then it moves again and 

after 14s arrives in point C (15 m, 40 m). It is stationary for about 10s, then it starts again its motion to come 

back to point A. The target takes additional 14 s to cover this last segment. It is worth mentioning that the path 

sketched in Figure 3.31  along the grid is purely nominal. 

During the whole acquisition time, the user uploads a video on a server through the exploitation of another 

device as Hotspot. However, the period of more intense traffic occurs in stop intervals, since it is reasonable 

that a person uses a mobile device especially when it is stationary, therefore the transmission of the video will 

occur principally in these intervals. 

 

3.3.2 Performance comparison of the two techniques 

3.3.2.1 Passive Source Location performance 

In this second test, we analyzed the case where a real upload activity is carried out by the mobile device. In 

fact, the human target uploads a video on a server during its walk in the area of interest. In this section, we 

refer to the trajectory described in Section 3.3.1, and in particular in Figure 3.31. 

This time, with the proposed receiver configuration (four surveillance antennas), we have the possibility to 

exploit two measurements of AoA and one of TDoA. 

 

Figure 3.31. Target localization and tracking experiment (Test 2). 
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Since the results reported in Chapter 2 have shown that the use of TDoA measurements does not provide an 

increase in performance, especially in short range applications, in this test we decided to avoid the use of TDoA 

measurements and exploit only the measures of AoA provided by the two employed receiving nodes. 

The approach followed for the AoA estimation is the same used in the previous test. Therefore, we reported 

in Figure 3.32 the results obtained for the AoA estimates (red crosses), compared with the ground truth (blue 

solid line). The latter is obtained by assuming that the target was moving with a uniform linear motion along 

the assigned path (see Figure 3.31) and considering the position of the target in each specific instant of the 

acquisition, as explained when the test has been described. 

  

(a) (b) 

Figure 3.32. Performance evaluation of PSL for Test 2: (a) AoA estimation with RX2-RX3, (b) AoA estimation with RX0-RX1. 

 
The above results are obtained after a coherent integration of device packets, within an interval of 0.5 s. The 

shift between consecutive integration interval was set to 0.1 s. This means that, when at least one device 

transmission is available in the examined interval, the PSL produces a measurement every 0.1 s. 

In this figure, it is evident that the AoA estimation with RX0-RX1 presents some problems of accuracy in 

the time interval between about 18 s and 40 s, which corresponds to the first stop and the subsequent segment 

of path. This behavior could be probably caused by the proximity of a building (as can be seen in Figure 3.31) 

and in particular of a metallic fence present on the right hand side of the reference square grid, and by the 

higher distance between target and receiver. This consideration matches with the results shown in [17] and 

[31]. Moreover, as expected, there are some instants where the PSL does not provide the angle estimates, 

especially when the target is moving. 

For sake of completeness, we also reported the results for the TDoA estimates, obtained by RX1 and RX2 

in Figure 3.33. 
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As mentioned above, the target position in the XY-plane is obtained through the combination of the two 

measurements of angle. The related results are presented in Figure 3.34. 

 
The position estimates shown in this figure highlight the problems of the PSL, in particular when the human 

target passes through the point (15 m, 70 m) of the grid. 

 

3.3.2.2 Passive Bistatic Radar performance 

In this second case, we used two receiving nodes, each composed by two antennas. This means that we have 

the possibility to exploit two measurements of angle and two measurements of bistatic Range (we have applied 

the two-out-of-two criterion) 

Figure 3.33. Performance evaluation of PSL for Test 2 in terms of TDoA 

estimation accuracy. 

Figure 3.34. XY-localization of the human target 

with PSL technique for Test 2. 
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In order to compare the results with the previous test, we consider the case when one measurement of angle 

and one measurement of bistatic Range are used to estimate the target position. In particular, we used the 

couple of antennas RX2-RX3. 

We reported in Figure 3.35 the results obtained for the AoA estimates (red crosses) and the bistatic Range 

estimated by the same antennas (red crosses), in Figure 3.35(a) and Figure 3.35(b), respectively. In both cases, 

we also reported the comparison with the ground truth (blue solid line). 

  

(a) (b) 

Figure 3.35. Performance evaluation of passive radar technique for Test 2: (a) AoA estimation, (b) bistatic range estimation. 

 

As for the PSL system and according to the results presented in Section 3.2.3.2, each point representing the 

PBR estimates is the results of a coherent integration of the AP packets received within intervals of 0.5 s, 

shifted in time of 0.1 s. 

The results in Figure 3.35 confirm the behavior seen in Figure 3.27. Therefore, the introduction of the 

reference reconstruction, the employment of the AP omnidirectional antenna, the increase of device 

transmissions and the filtering of a larger frequency bandwidth, do not cause a degradation of PBR 

performance. We can notice that, even this time, the PBR estimates disappear when the target is stationary. It 

is also evident that we have selected different tracks to fill the entire trajectory. 

The combination of the AoA and Range measures provides the target position estimates in the XY-plane. In 

Figure 3.36, we reported the passive radar position estimates of the human target (red dots) compared with the 

expected trajectory (blue solid line). 
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The PBR provides very accurate position estimates when compared with the ground truth, also over this 

complicated trajectory. Therefore, these results confirmed that the Passive Radar is effective for human target 

localization in short-range applications. In this figure, we can also notice that there are some points (between 

y = 60 m and y = 70 m) where the PBR estimates are less accurate with respect to the general behavior of our 

Passive Radar. The increase of the error in these estimates could be probably due to the proximity of a building 

(as can be seen in Figure 3.31) and in particular of a metallic fence present on the right side of the reference 

square grid, as mentioned for the PSL system. 

 

3.3.2.3 Techniques comparison and complementarity 

As for Test 1, the first comparison can be made between the AoA measures provided by the couple RX2-

RX3, since this is available for both the strategies. Therefore, in Figure 3.37 we displayed together the results 

shown in Figure 3.32(a) and Figure 3.35(a), with the purpose of making the visualization easier. 

 

Figure 3.36. XY-localization of the human target 

with passive radar technique for Test 2. 

Figure 3.37. Comparison between the AoA estimation with the PBR 

technique and PSL technique. 
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The previous considerations are apparent in this figure. In fact, the AoA estimates of the PSL sensor (red 

crosses) compensate for the lack of measurements of the PBR sensor (blue dots) when the target is stationary 

(from 18 s to 27 s, and between 40 s and 50 s). On the other hand, the PBR compensates for the lack of PSL 

estimates when the target is moving but the person interrupts the transmission of the video or the 

communication is finished.  

In contrast with the results shown in Figure 3.29 for the first test, this time the PSL provides a number of 

estimates comparable with that produced by the PBR. Moreover, it is interesting to notice that also the angles 

estimated by both the sensors are comparable when the measurements are available for both.  

The comparison of the localization results on the XY-plane for the presented strategies is reported in Figure 

3.38, where the blue dots represent the PBR estimates, while the red crosses are the position estimates of the 

PSL sensor. 

 

These results confirm that the passive radar provides more accurate position estimates, whereas the Passive 

Source Location has basically a key role when the target is stationary and the PBR does not provide the target 

position.  

 

3.4 Summary 

In this first study, the relative merits of device-based and device-free techniques have been investigated, 

together with their complementarity. The former is the Passive Source Location (PSL), which exploits the 

signals emitted by the devices, so that provides measurements only when packets are transmitted by the mobile 

device, but have the capability to identify and discriminate even very closely spaced targets and measure their 

position also when they are stationary. The latter (device-free) is the Passive Bistatic Radar (PBR), that exploits 

the signals emitted by the AP, which tends to be more continuous due to the periodic environment scanning 

provided by the transmission of the beacon signals and provides quite accurate measurements. In addition, it 

has poor spatial target resolution capability and cannot detect or track stationary targets. 

Figure 3.38. Comparison of the PSL and the PBR 

localization on the XY-plane. 
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The evaluation was performed on experimental data for the two proposed techniques. In particular, we 

focused on two different analyses: i) the study of the relationship between data traffic condition and 

performance, and ii) the performance comparison of the two techniques in terms of localization accuracy. 

Specifically, for the first point, the accuracy of the AoA measurements necessary for the 2D localization has 

been investigated. 

As expected, the results show that for both techniques the AoA accuracy depends on the signal-to-noise ratio 

also in terms of the number of exploited received signal samples. 

As expected, the results for the AoA have shown that a lower number of samples leads to a poor SNR, which 

provides poor performance in terms of accuracy. In contrast, the probability that a collision occurs increases 

with the number of samples. However, the PSL system provides the possibility of using a very small number 

of samples thanks to the high SNR of the direct signal transmitted by the device. 

For the passive radar, in addition to the employment of less samples, as for the device-based localization, 

the effect of the reduction of the PRF has been investigated. We have shown that the PBR provides quite 

accurate measurements when the beacons emission is more continuous, namely when the BI is smaller. Its 

quality tends to degrade when the number of emitted beacon signals is strongly reduced, which might represent 

the situation where a significant activity is performed by other users of the medium. We have shown that both 

the detection capability and the localization accuracy progressively degrade as the BI increases due to both the 

reduction of the received beacons and to the intrinsic undersampling of the target motion. In particular, we 

have seen that the main problem when we use higher BIs is the loss of detections, which causes the 

impossibility to define the target position for the entire observation time and affects estimation accuracy. The 

results are largely in agreement with the study presented in [18], where the detection performance was 

addressed especially for vehicular targets. The better performance provided by the passive radar with higher 

values of BI is paid in terms of a higher computational cost with respect to the other investigated cases. 

In addition, even for the PBR, the results of this study suggest the possibility of using less samples with 

respect to the entire packet, without compromising the performance. This allows to reduce the computational 

cost of the whole processing, that is essential for localization applications. 

For the performance comparison in terms of localization accuracy, we have seen that both the strategies are 

effective for the positioning of human targets. It is interesting to notice that their estimates are comparable 

when the measurements are available for both sensors. Moreover, we have also shown that one sensor 

compensates for the lack of measurements of the other one. 

As it is clear from the comparison between the presented techniques, it is not useful to keep these strategies 

separated, but it is necessary to add further processing stages, devised with the purpose of exploiting the benefits 

of the PBR and PSL and reducing the relative limitations. 

The considerations above provide a sound technical basis for a sensor fusion technique, which allows to benefit 

of the good spatial discrimination and identification capability of the device-based technique, together with its 

capability to position static targets, as well as of the capability of passive radar to detect and position human 

targets that do not carry an active device. Such technique exploits at the best all both the signals emitted by the 
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AP and those emitted by the devices to provide a continuous tracking of the human targets carrying an active 

Wi-Fi device. 
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Chapter 4  

Tracking techniques 
 

We have already studied the possible techniques for the estimation of both the Time Difference of Arrival 

(TDoA) and the Angle of Arrival (AoA) and the positioning techniques based on TDoA and AoA for the PSL 

sensor, and on bistatic Range and AoA for the PBR. We have also studied the effectiveness of the proposed 

techniques in localization of small targets in local area environments. 

Taking into account these studies, it is now necessary to define some tracking strategies, in order to improve 

the performance of our localization system. 

In fact, the tracking is useful for: 

• The improvement of the positioning accuracy with respect to the single measurement; 

• The prediction of the future position of the target; 

• The combination of heterogeneous measures, for instance when they derive from different sensors. 

To reach this purpose, a considerable number of works have been devised through the years. Firstly, we can 

distinguish between strategies that perform the tracking directly on the estimated measures (TDoA and/or AoA 

and/or Range, etc.), and strategies that define the track over the XY-plane, namely after the application of the 

positioning techniques previously described. 

We decided to face this second approach.  

 

4.1 Kalman Filter (KF) 
As explained before, the tracking can be obtained in different ways. 

The most used is the filtering of the position measures through the employment of the Kalman Filter, [45]. 

With this method, the filtered measurement is obtained by conveniently weighting two contributions: 

1) The new ‘raw’ measurement of the target position, obtained as described in Chapter 2; 

2) The past history of the target, providing a prediction of the possible future position, calculated from 

an appropriate motion model assumed for the target, defined before the application of the filter. 

As apparent, the potential causes of errors in target tracking are principally linked to these two contributions. 

In fact, inaccurate results can be due to both the excessive noisiness of the available position measurements, 

and the mismatching between the motion model of the filter and the actual behavior of the target. 

The prediction is obviously based on the motion model assumed for the target. For example, each type of 

target is characterized by typical values of velocity or acceleration, which have to be considered during the 

setting of the filter. 
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The Kalman Filter can improve the performance of a localization system, but there are some situations where 

it is not sufficient to reach good accuracies. In fact, when the Kalman Filter is applied, it is necessary to define 

the motion model to be employed for the prediction stage. Good performance is obtained if that model matches 

the actual target motion during the entire observation time. This is not possible in real applications where the 

target, especially the smallest and fastest ones (humans or drones), can rapidly change their motion state more 

times in a few seconds. In these situations, the Kalman filter produces too high errors, making necessary the 

employment of different approaches. One of the possible solutions could be the relaxing of the constraints on 

the filter model, namely increasing the value of the standard deviation of the model errors 𝜎𝑎𝑥 and 𝜎𝑎𝑦. In this 

way, the filter manages to follow even higher variations in the target motion state. On the other hand, this 

strategy generates the reduction of the benefits produced by the exploitation of a good prediction when the 

target motion coincides with the filter motion model. 

Alternatively, to face this situation without sacrificing the benefits of a good filtering, different strategies 

have been devised. In particular, the Interacting Multiple Model (IMM) is a possible solution for this type of 

problems. 

 

4.2 Interacting Multiple Model (IMM) 

The IMM method allows the tracker to follow the changing of the target motion state. 

The basic principles are almost the same of the Kalman Filter. The main difference is that the IMM can 

exploit more filters with different motion models. In this way, it is possible to reduce the errors due to the 

change of the target motion (when this motion is defined among the models of the designed IMM), without 

losing in accuracy of the single filter (as happens with the increase of 𝜎𝑎 in the Kalman Filter). Even this time, 

the more the motion models of the employed filters match the actual behavior of the target, the more the 

tracking is accurate. 

It is possible to implement the IMM in different ways. The main differences between the possible 

implementations are: 1) the number of filters that are used, 2) the typology of the employed filters. With respect 

to the first aspect, in [46], it is demonstrated that a too low number of models does not allow to follow all the 

possible motion variations of the target; on the other hand, also a too high number of models could degrade 

the performance, and it is also evident that this second case is also characterized by a higher computational 

cost. In reference to the second point, namely the typology of the employed models, the choice strongly 

depends on the type of target that we need to localize and to its expected behavior in the specific application 

of interest. 

The basic blocks which compose this method are the Interaction, the Filtering, the Probability Update and 

the Combination of the results obtained using the different filters, as explained in [47] and [48], and 

summarized in the scheme reported in Figure 4.1, where the generic version of the IMM with 𝑁𝑓 filters is 

presented. 
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In this scheme, the inputs of the Interaction block are the filtered state vectors 𝒔̂𝑗 obtained at the previous 

iteration, namely 𝒔̂𝑗(𝑘 − 1|𝑘 − 1); the outputs of the same block are the mixed states 𝒔̂0𝑗(𝑘 − 1|𝑘 − 1), 

obtained by a linear combination of the contributions of each filter, where the weights are the mixing 

probabilities µ̂
𝑖|𝑗

 calculated in the Probability Update stage. The Filtering block uses: i) the mixed states for 

the prediction stage, and ii) the measurement 𝒛 that contains the coordinates (x and y) related to the target 

position estimated by the sensor. The filtered states are then used by the Combination block to obtain the output 

of the IMM method, namely the combined state estimate at time k, 𝒔̂(𝑘|𝑘). Even this time, the weights for the 

combination are derived into the Probability Update block, and they are the mode probabilities, µ𝑗(𝑘). The 

vector states produced by the 𝑁𝑓 filters represent also the inputs for the Interaction of the next iteration. 

As mentioned before, this method compensates for the limitation of the single Kalman Filter, when it 

operates over a target with changing dynamics. 

A particular case is represented by a target, that alternates motion and stationary intervals during its path, 

the so called “Stop&Go” motion. This situation is particularly interesting since it is very common for small 

targets, as for example a drone that flies for a certain time with a nearly constant velocity and then it stops (in 

hovering) to examine an area, make panoramic videos, or deliver/leave objects, or a person who walks and 

stops to send a message or an email, and then walks again, and so on. 

Although the motion is simple enough, the management of this situation is rather complicated. In fact, even 

if the static behavior can be seen as a uniform linear motion with velocity equal to zero, a single Kalman Filter 

could have some problems to track this type of target, due to the errors during the transition from a motion 

state to another (necessity to correctly estimate the new velocity). Therefore, due to the complexity of the target 

tracking in this type of situation, several works aimed to find a solution to this problem. In fact, as explained 

in [49]-[50], the classical IMM approach could not be appropriated to address the localization of move-stop-

Figure 4.1. IMM processing scheme. 

𝑖, 𝑗⁡ = ⁡1,… ,𝑁𝑓 
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move targets. In particular, in [49] a Variable Structure IMM (VS-IMM, [46]) has been used, while the authors 

of [50] employed the Multiple-hypothesis IMM (MH-IMM). 

In this work we introduce a different strategy to perform the tracking in this kind of situation.  
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Chapter 5  

Interacting Multiple Model - Modified Innovation (IMM-MI) 
 

In this Chapter, we present a new methodology for target tracking, which is very useful specially to solve 

the problem of tracking move-stop-move targets. 

The basic idea is to exploit the inherent differences between the device-based and the Passive Radar sensors, 

in order to develop a consistent and effective method for small target localization and tracking. To introduce 

the motivation that leads to the definition of our new approach, we can refer to the initial consideration of this 

work: we are using two sensors, whose performance are directly connected to the target motion status. In 

particular, the main differences are highlighted when the target alternates motion and stationary intervals 

during its path, as explained in detail in Chapter 3. 

With the purpose of facing this specific situation, we propose a new strategy that uses a modified version of 

the IMM approach together with Data Fusion techniques, that take into account the differences between the 

measurement’s accuracies of the employed sensors. In the modified version of the IMM method, the 

information related to the presence or the absence of the PBR estimates is used to help the choice between the 

employed filters, through the modification of the Innovation. Since the aim is just to help the choice of the best 

filter among that available, this modification is not performed during the Filtering stage, but only before the 

Probability Update (the detailed description is reported later in this Chapter). For this reason, we call this 

methodology Interacting Multiple Model – Modified Innovation (IMM-MI). The processing scheme of the 

proposed strategy is reported in Figure 5.1. 
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As shown in this scheme, the basic structure is that of an IMM with two filters. Therefore, we can see the 

presence of the related blocks (Interaction, Filtering, Probability Update and Combination). With respect to 

the scheme shown in Figure 4.1, it is evident that this strategy is characterized by a higher complexity, due to 

the addition of more blocks, as for example the Sensor Fusion and the Innovation Modification. The 

Augmentation and Reduction blocks, instead, are necessary when the filters used in the IMM have different 

state dimensions. 

 

5.1 Motion and Observation Models 

As reported in Figure 5.1, we use 𝑁𝑓 = 2 filters with two different models: the well-known Nearly Constant 

Velocity (NCV) Motion Model, that is one of the most adopted in various applications, especially when the 

target does not change its velocity and direction, and the Stationary Model, which represents the moments 

where the target is not moving and so its velocity is equal to zero; for this reason, in the following sections we 

will refer to this model with the acronym V0. In this specific case, the first filter is the NCV, while the second 

one is the V0. 

The NCV Motion Model establishes that the velocity is almost constant (uniform linear motion), while the 

accelerations are seen as disturbance of this motion. 

In the 2D case, namely when the tracking is performed on the XY-plane, the motion equations to be 

considered are the following: 

{
 
 

 
 𝑥𝑘 = 𝑥𝑘 + 𝑥̇𝑘−1𝑇 + 𝑎𝑥,𝑘−1 𝑇

2 2⁄ ⁡⁡⁡⁡

𝑥̇𝑘 = 𝑥̇𝑘−1 + 𝑎𝑥,𝑘−1𝑇      ⁡⁡⁡    ⁡           

𝑦𝑘 = 𝑦𝑘−1 + 𝑦̇𝑘−1𝑇 + 𝑎𝑦,𝑘−1 𝑇
2 2⁄

𝑦̇𝑘 = 𝑦̇𝑘−1 + 𝑎𝑦,𝑘−1𝑇    ⁡⁡⁡⁡                 

 (5.1) 

𝑖, 𝑗⁡ = ⁡1,… ,𝑁𝑓 

Figure 5.1. IMM-MI processing scheme. 
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where (𝑥𝑘 , 𝑦𝑘) are the coordinates of the target at time 𝑘, (𝑥̇𝑘 , 𝑦̇𝑘) are the related velocities along the x and y 

component, respectively, (𝑥𝑘−1, 𝑦𝑘−1) are the coordinates at time 𝑘 − 1, (𝑥̇𝑘−1, 𝑦̇𝑘−1) are the related velocities, 

𝑇 is the elapsed time between consecutive measurements, and (𝑎𝑥,𝑘−1, 𝑎𝑦,𝑘−1) are the 

accelerations/disturbance along the two components. 

In matrix form, we obtain: 

where the two vectors containing the target position and velocity components at time 𝑘 − 1 and 𝑘, are defined 

‘state vectors’ 

while we define 

where 𝜱𝟏 is the state transition matrix for the NCV model. 

In compact form we can write equation (5.2) as 

with 

Moreover, we indicate with 𝛴𝑎 the covariance matrix of the model errors (assumed Gaussians) defined by 

the acceleration 𝒂𝑘−1  

and with 𝑸𝟏 the covariance matrix of 𝒗𝑘−1.  

It is appropriate to highlight that 𝜮𝑎 represents one of the filter parameters to be set in the design phase. The 

choice of this parameter, and so of the standard deviations 𝜎𝑎𝑥 and 𝜎𝑎𝑦, have to be pondered thinking to the 

behavior that we want to attribute to the filter: for the NCV case, small values of 𝜎𝑎𝑥 and 𝜎𝑎𝑦 indicate a high 

degree of confidence that the target is moving with a constant velocity, providing the possibility to follow 

accurately targets moving with a uniform linear motion. On the other hand, this choice generates great errors 

[

𝑥𝑘
𝑥̇𝑘
𝑦𝑘
𝑦̇𝑘

] =

[
 
 
 
 
1⁡⁡

0⁡⁡

0⁡⁡

0⁡⁡

𝑇⁡⁡

1⁡⁡

0⁡⁡

0⁡⁡

0⁡⁡

0⁡⁡

1⁡⁡

0⁡⁡

0

0

𝑇

1]
 
 
 
 

[

𝑥𝑘−1
𝑥̇𝑘−1
𝑦𝑘−1
𝑦̇𝑘−1

] + [

𝑇2 2⁄
𝑇
0
0

 0
  0 
𝑇2 2⁄
𝑇

] [
𝑎𝑥,𝑘−1
𝑎𝑦,𝑘−1

] (5.2) 

𝒔𝑘−1 = [

𝑥𝑘−1
𝑥̇𝑘−1
𝑦𝑘−1
𝑦̇𝑘−1

],⁡⁡⁡𝒔𝑘 = [

𝑥𝑘
𝑥̇𝑘
𝑦𝑘
𝑦̇𝑘

] (5.3) 

𝜱𝟏 =

[
 
 
 
 
1⁡⁡

0⁡⁡

0⁡⁡

0⁡⁡

𝑇⁡⁡

1⁡⁡

0⁡⁡

0⁡⁡

0⁡⁡

0⁡⁡

1⁡⁡

0⁡⁡

0

0

𝑇

1]
 
 
 
 

, 𝑮𝟏 = [

𝑇2 2⁄
𝑇
0
0

 0
  0 
𝑇2 2⁄
𝑇

] (5.4) 

𝒔𝑘 = 𝜱𝟏 · 𝒔𝑘−1 + 𝒗𝑘−1 (5.5) 

𝒗𝑘−1 = 𝑮𝟏 · 𝒂𝑘−1     and      𝒂𝑘−1 = [𝑎𝑥,𝑘−1, 𝑎𝑦,𝑘−1]
𝑇

 (5.6) 

𝜮𝑎 = [
𝜎𝑎𝑥
2 0

0 𝜎𝑎𝑦
2 ] (5.7) 
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when the actual motion of the target differs from the preset model. In contrast, when 𝜮𝑎 is set with higher 

values, it is assumed to have a higher uncertainty on the actual target motion and so a lower weight is attributed 

to the prediction. As apparent, this strategy generates the reduction of the benefits produced by the exploitation 

of a good prediction when the target motion coincides with the filter motion model. 

The observation model associated to this motion model is now presented. It relates the measurements 

provided by the sensor (angle, distance, etc.) and the target coordinates. In this case, we suppose that the sensor 

provides the position estimates to which it is added a measure error, namely 

where  

is the vector containing the measurements, whereas 𝑯𝟏 represents the incidence matrix defined as  

This means that only the position components of the state vector are considered. 

Finally, the observation noise 𝒘𝑘+1 is a Gaussian random variable with zero mean and covariance matrix  

where 𝜎𝑥
2 and 𝜎𝑦

2 are the variances of the measurement errors, along the x and y axes, respectively. 

With the same approach, we also define the equations for the V0 Model. This model is characterized by 

the following relations 

where (𝑥𝑘 , 𝑦𝑘) are the coordinates of the target at time 𝑘, (𝑥𝑘−1, 𝑦𝑘−1) are the coordinates at time 𝑘 − 1, 𝑇 is 

the elapsed time between consecutive measurements, and (𝑣𝑥,𝑘−1, 𝑣𝑦,𝑘−1) are the velocities/disturbance along 

the two components. In fact, in contrast with the NCV model, in this case the velocities are considered as 

errors. 

In matrix form: 

where we define ‘state vectors’ the two vectors containing the position components at time 𝑘 − 1 and 𝑘 

while we define 

𝒛𝑘 = 𝑯𝟏 · 𝒔𝑘 +𝒘𝑘 (5.8) 

𝒛𝑘 = [
𝒛𝑥
𝒛𝑦
] (5.9) 

𝑯𝟏 = [
1 0 0 0
0 0 1 0

] (5.10) 

𝑹𝟏 = [
𝜎𝑥
2 0

0 𝜎𝑦
2] (5.11) 

{
𝑥𝑘 = 𝑥𝑘−1 + 𝑣𝑥,𝑘−1𝑇

𝑦𝑘 = 𝑦𝑘−1 + 𝑣𝑦,𝑘−1𝑇
 (5.12) 

[
𝑥𝑘
𝑦𝑘
] = [

1 0
0 1

] [
𝑥𝑘−1
𝑦𝑘−1

] + [
𝑇 0
0 𝑇

] [
𝑣𝑥,𝑘−1
𝑣𝑦,𝑘−1

] (5.13) 

𝒔𝑘−1 = [
𝑥𝑘−1
𝑦𝑘−1

],⁡⁡⁡𝒔𝑘 = [
𝑥𝑘
𝑦𝑘
] (5.14) 
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where 𝜱𝟐 is the state transition matrix for the V0 model. 

In compact form we can write the equation (5.13) as 

with  

Moreover, we indicate with 𝜮𝑣 the covariance matrix of the model errors (assumed Gaussians) defined by 

the velocity 𝒗𝑘−1 

and with 𝑸𝟐 the covariance matrix of 𝒅𝑘−1. Even this time, as for the NCV model, 𝜮𝑣 represents one of the 

filter parameters. Therefore, we can apply the same considerations reported above. 

With respect to the observation model, the relations (5.8), (5.9) and (5.11) are valid. Only the incidence 

matrix will change, and it is represented by the identity matrix 

As explained before, these two models have been used in the IMM that composes the proposed strategy. 

After the presentation of the employed models, we can describe in detail the blocks in Figure 5.1. 

 

5.2 Augmentation and Reduction 

As apparent from the previous descriptions, the two models have different state dimensions, since the V0 

filter does not have the velocity component. This is a problem when we combine the filtered estimates of both 

filters, during the Interaction and Combination stages. To solve this problem, we introduce a further operation 

in the scheme in Figure 5.1, namely the Augmentation block, where we increase the dimensions of the filtered 

state vectors with less elements (V0 model). Obviously, the same operation has been performed also in the 

initialization phase, at the first two iterations.  

The possible solutions to obtain the augmentation have been extensively discussed in [51], where three 

different strategies have been compared: 1) the simple augmentation, which replaces the missed components 

of both the state vector and its covariance matrix with zeros, 2) the unbiased augmentation, which uses for 

the missed components the same values of the model that has the higher number of elements, and 3) the 

uniform distribution augmentation, which uses the mean and the variance of a random variable uniformly 

distributed between two values that have to be properly chosen according to the motion characteristics of the 

target. Our analyses, performed through Monte Carlo simulations, have confirmed the results reported in [51] 

𝜱𝟐 = [
1 0
0 1

] , 𝑮𝟐 = [
𝑇 0
0 𝑇

] (5.15) 

𝒔𝑘 = 𝜱𝟐 · 𝒔𝑘−1 + 𝒅𝑘−1 (5.16) 

𝒅𝑘−1 = 𝑮𝟐 · 𝒗𝑘−1     and      𝒗𝑘−1 = [𝑣𝑥,𝑘−1, 𝑣𝑦,𝑘−1]
𝑇

 (5.17) 

𝜮𝑣 = [
𝜎𝑣𝑥
2 0

0 𝜎𝑣𝑦
2 ] (5.18) 

𝑯𝟐 = [
1 0
0 1

] (5.19) 
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also for our scopes, therefore we decided to use the third strategy, which yields better performance in terms of 

position and velocity estimation accuracy and capability to recognize the actual motion of the target (model 

switching capability). As shown in Figure 5.1, the augmented version of the filtered state vector for the model 

V0 is indicated as  𝒔̂2
(𝐴)

. 

In contrast, the Reduction block in Figure 5.1 implements the opposite operation. In fact, before the Filtering 

stage, it is necessary to reduce again the dimensions of the augmented vectors, as we want to perform the 

filtering with the minimum dimensions for each model, in order to reduce the computational load and avoid 

any processing errors linked to the selected augmentation technique. To achieve the decrease of dimensions 

for V0 model, from four (𝒔̂02
(𝐴)
(𝑘 − 1|𝑘 − 1)) to two elements (𝒔̂02(𝑘 − 1|𝑘 − 1)), the velocity components of 

its state vector are deleted. 

 

5.3 Sensor Fusion 

Before starting with the detailed description of this methodology, it is necessary to define how to perform 

the fusion of the measurements available from different sensors. 

There are different approaches to face this problem. First of all, in [45], the sensors are divided into two 

categories: synchronous and asynchronous. The first case is used if at a given sampling time there is one 

measurement from each sensor. The second one is applied if the measurements are obtained asynchronously. 

For the synchronized sensors, it is possible to define a second kind of classification with respect to the way of 

updating the measurement: the Sequential Updating, where this operation is carried out with the measurement 

of a sensor at a time, and the Parallel Updating, where the measurements from each sensor are used at the same 

time. 

In our case, we assume to perform the coherent integration of packets for both the techniques, as described 

in [41]. This produces two important advantages: 1) the increase of the SNR, and 2) the possibility to 

synchronize the measurements of the employed sensors. In fact, with respect to this second point, we can assert 

that if we use, for both the approaches, the same receiving system (unique acquisition time), the same 

integration interval and the same time shift between consecutive intervals, we can suppose to deal with 

synchronized sensors, that give measurements at the same time instant. In this condition, it is possible to apply 

the Parallel Updating presented in [45], where the measurements of the employed sensors can be collected in 

a single vector as follows: 

where 𝑘 represents the step of the filtering and 𝑁𝑆 is the number of sensors available. 

𝒛(𝑘) = [
𝒛(𝑘, 1)
⋮

𝒛(𝑘, 𝑁𝑆)
] = 𝑯(𝑘)𝒔(𝑘) + 𝒘(𝑘) (5.20) 

𝑯(𝑘) = [
𝑯(𝑘, 1)

⋮
𝑯(𝑘, 𝑁𝑆)

] (5.21) 
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is the incident matrix that contains the contributions for each sensor, 

are the observation noise and its covariance matrix. Moreover, 𝑙 represents the index of the relative sensor. 

At this point, it is possible to explain how we use this information in this work, through the description of 

the methodology reported in the next sections. 

 

5.4 State interaction 

After the initialization of the state vectors and their covariance matrices, the first step of the IMM is the 

interaction of the filtered states obtained at the previous iteration by the two employed filters, 𝒔̂1(𝑘 − 1|𝑘 − 1) 

and 𝒔̂2
(𝐴)(𝑘 − 1|𝑘 − 1), respectively (at the first iterations, the filtered states are replaced with the results of 

the initialization). It is evident that the state of the V0 model has been modified with the augmentation 

operation (indicated with the superscript ‘(A)’), as described in Section 5.2. 

This interaction produces two mixed states, 𝒔̂01(𝑘 − 1|𝑘 − 1) and 𝒔̂02
(𝐴)(𝑘 − 1|𝑘 − 1), obtained by a linear 

combination of the contributions of each filter, where the multiplicative coefficients, which properly weigh 

them, are the mixing probabilities µ̂
𝑖|𝑗

 calculated in the Probability Update stage, namely 

where 𝑝𝑖𝑗 are the Markov transition probabilities (from model 𝑖 to model 𝑗), 𝑐𝑗̅ is a normalization factor defined 

as 

while µ𝑖(𝑘 − 1) are the mode probabilities, namely the probability that the target moves according to the model 

𝑖, at time 𝑘 − 1. Even these probabilities are calculated during the phase of Probability Update, while during 

the first two iterations they are initialized according to the designer considerations about the possible target 

motion. One of the most common choices is to consider the models identically distributed, and so µ𝑖(2) =

1⁡ 𝑁𝑓⁄ = 1/2, for two filters (𝑘 − 1 = 2, because the filtering starts after the arrival of at least three measures). 

After defining these quantities, it is possible to describe the real Interaction phase. 

𝒘(𝑘) = [
𝒘(𝑘, 1)

⋮
𝒘(𝑘, 𝑁𝑆)

] , 𝑹(𝑘) = 𝐸[𝒘(𝑘)𝒘𝑇(𝑘)] = 𝑑𝑖𝑎𝑔[𝑹(𝑘, 𝑙)] (5.22) 

µ𝑖|𝑗(𝑘 − 1|𝑘 − 1) =
1

𝑐𝑗̅
𝑝𝑖𝑗µ𝑖(𝑘 − 1), 𝑖, 𝑗 = 1,… , 𝑁𝑓 (5.23) 

𝑐𝑗̅ =∑𝑝𝑖𝑗µ𝑖(𝑘 − 1)

𝑁𝑓

𝑖=1

, 𝑗 = 1, … , 𝑁𝑓 (5.24) 

𝒔̂0𝑗(𝑘 − 1|𝑘 − 1) =∑𝒔̂𝑖(𝑘 − 1|𝑘 − 1)µ𝑖|𝑗(𝑘 − 1|𝑘 − 1)

𝑁𝑓

𝑖=1

,⁡⁡⁡𝑗 = 1, … , 𝑁𝑓 State Interaction (5.25) 
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It is clear that the equations (5.25) and (5.26) have to be modified by replacing, where necessary, the 

“augmented” versions of the state vectors and covariance matrices. 

The mixed states are then used as input at the two filters that compose the IMM. Before starting with the 

Filtering block, it is necessary to reduce again the dimensions of the augmented vectors, as explained in Section 

5.2. This operation is performed by the Reduction block in Figure 5.1, where the velocity components are 

deleted, providing a decrease of dimensions for 𝒔̂02(𝑘 − 1|𝑘 − 1), from four to two elements. 

 

5.5 Filtering 

The Filtering block is made of several operations. Their description has been summarized in Figure 5.2. 

 

The operations for a single filter are basically the same of a Kalman Filter, since the different filters operate 

separately, without any type of interaction in this phase.  

 

1) State Prediction: 

The prediction exploits the mixed states previously calculated and obviously the information about the 

model, in particular the state transition matrix 𝜱𝑗. 

 

𝑷0𝑗(𝑘 − 1|𝑘 − 1) =∑{𝑷̂𝑖(𝑘 − 1|𝑘 − 1) +

𝑖

[𝒔̂𝑖(𝑘 − 1|𝑘 − 1) − 𝒔̂0𝑗(𝑘 − 1|𝑘 − 1)]

· [𝒔̂𝑖(𝑘 − 1|𝑘 − 1) − 𝒔̂0𝑗(𝑘 − 1|𝑘 − 1)]
𝑇
} · µ𝑖|𝑗(𝑘 − 1|𝑘 − 1) 

State Interaction 

Covariance 
(5.26) 

𝒔̂𝑗(𝑘|𝑘 − 1) = 𝜱𝑗(𝑘 − 1)𝒔̂0𝑗(𝑘 − 1|𝑘 − 1) State Prediction (5.27) 

𝑷𝑗(𝑘|𝑘 − 1) = 𝜱𝑗(𝑘 − 1)𝑷0𝑗(𝑘 − 1|𝑘 − 1)𝜱𝑗
𝑇(𝑘 − 1) + 𝑸𝑗(𝑘 − 1)⁡ 

State Prediction 

Covariance 
(5.28) 

Figure 5.2. Filtering scheme. 
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2) Measurement Prediction: 

The observation model is then applied in order to determinate the predicted measurements (in our case, 

due to the use of the measurements defined directly over the XY-plane, the predicted measurements 

will be exactly the position components of the predicted state, see the incidence matrices defined in 

(5.10) and (5.19)). It is important to highlight that 𝑯𝑗(𝑘) is the result of the application of Data Fusion 

techniques, whose description has been presented in Section 5.3. 

 

3) Innovation and Kalman Gain: 

Then, the innovation and the Kalman gain are calculated. The innovation represents the quantity of 

new information that is carried by the new measurement 𝒛(𝑘), with respect to the past knowledge, 

namely the predicted measurement 𝒛̂(𝑘|𝑘 − 1). Even this time 𝒛(𝑘), 𝑯𝑗(𝑘) and 𝑹𝑗(𝑘) have been 

obtained into the Sensor Fusion block, described in detail in Section 5.3. 

 

4) Filtering: 

From the obtained estimated values, the filtering operation is performed and the target state at the next 

iteration is obtained. 

At this point, each filter has produced its output, according to the specific motion model.  These outputs 

have to be combined, in order to achieve a unique target position. To reach this purpose, it is necessary 

to update the model probabilities, that represent the multiplicative coefficients of the linear 

combination. 

 

5.6 Innovation Modification and Probability Update 

For the final Combination stage, the mode probabilities at time 𝑘 depend on three factors: the mode 

probability at time 𝑘 − 1, the Markov transition probabilities 𝑝𝑖𝑗 and the likelihood, that represents the 

capability of the specific model to predict the target behavior. 

𝒛̂𝑗(𝑘|𝑘 − 1) = 𝑯𝑗(𝑘)𝒔̂𝑗(𝑘|𝑘 − 1) 
Measurement 

Prediction 
(5.29) 

𝒓𝑗(𝑘) = 𝒛(𝑘) − 𝒛̂𝑗(𝑘|𝑘 − 1) Innovation (5.30) 

𝑺𝑗(𝑘) = 𝑯𝑗(𝑘)𝑷𝑗(𝑘|𝑘 − 1)𝑯𝑗
𝑇(𝑘) + 𝑹𝑗(𝑘) 

Innovation 

Covariance 
(5.31) 

𝑲𝑗(𝑘) = 𝑷𝑗(𝑘|𝑘 − 1)𝑯𝑗
𝑇(𝑘)𝑺𝑗

−1(𝑘) 
Gain of the Kalman 

Filter 
(5.32) 

𝒔̂𝑗(𝑘|𝑘) = 𝒔̂𝑗(𝑘|𝑘 − 1) + 𝑲𝑗(𝑘)𝒓𝑗(𝑘) Filtered State (5.33) 

𝑷𝑗(𝑘|𝑘) = 𝑷𝑗(𝑘|𝑘 − 1) − 𝑲𝑗(𝑘)𝑺𝑗(𝑘)𝑲𝑗
𝑇(𝑘) 

Filtered State 

Covariance 
(5.34) 
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where 𝑐𝑖̅ is defined as in (5.24). 

It is clear that we can modify the behavior of the IMM through the modification of the likelihood, and in 

particular of the innovation used to calculate it. 

When both sensors provide the measurement at a given sampling time, the innovation is 

where 𝑗 = 1 for NCV model and 𝑗 = 2 for V0 model, whereas the superscripts (𝑆1) and (𝑆2) stand for Sensor 

1 and Sensor 2, respectively. In particular, we assume that Sensor 1 is the PSL, while Sensor 2 is the PBR. 

Therefore, 𝑟𝑗
(𝑆1)(𝑥) is the x-component of the innovation for the model 𝑗 and the PSL sensor. The other three 

components are defined similarly. 

As explained above, the two sensors have a different behavior with respect to the motion status of the target. 

In fact, when it is stationary, the Passive Radar cannot detect it. This is a problem if only the PBR is available, 

because it yields the target missing. When another sensor (PSL) can be exploited together with the radar, two 

benefits can be reached: 1) the device-based strategy compensate for the lack of detections of the Passive 

Radar, because it could provide information about the target position, 2) the lack of detections may be used as 

an additional knowledge of the target behavior, since it is possible to be confident that the specific target is 

stationary when the PBR does not provide any detection. 

As a consequence, the possibility to exploit this information to modify the IMM method to obtain a suitable 

methodology is an attractive solution. 

The basic idea of the proposed approach is to unbalance the classical IMM made of two models, namely the 

NCV and the V0 models described before, with the objective of reaching a better matching between motion 

models and actual target motion. 

A way to obtain this goal is to modify the innovation of the specific sensor for both the models depending 

on the presence or absence of PBR detections.  

  

𝛬𝑗(𝑘) =
1

√|2𝜋𝑺𝑗(𝑘)|
· 𝑒𝑥𝑝{−

1

2
𝒓𝑗
𝑇(𝑘)𝑺𝑗

−1(𝑘)𝒓𝑗(𝑘)} Likelihood (5.35) 

𝑐 =∑𝛬𝑖(𝑘)

𝑁𝑓

𝑖=1

· 𝑐𝑖̅  Normalization Factor (5.36) 

µ𝑗(𝑘) =
1

𝑐
𝛬𝑗(𝑘) · 𝑐𝑗̅  Mode Probability (5.37) 

𝒓𝑗 = [𝑟𝑗
(𝑆1)(𝑥), ⁡𝑟𝑗

(𝑆1)(𝑦), ⁡𝑟𝑗
(𝑆2)(𝑥), 𝑟𝑗

(𝑆2)(𝑦)]𝑇 
Innovation vector 

after Sensor Fusion 
(5.38) 
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5.6.1 Absence of PBR detections 

There are two basic reasons for which the PBR does not provide measurements at a given time: 1) the target 

is stationary, and so it is difficult to detect it, due to the cancellation stage performed during the processing, 2) 

the target is moving but the detection is missing (𝑃𝑑 ≠ 1, where 𝑃𝑑 is the Detection Probability). 

In this situation, even the components 𝑟𝑗
(𝑆2)(𝑥) and 𝑟𝑗

(𝑆2)(𝑦) that are contained in the vector 𝒓𝑗 defined in 

(5.38) are missing. This situation produces a reduction of the innovation dimensions. During the Filtering 

stage, we use this vector as it is; this only means that we operate with a single sensor instead of two. In contrast, 

during the Probability Update, since we want to exploit this information, we decided to operate as we had both 

the sensors available. In other words, the innovation is employed with all the four components. In order to 

unbalance the likelihood, we fill the components related to the innovation of Sensor 2 in (5.38), with artificial 

values. Since the absence of PBR measurements usually occurs when the target is stationary, we attribute lower 

values to the innovation of the V0 model, aiming at increasing the probability to choose this model, while we 

attribute higher values to the innovation of the NCV model. 

The lowest value that can be attributed to 𝑟2
(𝑆2)

 is zero, therefore it is possible to write 

The artificial innovation for the first model (NCV) needs further considerations. As explained in the initial 

part of this Section, the absence of PBR detections can also occur when the target is moving, but the probability 

of detection is not equal to 1. This consideration leads to the introduction of a sort of ‘Memory’ when we have 

to change 𝑟1
(𝑆2)

: at the first missed measurement, the components of the artificial innovation for the NCV 

model are set with the standard deviations associated to the PBR measurements; from the second consecutive 

missed detection, those values are increased to twice the standard deviations, in order to further reduce the 

probability to select the NCV model. Therefore, the equations for the artificial innovation for the NCV model 

are defined as follows 

where 𝑚 represents the counter of the consecutive missed detections. Obviously, this counter is reset when a 

new detection occurs. 

For the sake of clarity, the entire vector, whose general form has been written in (5.38), is reported below: 

𝑟2
(𝑆2) = [0, 0]𝑇 (5.39) 

𝑟1
(𝑆2) = [𝜎𝑥

(𝑆2), 𝜎𝑦
(𝑆2)]𝑇,⁡⁡⁡⁡𝑖𝑓⁡𝑚 = 1 (5.40) 

𝑟1
(𝑆2) = [2 · 𝜎𝑥

(𝑆2), 2 · 𝜎𝑦
(𝑆2)]𝑇 ,⁡⁡⁡⁡𝑖𝑓⁡𝑚 > 1 (5.41) 

{
𝒓1 = [𝑟1

(𝑆1)(𝑥), ⁡𝑟1
(𝑆1)(𝑦), 𝜎𝑥

(𝑆2), 𝜎𝑦
(𝑆2)

]
𝑇
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡,⁡⁡⁡⁡𝑖𝑓⁡𝑚 = 1⁡⁡⁡⁡

𝒓1 = [𝑟1
(𝑆1)(𝑥), ⁡𝑟1

(𝑆1)(𝑦), 2 · 𝜎𝑥
(𝑆2)

, 2 · 𝜎𝑦
(𝑆2)

]
𝑇
⁡,⁡⁡⁡⁡𝑖𝑓⁡𝑚 > 1⁡⁡⁡⁡

 
Innovation vector 

after Sensor Fusion 

for NCV model 
(5.42) 
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5.6.2 Presence of PBR detections 

A similar discussion can be made when the PBR sensor provides measurements. 

This time, two situations can be found:  

1) the PSL does not estimate any target position; 

2) even the PSL sensor provides its measurement at the same time. 

For the first point, we can use the same approach described in Section 5.6.1, but in this case the components 

related to the PSL sensor are missing. Therefore, the artificial innovations will fill the places occupied by the 

sensor indicated with (𝑆1) in (5.38). 

where the case 𝑚 = 1 is used to avoid errors due to false alarms for PBR when the target is stationary.  

As mentioned above, this time we have also another case to face: both sensors provide the measurement at 

the same sampling time. In this case, it is important to exploit the innovations calculated in (5.30), for both 

measurements/sensors. However, it is also interesting to use our modification. To integrate these two 

considerations, we decided to use another strategy: the innovations obtained in the Filtering stage are used, 

but they are weighted through a multiplicative factor 𝐹 > 1 that increases the innovation of the V0 model and 

decreases the innovation of the NCV model. In this way, the NCV model has a higher probability to be chosen. 

A possible choice can be 𝐹 = 10. 

  

𝒓2 = [𝑟2
(𝑆1)(𝑥), ⁡𝑟2

(𝑆1)(𝑦), 0, 0]𝑇 

Innovation vector 

after Sensor Fusion 

for V0 model 
(5.43) 

𝒓1 = [0, 0, 𝑟1
(𝑆2)(𝑥), ⁡𝑟1

(𝑆2)(𝑦)]𝑇 
Innovation vector 

after Sensor Fusion 

for NCV model 
(5.44) 

{
𝒓2 = [𝜎𝑥

(𝑆1)
, 𝜎𝑦

(𝑆1)
, 𝑟2
(𝑆2)(𝑥), ⁡𝑟2

(𝑆2)(𝑦)]
𝑇
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡,⁡⁡⁡⁡𝑖𝑓⁡𝑚 = 1⁡⁡⁡⁡

𝒓2 = [2 · 𝜎𝑥
(𝑆1), 2 · 𝜎𝑦

(𝑆1), 𝑟2
(𝑆2)(𝑥), ⁡𝑟2

(𝑆2)(𝑦)]
𝑇
⁡,⁡⁡⁡⁡𝑖𝑓⁡𝑚 > 1⁡⁡⁡⁡

 
Innovation vector 

after Sensor Fusion 

for V0 model 
(5.45) 

𝒓1 =
1

𝐹
· [𝑟1

(𝑆1)(𝑥), ⁡𝑟1
(𝑆1)(𝑦), ⁡𝑟1

(𝑆2)(𝑥), 𝑟1
(𝑆2)(𝑦)]𝑇 

Innovation vector 

after Sensor Fusion 

for NCV model 
(5.46) 

𝒓2 = 𝐹 · [𝑟2
(𝑆1)(𝑥), ⁡𝑟2

(𝑆1)(𝑦), ⁡𝑟2
(𝑆2)(𝑥), 𝑟2

(𝑆2)(𝑦)]𝑇 
Innovation vector 

after Sensor Fusion 

for V0 model 
(5.47) 
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5.7 Combination 
 

As for the Interaction, the Combination is calculated through the weighted sum of the filtered states 

estimated by the two filters. This time, the multiplicative coefficients are the mode probabilities µ𝑗(𝑘) at time 

𝑘. 

 

In the next sections the proposed approach will be evaluated over simulated target and experimental data. 

As mentioned above, the employed sensors, which provide the raw measurements to be filtered, are the PSL 

and the PBR. 

  

𝒔̂(𝑘|𝑘) = ∑𝒔̂𝑗(𝑘|𝑘)µ𝑗(𝑘)

𝑁𝑓

𝑗=1

 Final state (5.48) 

𝑷(𝑘|𝑘) =∑µ𝑗(𝑘) · {𝑷̂𝑗(𝑘|𝑘) + [𝒔̂𝑗(𝑘|𝑘) − 𝒔̂(𝑘|𝑘)] · [𝒔̂𝑗(𝑘|𝑘) − 𝒔̂(𝑘|𝑘)]
𝑇
}

𝑁𝑓

𝑗=1

 
Final State 

Covariance 
(5.49) 
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Chapter 6  

Tests on simulated target 
 

The proposed methodology has been evaluated over simulated data. In order to show the potential of our 

strategy with respect to existing approaches, we will show the comparison with the classical Kalman Filter and 

IMM. In particular, the methodologies that we have tested are: 

• The single Kalman Filter with the NCV Model that exploits the measurements of a single sensor (KF-

NCV (Single Sensor)). 

• The single Kalman Filter with the NCV Model that exploits the measurements of 2 sensors (KF-NCV 

(Sensor Fusion)). 

• The IMM with 2 models (NCV and V0) that exploits the measurements of a single sensor (IMM 

(Single Sensor)). 

• The IMM with 2 models (NCV and V0) that exploits the measurements of 2 sensors (IMM (Sensor 

Fusion)). 

• The IMM-MI with 2 models (NCV and V0) that exploits the measurements of 2 sensors (IMM-MI 

(Sensor Fusion)). 

An appropriate number of Monte Carlo simulations have been performed, each time with different noisy 

measurements related to the path we want to analyze. 

 

6.1 Measurements generation 

Before starting with the description of the simulations, it is necessary to define how to choose the position 

accuracies. We have defined the positioning standard deviations (𝜎𝑥 and 𝜎𝑦) based on the accuracies of the 

measurements obtained from each sensor (𝜎𝜃 (AoA), 𝜎𝑟 (Range), 𝜎𝜏 (TDoA), etc.), through a theoretical 

evaluation of the position error maps for specific receiver locations, as described in Chapter 2. 

For the sake of clarity, we reported here the related expressions 

When we work on simulated data, the accuracies impact in two different points of the processing: 

σuLS
2 = Tr{(𝐇T𝐇)

−1
𝐇T𝚺𝐑H(H

TH)
−1
} (6.1) 

σuML
2 = Tr{(HTΣR

−1H)
−1
} (6.2) 
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1) In the definition of the Gaussian additive noise that we add to the real measurement of the expected 

path, for the definition of the simulated measurements, which we suppose to be those provided by the 

sensors; 

2) In the determination of the matrices 𝑹𝑗(𝑘), defined in (5.11), which represent one of the parameters 

used in the filtering stage, to be set during the initialization of the filter. 

At this point, the positioning errors shown in the related accuracy maps, for the specific area of interest, will 

be the values that we can attribute to  𝜎𝑥 and 𝜎𝑦. 

Therefore, for the receiver geometry used in the preliminary tests presented in Chapter 3, the area of interest 

is defined by the grid depicted in Figure 3.1. The positioning error can be identically distributed between the 

𝑥 and 𝑦 components of the target position. Therefore, for the selected region, it is possible to assume 

As explained above, these values will be attributed to the standard deviations of the measurements used in 

(5.11). In addition, they will be used also to generate the noisy position of the simulated target. 

The measurements generation has been performed two times, one for each sensor separately. Without loss 

of generality, both sensors have been considered with the same accuracies.  

With reference to the available measurements, we assumed that the sensors provide the position estimates 

each 𝑇 = 0.1 seconds. This choice is interesting because this is the same value used in our sensors for the time 

shift used to perform the coherent integration of both the AP (PBR) and device (PSL) packets. 

According to the characteristics of the employed sensors, described in detail in the previous sections, the 

PSL could potentially provide a position estimate each T seconds, regardless the target motion status. 

Obviously, in real applications, it depends on the device activity and the data traffic conditions of the wireless 

network used to communicate, as explained in Chapter 3. Note that the PBR provides its estimates only when 

the target is moving, therefore we generate the radar measurements only for the ‘MOVE’ intervals.  

Nevertheless, for the Passive Radar, it is necessary to consider even different cases that could be found in 

real applications. Firstly, there is the possibility to miss PBR measurements when the target is moving. This 

situation can be emulated through the definition of a Detection Probability, 𝑃𝑑, which is used only for the 

generation of the radar measurements during the ‘MOVE’ intervals. Secondly, there is also the possibility to 

have some ‘False Plots’ associated to the target track during the tracking stage in the Range-Velocity plane 

reported in Figure 2.4. Therefore, we will define a False Target Probability, 𝑃𝑓𝑡, which will be set (when 

necessary) with a low value, since this event has a very small probability to occur in our case.  

With the purpose of facing all these situations, we have carried out different analyses, which have been 

reported in Section 6.4. 

First of all, in order to study the behavior of all the employed filters with respect to the motion status of the 

target, we compare the methodologies in terms of errors produced during the path, through the evaluation of 

the Root Mean Square Error (RMSE) as a function of simulation time. Secondly, we also evaluate the RMSE 

𝜎𝑥 = 2⁡𝑚,⁡⁡⁡𝜎𝑦 = 2⁡𝑚 (6.3) 



125 

 

as a function of the Detection Probability for the PBR sensor, with the aim of analyzing the impact of the 

events mentioned above, especially on our technique. 

 

6.2 Setting of the employed methodologies 

We have already defined how to choose the measurement accuracy. It is now necessary to establish the value 

that we attribute to the principal parameters of the employed filters, namely the standard deviations of the 

model errors and the Markov transition matrix 𝑃. 

 

6.2.1 KF-NCV (Single Sensor) 

As explained in Section 5.1, one of the filter parameters to be set in the design phase is the covariance matrix 

𝜮𝑎 of the NCV model errors, defined in (5.7). In particular, it is important to choose representative standard 

deviations 𝜎𝑎𝑥 and 𝜎𝑎𝑦. In the same Section, we also made some considerations on the effect of this choice on 

the performance of the Kalman Filter. In detail, we have to remind that with lower values of the standard 

deviations for the NCV model, the filter provides the possibility to follow accurately targets moving with a 

uniform linear motion.  

In fact, considering a target that moves with a constant velocity during the whole simulation time, we obtain 

the results shown in Figure 6.1 for the RMSE normalized to the measurement error, with the aim to obtain the 

value 1 if the filtering is not performed. In the considered path, the target trajectory is characterized by a slope 

of 𝛼 = 450 with respect to the x-axis, therefore we present only the results for this component, since the curves 

for the y-component will be similar. In this figure, the Kalman Filter has been tested with four different values 

of standard deviation, namely 𝜎𝑎𝑥 = 𝜎𝑎𝑦 = 1⁡𝑚/𝑠
2, 𝜎𝑎𝑥 = 𝜎𝑎𝑦 = 0.5⁡𝑚/𝑠

2, 𝜎𝑎𝑥 = 𝜎𝑎𝑦 = 0.1⁡𝑚/𝑠
2 and 

𝜎𝑎𝑥 = 𝜎𝑎𝑦 = 0.01⁡𝑚/𝑠
2, where we assumed that the filter behavior is the same on the two axes. 



126 

 

 
The four curves confirm the previous considerations. In particular, the steady-state values are the same of 

the steady-state covariance obtained by solving the Riccati equation, as explained in [52]. 

Another confirmation can be found in the results of the tracking in the XY-plane, reported in Figure 6.2, 

only for three cases. In these plots, only the zoom around the point (0m, 55m) has been presented. 

 

Figure 6.2. Tracking over the XY-plane of a target that moves with a constant velocity, for the Kalman Filter. 

It is evident that when the target motion matches the motion model, the performance increases if the standard 

deviation of the model errors is chosen smaller. 

On the other hand, this choice generates great errors when the actual motion of the target differs from the 

preset model. The errors can be reduced by increasing the values of 𝜎𝑎𝑥 and 𝜎𝑎𝑦, but in contrast the filter 

behavior is less accurate when the target actually moves with a constant velocity. 

Therefore, in order to highlight this aspect, we tried to apply these Kalman Filters over a simple Move-Stop-

Move target. 

The path is similar to the previous one, but this time the target will be stationary in a few points during the 

simulation time. The results have been shown in Figure 6.3. 

Figure 6.1. Comparison of the normalized positioning RMSE with respect to the x-

axis, over a simulated target that moves with a uniform linear motion, for the Kalman 

Filters with four different values of 𝜎𝑎. 
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This figure confirms our considerations. Although with 𝜎𝑎𝑥 = 𝜎𝑎𝑦 = 0.01⁡𝑚/𝑠

2 we achieve the best results 

when the target moves with a constant velocity, it produces too high errors in the transition phase between 

different motion status. This is due to the higher weight that is attributed to the prediction based on the 

employed model. The described event is less evident as the standard deviations decrease. 

These considerations can be also noticed in Figure 6.4, where a small slot of a simulation is reported. 

 

Figure 6.3. Comparison of the normalized positioning RMSE with respect to the x-

axis, over a simulated Move-Stop-Move target, for the Kalman Filters with four 

different values of 𝜎𝑎. 

Figure 6.4. Tracking over the XY-plane of a Move-Stop-Move target, for the Kalman Filter. 
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In this figure, it is evident that lower values of 𝜎𝑎𝑥 provide better performance in the intervals where the 

target is moving (before 50 s and after 70 s) but the main problem is the difficulty of the Kalman Filter to 

estimate the correct velocity when this changes rapidly. However, after a certain transient, the Kalman Filter 

starts again to follow the correct path of the target. This is due to the fact that when the target is stationary, its 

behavior is the same of a uniform linear motion where the constant velocity is equal to zero. The described 

phenomenon is particularly evident by observing the case with 𝜎𝑎𝑥 = 𝜎𝑎𝑦 = 0.1⁡𝑚/𝑠
2 in Figure 6.4. 

In conclusion, we have to find a tradeoff between the advantages and the drawback of each choice. 

Therefore, we decided to use 𝜎𝑎𝑥 = 𝜎𝑎𝑦 = 0.5⁡𝑚/𝑠
2 because, for our purposes, it provides the best 

compromise between accuracies in both the transient and steady-state. 

 

6.2.2 KF-NCV (Sensor Fusion) 

The same considerations can be made for the Kalman Filter that uses the measurements of two sensors. 

Therefore, also in this case we used the values 𝜎𝑎𝑥 = 𝜎𝑎𝑦 = 0.5⁡𝑚/𝑠
2. 

 

6.2.3 IMM (Single Sensor) 

For the IMM approach, we have to set two types of standard deviations: 1) 𝜎𝑎𝑥 and 𝜎𝑎𝑦 for the NCV model, 

and 2) 𝜎𝑣𝑥 and 𝜎𝑣𝑦 for the V0 model. 

As explained in Section 4.2, the IMM is not characterized by the problem described for the Kalman Filter, 

since the change of motion is managed with the multiple models structure.  

Therefore, for the NCV model, we can choose a lower value for the standard deviations of the model errors. 

A good choice could be the lowest value examined for the Kalman Filter, that is 𝜎𝑎𝑥 = 𝜎𝑎𝑦 = 0.01⁡𝑚/𝑠
2. The 

proof of this statement can be seen in Figure 6.5, where we fixed the standard deviations of the V0 model, in 

this case we use 𝜎𝑣𝑥 = 𝜎𝑣𝑦 = 0.1⁡𝑚/𝑠, and we use four different values for the standard deviations of the 

NCV model errors. The examined cases are the same analyzed for the KF-NCV method, namely 𝜎𝑎𝑥 = 𝜎𝑎𝑦 =

1⁡𝑚/𝑠2, 𝜎𝑎𝑥 = 𝜎𝑎𝑦 = 0.5⁡𝑚/𝑠
2, 𝜎𝑎𝑥 = 𝜎𝑎𝑦 = 0.1⁡𝑚/𝑠

2 and 𝜎𝑎𝑥 = 𝜎𝑎𝑦 = 0.01⁡𝑚/𝑠
2. 
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We can notice that this time the errors in the instants between different motion status have been avoided, 

thanks to the exploitation of two models. In addition, the performance is quite similar for all cases, therefore 

we can choose indifferently one of the proposed values for 𝜎𝑎𝑥. 

However, if we analyze the results for a higher time interval between consecutive measurements, for 

example 𝑇 = 1 second, the decision can be addressed towards the choice of 𝜎𝑎𝑥 = 𝜎𝑎𝑦 = 0.01⁡𝑚/𝑠
2, as 

mentioned previously and shown in Figure 6.6. 

 

Figure 6.5. Comparison of the normalized positioning RMSE with respect to the 

x-axis, over a simulated Move-Stop-Move target, for the IMM method with four 

different values of 𝜎𝑎. 

Figure 6.6. Comparison of the normalized positioning RMSE with respect to the 

x-axis, over a simulated Move-Stop-Move target, for the IMM method with four 

different values of 𝜎𝑎, when T = 1 s. 
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The explanation of the reasons for which there are differences between the behavior of the IMM when 𝑇 =

1 and 𝑇 = 0.1, will be discussed in Section 6.4. 

For the selected value 𝜎𝑎𝑥 = 𝜎𝑎𝑦 = 0.01⁡𝑚/𝑠
2, we also evaluated the possible solution for 𝜎𝑣𝑥. The same 

four values have been evaluated, namely 𝜎𝑣𝑥 = 𝜎𝑣𝑦 = 1⁡𝑚/𝑠, 𝜎𝑣𝑥 = 𝜎𝑣𝑦 = 0.5⁡𝑚/𝑠, 𝜎𝑣𝑥 = 𝜎𝑣𝑦 = 0.1⁡𝑚/𝑠 

and 𝜎𝑣𝑥 = 𝜎𝑣𝑦 = 0.01⁡𝑚/𝑠. The results can be observed in Figure 6.7. 

 
In this figure, we can notice that the curves for 𝜎𝑣𝑥 = 𝜎𝑣𝑦 = 0.1⁡𝑚/𝑠 and 𝜎𝑣𝑥 = 𝜎𝑣𝑦 = 0.01⁡𝑚/𝑠 are very 

close one to the other, therefore we can chose for example the first solution. 

For the IMM, even another parameter has to be set, that is the Markov transition matrix 𝑃, which contains 

the probabilities to pass from a state to another, 𝑝𝑖𝑗. 

We decided to choose the following values, with the purpose of avoiding the preference of a model with 

respect to the other. 

 

6.2.4 IMM (Sensor Fusion) 

The same considerations can be applied to the Interacting Multiple Model that uses the measurements of 

two sensors. Therefore, also in this case we have the same choices for 𝜎𝑣𝑥, 𝜎𝑎𝑥 and 𝑃. 

  

𝑃 = [
0.95 0.05
0.05 0.95

] (6.4) 

Figure 6.7. Comparison of the normalized positioning RMSE with respect to the 

x-axis, over a simulated Move-Stop-Move target, for the IMM method with four 

different values of 𝜎𝑣, when T = 1 s. 
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6.2.5 IMM-MI (Sensor Fusion) 

Since the IMM and the IMM-MI have the same basic structure, even for the IMM-MI we use the same 

values of 𝜎𝑣𝑥, 𝜎𝑎𝑥 and 𝑃 of the IMM. 

In this case, we implement also the Innovation Modification as described in Section 5.6. In particular, in 

equations (5.46)-(5.47) we consider 𝐹 = 10. 

In Table 6, we summarize the setting of the parameters for the employed methodologies. 

Table 6. Setting of the employed methodologies. 

Approach 𝜎𝑎𝑥 = 𝜎𝑎𝑦⁡[𝑚/𝑠
2] 𝜎𝑣𝑥 = 𝜎𝑣𝑦⁡[𝑚/𝑠] 𝑃 

KF-NCV 

(Single Sensor) 
0.5 - - 

KF-NCV 

 (Sensor Fusion) 
0.5 - - 

IMM 

(Single Sensor) 
0.01 0.1 [

0.95 0.05
0.05 0.95

] 

IMM 

(Sensor Fusion) 
0.01 0.1 [

0.95 0.05
0.05 0.95

] 

IMM-MI 

(Sensor Fusion) 
0.01 0.1 [

0.95 0.05
0.05 0.95

] 
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6.3 Case study: Simulated Move-Stop-Move Target with changes of 

direction 

As the parameters of the filters have been already defined, in this Section we present a specific trajectory, 

characterized by a complexity that is higher than the previously exploited paths, designed to highlight the main 

differences between the analyzed methodologies. In particular, we want to demonstrate the advantages of our 

strategies with respect to the others in a typical situation. The simulated trajectory is the following 

 
In Figure 6.8, the black circles are the nine points of a grid used as reference, in analogy with that used in 

the acquisition campaigns described in Chapter 3, the blue points are the true measurements (without noise) of 

the ideal path, the red cross is the starting point of the trajectory, and the yellow crosses are the points where 

the simulated target is assumed to be stationary. 

The target starts from point A, indicated with the red cross in Figure 6.8, namely the point (-15m, 40m) of 

the grid. It moves with an angle 𝛼 = 450 with respect to the x-axis, with a constant velocity along both the 

axis (𝑣𝑥 = 𝑣𝑦 = 1
𝑚

𝑠
⇒ 𝑣 = 1.4

𝑚

𝑠
). It stops two times before reaching point B (15m, 40m). After a few seconds 

where the target is stationary, it moves again towards point C, and finally comes back to the starting point A. 

In both cases the absolute velocity is 𝑣 = 1.5
𝑚

𝑠
. For the considered trajectory, the duration of each interval is 

reported in Figure 6.9. 

Figure 6.8. Simulated trajectory. 
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In this figure, the value 1 represents the intervals where the target is moving with a uniform linear motion, 

whereas the value 0 indicates the intervals where the target is stationary. In addition, also the duration in 

seconds of each interval has been reported. It is clear that the 6 intervals labeled with the word ‘STOP’ 

correspond to the 6 yellow crosses in Figure 6.8. 

The measurements defined with this procedure represent the ground truth, that is the real path of the target. 

In order to simulate the measurements provided by the sensors, we have injected Gaussian additive noise, 

generated through the exploitation of the values reported in (6.3). 

Over this trajectory, we perform the following tests: 

1) The comparison of the methodologies in terms of errors produced during the path, through the 

evaluation of the Root Mean Square Error (RMSE) as a function of simulation time. 

2) The evaluation of the RMSE as a function of the Detection Probability for the PBR sensor. 

 

6.4 Evaluation of the RMSE as a function of simulation time 
 

The first analysis that we present is the evaluation of the Root Mean Square Error (RMSE) with respect to 

the simulation time, as reported also for the setting of the filters in Section 6.2. This study is important to 

observe the behavior of all the employed filters with respect to the motion status of the target. To achieve this 

purpose, 𝑁 = 1000 trials of Monte Carlo simulations have been run. 

The five approaches mentioned in the initial part of the Chapter 6 have been analyzed and compared. 

The standard deviation of the model errors, 𝜎𝑎 and 𝜎𝑣, have been chosen in Section 6.2, and the generation 

of the measurements has been carried out as described in Section 6.1, therefore 𝑇 = 0.1 seconds. 

This first test has been performed in ideal conditions. In fact, the Detection Probability, 𝑃𝑑, and the False 

Target Probability, 𝑃𝑓𝑡, are set with the following values 

Figure 6.9. Target motion description: value = 1, the target is moving; value = 0, the target is stationary. 
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In this way, the PBR sensor does not provide any measurements when the target is stationary (𝑃𝑓𝑡 = 0), 

while it always estimates the target position when this is moving (𝑃𝑑 = 1). The results in these conditions are 

reported in Figure 6.10. 

 

Figure 6.10 is composed by three subplots. The first two graphics show the normalized RMSE with respect 

to the x-axis and the y-axis, respectively, whereas the third one presents the V0 model probabilities of the 

filters with the IMM structure, compared with the expected target status (value = 1 for STOP, value = 0 for 

MOVE) that is drawn with the grey dashed line. As apparent, the model probability of the Kalman Filters is 

not reported, since the model is just one. 

The curves show that the IMM-MI (black solid line) outperforms the other strategies for almost the entire 

simulation. In particular, very good performance can be achieved when the target is stationary and the proposed 

approach allows the reduction of the error of about 90-95% with respect to the use of the raw measurements, 

for which the normalized RMSE would be equal to 1. In the same intervals, the other strategies provide an 

improvement of accuracy of about 75-80% with respect to the use of the raw measurements. 

As expected, by observing the transient states, when the target changes its motion status, the KF-NCV is the 

approach that yields the worst performance, since it is not devised to manage change of dynamics. In contrast, 

the IMM-MI is still the best approach, even in this situation, especially in the transition between MOVE and 

𝑃𝑑 = 1, ⁡⁡⁡⁡⁡⁡𝑃𝑓𝑡 = 0 (6.5) 

Figure 6.10. Comparison of the normalized positioning RMSE with respect to the x-axis (top), and the y-axis (center), over a 

simulated Move-Stop-Move target for 𝑃𝑑 = 1 and 𝑃𝑓𝑡 = 0. In the subplot at the bottom, there is the relative V0 model probability. 
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STOP status, where the IMM-MI is not characterized by an increase of error. This is due to the fast capability 

of our strategy to change motion model and attribute the correct velocity (𝑣 = 0) to the target when the PBR 

measurements are not received by the tracker. On the other hand, the tracking in the transition between STOP 

and MOVE intervals is less accurate, since a longer time is necessary to estimate the correct velocity when the 

target starts to move again.  

The exception can be found in few points, and in the specific case in the part of the trajectory where the 

target moves orthogonally to the axes. In fact, we can observe what happens after the third (about 85 s) and 

the fourth (about 110 s) stops, when the target starts again to move orthogonally to the y-axis. In these cases, 

the IMM-MI does not provide the lowest error for the RMSE calculated over the y-axis (second subplot in 

Figure 6.10). The reason of this result is clear if we think that, in this portion of path, the target is stationary 

with respect to the y-axis, while is moving along the x-axis, but the model probability is the same for the two 

directions and the model selection for the IMM-MI strongly depends on the presence or the absence of PBR 

detections. Therefore, the selected model does not match the real motion of the target in that direction. The 

same considerations can be made for the last segment of the path, this time for the x-component of the RMSE 

(subplot on the top in Figure 6.10). Nevertheless, the increase of the error is negligible, since the achieved 

values are not too high, and they occur for a very short time. 

Another point that has to be highlighted is the behavior of the IMM in the steady-state intervals and in 

particular when the target is moving. In these situations, the RMSE of the IMM is higher than the RMSE of 

both the KF-NCV and the IMM-MI. This is probably due to the small time interval between consecutive 

measurements (𝑇 = 0.1 s) when the target is not very fast, as in this case. Therefore, the change of position of 

the target is so small that it is hard for the IMM to understand if the target is stationary or moving. In fact, by 

observing the V0 model probability reported in Figure 6.10, it is evident that the decision of the motion model 

is characterized by a high uncertainty for the two classical IMM methods (close to 50% of choosing V0 or 

NCV). This confirm that the classical IMM is not appropriate to face the problem of Move-Stop-Move target 

tracking. 

It is evident that the exploitation of two complementary sensors (PBR and PSL) and the information about 

the presence of PBR measurements for the innovation modification is a good solution for this problem, as this 

strategy helps the choice of the correct model, when operates in ideal conditions. 

The second test aims to analyze the case of non-ideal conditions. In real applications, reasonable values for 

the Detection Probability and False Target Probability are  

This means that there is the possibility that the PBR provides measurements when the target is stationary 

(𝑃𝑓𝑡 = 10
−2), and it misses some target position estimates when this is moving (𝑃𝑑 = 0.9). The results in these 

conditions are reported in Figure 6.11. 

𝑃𝑑 = 0.9, ⁡⁡⁡⁡⁡⁡𝑃𝑓𝑡 = 10
−2 (6.6) 
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The results are similar to the ideal case shown in Figure 6.10, but as expected the performance of the IMM-

MI decreases, especially in the moving intervals, where it is evident that the black solid line assumes higher 

values for the RMSE, according to the reduction of the matching between the V0 model probability and the 

expected target status (grey dashed line). However, the proposed strategy generally outperforms the other 

approaches during the whole simulation time.  

 

6.5 Evaluation of the RMSE as a function of the Detection Probability for 

the PBR sensor 

As shown in Section 6.4, the possible limitation of our methodology could be represented by the irregularity 

of PBR behavior, based on the presence of the detections when the target is stationary and their missing when 

the target is moving. 

In this Section, we stress this situation through the evaluation of the performance with respect to the 𝑃𝑑, for 

fixed values of 𝑃𝑓𝑡. 

For the first test, we consider having ideal conditions for the False Target Probability, therefore we set 𝑃𝑓𝑡 =

0. In contrast, we consider 10 different values for the Detection Probability, namely 

Figure 6.11. Comparison of the normalized positioning RMSE with respect to the x-axis (top), and the y-axis (center), over a 

simulated Move-Stop-Move target for 𝑃𝑑 = 0.9 and 𝑃𝑓𝑡 = 10
−2. In the subplot at the bottom, there is the relative V0 model 

probability. 
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The vector containing the possible Detection Probabilities is denser for higher values of 𝑃𝑑, since they 

represent typical situation in real applications. 

The results achieved with these configurations for the normalized RMSE, averaged over the entire 

simulation, are reported in Figure 6.12. 

 
The curves show that the IMM-MI (black line) provides the best performance in terms of positioning 

accuracies. This behavior is more evident when the sensors work in better conditions, namely for higher values 

of 𝑃𝑑. It is interesting to notice that also for very low values of 𝑃𝑑 the IMM-MI approach is yet the best one. 

However, in contrast with the other methodologies, we can also notice that our strategy is strongly influenced 

by the behavior of the PBR sensor, and in particular by the presence of its measurements.  

In order to have a higher knowledge of the behavior of the compared strategies, the performance is also 

evaluated in specific points of the simulation. In particular, it is interesting to analyze the results for the 

transient state and the steady state, separately. 

In detail, the transient is evaluated few seconds after the transition between different motion status, while 

the steady state is calculated in the subsequent interval. 

These evaluations have been presented in Figure 6.13 for the transient and Figure 6.14 for the steady state. 

Due to graphical needs, we use just one legend for both the subplot in Figure 6.13. 

𝑷𝒅 = [1, 0.99, 0.97, 0.95, 0.90, 0.85, 0.80, 0.70, 0.60, 0.50] (6.7) 

Figure 6.12. Comparison of the normalized positioning RMSE averaged over the entire simulation vs 𝑃𝑑, with respect to the 

x-axis (top), and the y-axis (bottom), over a simulated Move-Stop-Move target for 𝑃𝑓𝑡 = 0. 
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For the second test, we make the conditions worse even for the False Target Probability, therefore we set 

𝑃𝑓𝑡 = 10
−2. In this way, the IMM-MI is further stressed, with the purpose of quantifying its limitations when 

the operating conditions are unfavorable. 

The results for this case are reported in Figure 6.15, Figure 6.16 and Figure 6.17, for the entire simulation, 

the transient and the steady state, respectively. 

Figure 6.13. Comparison of the normalized positioning RMSE in transient state vs 𝑃𝑑, with respect to the x-axis (top), and 

the y-axis (bottom), over a simulated Move-Stop-Move target for 𝑃𝑓𝑡 = 0. 

Figure 6.14. Comparison of the normalized positioning RMSE in steady state vs 𝑃𝑑, with respect to the x-axis (top), and the y-

axis (bottom), over a simulated Move-Stop-Move target for 𝑃𝑓𝑡 = 0. 
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Even this time, the performance of the proposed approach (black line) is better than the other ones. This is 

encouraging because it means that our strategy can be applied also in real applications. 

 

Figure 6.15. Comparison of the normalized positioning RMSE averaged over the entire simulation vs 𝑃𝑑, with respect to the 

x-axis (top), and the y-axis (bottom), over a simulated Move-Stop-Move target for 𝑃𝑓𝑡 = 10
−2. 

Figure 6.16. Comparison of the normalized positioning RMSE in transient state vs 𝑃𝑑, with respect to the x-axis (top), and the 

y-axis (bottom), over a simulated Move-Stop-Move target for 𝑃𝑓𝑡 = 10−2. 
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An analysis with worse condition can be useful. This time we reported just the results for the average over 

the entire simulation time, that provides the idea of the general performance of the tested methodologies. We 

can set, for example, the False Target Probability with the value 𝑃𝑓𝑡 = 0.1. The related results are reported in 

Figure 6.18. 

 

Figure 6.17. Comparison of the normalized positioning RMSE in steady state vs 𝑃𝑑, with respect to the x-axis (top), and the 

y-axis (bottom), over a simulated Move-Stop-Move target for 𝑃𝑓𝑡 = 10−2. 

Figure 6.18. Comparison of the normalized positioning RMSE averaged over the entire simulation vs 𝑃𝑑, with respect to the 

x-axis (top), and the y-axis (bottom), over a simulated Move-Stop-Move target for 𝑃𝑓𝑡 = 0.1. 



141 

 

We can see that the IMM-MI matches the results of the classical IMM, which uses the same number of 

sensors, for 𝑃𝑑 = 0.5, while it is better for all the other cases. 

We have to highlight that the mentioned situation (𝑃𝑑 = 0.5, 𝑃𝑓𝑡 = 0.1) is not typical in localization and 

tracking application, because it means that the sensors are working in very poor operating conditions. 
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Chapter 7  

Tests on experimental data 
 

In Chapter 3, two different tests on human targets have been presented. The first one was characterized by 

a very small number of position estimates for the PSL sensor (Section 3.2). In contrast, in Section 3.3 the 

device transmissions are increased thanks to the possibility for the active mobile device to perform a real 

upload activity. For this reason, in this Section we refer to this second test for the experimental validation of 

our strategy, since we have enough measurements from both sensors to perform the tracking and data fusion 

and evaluate the performance of all the methodologies presented in Chapter 4 and Chapter 5. Moreover, the 

experimental setup exploited in this second test for the Passive Radar is enhanced with respect to the previous 

one, since it is more representative of a real scenario, therefore its analysis is much more interesting for the 

proposed evaluation. 

In order to simplify the subsequent comparison between the localization of the human target before and after 

the application of the analyzed filters, we report here (Figure 7.1) the results shown in Figure 3.38. 

 

The target positions displayed in Figure 7.1 represent the measurements provided by the two employed 

sensors. Specifically, the Sensor 1 is the PSL (red crosses), while the Sensor 2 is the PBR (blue dots). 

As it is clear, the two sensors are characterized by different measurement accuracies. Exploiting both the 

theoretical evaluation of the positioning accuracies in the area of interest for the proposed techniques, based 

on the measures estimated to perform the localization (AoA, TDoA, etc.), and the empirical evaluation, based 

Figure 7.1. Comparison of the PSL and the PBR 

localization on the XY-plane. 
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on the results obtained in a real scenario, we have established the standard deviations to be used for our 

analysis. 

For the PBR sensor, the standard deviations of the measurement errors have been set to 

For the PSL sensor, instead, we have followed a different approach. We have seen, from the results reported 

in Figure 7.1, that the position estimates for the PSL are strongly influenced by the geometry and the scenario 

used in the specific acquisition campaign. In particular, it is evident the problems that occur in point (15 m, 70 

m), where the errors drastically increase, especially for the y-component. Therefore, it is reasonable to use a 

dynamic change of the standard deviation of the PSL measurement errors. 

For the x component, the positioning accuracy is proportional to the distance from the receiving system, that 

is 

where 𝜎𝑥 is the standard deviation of the measurement errors for the x-component, 𝜎𝜑 represents the angular 

errors, and 𝑅 is the distance from the surveillance antennas. 

The accuracy is also linked to the SNR. For a generic estimator, the following relation can be written 

Therefore 

In particular, we can distinguish between Near and Far accuracy 

We are interested in finding a relationship between these two quantities. Through some mathematical 

operations, we can write 

For the SNR we have 

𝜎𝑥 = 0.6⁡𝑚,⁡⁡⁡𝜎𝑦 = 1⁡𝑚 (7.1) 

𝜎𝑥 = 𝜎𝜑 · 𝑅 (7.2) 

𝜎𝜑 =
𝑐0

√𝑆𝑁𝑅
 (7.3) 

𝜎𝑥 =
𝑐0

√𝑆𝑁𝑅
· 𝑅 (7.4) 

𝜎𝑥𝑁 =
𝑐0

√𝑆𝑁𝑅𝑁
· 𝑅𝑁 (7.5) 

𝜎𝑥𝐹 =
𝑐0

√𝑆𝑁𝑅𝐹
· 𝑅𝐹 (7.6) 

𝜎𝑥𝐹 =
𝑐0

√𝑆𝑁𝑅𝑁 · √
𝑆𝑁𝑅𝐹
𝑆𝑁𝑅𝑁

· 𝑅𝑁 ·
𝑅𝐹
𝑅𝑁

= 𝜎𝑥𝑁 ·
𝑅𝐹
𝑅𝑁

· √
𝑆𝑁𝑅𝑁
𝑆𝑁𝑅𝐹

 (7.7) 

𝑆𝑁𝑅 =
𝑆𝑁𝑅0
𝑅4

 (7.8) 
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Therefore 

Finally, we can find 

For a generic distance 𝑌, considered along the y axis, the equation (7.10) becomes 

where 𝜎𝑥𝑁 is the standard deviation calculated at a distance equal to 𝑅𝑁. 

In this case, 𝜎𝑥𝑁 has been set to 

which represents a reasonable value for the specific case of interest.  

For the y component, instead, the following relation applies 

As for the x component, it is possible to distinguish between Near and Far accuracy 

We can write 

For the SNR, the (7.8) applies, therefore 

Finally, we can find 

𝜎𝑥𝐹 = 𝜎𝑥𝑁 ·
𝑅𝐹
𝑅𝑁

· √
𝑅𝐹
4

𝑅𝑁
4  (7.9) 

𝜎𝑥𝐹 = 𝜎𝑥𝑁 · (
𝑅𝐹
𝑅𝑁
)
3

 (7.10) 

𝜎𝑥(𝑌) = 𝜎𝑥𝑁 · (
𝑌

𝑅𝑁
)
3

 (7.11) 

𝜎𝑥𝑁 = 1⁡𝑚 (7.12) 

𝜎𝑦 =
𝑐1

√𝑆𝑁𝑅
 (7.13) 

𝜎𝑦𝑁 =
𝑐1

√𝑆𝑁𝑅𝑁
 (7.14) 

𝜎𝑦𝐹 =
𝑐1

√𝑆𝑁𝑅𝐹
 (7.15) 

𝜎𝑦𝐹 =
𝑐1

√𝑆𝑁𝑅𝑁
· √
𝑆𝑁𝑅𝑁
𝑆𝑁𝑅𝐹

= 𝜎𝑦𝑁 · √
𝑆𝑁𝑅𝑁
𝑆𝑁𝑅𝐹

 (7.16) 

𝜎𝑦𝐹 = 𝜎𝑦𝑁 · √
𝑅𝐹
4

𝑅𝑁
4  (7.17) 
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Even this time, for a generic distance 𝑌, considered along the y axis, the equation (7.18) becomes 

where 𝜎𝑦𝑁 is the standard deviation calculated at a distance equal to 𝑅𝑁. 

In this case, 𝜎𝑦𝑁 has been set to 

which represents a reasonable value for the specific case of interest.  

The value of 𝑌 in (7.11) and (7.19) changes at each iteration, and it is set with the filtered position of the 

current iteration. 

According to the results shown in Figure 7.1, considering the specific area of interest, the previous choices 

allow to attribute more importance to the PBR measurements, since they are more accurate than the position 

estimates of the PSL. 

The five methodologies for target tracking have been set with the same values used in Section 6.2 (Table 6), 

for the standard deviations of the model errors and the Markov transition matrix 𝑃. We remind in Table 7 the 

choice for each methodology. 

 
Table 7. Setting of the employed methodologies. 

Approach 𝜎𝑎𝑥 = 𝜎𝑎𝑦⁡[𝑚/𝑠
2] 𝜎𝑣𝑥 = 𝜎𝑣𝑦⁡[𝑚/𝑠] 𝑃 

KF-NCV 

(Single Sensor) 
0.5 - - 

KF-NCV 

 (Sensor Fusion) 
0.5 - - 

IMM 

(Single Sensor) 
0.01 0.1 [

0.95 0.05
0.05 0.95

] 

IMM 

(Sensor Fusion) 
0.01 0.1 [

0.95 0.05
0.05 0.95

] 

IMM-MI 

(Sensor Fusion) 
0.01 0.1 [

0.95 0.05
0.05 0.95

] 

 

In the next sub-sections, the results for these methodologies have been presented, focusing the attention on 

the advantages and the drawbacks of each one. 

 

𝜎𝑦𝐹 = 𝜎𝑦𝑁 · (
𝑅𝐹
𝑅𝑁
)
2

 (7.18) 

𝜎𝑦(𝑌) = 𝜎𝑦𝑁 · (
𝑌

𝑅𝑁
)
2

 (7.19) 

𝜎𝑦𝑁 = 2.85⁡𝑚 (7.20) 
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7.1.1 KF-NCV (Single Sensor) 

In this case, it is necessary to choose one of the two sensors for the test of the “Single Sensor” versions of 

the proposed strategies. We decided to analyze the PSL sensor, because  

1) a previous filtering has not been used over its measurements, while for the PBR we applied a first step 

of tracking over the Range-Doppler plane, that provides fairly accurate position estimates; 

2) it is important to observe the behavior of the filters when the target changes its motion status (move-

stop-move). In fact, for this analysis, the PBR is not interesting, since in stop intervals it does not 

provide target detection, therefore the filtering in these instants stops to work and the track is closed 

until a new one is opened again, after the arrival of a new measurement. 

The effect of the Kalman Filter, implemented with a single NCV model, over the PSL position measurements 

is shown in Figure 7.2. In particular, the results in the XY-plane are reported in Figure 7.2(a), while Figure 

7.2(b) and Figure 7.2(c) present the trend in time of the x and y components, respectively. 

   

(a) (b) (c) 

Figure 7.2. Effect of the KF-NCV (Single Sensor), over the PSL position measurements: (a) in the XY-plane, (b) for the x-

component vs Time, and (c) for the y-component vs Time. 

The results show that the selected value for the standard deviation of the model error, namely  

𝜎𝑎𝑥 = 𝜎𝑎𝑦 = 0.5⁡𝑚/𝑠
2 (see Table 7), on one hand, reduces the filtering power of the Kalman Filter, due to 

the small weight attributed to the prediction based on the considered motion model; on the other hand, it allows 

to avoid excessive errors during the transition between different motion status, as apparent in Figure 7.2(c) 

after 40 s. In fact, this is true especially when the target walks near the receiver and the measurement accuracies 

defined in (7.11) and (7.19) are smaller. In this way, the tracker relies mainly on the position estimates provided 

by the sensor, reducing the impact of an incorrect motion model.  

This produces a very small difference between the raw measurements provided by the PSL sensors (red 

crosses in Figure 7.2) and the filtered positions (green crosses in Figure 7.2(a) and green solid line in Figure 

7.2(b)-(c)). As a consequence, there is a good correspondence between the results obtained after the application 

of the filter (in green) and the ground truth (blue solid line in the same figure) in the first part of the proposed 

test (up to about 15 seconds), where the filter model matches the target motion and the PSL measurements are 

more stable. The problems occur when the target walks close to the metallic fence of the building on the right 

in Figure 3.31. This effect is evident in Figure 7.2(c), in the interval between 18 s and 26 s: when the target 
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reaches the point (15 m, 70 m), the position estimates are too inaccurate. This yields bad performance in terms 

of accuracy in the examined area. After that moment, the Kalman Filter needs long time to reach again the 

actual path of the target. 

In addition, since in this point the distance between target and receiver increases, the measurement 

accuracies defined in (7.11) and (7.19) assume a higher value, and the tracker attributes more importance to 

the prediction. This effect is clear in Figure 7.2(a) and Figure 7.2(b) during the first change of motion, when 

the filtered positions follow the previous trajectory even after the target stops. 

Therefore, it is clear that the measurement accuracy has a key role especially in these conditions. 

This situation confirms our proposal of using an additional sensor (PBR), which may increase the 

performance in terms of accuracy. 

 

7.1.2 KF-NCV (Sensor Fusion) 

In this second case, we exploit both the available sensors. The approach analyzed in this section uses the 

same parameters of the single sensor version. 

The effect of the Kalman Filter, implemented with a single NCV model, and the additional employment of 

Data Fusion techniques, over the PSL and PBR position measurements, is shown in Figure 7.3. As for the 

previous approach, we reported the results in the XY-plane and the trend in time of the x and y components in 

Figure 7.3(a), Figure 7.3(b) and Figure 7.3(c), respectively. 

   

(a) (b) (c) 

Figure 7.3. Effect of the KF-NCV (Sensor Fusion), over the PSL and PBR position measurements: (a) in the XY-plane, (b) for the 

x-component vs Time, and (c) for the y-component vs Time. 

The results show that the exploitation of the PBR sensor, whose measurements have been displayed with 

blue crosses in Figure 7.3, helps the tracker to follow the actual target motion, thanks to the possibility to i) 

rely on more accurate position estimates, and ii) compensate for the lack of measurements of the PSL sensor 

when the target is moving but it is not involved in upload activities. On the other hand, the PSL is necessary 

to know the target position when the target is stationary. This is quite apparent during the second stop (from 

about 40 s to 50 s), where the position is estimated only through the information given by the mobile device, 

but it is not very useful in the first stop, when the scenario and the operating conditions affect the quality of 

the PSL estimates, making impossible an accurate localization. Nevertheless, even this time, the setting of the 
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parameter of interest, defined with the purpose of reducing the errors when the target changes its motion status, 

does not allow to exploit the potentialities of a filtering operation. 

As explained before, the possible solution is represented by the IMM method. 

 

7.1.3 IMM (Single Sensor) 

The results for the IMM method, when only the PSL sensor is employed, have been displayed in Figure 7.4. 

   

(a) (b) (c) 

Figure 7.4. Effect of the IMM (Single Sensor), over the PSL position measurements: (a) in the XY-plane, (b) for the x-component 

vs Time, and (c) for the y-component vs Time. 

The images above meet the considerations presented for the KF-NCV (Single Sensor), presented in Section 

7.1.1, with reference to the employment of only one sensor, specifically the PSL system. In contrast with the 

KF-NCV, the IMM allows to limit the errors that occur when the target changes its motion status, as it is clear 

comparing Figure 7.2(b) and Figure 7.4(b), during the first stop. 

Moreover, this figures also show the agreement with the results achieved on simulated target, where we have 

noticed that the availability of measurements each 0.1 s, when the target is quite slow, produces a worsening 

in performance, due to the difficulties to understand the target motion status (move or stop), and consequently, 

to select the correct motion model. 

This can be easily seen in Figure 7.5, where the model probabilities for the NCV model (top) and the V0 

model (below) have been presented. 
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In this figure, apart from some moments, we can see the incapability of this methodology to choose the 

correct motion model. In fact, the model probabilities are quite stable around the 50% of choosing one model 

or the other one, for almost the entire acquisition.  

 

7.1.4 IMM (Sensor Fusion) 

Even in this case, the implementation of Data Fusion techniques which combine the measurements of PSL 

and PBR, produces an improvement in performance thanks to the exploitation of the information carried by an 

additional sensor. 

The results are reported in Figure 7.6. 

   

(a) (b) (c) 

Figure 7.6. Effect of the IMM (Sensor Fusion), over the PSL and PBR position measurements: (a) in the XY-plane, (b) for the x-

component vs Time, and (c) for the y-component vs Time. 

These images confirm the previous considerations about the advantages produced by the joint exploitation 

of two different sensors. 

Figure 7.5. Model probabilities for the IMM (Single Sensor) approach. 
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The model probabilities for the IMM (Sensor Fusion) are shown in Figure 7.7. 

 
We can notice that the behavior of the two versions of IMM (Single Sensor and Sensor Fusion) are similar 

when the PBR does not provide the target positions, namely when the target is stationary (from 18 s to 26 s, 

and from 40 s to 50 s). See Figure 7.5 for comparison. 

This time, when the target is moving, the probability to choose the NCV model is higher (µ1⁡close to 1) with 

respect to the single sensor results (µ1 ≅ 0.6 ÷ 0.8), although the estimates fluctuate more, especially in the 

first part of the acquisition. 

 

  

Figure 7.7. Model probabilities for the IMM (Sensor Fusion) approach. 
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7.1.5 IMM-MI (Sensor Fusion) 

In line with the four methods presented above, the IMM-MI has been implemented with the parameter shown 

in Table 7. 

The localization and tracking in the XY-plane and the trend in time of the x and y components are reported 

in Figure 7.8(a), Figure 7.8(b) and Figure 7.8(c), respectively. 

   

(a) (b) (c) 

Figure 7.8. Effect of the IMM-MI (Sensor Fusion), over the PSL and PBR position measurements: (a) in the XY-plane, (b) for the 

x-component vs Time, and (c) for the y-component vs Time. 

The proposed strategy provides a further performance improvement. In fact, its effect is evident i) in the 

interval where the target is moving, where we can see that the IMM-MI produces more smoothed filtered 

positions, which are very close to the line of the ground truth, and ii) in the second stop, where the variation 

around the point (15 m, 40 m) in Figure 7.8(a) are smaller with respect to that shown for the previous 

methodologies, and in particular in Figure 7.8(b) and Figure 7.8(c), where the green line is much more stable 

and close to the ground truth, when compared with the other four cases. 

A positive effect is also obtained for the first stop, namely between 18 s and 26 s in Figure 7.8(b)-(c). In this 

part, the increase of the quality is apparent not only in Figure 7.8(a), but also in Figure 7.8(b)-(c) where the 

trend of the green line is very similar to the ground truth. Moreover, an interesting behavior can be also seen, 

in the same interval, by observing only Figure 7.8(c), where the PSL measurement errors are limited by the 

innovation modification, which produces a reduction of the relative errors with respect to the curves shown in 

Figure 7.2(c), Figure 7.3(c), Figure 7.4(c) and Figure 7.6(c). This result highlights the advantages of the use 

of a modified version of the IMM, since it improves the performance even in noisy environments. 

On the other hand, we can also notice that, despite we have unbalanced the IMM, with the purpose of helping 

the model selection, the PSL measurements still have a considerable influence on the final results. This means 

that with better operating conditions, the PSL sensor can refine the filtered position estimates, through the 

introduction of its measurements into the system. 

The previous considerations show that the combination of Data Fusion techniques and the proposed 

modification of the IMM represents a good solution for target localization and tracking in short range 

applications. 
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This is confirmed in Figure 7.9, where the model probabilities for the IMM-MI (Sensor Fusion) are 

displayed. 

 
In this figure, the capability of our system to follow the target motion and select the correct model is 

sufficiently evident. In fact, the model probabilities reach values very close to 1 or 0 in the correct time instants. 

In particular, when both the sensors provide their measurements, the NCV model manages to achieve the 

value µ1 = 1. When the device interrupts its transmission, and so the PSL does not provide the target position 

estimates, the model probability for the NCV model reaches a value lower than 1, as apparent between about 

58 s and the end of the acquisition. 

Moreover, in contrast with the other strategies, this time, during the first stop, the effect on motion 

recognition of poor accuracy in PSL measurements is strongly reduced, since this operation is performed 

thanks to the knowledge of the presence or the absence of PBR detections. 

 

7.1.6 Comparison of the analyzed methodologies in terms of positioning error 

According to the analysis carried out for the tests on simulated target, we report in Figure 7.10 the results 

for the instantaneous positioning errors of the five examined approaches, over the presented experimental test. 

In particular, when the combination of the two coordinates is considered we refer to Figure 7.10(a), while the 

analysis of the single components are reported in Figure 7.10(b) and Figure 7.10(c), for the x-component and 

the y-component, respectively. 

Figure 7.9. Model probabilities for the IMM-MI (Sensor Fusion) approach. 
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(a) (b) (c) 

Figure 7.10. Positioning errors (a) considering both the coordinates, (b) for the x-component, and (c) for the y-component. 

As expected, the higher errors occur during the first stop, where the distance from the receiving antennas 

and the proximity to the metallic fence and the building affect the quality of the available measurements, 

especially when the target is stationary and only the PSL provides information about the target location. In this 

case, the IMM-MI is the strategy that limits the negative effect of these situation, containing the errors even 

with inaccurate measurements. 

On average, the strategy proposed in this thesis, namely the IMM-MI that combines the measurements of 

PBR and PSL sensors, outperforms the other strategies, and it allows to localize and track moving and 

stationary targets, regardless the Wi-Fi network traffic conditions. 

The benefits of this methodology are also shown in Table 8. 

Table 8. Mean errors and percentage of acquisition covered by the tracking. 

 

Mean 

Error x 

[m] 

Std Error 

x 

[m] 

Mean 

Error y 

[m] 

Std Error 

y 

[m] 

Mean 

Error pos 

[m] 

Std Error 

pos 

[m] 

% 

Acquisition 

covered 

PSL 

Measures 
0.9072 0.9028 3.6605 5.2823 3.9294 5.2439 77% 

PBR 

Measures 
1.1202 0.8661 1.1229 0.9152 1.7477 1.0236 71% 

KF-NCV 

(Single 

Sensor) 

1.4850 1.7182 4.9247 5.8583 5.2545 6.0098 77% 

KF-NCV 

(Sensor 

Fusion) 

1.4288 1.5498 2.4048 3.3880 2.9605 3.5971 97% 

IMM 

(Single 

Sensor) 

0.9716 1.0915 3.8201 3.5282 4.0352 3.5906 77% 

IMM 

(Sensor 

Fusion) 

1.1305 0.8977 2.2490 2.9444 2.7105 2.9091 97% 

IMM-MI 

(Sensor 

Fusion) 

0.9589 0.6479 1.1397 0.9056 1.6152 0.9213 97% 

 

It is evident the decrease of the total error when the IMM-MI is used (last row of Table 8). In fact, with this 

strategy we can obtain very accurate position estimates. In particular, the errors are comparable with those 
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achieved by the passive radar, after the application of a first step of tracking in the Range-Doppler plane (see 

the second row of Table 8), but the percentage of acquisition covered by the IMM-MI approach (97%), thanks 

to the Sensor Fusion strategy, is higher with respect to the passive radar capability (71%). 

This aspect is in line with the expected results of this thesis. 
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Chapter 8  

Conclusion 
 

In this section we draw the final conclusions of this work, focusing mainly the attention on the main 

contributions of this Thesis. 

The aim of this thesis is the definition of innovative methodologies able to solve the problem of the 

localization of human targets and small objects in local area environments in any operating conditions. To 

achieve this result, in this work we proposed the fusion of two different positioning techniques based on Wi-

Fi signals: Passive Bistatic Radar (PBR) and Passive Source Location (PSL).  

Therefore, we started with the description of the employed sensors, through the evaluation of measurement 

estimation and positioning techniques. Then, the two localization strategies have been analyzed and compared, 

and their complementarity has been demonstrated also on experimental data. 

After that, existing tracking techniques have been briefly described. In particular, the advantages and 

limitations of the Kalman Filter and the Interacting Multiple Model (IMM) are explained, especially when they 

operate on a typical move-stop-move target. 

A new Sensor Fusion tracking filter is proposed, which exploits both the advantages provided using Data 

Fusion techniques and a modified version of the IMM, based on the knowledge of the sensor characteristics. 

The main contributions of this thesis are the following: 

1. The estimation techniques for the measurements used in PBR and PSL sensors are reviewed and 

innovative techniques are proposed for the TDoA estimation of PSL sensors. In particular, starting 

from the CCF, a slope-based method and its iterative version are proposed and shown to outperform 

the other available techniques. 

2. According to previous studies on the PBR system, the positioning techniques based on different 

combinations of measurements (only AoA measurements, only TDoA measurements and the hybrid 

solution with both AoA and TDoA) for the PSL sensor are extensively analyzed. Specifically, it is 

shown that the higher realization simplicity in practical applications and the better accuracies achieved, 

especially in very short applications, by using only AoA measurements, suggest avoiding the 

employment of TDoA measurements when possible. 

3. The characteristics of PBR and PSL measurements and positioning capabilities have been analyzed 

and compared to assess the relative performance. In particular:  

a. The PBR provides a good accuracy for moving targets when the network traffic load is limited 

and a short beacon interval (BI) can be used. In contrast, measurements are absent for static targets. 

Moreover, using long BI the performance shows a neat degradation. 
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b. The PSL provides good accuracy localization for both moving and static targets, when the device 

is active and transmits packets with a high rate. In contrast, PSL measurements can be not enough 

to track a target if its device does not transmit with regularity. 

c. PBR and PSL show a high complementarity, since the one of the two is able to operate effectively 

in all conditions where the other shows sensible degradations. 

4. The limitations of the use of PBR and PSL sensors based on the signals emitted on a specific Wi-Fi 

channel are characterized. Specifically, it is shown that the performance of the PBR largely depends 

on the network load, which in turns depend on the level of activity of the devices. Therefore, good 

PBR performance are not available when the activity of the devices allows a good performance of the 

PSL sensor and vice-versa. 

5. The fusion of PBR and PSL measurements is shown to be able to provide significant improvement 

with respect to the single sensor. This is clearly demonstrated by applying an IMM Sensor Fusion filter 

to PBR and PSL using both simulated data and the data collected by an experimental setup that aims 

at tracking moving people carrying Wi-Fi devices. 

6. A new Sensor Fusion tracking filter is proposed based on the IMM scheme, but with a modified 

innovation (MI) evaluation, to improve the localization performance in the typical stop & go motion 

scenario of human targets. Specifically, the new IMM-MI tracking filter exploits the characteristics of 

the two sensors to identify soon the transition from a “move” phase to a “stop” phase and vice-versa, 

so that can always base its filtering on the most appropriate sensor in each phase. 

7. The new IMM-MI tracking filter is applied against the experimental data from an experimental setup 

with people following a stop and go motion pattern. The improved performance is clearly 

demonstrated by comparing the results of the IMM-MI against the standard IMM. 
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